Global Optimization in the
COCONUT project

Outline of Algorithm
API Design
Inference Engines
Examples

Hermann Schichl,
Arnold Neumaier, Eric Monfroy,
and the COCONUT partners

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

The COCONUT project

= European Union research and development project

= Partners from six European universities:
Nantes, Lausanne, Vienna
Louvain-la-Neuve, Coimbra, Darmstadt
and an industrial partner:
ILOG

= Aimed at the integration of the existing approaches to
continuous global optimization and constraint satisfaction

= December 2000 - November 2003

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Basic Modular Setup

A

M ain part of A Igorithm,
makes decisions

A

Strategy Eng.

v

Inference Eng.

Reports

P roblem structure analysis,
local optimization,

constraint satisfaction, interval
analysis, L inear reaxation,
convex opt., bisection,...

IST-200

P roduces files (A MP L),
human readable output,

checkpointing

A

Management

P roblem management,
R esources, P arallelization

0-26063 C@C@NUT

FET-Open sc

heme

Project funded by the Future and Emerging Technologies arm of the IST Programme

Modular APl design

= The APl is designed to make the development of
the various module types independent of each
other and independent of the internal model
representation.

= A collection of C++ classes.
= Uses FILIB++ and MTL.

= Supports dynamic linking.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

= All inference engines are subclasses of one
class, so they have the same basic structure.

= Communication with the strategy engine by a
database-like communication.

= The APl implementation (w/o inference engines)
consists of 44000 lines of C++ code and a few
perl scripts, organized into 128 files,
occupying 1.3 MB of disk space.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Search graph

Starts at the original model
Contains relaxations
and splits.

Itis not a tree since it might
also contain glueings.

= Some of the nodes will be
terminal, since they can be
solved completely.

X

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

{technologies

-

min cT:c

st. b1z < by
T € (7]

IST-2000-26063

Model Relations

min c¢'z

st. b'x <b
a(x) <0
z € [z]

Reduction

e.g. Add cut,

prune box

min ch

st. bz < by
d'z < dg
a(z) <0
T € [z

\Sp“ U = o]

min ¢'z
st bz < bo
a(z) <0
z € [2] C [z]

min cT:c

st. b'zx <by
a(x) <0

x € [z"] C [z]

coCcoNuUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

e Model Reductions
| min c¢'x
st. bz < bo
a(z) <0
T € [z] .
: Split
Relaxation ———— A DS
: T
. e mm ¢ T
min ¢z st 572 < by
st. bz < by a(z) <0
x € [z] z € [2'] C [z]
min c¢'z
st. bz <bgy
a(z) <0
z € [2"] C [z]

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Model Glueing

min ¢z
st. bz <by
a(z) <0
x € [z]

Glue,
Unsplit

[V [="] = [z]

T

st. bz < bo
a(x) <0
z € [2'] C [7]

min ¢

T

mn c¢'zx

st. bz <b
a(z) <0
z € [z"] C [z]

IST-2000-26063

coCcoNuUT

Project funded by the Future and Emerging Technologies arm of the IST Programme

FET-Open scheme

Internal Representation

= Models are organized in the search graph, represented by
a Directed Acyclic Graph (DAG).

= For every model in the search graph the following
information is stored:

— Every equation/inequality is assigned a number of
annotations describing its properties (e.g. linear, quadr.,
convex, separable, redundant, ...).

— Additional local information (e.g. local optima, active
constraints, Lagrangian multipliers,...) is added.

— A description of the relation between the problem and its
parent is provided.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

The DAG is implemented using the VGTL, a library following
the generic programming spirit of the C++ STL.

There are two types of nodes:

— Full nodes contain complete descriptions of models,

— Delta nodes contain only the changes to the parent
model in order to save storage capacity

The search graph has a focus pointing to the model
which is worked upon. This model is copied into an
enhanced structure - the work node. A reference to this
work node is passed to the inference engines.

The graph itself can be analyzed by search inspectors.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Internal Mathematical Representation

= The internal mathematical representation of a problem is
mln flin(x)+fquad(x)+fsep(x)+f0(x)
st. G, (x)+G, (x)+G_(x)+G,(x)€ES,
XES,

quad sep

where (currently) the sets Sare boxes.

= The algorithmic representation is in graph form using not a
tree (or forest) as usual but a directed acyclic graph.

= Variables appearing left of an assignment are substituted
out.

IST-2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

{technologies

Y

Constraints

+)

([—e0,6]

| I
=1
[-1,4]

Objective

2\ ¢
T
@ @

o)

IST-2000-26063

[I[l 2]

Directed Acyclic Graph (DAG)

DAG representation of the
model
min 3x2z+4xy3z
st 7=4x+3y’
Tx+3x"z4+7y°<6
ye[1,2],z€[—1,4]

similar to computational tree
every node is an expression
a hode may have more than
one parent

Constants and variables are
sources, objective and
constraints are sinks

coCcoNuUT

FET-Open scheme

Project funded by the Future and Emerging Technologies arm of the IST Programme

Expressions

= Every vertex represents a function F mapping a vector x€R"
to a value F (x)€R.

