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lozenge: union of two adjacent unit triangles on the triangular lattice

lozenge tiling of a region R: covering of R by lozenges that has no

gaps or overlaps

dent: unit triangle removed from along the boundary
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Lozenge tilings of a hexagon with side lengths a, b, c, a, b, c

Theorem (MacMahon). The number

of lozenge tilings of a hexagon with

side lengths a, b, c, a, b, c is equal to

a
∏

i=1

(c+ i)b
(i)b

where (x)n = x(x+1) · · · (x+n− 1).

a

c b

c

a

b
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Lozenge tilings of a hexagon with three fixed border tiles

t

s

r

Theresia Eisenkölbl (1999):

a−1
∏

i=1

(c+i−1)b−1

(i)b−1

(a+ b− 2)!(b+ c− 2)!(a+ c− 2)!

× (r + 1)b−2(s+1)c−2(t+ 1)a−2

× (a+1− r)c−2(b+1− s)a−2(c+1− t)b−2

× ((a− 1)(b− 1)(c− 1)(a− r)(b− s)(c− t)

+ (a− 1)(b− 1)(c− 1) r s t

− (a− r)(b− s)(c− t) r s t

+ (a− 1)(c− 1)(b− s)(c− t) r s

+ (a− 1)(b− 1)(a− r)(c− t) s t

+ (b− 1)(c− 1)(a− r)(b− s) r t)
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General hexagon on a triangular grid

c’
b’

a’

a

b c

n = side length of big △

k = n− a− b− c

a′ = n− b− c = a+ k

b′ = b+ k, c′ = c+ k

Hk
a,b,c: Hexagon with side

lengths

a, b+ k, c, a+ k, b, c+ k.

W.l.o.g. k ≥ 0.

• If k > 0, then Hk
a,b,c has no lozenge tiling.

•#△ = #▽+k ⇒ We need to have k more △-dents than ▽-dents.
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Tool: Ciucu’s extension of Kuo’s graphical condensation

Kuo’s graphical condensation is useful to count perfect matchings

in planar graphs.

Lozenge tilings are perfect matchings of a hexagonal grid!
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Kuo’s graphical condensation

For a graph G, M(G) denotes the number of perfect matchings.

Theorem. Let G be a planar graph with four vertices α1, α2, α3, α4

that appear in cyclic order on a face of G. Then

M(G)M(G− {α1, α2, α3, α4}) +M(G− {α1, α3})M(G− {α2, α4})

= M(G−{α1, α2})M(G−{α3, α4})+M(G−{α1, α4})M(G−{α2, α3}).

G bipartite: V = V1 ·∪V2
α1, α3 ∈ V1, α2, α4 ∈ V2, |V1| = |V2|: second term vanishes

α1, α2 ∈ V1, α3, α4 ∈ V2, |V1| = |V2|: third term vanishes

α1, α2, α3, α4 ∈ V1, |V1| = |V2|+2: first term vanishes
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Idea of the proof

• Superimpose a perfect matching of G (blue) and a perfect matching of G −
{α1, α2, α3, α4} (red).
• There is a blue-red-alternating path from α1 to αi for an i ∈ {2,3,4}.
• Two blue-red-alternating paths cannot cross and thus i 6= 3.
• Switch the edges in the path of α1 and obtain a pair of matchings of M(G −
{α1, α2}) and M(G− {α3, α4}) or of M(G− {α1, α4}) and M(G− {α2, α3}).
• When thinking about the reverse mapping, one observes that this is not a
bijection and that the term M(G− {α1, α3})M(G− {α2, α4}) is also necessary.

α α

αα

1
2

34
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Pfaffian

Let A = (ai,j) be a 2n× 2n antisymmetric matrix and Πn the set of

all perfect matchings of K2n. Then

Pf(A) =
∑

π={(i1,j1),...,(in,jn)}∈Πn

sgnπ
n
∏

k=1

aik,jk

where sgnπ = sgn i1j1i2j2 . . . injn. (There are several ways to write

π as {(i1, j1), . . . , (in, jn)}. To see that Pf(A) is still well-defined, we

can assume ik < jk and i1 < i2 < . . . < in or show that it does not

matter which representative we choose.)

Recall that

Pf(A)2 = det(A).

n = 2: Pf(A) = a1,2a3,4 − a1,3a2,4 + a1,4a2,3
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Ciucu’s extension of Kuo’s graphical condensation

Theorem (Ciucu, 2014). Let G be a planar graph with the vertices

α1, α2, . . . , α2n appearing in cyclic order on a face of G. Consider

the 2n× 2n skew symmetric matrix A = (ai,j) with

ai,j = M(G− {αi, αj}) if i < j.

Then we have that

M(G− {α1, . . . , α2n}) =
Pf(A)

M(G)n−1
.

Problem in our case: M(G) = 0 if k > 0!

We restrict to the case k = 0 for the moment.
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Four cases – two are trivial

Our application: G is the hexagonal grid/triangulated hexagon H0
a,b,c,

αi are vertices of degree 2/dents along the boundary.

We need to compute M(G− {αi, αj}).

(1) αi, αj are on the same side. The dents are of the same type:

M(G− {αi, αj}) = 0

(2) αi, αj are on adjacent sides.

(3) αi, αj are on different sides that share an adjacent side:

M(G− {αi, αj}) = 0

(4) αi, αj are on opposite sides.
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Dents on adjacent sides

j
a

b

c

a

b

c

k

j
a

k

c

b

a

c

b

Proposition 1. Let a, b, c, j, k be non-negative integers with 1 ≤ j ≤ a

and 1 ≤ k ≤ c. The number of lozenge tilings of the hexagon H0
a,b,c

with two dents on adjacent sides of length a and c in positions j

and k, respectively, as counted from the common vertex of the two
sides is

a−1
∏

i=0

(c+ i)b
(1 + i)b

3F2

[

−a+ j, b, −c+ k

1− a− c, 1 + b
; 1

]

(1 + b)a−j(j)k−1(1 + c− k)k−1

(1)a−j(1)k−1(1 + b+ c− k)k−1
.
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A reminder: Hypergeometric notation

The hypergeometric series of parameters a1, . . . , ar and b1, . . . , bs is

defined as

rFs

[

a1, . . . , ar

b1, . . . , bs
; z

]

=
∞
∑

k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
.
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Dents on opposite sides

j
a

c

b

i
a

c

b

j

c

a

b

c

a

b

i

Proposition 2. Let a, b, c, i, j be positive integers with 1 ≤ i, j ≤ a.

The number of lozenge tilings of the hexagon H0
a,b,c with two dents

in positions i and j along opposite sides of length a is

a−2
∏

k=0

(1 + c+ k)b
(1 + k)b

4F3

[

1− i, 1− j, 1− c− j, 1+ a+ b− j

2− c− j, 1 + b− j, 2 + a− i− j
; 1

]

×
(c)j−1(1 + b− j)i−1(2 + a− i− j)i+j−2

(1)i−1(1)j−1(1 + a+ c− i)i−1(1 + a+ b− j)j−1
.
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Proof of Proposition 1

Yet another application of Kuo’s condensation.

Theorem. Let G = (V1, V2, E) be a bipartite planar graph and w, x, y, z vertices of
G that appear in cyclic order on a face of G. If w, y ∈ V1 and x, z ∈ V2 then

M(G)M(G−{w, x, y, z}) = M(G−{w, x})M(G−{y, z})+M(G−{w, z})M(G−{x, y}).

