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The COCONUT project

= European Union research and development project

= Partners from six European universities:
Nantes, Lausanne, Vienna
Louvain-la-Neuve, Coimbra, Darmstadt
and an industrial partner:
ILOG

= Aimed at the integration of the existing approaches to
continuous global optimization and constraint satisfaction

= December 2000 - November 2003
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Modular APl design

= The APl is designed to make the development of
the various module types independent of each
other and independent of the internal model
representation.

= A collection of C++ classes.
= Uses FILIB++ and MTL.

= Supports dynamic linking.
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= All inference engines are subclasses of one
class, so they have the same basic structure.

= Communication with the strategy engine by a
database-like communication.

= The APl implementation (w/o inference engines)
consists of 44000 lines of C++ code and a few
perl scripts, organized into 128 files,
occupying 1.3 MB of disk space.
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Search graph

Starts at the original model
Contains relaxations
and splits.

Itis not a tree since it might
also contain glueings.

= Some of the nodes will be
terminal, since they can be
solved completely.
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Model Glueing
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Internal Representation

= Models are organized in the search graph, represented by
a Directed Acyclic Graph (DAG).

= For every model in the search graph the following
information is stored:

— Every equation/inequality is assigned a number of
annotations describing its properties (e.g. linear, quadr.,
convex, separable, redundant, ...).

— Additional local information (e.g. local optima, active
constraints, Lagrangian multipliers,...) is added.

— A description of the relation between the problem and its
parent is provided.
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The DAG is implemented using the VGTL, a library following
the generic programming spirit of the C++ STL.

There are two types of nodes:

— Full nodes contain complete descriptions of models,

— Delta nodes contain only the changes to the parent
model in order to save storage capacity

The search graph has a focus pointing to the model
which is worked upon. This model is copied into an
enhanced structure - the work node. A reference to this
work node is passed to the inference engines.

The graph itself can be analyzed by search inspectors.
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Internal Mathematical Representation

= The internal mathematical representation of a problem is
mln flin(x)+fquad(x)+fsep(x)+f0(x)
st. G, (x)+G, (x)+G_(x)+G,(x)€ES,
XES,

quad sep

where (currently) the sets Sare boxes.

= The algorithmic representation is in graph form using not a
tree (or forest) as usual but a directed acyclic graph.

= Variables appearing left of an assignment are substituted
out.
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Directed Acyclic Graph (DAG)

DAG representation of the
model
min 3x2z+4xy3z
st 7=4x+3y’
Tx+3x"z4+7y°<6
ye[1,2],z€[—1,4]

similar to computational tree
every node is an expression
a hode may have more than
one parent

Constants and variables are
sources, objective and
constraints are sinks
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Expressions

= Every vertex represents a function F mapping a vector x€R"
to a value F (x)€R.

= Predefined functions include sum, product, max, min,
elementary real functions (exp, log, pow, sqrt, ...)

= Variable indicator contains the indices of the variables this
vertex depends on.

= Additional information is added (ranges, semantics, variable
name, vertex number, ...)
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Evaluation of a DAG

Evaluation works similar to computation trees by performing
a graph walk.

Caching keeps evaluation work minimal.
The whole model is stored in one graph.

Defining short-cuts makes it possible to replace graph walks
by evaluation functions. Short-cuts may be defined at every

node.
Additional elementary functions can easily be incorporated.
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C++ to construct and manipulate DAGs, and forests (trees).

Generic Programming approach with containers, walkers,
function objects, and generic algorithms.

For expression graphs (DAG or tree) special visitors are
provided O (cached) forward and backward evaluators.

Currently implemented Evaluators:

— Real Function Values and Function Ranges
— Gradients (Real, Interval)
— Slopes

In the near future Evaluators for:
— Hessians (Real, Interval)
— Second order Slopes
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Example

= |nterval evaluation and
constraint propagation
produce bounds on each
node

= No reduction on the domain
of the variables

= The bounds on intermediate
nodes are improved
compared to interval
evaluation
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Example (ctd.)

= Linear enclosures produced
using slopes give redundant
constraints, e.g.