= Predefined functions include sum, product, max, min,
elementary real functions (exp, log, pow, sqrt, ...)

= Variable indicator contains the indices of the variables this
vertex depends on.

= Additional information is added (ranges, semantics, variable
name, vertex number, ...)

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Evaluation of a DAG

Evaluation works similar to computation trees by performing
a graph walk.

Caching keeps evaluation work minimal.
The whole model is stored in one graph.

Defining short-cuts makes it possible to replace graph walks
by evaluation functions. Short-cuts may be defined at every

node.
Additional elementary functions can easily be incorporated.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

C++ to construct and manipulate DAGs, and forests (trees).

Generic Programming approach with containers, walkers,
function objects, and generic algorithms.

For expression graphs (DAG or tree) special visitors are
provided O (cached) forward and backward evaluators.

Currently implemented Evaluators:

— Real Function Values and Function Ranges
— Gradients (Real, Interval)
— Slopes

In the near future Evaluators for:
— Hessians (Real, Interval)
— Second order Slopes

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Example

= |nterval evaluation and
constraint propagation
produce bounds on each
node

= No reduction on the domain
of the variables

= The bounds on intermediate
nodes are improved
compared to interval
evaluation

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Example (ctd.)

= Linear enclosures produced
using slopes give redundant
constraints, e.g.

24 (x,—2)—48(x,—4)=32(x,—4)<0

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Example (ctd.)

= Now constraint propagation leads to a reduction
of the domain of the variables

x,€(3.4,4]
x,€[34,4]
= With previously known techniques but without

(expensive) higher order consistency, such a
reduction would have required a split of the box.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Inference Engines

= Corresponding to every type of problem change, a class of
inference engines is designed:
— Model analysis (e.g. find convex part)
— Model reduction (e.g. pruning, fathoming)
— Model relaxation (e.g. linear relaxation)
— Model splitting (e.g. bisection)
— Model glueing (e.g. undo excessive splitting)
— Update local information (e.g. probing, local optimization)
— Check certificate (check correctness of calculation)

= Inference engines never change the model but calculate which
changes may be made and are considered useful.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Inference Engines:
General features

= All inference modules only advertise changes.

®= There is a fixed documentation structure defined.
— Services Provided
— Limits
— Structure, Prerequisites of Input
— Structure, Features of Output
— Control Parameters
— Termination Reason

= They produce a result where every possible change is listed
together with a weight (the higher the weight the more
important the change) and a certificate for correctness.

= They collect statistical data to support the strategy engine
in making decisions.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Inference Engines implemented
as State of the Art

= Several state of the art technignes were implemented as
inference engines:
— STOP (starting point generator)
— DONLP2-INTV (local optimizer)
— Karush-John-Condition Generator
— Point Verifier
— Exclusion Box
— Interval constraint propagation
— Linear Relaxation
— CPLEX (linear programming solver)
— Basic Splitter
— BCS (box covering solver)

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Inference Engine: STOP

= Heuristic Global Optimization Algorithm

= Combines Multi-Level-Coordinate-Search and
Constraint Propagation

= Produces Starting Points for Local Optimization

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

= General purpose non-linear local optimizer for
continuous variables

= SQP method
= Dense Linear Algebra

= Envelope uses standard evaluators, gradients
are computed by automatic differentiation

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Inference Engine:
Karush-John Conditions

= Generates the DAG representation of
the Karush-John first order optimality conditions

= Every constraint (even two-sided) gets associated
one Lagrange multiplier

= Constructed by symbolic differentiation of the
DAG representation

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

= Computes a uniqueness region around an
approximate solution, in particular a verified point

= Uses Karush-John conditions

= Tries to maximize the uniqueness region by
inflation

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

= Derives a large exclusion box and a tiny inclusion
box such that the area between these two boxes
does not contain a local optimizer.

= They are computed around an approximate local
optimizer to get rid of the cluster effect.

= Does not focus on uniqueness.
= Uses slopes and H-matrix techniques.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Inference Engine:
Constraint Propagation

= Performs the hull-consistency algorithm for
constraint propagation.

= Reduces the possible range of the variables
= Might detect infeasibility of the problem

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Inference Engine: Linear Relaxation

= Computes a linear relaxation of the problem.

= Uses centered forms and slopes to compute
the linear inequalities.

= Makes use of the DAG enhancements to
improve the slopes.

= Either adds the linear relaxation as cuts or
generates a full linear model.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Inference Engine: CPLEX

= Solves linear problems.

