Lozenge tilings of hexagons with boundary dents
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lozenge: union of two adjacent unit triangles on the triangular lattice

lozenge tiling of a region R: covering of R by lozenges that has no
gaps or overlaps

dent: unit triangle removed from along the boundary



Lozenge tilings of a hexagon with side lengths a,b,c,a,b,c

Theorem (MacMahon). The number
of lozenge tilings of a hexagon with
side lengths a, b, c,a,b,c is equal to

(c+ 1)y
7;Hl (z>b
where (2)p =2z(x+1)---(x+n—1).
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Lozenge tilings of a hexagon with three fixed border tiles

Theresia Eisenkolbl (1999):

(c+i—1)p1
H ( )o-1

(a—l—b—2)'(b—|—c—2)'(a—|—c—2)!

X (r+1)p2(s+1)c2(t+ 1)s—2
X(a+1—=7)c2(b+1—=5)s2(c+1—1)_2
X ((a—=1)(b—1)(c—1)(a—7)(b—s)(c—1)

+(a—1)(b—1)(c—1)rst
—(a—7)(b—5)(c—t)rst
+(a—1)(c—1)(b—5)(c—t)rs
+(a—1)(b—1)(a—7)(c—1t) st
+b—-—1)(c—1)(a—1r)(b—3s)rt)




General hexagon

o If k> 0, then H’f

on a triangular grid

side length of big A

n—a—b—c

n
j—
ad =n—-b—c=a++k
V=b+kd=c+k
koo
Habc

lengths

Hexagon with side

a,b+ k,c,a+ k,b,c+ k.
W.l.0.g. k > 0.

has no lozenge tiling.

oHN = # 7 +k :> We need to have k more A-dents than sy-dents.
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Tool: Ciucu’s extension of Kuo’'s graphical condensation

Kuo's graphical condensation is useful to count perfect matchings
in planar graphs.

LLozenge tilings are perfect matchings of a hexagonal grid!




Kuo’'s graphical condensation
For a graph G, M(G) denotes the number of perfect matchings.

Theorem. Let G be a planar graph with four vertices a1, as, a3, as
that appear in cyclic order on a face of G. Then

M(G) M(G — {a1,a2,a3,a4}) + M(G — {a1,a3})M(G — {az, as})
= M(G—{a1,as}) M(G—{az,as})+M(G—{a1,as})M(G—{az,az}).

G bipartite: V = Viuls

a1,a3 € Vi,an,a4 € Vo, |V1| = |V5]|: second term vanishes
a1,ap € Vi,a3,aq4 € Vo, V7| = |V5|: third term vanishes
a1,00,03,04 € V7, |V1| = |V2| + 2: first term vanishes



Idea of the proof

e Superimpose a perfect matching of G (blue) and a perfect matching of G —
{a1,an,a3,aa} (red).

e There is a blue-red-alternating path from «a; to «; for an ¢ € {2,3,4}.

e Two blue-red-alternating paths cannot cross and thus i #= 3.

e Switch the edges in the path of a1 and obtain a pair of matchings of M (G —
{041, 042}) and M(G — {043, 044}) or of M(G — {041, 044}) and M(G — {042, 043}).

e \When thinking about the reverse mapping, one observes that this is not a
bijection and that the term M (G — {a1,a3}) M (G — {a2,as}) is also necessary.

a
1 az



Pfaffian

Let A = (a;;) be a 2n x 2n antisymmetric matrix and I, the set of
all perfect matchings of K»,. Then

n
Pf(A) = > sgn ][ ai
W:{(ilajl):---a(in;jn)}éﬂn k=1
where sgnm = sgniqji1iojo...injn. (There are several ways to write
7w as {(i1,71),--., (in,jn)}. TO see that Pf(A) is still well-defined, we
can assume 1 < j and 11 < ip < ... < 1p Or show that it does not
matter which representative we choose.)

Recall that
Pf(A)? = det(A).

n—2: Pf(A) — 01203 4 — a1 3024 + a1,4a23



Ciucu's extension of Kuo's graphical condensation

Theorem (Ciucu, 2014). Let G be a planar graph with the vertices
a1,ao,...,a0, appearing in cyclic order on a face of . Consider
the 2n x 2n skew symmetric matrix A = (a; ;) with

i 5 = M(G — {Oéz‘, Oé]}> if 2 < 7.
Then we have that
_ Pf(A)

Problem in our case: M(G) =0 if k£ > 0!

We restrict to the case £k = 0 for the moment.
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Four cases — two are trivial

Our application: G is the hexagonal grid/triangulated hexagon Hgb o
o; are vertices of degree 2/dents along the boundary.

We need to compute M(G — {ay, a;}).

(1)

(2)
(3)

(4)

Qy, rj Are on the same side. The dents are of the same type:
M(G - {aiaaj}) =0

Q, rj Are on adjacent sides.

@, rj Are on different sides that share an adjacent side:
M(G - {Oéz',()éj}) =0

a;,; are on opposite sides.
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on adjacent sides
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Proposition 1. Let a,b,c, 5,k be non-negative integers with 1 <353 < a
and 1 <k <c. The number of lozenge tilings of the hexagon HC?’b’c
with two dents on adjacent sides of length a and c in positions j
and k, respectively, as counted from the common vertex of the two
sides is

Tty [mati b —etk ] A 40a(Dr-1(T+e— ki1

7;1;[0 A+ 2 1—a—c, 146" |(WayWp 1L +b+ec—kp 1
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A reminder: Hypergeometric notation

The hypergeometric series of parameters aq1,...,ar and by,...,bs IS
defined as
o0 k
T‘Fslalj LR a'T;Z] — Z (a’l)k (ar)kzl.
b1, ..., bs L—0 (bl)k"'(b3>k k!
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Dents on opposite sides

I
a

Proposition 2. Let a,b,c,i,5 be positive integers with 1 < 14,5 < a.
The number of lozenge tilings of the hexagon Hgbc with two dents
in positions ¢ and 5 along opposite sides of length a is

aﬁ2<1+c+k>b4F3 1—i, 1—j, 1—c—j 1+a+b—j

(L4 k) 2 c—j 14+b—j 2+a—i—j
(0)j—1(L+b—-35)i-1(2+a—i—7)it;—2

(1)2 1();—14+a4+c—9)i1(14+a+b—35)-1
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Proof of Proposition 1

Yet another application of Kuo’'s condensation.

Theorem. Let G = (V1, V5, E) be a bipartite planar graph and w, x, vy, z vertices of
G that appear in cyclic order on a face of G. If w,y € V1 and x,z € V5 then

M(G) M(G—{w, z,y,2}) = M(G—{w, z}) M(G—{y, 2}) + M(G—{w, z}) M(G—{z,y}).

Choice of w,z,y,z in our application:
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G
i o
\4
b
\\ail\\x// \\\\\\\//
G—{w,x,y,z} G—{y,Z} G — {xay}

ADJ(a,b,c);rADJ(a—1,b,c — 1),
= ADJ(a,b,c —1);,ADJ(a —1,b,¢)jr +ADJ(a—1,b+1,c—1);,ADI(a,b—1,¢);k
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Induction w.r.t. a+ b+ c

Base case: It suffices to show the formula for the casesa =1, b=0
and ¢ = 1. For our argument, we also need to check the cases a =)

and ¢ = k.

Since a = 1 implies a = 5 and by the symmetry of a and ¢, it suffices
to consider the cases b = 0 and ¢ = k.

j

a
. \4
| ) | k=c b
c-1
C
[/ /S S )/ C b\ \ b+1 c
a-1

(/S
[/ L[S
a

b =0 MacMahon c =k “easy”
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Induction step

We need to verify that the formula in the proposition fulfills the
recursion.

— , —1+0b, — k 1— , 1+0b, 1 — k
a7 Tb —et 1 |3F5 at T, ¢t 1| X QPP
l—a—c, b 3—a—c, 240
—a—+7, b, 1—cH+k l—a—+j, b —c+k
1 (3 F; 1| x QPP
[ 2l 2—a—c, 140 QPP
— , b, — k 1-— , b, 1 — k
@ty by —et kg 3F5 ats b T 1| x QPP3 =0
3—a—c, 140>

QPP; = quotient of products of Pochhammer functions

—3F2[

Arguments differ by small integer values!
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Another tool: Contiguous relations for hypergeometric series

_SC, (A) .

_SC, (A) .

w, z, (A)
L
w, x, (A)

TFS[ y, (B)

y, (B)' ]

y, B)' 7] T

]
-

1_w-2@-DI®B-1 [

_ S{x—l, (A4).

(y— )z [ [y As
y—1, (B)' F[

(v-Dy[]_'B

x, (A—-1) z]
y_]-a (B_1)1

z]—l—

v (A+1) ] C40([x, y]

y+1, (B+1)"~

—r-D2 [[(A-1)

w-2@-DI[L,B-1 2oL -]
(y—2—-Dz [[5(A4-1) Lly=2 (B-1)
_z(y—w) w, x+ 1, (A)z w(y — x) w—+ 1, x, (A)z -
_(x_w)y’“Fs[ y+1, (B) ' ]+(w—x)y’"Fs[ y+1, (B) } cost . y)
QA -w4a2)(y-1) F[w—l, z, (A)'z}

(w-—1D)A+z-y) L y—1,(B)

C42[x, y]

z(y — w) w—1, z+1, (A)
M Ty ey e AN SR cost.y)
(A) and (B) stand for lists A1, A», A3,... and B1, B>, B3, ... of the

appropriate lengths.
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C40(x,Y]

@) TL (ADn_, (x—1>n:£[1<14@->nzn

=1

(Dn n1<B 3" (- 1>n5ﬁ1<B'>n”‘

r—1
(y_x)z H A (x)n—l H (A_I_ 1)n—1 Zn—l
_I_

(y — 1ys=1 (n—1)!

H Bi(y+ 1)1 H(B + Ln—1

Simple calculation:

a:—l—n—lz(w—l)(y—l—n—l)_'_ y—x
y-n (y—1Dy-n (y—1)y
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Application
Cc55[1-c+k,b,3-a-c]:

1—a-+7, b, 1—C—|—k_1 _ (2-a—-c)(bt+c—k) F[l—a—l—j, b, —c—l—k_l}
3—a—c 14+b | (24atbt)(—cH+E) | 2—a—¢ 14+b

b(2 —a—k) l—a4+j, b+1, —c+k
+(2—a—b—c)(—c—|—k)3F2[ 3—a—c¢ b+1 '1}

3l

The second 3F> on the right-hand side can be computed using Chu-Vandermonde
summation:

l—a+j, b+1, —c+k 1—a-+4 7, —c—l—k_1 _ (B3-a—FkK)o—jt1
3—a—c b+1 ’ ' _(3—a—c)a_j+1
The first 3F5 on the right-hand side is another 3F> that appears in our identity.

We have reduced the number of 3F> to 5. We apply four more transformations
of this type such that in the end we obtain a polynomial of degree at most 2 in

l1—a-+47, b, —c—|—k_1
2—a—c, 14+0b '

The coefficients of the polynomial are sums of quotients of products of Pochham-
mer functions. It is routine to check that the coefficients are in fact zero.

3F2[

= o F
21[ 3—a-—c

3F2[
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General case kK> 0

ﬁz,b,c denotes the region obtained from HC’be by augmenting it by

a string of k contiguous 7 along its bottom row.

—k
M (Ha,b,c> 7 0
22



Notation:
o1, an, ...,y A-dents
e31,082,...,08n: y-dents

®V1, YD, - -y V- v-triangles
below bottom row

Let 061,02,...,00n40, b€ a
cyclic order of these ele-
ments

ww

Y1,72,&1,73,74, 2,775, X3, 517 527
637 547 a4, 05, 0, 7, (g, 557 667 677

Bs, ag, 10, ®¥11, 12, 0013
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Ciucu's extension of Kuo's graphical condensation implies

M(Hclfjb,c - {ala .. '705n—|—k7517 R 7677/})
k

— Pf[M(Fa,b,c — {0,651 1<i<j<2n+2k]
M(H?S, yntk-1 '

a,b,c

We need to show: Each quantity on the right-hand side can be
computed.

Assumption: one of the three sides on which s7-dents can occur does

not actually have any dents. W.l.0.g. let this be the southwestern
side.
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Easy cases
Denominator: M(Hs,b,c) = M(Hgb+k )
Numerator:

k

M(H g p,c — {cs, 1) =0
M(Hb o — {8i8;}) = O
k

M(HE o — {8171 = O
5k
M(EE o — {7, 75}) = O

25



M(He o — {ai, ;1))

The number is zero if either
e o, shares an edge with one of the ~;, or

e o, is on the northwestern side, at distance at most £ — 1 from
the western corner.

Otherwise it is given by Proposition 1 if a; and Bj are along adjacent
sides, and by Proposition 2 if «; and Bj are along opposite sides.
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—k
M(H gy e — {eisv4})

The number is zero if either
e o, shares an edge with one of the v with [ %= 3, or

e «,; iS on the northwestern side, at distance at most 5 — 2 from
the western corner.

If a; and ~; are along the same side, the result follows from Propo-
sition 3 and if a; and ~; are along different sides, the result follows
from Proposition 4.

27



a; and v; are on the same side

Proposition 3. Let Ty n(z1,...,2n) be the region obtained from the
trapezoid of side lengths m, n, m—+n, n (clockwise from bottom) by
removing the down-pointing unit triangles from along its top that
are in positions xz1,xo,...,xn as counted from left to right. Then

Ly — Iy

M(Tm,n(xla"'axn)) — H . .
1<i<j<n J 7%

28



Special case

29



a; and ~; are on different sides

X
———
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Proposition 4, part 1

Let H,; (k1) be the region obtained from the hexagon of side
lengths a, b+k+1, ¢, a+k+1,b, c+k+1 (clockwise from top) by
removing an up-pointing unit triangle from its northwestern side, |
units above the western corner, and an up-pointing triangle of side
k from its northeastern side, one unit above the eastern corner.
Let m = min(a,b) and M = max(a,b). Then we have

p(c, 1)

M( bc(k l))_M( abc) (O O)

where the polynomial p(c,l) is defined to be
U+ 1)p(c+k—1+ 1),
x(ct+k+2)(c+k+3)? - (c+k+m+1)"(c+k+m+2)" - (c+k+M+1)"
x(c+k+M+2)"ec+k+M+3)"2 . (ct+k+M+m)
k+1 .
( 1)1 1
8 G- DIk — i+ D!

1=

U—k4+3)k—it10+b+1)ic1(c+ 1)im1(c+ i+ 1)g—it1-
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Proposition 4, part 2

Let Hc’z,b,c(k,l) be the region defined precisely as H, .(k,1), with
the one exception that the up-pointing triangle of side k is one
unit below the northeastern corner, rather than one unit above the
eastern corner.

Let v = min(b—1,k), and define r(c) by
{(c+2)1---(c—|—1/—|—1)”---(c—|—b—|—kV)”---(c—l—b—l—k:1)1, v>1
r(c) ;=

1, vr=20
1

(c+ 1)k
(in the first branch the bases are incremented by 1 from each factor
to the next; the exponents are incremented by one until they reach
v, stay equal to v across the middle portion, and then they decrease
by one unit from each factor to the next).
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Then we have

/ a—+ k c,
M(Ha,b,c(k7l>> — ( —]L_ )qq((o O))a

where the polynomial ¢(c,l) is defined to be

r(c) {4+ 1)p(z+k—1+1),
x(ct+k+2)(c+k+3)? - (c+k+m+1)"(c+k+m+2)" - (c+k+M+1)"
Xx(c+k+M+2)" Y c+k+M+3)"2 . (ct+k+M+m)
i (—1)1

< (i~ DIk —i+1)

(U—k+D)rit1(l+b+1)ia(l—k—c)i-i(l —k —c+i)pit1

1=

(as in part 1, m = min(a,b) and M = max(a,b)).
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Allowing dents also on the southwestern side: nested Pfaffian

Theorem. Let ay,...,a,4 be arbitrary A-dents and 31,...,08n ar-
bitrary y/-dents along the boundary of H*, . Then

M(Hg,b,c - {ala SRR Oén—|—k7517 - . 76[6})

iIs equal to a Pfaffian of a 2n x 2n matrix whose entries are Pfaffi-

ans of (2k + 2) x (2k 4+ 2) matrices of the type as in the previous
“theorem” (that was never stated).
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Proof

D = region obtained from Hc’fb . by removing the dents a4 1,..., a4

)

Apply Ciucu’s extension of Kuo’s condensation to the “dual” of D,
with the removed vertices to be aq,...,an and B1,..., Bn.

We obtain a 2n x2n Pfaffian with entries of the form M(D—{«;, 8;}),
i,7 €€4{1,2,...,n}.

Now M(D — {ay, 3;}) is a dented hexagon with all dents confined to
four of its sides (dents of type A can only occur along the north-
western, northeastern and southern side, and there is a single dent

of type v).

By our previous theorem, M(D — {ozz-,ﬁj}) can be expressed as the
Pfaffian of a (2k + 2) x (2k + 2) matrix.
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