24 (x,—2)—48(x,—4)=32(x,—4)<0
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Example (ctd.)

= Now constraint propagation leads to a reduction
of the domain of the variables

x,€(3.4,4]
x,€[34,4]
= With previously known techniques but without

(expensive) higher order consistency, such a
reduction would have required a split of the box.
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Inference Engines

= Corresponding to every type of problem change, a class of
inference engines is designed:
— Model analysis (e.g. find convex part)
— Model reduction (e.g. pruning, fathoming)
— Model relaxation (e.g. linear relaxation)
— Model splitting (e.g. bisection)
— Model glueing (e.g. undo excessive splitting)
— Update local information (e.g. probing, local optimization)
— Check certificate (check correctness of calculation)

= Inference engines never change the model but calculate which
changes may be made and are considered useful.
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Inference Engines:
General features

= All inference modules only advertise changes.

®= There is a fixed documentation structure defined.
— Services Provided
— Limits
— Structure, Prerequisites of Input
— Structure, Features of Output
— Control Parameters
— Termination Reason

= They produce a result where every possible change is listed
together with a weight (the higher the weight the more
important the change) and a certificate for correctness.

= They collect statistical data to support the strategy engine
in making decisions.
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Inference Engines implemented
as State of the Art

= Several state of the art technignes were implemented as
inference engines:
— STOP (starting point generator)
— DONLP2-INTV (local optimizer)
— Karush-John-Condition Generator
— Point Verifier
— Exclusion Box
— Interval constraint propagation
— Linear Relaxation
— CPLEX (linear programming solver)
— Basic Splitter
— BCS (box covering solver)
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Inference Engine: STOP

= Heuristic Global Optimization Algorithm

= Combines Multi-Level-Coordinate-Search and
Constraint Propagation

= Produces Starting Points for Local Optimization
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= General purpose non-linear local optimizer for
continuous variables

= SQP method
= Dense Linear Algebra

= Envelope uses standard evaluators, gradients
are computed by automatic differentiation
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Inference Engine:
Karush-John Conditions

= Generates the DAG representation of
the Karush-John first order optimality conditions

= Every constraint (even two-sided) gets associated
one Lagrange multiplier

= Constructed by symbolic differentiation of the
DAG representation
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= Computes a uniqueness region around an
approximate solution, in particular a verified point

= Uses Karush-John conditions

= Tries to maximize the uniqueness region by
inflation
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= Derives a large exclusion box and a tiny inclusion
box such that the area between these two boxes
does not contain a local optimizer.

= They are computed around an approximate local
optimizer to get rid of the cluster effect.

= Does not focus on uniqueness.
= Uses slopes and H-matrix techniques.
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Inference Engine:
Constraint Propagation

= Performs the hull-consistency algorithm for
constraint propagation.

= Reduces the possible range of the variables
= Might detect infeasibility of the problem
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Inference Engine: Linear Relaxation

= Computes a linear relaxation of the problem.

= Uses centered forms and slopes to compute
the linear inequalities.

= Makes use of the DAG enhancements to
improve the slopes.

= Either adds the linear relaxation as cuts or
generates a full linear model.
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Inference Engine: CPLEX

= Solves linear problems.

= Interfaces the state-of-the-art commercial linear
solver CPLEX.

= Extremely good performance.
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= Provides splitting coordinates and split points.

= Computes a difficulty estimate for the variables
involved.

= Suggests splits for the n most difficult variables.

= Uses exclusion box and solution information to
improve the choice of split points.

= Cuts exclusion boxes out of the search area by
careful choice of splitting coordinates.
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Inference Engine: BCS

= Covers the feasible area by boxes.

= Uses DMBC (dichotomous maintaining
bound-consistency) and UCAG6 (union-
conservative approximation) in both
basic and enhanced variants.

= Distinguishes between boxes in the interior
and at the border of the feasible region.