= Interfaces the state-of-the-art commercial linear
solver CPLEX.

= Extremely good performance.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

= Provides splitting coordinates and split points.

= Computes a difficulty estimate for the variables
involved.

= Suggests splits for the n most difficult variables.

= Uses exclusion box and solution information to
improve the choice of split points.

= Cuts exclusion boxes out of the search area by
careful choice of splitting coordinates.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Inference Engine: BCS

= Covers the feasible area by boxes.

= Uses DMBC (dichotomous maintaining
bound-consistency) and UCAG6 (union-
conservative approximation) in both
basic and enhanced variants.

= Distinguishes between boxes in the interior
and at the border of the feasible region.

= Uses the commercial ILOG Solver, or the constraint
propagator provided by IRIN, but can work with any
constraint propagator

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Contributions from the outside
of the COCONUT project

We are happy that researchers and companies from
outside the COCONUT project agreed to complement
our efforts in integrating the known techniques:

= Bernstein modules by J. Garloff & A. Smith (U. Konstanz)

= Verified lower bounds for convex relaxations
by Ch. Jansson (TU Hamburg-Harburg)

= GAMS reader by the GAMS consortium

= Taylor arithmetic by G. Corliss (Marquette U.)

= Asymptotic arithmetic by K. Petras (U. Braunschweig)
= XPRESS commercial LP-solver (Dash Optimization)

= Hopefully additional contributions by you!

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Worst case finite element analysis

Linear FEM equations
become non-convex if
material data is uncertain.

Typical size of uncertainty is
10-20% in elasticity and
cross-section area.

Law requires the computa-
tion of the worst case.

Industry relevant problems
have some thousand
variables.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme

FET-Open scheme

Worst case FEM structural analysis
Promising result

= Worst case analysis on the displacements u for a 20x20 wall
in the non-linear system

A(x)u=b

= 1620 material parameters x with 16.4% uncertainty,
840 displacements u

= Traditional methods fail for 0.01% uncertainty

= Exploiting the special structure, within 30s on a 1.6 Ghz
Pentium 4, without bisection we get

Uncertainty (%) 0.01f 0.05 0.5 1 2.5 5 10| 16.4
Overestimation 1.03 1.15[2.55] 4.12] 8.92| 17.26] 35.33| 61.59|

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Basic algorithm design

updated
model

model upd.
suggestion

aux.info.upd
suggestion

auxiliary
information

auxiliary
information

= This setup allows for highest flexibility and extensibility
— the modaules are split into inference engines (calculation) and

management parts
— additional modules for model handling are added

= The strategy engine decides which components are
every algorithmic step of this type

IST2000-26063 C@C@NUT

called in

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Report Modules

= This class of modules produces output.
Various types of files and human readable output will have
to be created.
= Examples:
— Solution Report (humans, AMPL, GAMS)
— Progress Information
— Checkpointing
— Debugging Information
— Error Messages

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Management Modules

= Corresponding to every internal part of the program, a class
of management modules is designed:
— Model management
— Data collection
— Resource management
— Initialization management
= Management modules never calculate anything. They just

perform some of the changes which have been advertised
by inference modules.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Strategy Engine

]

I

- :

| .

- !

e ﬁ : (vope ration :

) ey)

i

Bena Inference Engine Inference Engine - :

 omponent Component - :
L

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Strategy Engine (ctdl.)

= |tis the core of the algorithm and consists of
— The logic core ("search"”) which is essentially the main solution loop,

— Special decision makers (very specialized inference engines) for
determining the next action at every point in the algorithm.

= |t calls the management modules, the report modules, and
the inference engines in succession.

= |t can be programmed using a simple strategy language

(interpreted, Python based).
— (Semi-)interactive and automatic solution process
— Debugging and single-stepping of strategies
— Object oriented, dynamically typed objects, garbage collected
— Easily extendable

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Strategy Engine (ctdl.)

= Manages the search graph via the search graph manager,
= Manages the search database via the database manager,

= Uses a component framework to communicate with the
inference engines,

= Launches inference engines dynamically (on need) to avoid
memory overload,

= Provides a management interface,

= Strategy engine is itself a component, so multilevel
strategies are possible,

= Prepared for distributed and parallel computing, and
distributed memory

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Extensibility

The strategy language makes it easy to change the strategy.

A registration phase during initialization removes the need

to recompile the program when new inference engines are
added.

Registration also allows us to balance scientific and

commercial interests:
— Free but reduced core version with open API specification
— Free strategy engine with basic strategy
— Advanced commercial components

Extending the system by external contributers is made easy
by this modular design.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

Invitation

We hope that

the community will contribute
to this algorithmic framework.

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

The End

ThanK you for your attention!

COCONUT Website:
http://www.mat.univie.ac.at/coconut

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme

