
The COCONUT Project

© THE COCONUT CONSORTIUM

Deliverable D6

SPECIFICATION OF MODULES
INTERFACE

INTERNAL REPRESENTATION AND
MODULES API

Contract number : IST-2000-26063

Document type : Deliverable
Classification : Public
Version : 1.3 Status : final
Due date : 1 September 2001 Delivery date : 26 December 2001

Editor : Christian Bliek, ILOG
Contributors : Christian Bliek ILOG.
 Hermann Schichl UWIEN

Contents

1 Introduction . 2

2 Inference Engines . 4

3 Search graphs . 6

3.1 Model . 8

4 Internal Representation . 9

4.1 Expression Node . 10

4.2 DAG base classes . 12

4.3 Semantics . 15

5 Evaluators . 16

A The graph template library (GTL) 25

A.1 Standard template library (STL) 25

A.2 Graph Classes . 26

A.3 Iterators and Walkers . 28

A.4 Algorithms . 31

1

Module API

This document contains the �rst description of the application programmer's

interface (API). Its de�nition is as speci�c as possible before the coding of infer-

ence engines has started. We expect the overall structure not to change much

but some adjustments in API details will probably have to occur. Especially the

research on the strategy engine is very likely to require additions to the API.

This document should, however, contain all the basics to get started.

In section 2 the structure of inference engine modules is described. The

structure of the search graph, including the incrementality concept by deltas

is described next in section 3. The internal representation of the optimization

problem, the model, is de�ned as a collection of a number of classes in section 4.

At the end in appendix A a description of the graph template library (GTL) is

given, which is, at least to start with, used to implement the directed acyclic

graphs (DAG) used as a basic structure in some places in this API.

1 Introduction

The API we describe in this document is a basic one. It corresponds with an

initial simple architecture. This architecture is illustrated in �gure 1. It consists

update_engine

resultStrategy Engine Inference Engine i

Figure 1: Initial Architecture

of various inference modules and a strategy engine. The inference modules are

able to make inferences based on a nonlinear model. Examples of inference

modules are a local nonlinear solver, a linear or a quadratic programming solver,

a constraint propagation engine or an interval arithmetic engine. Inside the

2

Module API 3

strategy engine the modules are called so as to �nd a solution to the nonlinear

problem. The API described in this document will allow the execution of basic

strategies. For example through this API it will be possible to program the

exploration of a search tree and call various inference modules at each node.

The basic architecture provides a common control framework for combining

techniques. In the initial implementation, strategies will be hard-coded for ex-

ploration and testing purposes (task T320). We envision that in the future, the

strategy engine will be programmed using a high level language and that it will

have at its disposal various management submodules to manipulate models and

modules automatically: this will be developed as part of task T330 of the work

plan. The API proposed in this document can be extended to accommodate for

more complicated architectures of this type in the future.

We now give a brief overview of the initial architecture we will implement.

The strategy engine will use an explicit representation of the search tree. As

illustrated in �gure 2 a search tree is a DAG of search nodes. Each search node

dag_node._C_parents

dag_node._C_children

model_description;
search_node:

Figure 2: Search Trees are a DAGs of Search Nodes

contains a description of a model. This description can be a pointer to a model,

or an incremental modi�cation with respect to another model. The parent and

child nodes are available via the DAG.

Nonlinear problems are represented as models, and models are represented

by DAGs of expression nodes (see �gure 3). The expression nodes correspond

to arithmetic operators; the edges represent dependencies. An expression node is

described by the type of the arithmetic operator (stored in the �eld expression type)

and the constraints imposed on the expression nodes (represented by the bounds

stored in the �eld f bounds). The parents and children of an expression node

can be found via the DAG. When exploring a search tree the strategy engine

will need to notify the inference modules on the choice points it makes. This

can be done under the form of incremental modi�cations to the current model.

The remainder of this document describes the API of the various classes

needed in this architecture.

Module API 4

dag_node._C_parents

dag_node._C_children

expression_node:

f_bounds;
expression_type;
node_num;

Figure 3: Models are DAGs of Expression Nodes

2 Inference Engines

This section contains the base class of all inference engines. Every engine written

will be a subclass of this base class.

class inference_engine

{

public:

// the constructor for a basic inference engine

inference_engine(const search_node& search_node);

inference_engine();

~inference_engine();

virtual bool update_engine(const model_delta& model_delta);

virtual bool update_engine(const model& model);

virtual const error_return& infer();

// SOLUTION 1

// the call providing the result is defined in the subclass

// the strategy engine has info of what method

// it should call for which subclass and what

// the result type is

// SOLUTION 2

virtual model result();

// SOLUTION 3

virtual proposal result(string requested_result_type);

const string& name() { return name; }

Module API 5

// collect statistics

virtual statistic_info last_call_stat();

virtual statistic_info cumulative_stat();

};

There is a set of constructors for this class. Usually, the �rst one will be taken.

It initializes the engine with a model representation in form of a search node.

Later an existing engine can be updated by a model delta or a new full model

using the update engine call. The return value of this function signals whether

the update was successful. If the inference engine does not support incremental

changes, it must still have a function for incremental update, which should

return false in that case.

Calling the infer method tells the inference engine to work on the model

and prepare the result. It returns an error return class, which will be speci�ed

more exactly later. For the beginning, lets set

typedef int error_return;

There are three possible solutions to pass return values from inference en-

gines back to the strategy engine, which in the �rst version will be a simple hard

coded C++ function.

1. Every engine could specify its own result function, we would use a doc-

ument on the BSCW server to agree on a certain number of di�erent

return value types which could be used (this has to be done in order to

e.g. prevent two di�erent local solvers to return their results in di�erent

formats).

2. All engines could return a model or a search node class, where every

change is coded as DAG or as annotation.

3. There could be a class proposal, such that every engine returns a subclass

of proposal, like

class proposal

{

public:

vector<unsigned short> _weight; // importance of the results

vector<certificate> _c; // for debugging purposes and

// verified computing (for later)

// the subclass would add additional entries here and methods for

// accessing these entries.

}

For the start we agreed to keep solution 1, since changing this later will not

require much additional work.

The last three methods return the name of the inference engine (e.g. CPLEX)

and provide statistical information collected for dynamic strategies and debug-

ging. This is for later.

Module API 6

3 Search graphs

The models investigated are collected in a search graph. This graph is another

DAG of search nodes. This search graph is a representation of the search space

and it will grow and shrink as new models are generated and some of them are

solved.

The search node is de�ned by the following class

class search_node

{

public:

bool uses_delta; // delta vs. full description

union

{

model _model;

model_delta _model_delta;

} model_description;

annotation an;

// constructors for each case and destructor

search_node(const model& _model);

search_node(const model_delta& _model_delta);

~search_node();

};

It distinguishes between an incremental change and a full model description. In

addition it contains annotations containing best local points, Lagrange multi-

pliers and the like.

While models are in more detail analyzed in section 3.1 we �rst take a look

at the model deltas.

class model_delta

{

public:

bound_deltas _constraint_deltas; // new bounds of expression_nodes

model _new_constraints; // dags that refer to ghostnodes

vector<unsigned int> _rm_constraints; // expression_nodes that

// need to be removed or

// inactivated in the model

// the subdag that has to be be removed if not inactivation is

// chosen, it is stored in order to be able to undo this delta.

// this might go away like old_f_bounds below.

model _old_constraints;

};

Module API 7

class bound_deltas

{

public:

vector<unsigned int> indices; // this is empty for updating all

// variables

vector<interval> new_f_bounds; // new bounds

vector<interval> old_f_bounds; // original bounds for backtracking

// might be removed.

}

Such a delta consists of a bounds update and a model update. The bounds

update can come in two
awors, a sparse and a full update. If there are no

indices, all the nodes are to be updated. Otherwise the index vector tells, which

bound concerns which expression node. There is the possibility to remove the

old f bounds, because during backtracking, the bounds can be recalculated by

an upwards walk of the search graph. It remains to investigate which choice is

better.

The second component is the model update. It consists of a DAG of ex-

pression nodes whose leafs consist of ghost nodes. All the node numbers in this

DAG have to be unique with respect to the full model DAG except for the ghost

nodes. These are just empty nodes, for which only the node number matters.

This node number speci�es at which nodes in the model the new DAG has to

be \glued". The constraints which are to be removed are just represented by

the node number of their root nodes. They could be either inactivated using

a
ag or removed. If they are removed, they will be stored in DAG form in

old constraints.

class annotation

{

public:

vector<double>* x_best; // best point for this model

vector<double>* L_mult; // Lagrangian multipliers

double f_best; // best function value

// ... others as needed

public:

annotation();

~annotation();

};

The x best and L mult are pointers to vectors. Thus, there is no need for an

annotation delta, because the data structures are small enough to be copied as

a whole. The annotation class will be �lled during development, as it cannot

easily be predicted now what information will be necessary during a complex

solution process.

Module API 8

Eventually, the search graph is just a DAG of search nodes. Perhaps, we will

later �nd the need to add additional construction methods and hence de�ne a

subclass instead of a simple typedef

typedef dag<search_node> search_graph;

3.1 Model

Amodel, represented by a DAG of expressions is a subclass of dag<expression node>

with a few additional methods to make construction of expression DAGs easier.

class model: public dag<expression_node>

{

private:

unsigned int node_num_max;

unsigned int num_of_vars;

public:

expression_dag(int _num_of_var);

int next_num();

_ewalk constant(double _constant);

_ewalk constant(vector<double> _constant);

_ewalk variable(int _vnum);

_ewalk binary(const _ewalk& _op1, const _ewalk& _op2, int expr_type);

_ewalk binary(const _ewalk& _op1, const _ewalk& _op2, int expr_type,

additional_info_u _meaning);

_ewalk unary(const _ewalk& _op1, int expr_type);

_ewalk unary(const _ewalk& _op1, int expr_type,

additional_info_u _meaning);

_ewalk nary(const vector<_ewalk>& _op, int expr_type);

_ewalk nary(const vector<_ewalk>& _op, int expr_type,

additional_info_u _meaning);

_ewalk vnary(int expr_type, ...);

};

Here ewalk is an expression walker (see section A.3 on walkers), which is a

simple generalization of a pointer to an expression node and can be used

almost like a pointer.

constant creates a node for a constant, and variable one for a variable,

unary creates a unary operation, binary a binary, and nary and vnary create

n{ary (associative) operations.

Module API 9

4 Internal Representation

This section is devoted to the description of the internal representation of opti-

mization problems in the COCONUT solver. In principle, every mathematical

problem is represented as a directed acyclic graph (DAG), whose nodes corre-

spond to arithmetic operations, variables, constants, or elementary functions.

Some of them are builtin, others can be freely de�ned, as long as a set of C(++)

functions is provided to compute all the necessary algorithms (evaluation, in-

terval evaluation, derivative, : : :).

A user of the optimization program will be able to enter general mathemat-

ical expressions and constraints in our system by using one of the supported

modeling languages like AMPL, but internally the problem will be represented

in a special form which is better suited for the solution process.

The internal representation of the program should mathematically look like

follows: Every constraint is transformed into the form

Fi(x) = b
T
i x+ x

T
Aix+ si(x) + gi(x) 2 [Fi]

where si(x) and gi(x) are not quadratic factorable, and si(x) is separable. A

constant in Fi can easily be absorbed into [Fi]. The vector bi should be rep-

resented in sparse form. This makes it easy to collect all vectors in a sparse

matrix in rowwise representation without having to store the structures twice.

(In the future, the term gi(x) could be further decomposed into convex, con-

cave and remaining parts, if useful). This form of representation is well suited

for most computations and structure analysis and changing algorithms, since it

extracts the parts, which most of the time must not be worked on or worked

on with special algorithms. In addition trivial relaxations can be computed by

simple interval analysis on the terms not �tting the type of relaxation (linear,

quadratic, : : :). Note, that we will not require the user to enter the problem in

such a form. We will use graph walks to construct a DAG structure conform-

ing to the speci�cation above from a computational tree speci�ed in one of the

supported modeling languages automatically.

The special DAG structure of the expressions makes it possible to construct

evaluation visitors which compute values without doing complete graph walks,

and only some visitors may be optimized, while others still use complete walks.

All together the model might be represented as follows:

minf(x) s:t: F (x) 2 [F]

where F : Rn ! R
m is the collection of all constraints, best decomposed as

explained above. The box constraints are special constraints. Probably, it

would be best to collect them at the beginning or the end of F .

Every root node of the DAG de�nes a constraint, and the objective function

is the �rst constraint in the vector of root nodes. There are, however, constraints

of the form

z = f(x; y; :::)

Module API 10

which correspond to intermediate nodes because all intermediate variables are

sustituted back and incorporated into the DAG structure. Every node can be

constrained by bounds [b; b], which are stored in the interval f bounds. Note

that due to that the constraint xy <= x+ y will have to be rewritten as

xy � x� y 2 [�1; 0]:

The two main C++ objects used to construct this DAG, the node and the

DAG template, are presented next.

The here presented objects are just a simpli�ed version of the implemented

structures which make extensive use of templates in order to achieve indepen-

dence of allocation schemes and memory models. The real implementation is

outlined in Appendix A.

4.1 Expression Node

One node of the expression DAG is represented by the expression node class.

class expression_node

{

public:

unsigned int node_num;

int expression_type;

// number of parents and children for fast reference

unsigned int n_parents, n_children;

vector<double> coeffs; // coefficients of the sub_expressions

additional_info_u meaning; // additional expression info

interval f_bounds;

unsigned short is_var;

semantics* sem;; // this stores info like convexity,

// linearity, separability,...

expression_node();

~expression_node();

};

In this class, the node number is automatically assigned by the constructor

in such a way that it is unique in the DAG. This number can be used for

referencing nodes in a portable way, which is independent of reallocation during

copying and graph restructuring.

The vector of signs is used to store the signs of the involved child expres-

sions. Thus, e.g., a� b is represented as a+(�b) where the sign of b is stored in

the second position of the signs vector of the EXPRINFO SUM (see below) node.

Module API 11

The f bounds interval is used to constrain the value of the node.

The unsigned short variable is var de�nes the number of variables which

is represented by this node (for DAG reinterpretation when using intermediate

variables). If it is 0, this node does not represent any variable.

The expression type describes the type of operation. There is a prede�ned

list which could be extended if necessary. Additional information needed for the

operation is stored in the union meaning which is of type additional info u

de�ned as

union additional_info_u

{

void *p;

bool b;

int nn;

double nd;

interval ni;

string* s;

vector<int>* n;

vector<double>* d;

vector<interval>* i;

}

One of the vectors is allocated if meaning is alloced is true.

The following expression types are de�ned

Module API 12

C++ value Description contents of meaning

EXPRINFO GHOST ghost node in deltas these nodes are a

replacement for the nodes

where the delta should be

inserted. Its node number

contains the node number

of the node in the DAG

and .b contains info on

edge deletion.

EXPRINFO CONSTANT constant constant is contained in .d

or .nd

EXPRINFO VARIABLE variable vector index of the variable is

contained in .nn

EXPRINFO SUM sum of n expressions .nd contains an additional

constant

EXPRINFO PROD product of n expressions .nd contains an additional

constant

EXPRINFO MAX maximum of n expressions .nd contains minimal

value

EXPRINFO MIN minimum of n expressions .nd contains maximal

value

EXPRINFO INVERT q=x q is contained in .nd

EXPRINFO DIV division NA

EXPRINFO SQUARE (x + q)2 q in .nd

EXPRINFO INTPOWER x
n

n constant integer in .nn

EXPRINFO SQROOT
p
x+ c c in .nd

EXPRINFO POW (x + p)y p in .nd

EXPRINFO EXP ex+p p in .nd

EXPRINFO LOG log(x+ p) p in .nd

EXPRINFO SIN sin(x + #) # in .nd

EXPRINFO COS cos(x+ #) # in .nd

EXPRINFO ATAN2 atan(x; y) NA

EXPRINFO GAUSS e(x�m)2=s2 m, s in .d

EXPRINFO LIN linear function A:x matrix A in .p until the

matrix type is �xed

EXPRINFO QUAD quadratic function x>:G:x matrix G in .p until the

matrix type is �xed.

4.2 DAG base classes

The model is created using general DAG templates, whose default forms are

described in this section.

Every DAG consists of a collection of dag nodes which have the following

form. The vectors C parents and C children contain pointers to the parents

and the children of the node in the graph. The graph methods make sure that

Module API 13

the vectors are updated correctly.

template <class _Tp>

class dag_node

{

public:

_Tp _C_data;

// the reason for using void * in the following vectors

// is connected to the use of templates and the complicated

// connection between the dag class and the dag_node class

// maybe it will be possible to change that to dag_node* in

// the future after revisiting the implementation. Up to now

// a type cast to dag_node* should be made when using entries

// of _C_parents or _C_children.

vector<void *> _C_parents;

vector<void *> _C_children;

dag_node(); // a constructor

~dag_node(); // a destructor

};

Using these nodes, a basic DAG is constructed, which takes care of proper

node allocation. The nodes C ground and C sky are virtual nodes in the graph,

which are parent of all roots, and child of all leafs, respectively. They are used

for easier graph manipulation only. An empty DAG contains these virtual nodes

only and an edge from C sky to C ground.

template <class _Tp>

class dag_base

{

public:

dag_node<_Tp>* _C_ground;

dag_node<_Tp>* _C_sky;

dag_base(); // a constructor

~dag_base(); // a destructor

dag_node<_Tp>* _C_get_node(); // construct a new node

void _C_put_node(dag_node<_Tp>* __p); // destroy a node

}

The dag class is a subclass of this base class containing methods for DAG

manipulation using walkers, a generalization of pointers to DAG nodes. Both

of these classes are described below.

template <class _Tp>

class dag : dag_base<_Tp> // this is from gtl_dagbase.h

{

Module API 14

private:

typedef dag<_Tp> _Self;

typedef dag_base<_Tp> _Base;

typedef dag_walker<_Tp> walker;

// constructors, destructor

dag();

dag(const _Self& __dag);

~dag();

// and a lot of methods which usually are not used directly,

// which are only used by the construction methods in class model.

};

template <class _Tp>

class dag_walker

{

protected:

// this is the pointer to the current node!

dag_node<_Tp>* _C_w_cur;

public:

// constructors and destructor

dag_walker();

dag_walker(dag_node* __x); // points to *__x afterwards

dag_walker(const dag_walker& __x); // copy constructor

~dag_walker();

_Tp& operator*(); // returns the data of the node

// methods for gaining info on the node

size_type n_children(); // number of children

size_type n_parents(); // number of parents

bool is_root(); // points to a root node

bool is_leaf(); // points to a leaf node

bool is_ground(); // we are at the ground (i.e. below all roots)

bool is_sky(); // we are in the sky (i.e. above all leafs)

// navigation (i.e. change to another element. This is a

// generalization of pointer arithmetic operators ++ and --.

// << goes up to one of the parents, which can be chosen explicitely,

// and >> goes down to one of the children)

// go up to parent __i

dag_walker operator<<(parents_iterator __i);

Module API 15

// go down to child __i

dag_walker operator>>(children_iterator __i);

// and the same combined with assignment

dag_walker& operator<<=(parents_iterator __i);

dag_walker& operator>>=(children_iterator __i);

};

4.3 Semantics

This class contains data for additional semantic information on the various con-

straints. The property flags structure contains information on the mathemat-

ical properties (linearity, separability, convexity, : : :). The info flag contains

properties important for the solution algorithms (redundancy, activity, : : :).

Possibly additional semantics will have to be added during the development of

the strategy engine.

Filling the semantic information will be done as far as possible during the

initial DAG building process. There will, however, be times when the informa-

tion changes during the solution process as constraints become redundant or

the variables involved in constraints change their domain hereby changing the

properties of some constraints.

#ifndef _SEMANTICS_H_

#define _SEMANTICS_H_

typedef enum {true, false, maybe} tristate;

class semantics

{

public:

struct {

tristate linear;

tristate quadratic;

tristate convex;

tristate concave;

tristate separable;

tristate univariate;

} property_flags; // mathematical constraint properties

struct {

bool redundant;

tristate inactive;

bool deleted;

} info_flags; // algorithmic properties

public:

// and others needed

Module API 16

};

#endif // _SEMANTICS_H_

5 Evaluators

Most of the inference engines will not need to develop their own evaluation

routines for traversing the DAG of expressions. They can make use of evaluator

classes, as described below.

As an example a simple function evaluator has been implemented.

The important bits of the evaluator are

class func_eval

{

// __x: where to evaluate

// __v: what variables have changed since the last evaluation

// __c: a cache

func_eval(const vector<double>& __x, variable_indicator& __v,

vector<vector<double> >& __c);

vector<double> evaluate();

};

and the actual implementation looks somewhat like

#ifndef _FUNC_EVALUATOR_H_

#define _FUNC_EVALUATOR_H_

#include <evaluator.h>

#include <expression.h>

#include <eval_main.h>

#include <linalg.h>

#include <math.h>

typedef double (*func_evaluator)(vector<double>* __x,

const variable_indicator& __v);

struct func_eval_type

{

const vector<double>* x;

vector<double>* cache;

double r;

unsigned int n;

};

class func_eval :

Module API 17

cached_forward_evaluator_base<func_eval_type,expression_node,double>

{

private

typedef cached_forward_evaluator_base<func_eval_type,expression_node,

double> _Base;

protected:

bool is_cached(const node_data_type& __data)

{

if(eval_data.cache && __data.n_parents > 1 && __data.n_children > 0)

return true;

else

return false;

}

public:

func_eval(const vector<double>& __x, const variable_indicator& __v,

vector<double>* __c) : _Base()

{

eval_data.x = &__x;

eval_data.cache = __c;

v_ind = &__v;

eval_data.n = 0;

}

func_eval(const func_eval& __v) : _Base(__v) {}

~func_eval() {}

void initialize() { return; }

bool initialize(const expression_info& __data)

{

if(__data.ev && __data.ev[FUNC_EVALUATOR])

// is there a short-cut evaluator defined?

{

eval_data.r = (*(func_evaluator)__data.ev[FUNC_EVALUATOR])(eval_data.x,

v_i);

return false; // don't perform the remaining graph walk

}

else

{

switch(__data.expression_type)

{

case EXPRINFO_SUM:

case EXPRINFO_PROD:

Module API 18

case EXPRINFO_MAX:

case EXPRINFO_MIN:

case EXPRINFO_INVERT:

eval_data.r = __data.meaning.nd();

break;

}

return true;

}

}

void calculate(const expression_info& __data)

{

if(__data.expression_type > 0)

{

eval_data.r = __data.f_evaluate(-1, __data.meaning.nn(), eval_data.x, v_i,

eval_data.r, 0, NULL);

}

}

void retrieve_from_cache(const expression_info& __data)

{

eval_data.r = (*eval_data.cache)[__data.node_num];

}

void update(double __rval)

{

eval_data.r = __rval;

}

void update(const expression_info& __data, double __rval)

{

if(__data.expression_type < 0)

{

switch(__data.expression_type)

{

case EXPRINFO_CONSTANT:

eval_data.r = __data.meaning.nd();

break;

case EXPRINFO_VARIABLE:

eval_data.r = eval_data.x[__data.meaning.nn()];

break;

case EXPRINFO_SUM:

eval_data.r += __data.coeffs[eval_data.n++]*__rval;

break;

case EXPRINFO_PROD:

// the coefficients MUST be collected in __data.meaning.nd()

Module API 19

eval_data.r *= __rval;

break;

case EXPRINFO_MAX:

__rval *= __data.coeffs[eval_data.n++];

if(__rval > eval_data.r)

eval_data.r = __rval;

break;

case EXPRINFO_MIN:

__rval *= __data.coeffs[eval_data.n++];

if(__rval < eval_data.r)

eval_data.r = __rval;

break;

case EXPRINFO_INVERT:

eval_data.r /= __rval;

break;

case EXPRINFO_DIV:

// this evaluator requires, that the second coefficient

// is put into the first.

if(eval_data.n == 0)

eval_data.r = __rval*__data.coeffs[0];

else

eval_data.r /= __rval;

++eval_data.n;

break;

case EXPRINFO_SQUARE:

{ double h = __data.coeffs[0]*__rval+__data.meaning.nd();

eval_data.r = h*h;

}

break;

case EXPRINFO_INTPOWER:

{ int h = __data.meaning.nn();

if(h == 0)

eval_data.r = 1;

else

{

double k = __data.coeffs[0]*__rval+__data.meaning.nd();

switch(h)

{

case 1:

eval_data.r = k;

break;

case 2:

eval_data.r = k*k;

break;

case -1:

eval_data.r = 1./k;

Module API 20

break;

case -2:

eval_data.r = 1./(k*k);

break;

default:

if(h & 1) // is odd

{

if(k < 0)

eval_data.r = -pow(-k, h);

else

eval_data.r = pow(k, h));

}

else // even

eval_data.r = pow(abs(k), h);

break;

}

}

break;

case EXPRINFO_SQROOT:

eval_data.r = sqrt(__data.coeffs[0]*__rval+__data.meaning.nd());

break;

case EXPRINFO_POW:

__rval *= __data.coeffs[eval_data.n];

if(n == 0)

eval_data.r = __rval+__data.meaning.nd();

else

eval_data.r = pow(eval_data.r, __rval);

++eval_data.n;

break;

case EXPRINFO_EXP:

eval_data.r = exp(__rval*__data.coeffs[0]+__data.meaning.nd());

break;

case EXPRINFO_LOG:

eval_data.r = log(__rval*__data.coeffs[0]+__data.meaning.nd());

break;

case EXPRINFO_SIN:

eval_data.r = sin(__rval*__data.coeffs[0]+__data.meaning.nd());

break;

case EXPRINFO_COS:

eval_data.r = cos(__rval*__data.coeffs[0]+__data.meaning.nd());

break;

case EXPRINFO_ATAN2:

__rval *= __data.coeffs[eval_data.n];

if(eval_data.n == 0)

eval_data.r = __rval;

else

Module API 21

eval_data.r = atan2(eval_data.r, __rval);

++eval_data.n;

break;

case EXPRINFO_GAUSS:

{ double h = (__data.coeffs[0]*__rval-__data.additional_info.d()[1])/

__data.additional_info.d()[2];

eval_data.r = exp(h*h);

}

break;

case EXPRINFO_LIN:

// matrix multiply A x

break;

case EXPRINFO_QUAD:

// matrix multiply x^T A x

break;

default:

// give bad messages

break;

}

}

else if(__data.expression_type > 0)

// update the function arguments

eval_data.r = __data.f_evaluate(n++, __data.meaning.nn(), eval_data.x,

v_i, eval_data.r, __rval, NULL);

// use the cache only if it is worthwhile

if(eval_data.cache && __data.n_parents > 1 && __data.n_children > 0)

(*eval_data.cache)[__data.node_num] = eval_data.r;

}

const vector<double>& calculate_value(bool eval_all)

{

return eval_data.r;

}

};

#endif /* _FUNC_EVALUATOR_H_ */

In order to speed up development of new evaluators, a number of base classes

is de�ned for subclassing.

#ifndef _EVALUATOR_H_

#define _EVALUATOR_H_

#include <vector.h>

#include <gtl_dag.h>

#include <g_algo.h>

Module API 22

class variable_indicator

{

private:

vector<uint32> v;

public:

variable_indicator() : v() {}

variable_indicator(vector<int> __v, int size) : v()

bool match(const variable_indicator& __v)

};

template <class _Tp, class _NData, class _Result>

class _evaluator_base

{

private:

public:

typedef data_type _Tp;

typedef node_data_type _NData;

typedef return_value _Result;

private:

_Tp eval_data;

public:

virtual _evaluator_base();

virtual _evaluator_base(const _Tp& __x);

virtual ~_evaluator_base();

virtual return_value vvalue() {}

virtual return_value value() {}

virtual void vcollect(const return_value& __cresult) {}

virtual void collect(const node_data_type& __data,

const return_value& __cresult) {}

virtual void postorder(const node_data_type& __data) {}

template <class _Walker>

result_type evaluate(_Walker __start)

{

return recursive_walk(__start, *this);

}

};

template <class _Tp, class _NData, class _Result>

class evaluator_base : public _evaluator_base<_Tp,_NData,_Result>

Module API 23

{

public:

virtual void preorder(const node_data_type& __data) {}

};

template <class _Tp, class _NData, class _Result>

class cached_evaluator_base : public _evaluator_base<_Tp, _NData, _Result>

{

private:

variable_indicator* v_ind;

public:

virtual bool preorder(const node_data_type& __data) {}

public:

virtual cached_evaluator_base();

virtual cached_evaluator_base(const _Tp& __x, const variable_indicator& __v);

virtual ~cached_evaluator_base();

};

template <class _Tp, class _NData, class _Result>

class forward_evaluator_base : public evaluator_base<_Tp, _NData, _Result>

{

public:

// only virtual constructors and destructors

virtual forward_evaluator_base();

virtual forward_evaluator_base(const _Tp& __x);

virtual ~forward_evaluator_base();

public:

virtual void initialize();

virtual void initialize(const node_data_type& __data);

virtual void calculate(const node_data_type& __data);

virtual void update(const return_value& __rval);

virtual void update(const node_data_type& __data, const return_value& __rval);

virtual return_value calculate_value(bool eval_all);

};

template <class _Tp, class _NData, class _Result>

class backward_evaluator_base : public evaluator_base<_Tp, _NData, _Result>

{

public:

// only virtual constructors and destructors

virtual backward_evaluator_base();

virtual backward_evaluator_base(const _Tp& __x);

virtual ~backward_evaluator_base();

Module API 24

public:

virtual void initialize();

virtual void initialize(const node_data_type& __data);

virtual void calculate(const node_data_type& __data);

virtual void update(const node_data_type& __data, const return_value& __rval);

virtual void update(const return_value& __rval);

virtual return_value calculate_value(bool eval_all);

};

template <class _Tp, class _NData, class _Result>

class cached_forward_evaluator_base : public cached_evaluator_base<_Tp, _NData, _Result>

{

public:

// only virtual constructors and destructors

virtual forward_evaluator_base();

virtual forward_evaluator_base(const _Tp& __x);

virtual ~forward_evaluator_base();

public:

virtual void initialize();

virtual bool initialize(const node_data_type& __data);

virtual void calculate(const node_data_type& __data);

virtual void retrieve_from_cache(const node_data_type& __data);

virtual void update(const node_data_type& __data, const return_value& __rval);

virtual void update(const return_value& __rval);

virtual return_value calculate_value(bool eval_all);

};

template <class _Tp, class _NData, class _Result>

class cached_backward_evaluator_base : public cached_evaluator_base<_Tp, _NData, _Result>

{

public:

// only virtual constructors and destructors

virtual cached_backward_evaluator_base();

virtual cached_backward_evaluator_base(const _Tp& __x);

virtual ~cached_backward_evaluator_base();

public:

virtual void initialize();

virtual bool calculate(const node_data_type& __data);

virtual void cleanup(const node_data_type& __data);

virtual void retrieve_from_cache(const node_data_type& __data);

virtual void update(const node_data_type& __data, const return_value& __rval);

virtual void update(const return_value& __rval);

virtual return_value calculate_value(bool eval_all);

Module API 25

};

#endif /* _EVALUATOR_H_ */

A The graph template library (GTL)

In this and the following appendices, the basic structure of the graph template

library (GTL) used to construct the DAGs is outlined.

A.1 Standard template library (STL)

The following C++ classes from the standard template library (STL) will be

used throughout this document in order to simplify develompent of new objects.

For a thorough description of the STL see [Stepanov and Lee, 1995], [RPI, 1994]

or [Weidl, 1996].

The basic idea of the STL is to reduce implementation time and e�ort by de-

composing algorithmic problems into their basic components. The STL provides

parametrized Containers for keeping data of arbitrary types, and generic Algo-

rithms working on containers. The interface between the Containers and the

Algorithm works by a concept called Iterators, an abstraction of the algorithm-

access to the containers and the objects stored in them.

Unfortunately, the STL only provides sequence containers (linear ones like

lists, queues, and vectors) or associative containers like sets and maps. More

complicated structures like trees are not provided, except for binary trees.

Since we will need a lot of tree structures in the optimization algorithm, I

thought it would be best to design a template tree structure and an associated

access concept, I called Walkers.

Sequence Container Classes

Sequence containers are speci�cally designed to hold sequences of other objects.

STL provides three sequence containers: lists (list), arrays (vector), and double

ended queues (dqueue). They di�er mainly in the amount of storage needed

and the overhead for performing certain actions. The following table gives an

overview on the e�ort:

Container insert/erase overhead

at the beginning in the middle at the end

vector linear linear amortized constant

list constant constant constant

dequeue amortized constant linear amortized constant

Certain operations can be performed on containers in addition to inserting

and deleting entries at every position, e.g. getting the number of stored objects

(size).

Module API 26

A large amount of algorithms are designed to work with sequence containers

(sort, linear and binary search, and there is the strength of the STL concept.

These algorithms are implemented in a generic way, and the interface algo-

rithm/container works by the iterator concept (see A.3). In the case of vectors,

iterators are just integers indexing into the array, in the case of lists an iterator

is a more elaborate object. By using iterators, every element of the container

can be accessed in a well-de�ned way.

Associative Container Classes

Associative containers are designed to hold key{value pairs, where keys and

values are objects. The only restriction is that there has to be an ordering

relation on the set of keys (operator<). STL provides four sequence contain-

ers: sets (set), multivalued sets (multiset), maps (map), and multikeyed maps

(multimap). The di�erence between the multi- and the ordinary containers is

as follows. In a set or map a given key may appear only once, whereas in a

multiset or multimap a given key need not be unique. The di�erence between

sets and maps is that sets contain their key (i.e. the value object and the key

object are the same), while for maps key and value objects di�er.

As for sequence containers, the operations are inserting, deleting, : : : and

iterators provide the interfaces to the algorithms.

A.2 Graph Classes

The new class templates de�ned in ntree.h, dag.h, and graph.hand the in-

cluded internal header �les gtl : : : provide various graph templates for ar-

bitrary node types (graphs, labelled graphs, directed graphs, directed acyclic

graphs, and forests (n-ary multirooted trees) | WARNING: Not all of them

are fully implemented). The templates start roughly like

template <class _Tp,

template <class __Ty, class __AllocT> class _Ctr = vector,

class _PtrAlloc = __STL_DEFAULT_ALLOCATOR(void *),

class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >

class ctree

...

that means, that graphs of arbitrary types (Tp) can be constructed. The chil-

dren (eventually the parents) of every node will be managed through a con-

tainer class (Ctr - by default vector - i.e. an array)1. The PtrAlloc and

Alloc classes are used for allocation method independence, and the default

can usually be kept as is.

As an example, we could de�ne a forest of integers simply by

1Note that in the �rst implementation only sequence container classes can be used. For

associative containers there will have to be an additional implementation, since the container

class would depend on a data type and a key type for maps and a comparison operator

Module API 27

ntree<int> itree;

and a directed acyclic graph of expression nodes by

dag<expression> expression_graph;

If many insertions and deletions of subtrees in the middle are to be made,

then a vector would be a bad choice for the container class holding the nodes

of the subtrees, since inserting into the middle of a vector needs reallocation

and copying. We should instead take a list to manage the children, and the

de�nition would change to

ntree<int,list> itree;

Except for various constructors and the destructor a few methods are pro-

vided for handling graphs. Here, we will often mention walkers. They are

described in more detail in A.3.

empty returns a boolean, true if the graph does not contain any regular node.

max size the maximum number of nodes the graph container can store. This

is unlimited except for the amount of memory available.

clear erases the whole graph.

For Trees additional methods are available:

insert at the walker position, a node or a subgraph are inserted.

push child adds a new child to the node pointed to by the walker (it is added

at the back of the container).

push subtree adds a tree as subtree at the node pointed to by the walker.

insert child, insert subtree these work like push child and push subtree,

except that they are also provided an iterator of the children-container.

The child, respectively subtree, is inserted there and not as last child.

erase deletes one node from the tree, connecting all children to the parent

node.

erase subtree erases the subtree whose root is the walker position provided.

pop child, pop subtree, erase child are the inverse operations to push child,

push subtree, and insert child.

depth returns the level in the tree of the node the walker points to.

Each tree node provides in addition an element of ctree data hook, where

data could be stored during iterative tree walks. Evaluation routines could e.g.

make use of these data hooks. Note that this concept does not apply to the

other graph types.

For directed graphs the additional constructor methods are:

Module API 28

push adds a new node between parents and children, hereby erasing all existing

links between parents and children. In the containers managing the links,

the new edge is added at the end.

push between adds a new node between a parent and a child leaving existing

links between them intact.

push front adds a new node between parents and children, hereby erasing all

existing links between parents and children. In the containers managing

the links, the new edgees are added at the beginning.

push front between adds a new node between parents and children leaving

existing links between them intact.

insert adds a new node between parents and children, hereby erasing all ex-

isting links between parents and children. In the containers managing the

links, the new edge is added at the speci�ed iterator position.

insert between adds a new node between a parent and a child leaving existing

links between them intact.

add edge This adds an edge between two nodes.

remove edge This removes an edge between two nodes.

insert subgraph With this method, a complete subgraph is added between

lists of parents and children.

A.3 Iterators and Walkers

Iterators

Iterators, the interface between container classes and algorithms, are a general-

ization of pointers. They have a dereference operator * de�ned which returns

the iterator's data type.

There are �ve iterator categories, connected as depicted in �gure 4. An arrow

in this diagram points from the special iterators to the more general ones. All

STL container classes provide at least bidirectional iterators. Output iterators

can be used to generate output (they can be written to only), input iterators

for input (they can be read from only). Both can be incremented and are suited

for single-pass, one-directional algorithms.

Forward iterators can also be incremented only (one way street). They,

however, are input and output iterators, so they can be both written to and read

from. They may be used to implement multi-pass one-directional algorithms.

The next specialization are bidirectional iterators, which can be both in-

cremented and decremented (i.e. they can pass through the container in both

directions), and therefore provide just enough
exibility for general multi-pass

algorithms like bubble sort.

Module API 29

Figure 4: Relation of the iterator categories

The most specialized iterator class are random access iterators. They work

like array indices and can be chosen arbitrarily between the start and the end

indices of the container. Quicksort or binary search are algorithms which make

use of random access iterators.

Iterators can be generated by container methods, and the most important

ones are begin() (the iterator pointing to the �rst element of the container)

and end() (the iterator pointing beyond the last element of the container).

Walkers

Iterators cannot capture the full structural advantage of graphs, so for these an

adapted concept should be introduced, a walker. Since graphs can be walked in

many ways, walkers come in di�erent
avors. For general graphs, only recursive

walkers can be de�ned; however for trees we distinguish two basic types, and

three di�erent
avours for the second type (the iterative walkers).

The simplest walker category are the recursive walkers. Only two operators

are de�ned for them: << goes one level up to a parent node, and >> goes one

level down to a child. These operators take a pointer to the child or parent (key

or iterator) as second argument. Recursive graph walks (see section A.4) are

best �tted for them. For non-directed general graphs the walker only provides

a >> operation.

The other walker category, the iterative walkers are best suited for non-

recursive tree walks. They come in various
avors and the following
ags

in
uence their behavior. In addition to the operators de�ned for recursive walk-

ers, ++, -- de�ne transition to the next and previous nodes in the tree walk,

respectively. The operator ~ switches from pre-order to post-order visit and vice

versa.

node order (aka order) This
ag can take three values, de�ned in an enum

type walker type. pre de�nes a preorder walker (the node is visited be-

fore the children are visited), post de�nes a postorder walker (children

are visited before the parent node), and pre post de�nes a combined

Module API 30

walker, which visits every node twice. First comes the preorder visit

(w.in preorder() method returns true), then the children are visited,

and afterwards the parent node is visited again (the postorder visit, where

the w.in preorder() method returns false).

walk direction (aka left to right) This
ag takes boolean values, and if it

is true, the children are visited \from left to right" (i.e. from .begin() to

.end() for the container class holding the children). If the
ag is false,

the children are visited from \right to left".

depth handling (aka depth first) This
ag also takes boolean values. If

set to true, a depth �rst walk is performed. This means that the walker

visits the children of a node before the next node in the same depth level is

visited. If the
ag is set to false, a breadth �rst walk is performed, i.e. all

nodes in one level are visited before the walker advances to the next level.

(Breadth �rst tree walks are e.g. used in strategy games; usually depth

�rst walks are preferred because of much smaller memory overhead.)

In addition, walkers can be compared with each other using == and !=. Like

with iterators, equality requires that the walkers are constructed for the same

graph, point to the same node, are of the same kind (recursive or iterative

including all possible
avors) and are in the same state (preorder or postorder

pass).

All walkers provide hooks to the graph's data. The methods below can be

applied to every walker of every category.

node Return value for node is a pointer to the tree node the walker points to.

n children returns the number of children a node possesses (for directed graphs

and trees).

n parents returns the number of parents a node possesses (for directed graphs

and trees).

n neighbors returns the number of neighbors a node possesses (for undirected

graphs).

data hook This method returns a reference to a tree node's data hook, only

interesting for iterative tree walks.

parent data hook Similar to the above, this method returns a reference to

the parent node's data hook.

child begin, child end These methods return iterators to the beginning and

to the end, respectively, of the container containing a node's children.

parent begin, parent end These methods return iterators to the beginning

and to the end, respectively, of the container containing a node's parents.

Module API 31

for each child takes a function object as its argument, which is iteratively

applied to all the node's children.

for each parent takes a function object as its argument, which is iteratively

applied to all the node's parents.

Walkers are constructed from tree classes using various methods. The begin

method takes three arguments (the
ags from above), where the default values

are order = pre post, left to right = true, depth first = true. It re-

turns a walker pointing to the �rst node visited during the appropriate tree

walk.

For all graphs which are implemented using virtual roots (the ground) or

virtual leafs (the sky) the methods ground and sky return walkers to the re-

spective virtual nodes (this includes all sorts of trees, dgraph (directed graph),

dag, and graph).

Corresponding to begin, the end method takes the same arguments and

returns a walker pointing beyond the end of the tree walk.

Thus, begin and end work like for iterators, but there are two additional

methods. The ground method returns the position before the �rst visited node

(the imaginary top node of the tree). This is mainly used for the insert,

push child, and push subtree methods for constructing the tree. Every tree

has a ground, even if it does not contain a node. Semantics: begin() =

++ground().

In addition to end there exists a through method. It takes no arguments

and returns the position after the postorder visit of the imaginary root node.

Semantics: through() = ++end(). The through position is used as a safeguard

against walks beyond the tree. We have ++through = through.

A.4 Algorithms

As for sequence and associative containers, a certain number of algorithms is

designed for working with trees. The abstraction from the speci�c tree class

works by making the walkers be the only connection between the tree container

and the algorithms.

At �rst, all algorithms for containers can in principle be used for trees, too.

These algorithms can either make use of the iterators associated to every tree

class (essentially a depth-�rst, post-order, left-to-right iterative walker) or can

due to their template-like nature be directly provided with a walker. The STL{

tutorial [Weidl, 1996] and the STL{documentation [Stepanov and Lee, 1995]

provide information on that.

In addition, a number of additional tree-only algorithms is developed, provid-

ing a means to perform your favorite tree walk in a general algorithmic fashion.

Find below a list of all generic tree algorithms. Here, an IterativeWalker is an

iterative walker, a PrePostWalker is a combined preorder{postorder iterative

walker, and Walker is any walker (recursive or iterative).

A visitor object is a class providing the following methods:

Module API 32

return value The type of the return value of the visitor.

vinit() is called instead of preorder at a virtual node

vvalue() This returns the return value of the visitor at a virtual node.

value() This returns the return value of the visitor.

collect(value type data, return value value) This method is called af-

ter a subgraph walk for a child is completed. Provided is the data of the

active node and the return value of the subtree walk.

collect(return value value) This method is called at a virtual node after a

subgraph walk for a child is completed. Provided is the data of the active

node and the return value of the subtree walk.

preorder(value type data) Before the nodes of the subgraph are visited (i.e.

in the preorder phase of the graph walk) this method is called. The data

provided is the data of the active node.

postorder(value type data) This method is like preorder but the method is

called after all the return values of the subgraph walks have been collected

by collect.

analyze(walker w) This method is called in general graph walks to decide

whether the walk should be continued.

walk up(value type data) This method decides whether the next node is a

parent or a child in a general directed graph walk.

up(), down() This method returns the next node in directed graph walks to be

visited.

next() This method returns the next node for undirected graph walks.

A visitor does not need to provide both preorder and postorder unless it is

used in a recursive walking algorithm, which needs pre- and postorder node

visits.

The following generic algorithms for iterative tree walkers are provided:

walk(IterativeWalker first, IterativeWalker last, Function f) This

performs a tree walk using an iterative walker, calling f at every visited node. f

takes four arguments: (a reference to) the node's data, a reference to the node's

data hook, a child data iterator range (begin, end). A child data iterator iter-

ates through the data hooks of all children of this node. The function returns

f.

Module API 33

pre post walk(PrePostWalker first, PrePostWalker last, Function f) This

generic algorithm performs a tree walk, where every node is visited twice (in

preorder and in postorder). f is like in walk, except that it takes a bool valued

�fth argument. This argument will be true in the preorder call and false in

the postorder call. The return value is f.

pre post walk(PrePostWalker first, PrePostWalker last,

Function1 f1, Function2 f2) A variant of the above, this algorithm per-

forms the same walk, but calling two di�erent functions f1 and f2 taking the

same arguments as f in walk. f1 is called in the preorder visit, and f2 in the

postorder visit. The return value is f2.

var walk(PrePostWalker first, PrePostWalker last, Function f) This

function performs a tree walk like in pre post walk. The function f has to re-

turn a value, which is convertible to bool. If the return value of f is true, the

walker is immediately switched from preorder to postorder or vice versa.

The e�ect of that is the following. If the walker is in the preorder phase

visiting the node and f returns true, then the subtrees of the node are never

visited, and visiting of this node is completed in one step. This is useful e.g. for

evaluation algorithms, which have a cache or another faster way of computing

the values of the subtrees.

If the walker were in the postorder phase, when f returned true, then the

subtrees of this node are visited again, and the node will be reached in the

postorder phase again.

var walk(PrePostWalker first, PrePostWalker last, Function1 f1, Function2

f2) This is like the �rst variant of cached walk, except that two di�erent

functions will be called.

walk if(PrePostWalker first, PrePostWalker last, Function f, Predicate

pred) This tree walk works like var walk, except that it takes a further ar-

gument, a function object working as predicate. This predicate should return

true or false given the node's data. The return value of the predicate then

decides, whether the walkers state will be switched.

walk if(PrePostWalker first, PrePostWalker last, Function1 f1, Function2

f2, Predicate pred) This walk if variant calls two di�erent functions in

the preorder and postorder visits, respectively.

walk if(PrePostWalker first, PrePostWalker last, Function1 f1, Function2

f2, Predicate1 pred1, Predicate2 pred2) This variant of walk if calls

two di�erent functions and two di�erent predicates.

Module API 34

cached walk if(PrePostWalker first, PrePostWalker last, Function1 f1,

Function2 f2, Predicate pred) A cached walk works like walk if, except

that the predicate is evaluated only in the preorder phase, allowing the tree

walk to be shortened.

multi walk if(PrePostWalker first, PrePostWalker last, Function1 f1,

Function2 f2, Predicate pred) This generic algorithm is a walk if, which

only evaluates the predicate in the postorder phase, making it possible to con-

struct multi pass tree walks.

walk up(Walker w, Function f) If a tree walk upwards to the root node is

necessary, use walk up. This function visits the starting node and its parents

until the root node of the tree is reached (the true root of this branch of the

multirooted tree, not the virtual root node). For every node, the function is

called, and f is returned in the end.

var walk up(Walker w, Function f) This algorithmwalks up until the root

node is reached or the function f returns true.

walk up if(Walker w, Function f, Predicate pred) This algorithmworks

like var walk up, except that the predicate decides, whether the walk is stopped

and not the return value of f.

The following generic recursive walk procedures work for all acyclic graphs

(forests, dags)

recursive preorder walk(Walker w, Visitor f) A recursive preorder walk

is a tree walk, in which the visitor f visits every node during the preorder phase.

The algorithm is constructed in a recursive way using a visitor class, not touch-

ing the data hook of the tree.

recursive postorder walk(Walker w, Visitor f) This generic algorithm

works like the last one, except that preorder has to be replaced by postorder.

recursive walk(Walker w, Visitor f) In this similar generic algorithm, both

preorder and postorder visits are performed.

recursive walk up(Walker w, Visitor f) Starting from the node the walker

points to, the tree is walked upwards until the root node is reached. This is done

recursively, so the stack will be unwound after the root node is reached. The vis-

itor method preorder is called prior to walking one level up. Then collect is

used to collect the return value of the recursive call, and afterwards postorder

is invoked.

Module API 35

recursive preorder walk up(Walker w, Visitor f) This is a variant of recursive walk up

except that the call to postorder is omitted.

recursive postorder walk up(Walker w, Visitor f) This is a variant of

recursive walk up except that the call to preorder is omitted.

: : : if To any of the recursive algorithms, either by providing a bool return

value for the visitor methods preorder and postorder or by adding a predicate

to the algorithm call, an if can be appended. The algorithm then works similar

to walk if. If the predicate (or the visitor method) return true, either the

subtrees are omitted or the node is revisited after the subtree walk has been

completed.

recursive cached walk(Walker w, Visitor f) This is a variant of recursive walk if,

which only evaluates the predicate in the preorder phase. This generates an al-

gorithm working like cached walk if.

recursive multi walk(Walker w, Visitor f) This is a variant of recursive walk if,

which only evaluates the predicate in the postorder phase. This generates an

algorithm working like multi walk if.

Finally, for all graphs there are the generic walk algorithms general walk,

recursive general walk for any graph, and general directed walk, general directed walk down,

general directed walk up, recursive general directed walk, recursive general directed walk do

recursive general directed walk up for all directed graphs.

Bibliography

[RPI, 1994] The standard template library online reference.

http://www.cs.rpi.edu/projects/STL/stl/stl.html, Rensselaer Polytech-

nic Institute, 1994.

[Stepanov and Lee, 1995] A. Stepanov and M. Lee. The standard template li-

brary. ftp://butler.hpl.hp.com/stl/stl.zip, Hewlett{Packard, 1995.

[Weidl, 1996] J. Weidl. The standard template library tutorial.

http://www.infosys.tuwien.ac.at/Research/Component/tutorial/prwmain.htm,

1996.

36