= Uses the commercial ILOG Solver, or the constraint
propagator provided by IRIN, but can work with any
constraint propagator
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Contributions from the outside
of the COCONUT project

We are happy that researchers and companies from
outside the COCONUT project agreed to complement
our efforts in integrating the known techniques:

= Bernstein modules by J. Garloff & A. Smith (U. Konstanz)

= Verified lower bounds for convex relaxations
by Ch. Jansson (TU Hamburg-Harburg)

= GAMS reader by the GAMS consortium

= Taylor arithmetic by G. Corliss (Marquette U.)

= Asymptotic arithmetic by K. Petras (U. Braunschweig)
= XPRESS commercial LP-solver (Dash Optimization)

= Hopefully additional contributions by you!

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme




Worst case finite element analysis

Linear FEM equations
become non-convex if
material data is uncertain.

Typical size of uncertainty is
10-20% in elasticity and
cross-section area.

Law requires the computa-
tion of the worst case.

Industry relevant problems
have some thousand
variables.
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Worst case FEM structural analysis
Promising result

= Worst case analysis on the displacements u for a 20x20 wall
in the non-linear system

A(x)u=b

= 1620 material parameters x with 16.4% uncertainty,
840 displacements u

= Traditional methods fail for 0.01% uncertainty

= Exploiting the special structure, within 30s on a 1.6 Ghz
Pentium 4, without bisection we get

Uncertainty (%) 0.01f 0.05 0.5 1 2.5 5 10| 16.4
Overestimation 1.03 1.15[ 2.55] 4.12] 8.92| 17.26] 35.33| 61.59|
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Basic algorithm design

updated
model

model upd.
suggestion

aux.info.upd
suggestion

auxiliary
information

auxiliary
information

= This setup allows for highest flexibility and extensibility
— the modaules are split into inference engines (calculation) and

management parts
— additional modules for model handling are added

= The strategy engine decides which components are
every algorithmic step of this type
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Report Modules

= This class of modules produces output.
Various types of files and human readable output will have
to be created.
= Examples:
— Solution Report (humans, AMPL, GAMS)
— Progress Information
— Checkpointing
— Debugging Information
— Error Messages
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Management Modules

= Corresponding to every internal part of the program, a class
of management modules is designed:
— Model management
— Data collection
— Resource management
— Initialization management
= Management modules never calculate anything. They just

perform some of the changes which have been advertised
by inference modules.

IST2000-26063 C@C@WT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme




Strategy Engine

]

I

- :

| .

- !

e ﬁ : ( vope ration :

) ey )

i

Bena Inference Engine Inference Engine - :

 omponent Component - :
L

IST2000-26063 C@C@NUT

Project funded by the Future and Emerging Technologies arm of the IST Programme
FET-Open scheme




Strategy Engine (ctdl.)

= |tis the core of the algorithm and consists of
— The logic core ("search"”) which is essentially the main solution loop,

— Special decision makers (very specialized inference engines) for
determining the next action at every point in the algorithm.

= |t calls the management modules, the report modules, and
the inference engines in succession.

= |t can be programmed using a simple strategy language

(interpreted, Python based).
— (Semi-)interactive and automatic solution process
— Debugging and single-stepping of strategies
— Object oriented, dynamically typed objects, garbage collected
— Easily extendable
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Strategy Engine (ctdl.)

= Manages the search graph via the search graph manager,
= Manages the search database via the database manager,

= Uses a component framework to communicate with the
inference engines,

= Launches inference engines dynamically (on need) to avoid
memory overload,

= Provides a management interface,

= Strategy engine is itself a component, so multilevel
strategies are possible,

= Prepared for distributed and parallel computing, and
distributed memory
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Extensibility

The strategy language makes it easy to change the strategy.

A registration phase during initialization removes the need

to recompile the program when new inference engines are
added.

Registration also allows us to balance scientific and

commercial interests:
— Free but reduced core version with open API specification
— Free strategy engine with basic strategy
— Advanced commercial components

Extending the system by external contributers is made easy
by this modular design.
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Invitation

We hope that

the community will contribute
to this algorithmic framework.
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The End

ThanK you for your attention!

COCONUT Website:
http://www.mat.univie.ac.at/coconut
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