Choice of w, x, y, z in our application:

w

a

k

c

b

a

c

b

j

z

y
x
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j
a

b

c

a

b

c

k

G

j
a

k

c

b

b

a

a

c−1
c

b

w
x

G− {w, x}

w

a

b
b+1

c−1
c

a−1

a

b

b+1

c

k

z

j

G− {w, z}

z

a

k bb

c−1

c

a

a−1

b

b

c

j

w
x

y

G− {w, x, y, z}

j
a

b
b

c

c

a−1

a

b

c

k

y

z

G− {y, z}

a

k

c

b

b−1

a

a

c

c

b

x
y

j

b−1

G− {x, y}

ADJ(a, b, c)j,k ADJ(a− 1, b, c− 1)j,k
= ADJ(a, b, c− 1)j,k ADJ(a− 1, b, c)j,k +ADJ(a− 1, b+1, c− 1)j,k ADJ(a, b− 1, c)j,k
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Induction w.r.t. a+ b+ c

Base case: It suffices to show the formula for the cases a = 1, b = 0

and c = 1. For our argument, we also need to check the cases a = j

and c = k.

Since a = 1 implies a = j and by the symmetry of a and c, it suffices

to consider the cases b = 0 and c = k.

j

c

k

a

c

a

b = 0 MacMahon

j
a

k=c
c−1

b b+1

a

a−1

c

b

c = k “easy”
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Induction step

We need to verify that the formula in the proposition fulfills the
recursion.

− 3F2

[

−a+ j, −1+ b, −c+ k

1− a− c, b
; 1

]

3F2

[

1− a+ j, 1+ b, 1− c+ k

3− a− c, 2+ b
; 1

]

×QPP1

− 3F2

[

−a+ j, b, 1− c+ k

2− a− c, 1+ b
; 1

]

3F2

[

1− a+ j, b, −c+ k

2− a− c, 1+ b
; 1

]

×QPP2

+ 3F2

[

−a+ j, b, −c+ k

1− a− c, 1+ b
; 1

]

3F2

[

1− a+ j, b, 1− c+ k

3− a− c, 1+ b
; 1

]

×QPP3 = 0

QPPi = quotient of products of Pochhammer functions

Arguments differ by small integer values!
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Another tool: Contiguous relations for hypergeometric series

rFs

[

x, (A)

y, (B)
; z

]

= rFs

[

x− 1, (A)

y − 1, (B)
; z

]

+
(y − x)z

(y − 1)y

∏r−1

i=1
Ai

∏s−1

i=1
Bi

rFs

[

x, (A+1)

y +1, (B +1)
; z

]

C40[x, y]

rFs

[

x, (A)

y, (B)
; z

]

=
(y − 2)(y − 1)

(y − x− 1)z

∏s−1

i=1
(Bi − 1)

∏r−1

i=1
(Ai − 1)

rFs

[

x, (A− 1)

y − 1, (B − 1)
; z

]

−
(y − 2)(y − 1)

(y − x− 1)z

∏s−1

i=1
(Bi − 1)

∏r−1

i=1
(Ai − 1)

rFs

[

x− 1, (A− 1)

y − 2, (B − 1)
; z

]

C42[x, y]

rFs

[

w, x, (A)

y, (B)
; z

]

=
x(y − w)

(x− w)y
rFs

[

w, x+1, (A)

y +1, (B)
; z

]

+
w(y − x)

(w − x)y
rFs

[

w +1, x, (A)

y +1, (B)
; z

]

C54[w, x, y]

rFs

[

w, x, (A)

y, (B)
; z

]

=
(1− w + x)(y − 1)

(w − 1)(1+ x− y)
rFs

[

w − 1, x, (A)

y − 1, (B)
; z

]

+
x(y − w)

(w − 1)(y − x− 1)
rFs

[

w − 1, x+1, (A)

y, (B)
; z

]

C55[w, x, y]

(A) and (B) stand for lists A1, A2, A3, . . . and B1, B2, B3, . . . of the

appropriate lengths.
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C40[x,y]

(x)n
r−1
∏

i=1
(Ai)n

(y)n
s−1
∏

i=1
(Bi)n

zn

n!
=

(x− 1)n
r−1
∏

i=1
(Ai)n

(y − 1)n
s−1
∏

i=1
(Bi)n

zn

n!

+
(y − x)z

(y − 1)y

r−1
∏

i=1
Ai

s−1
∏

i=1
Bi

(x)n−1

r−1
∏

i=1
(Ai +1)n−1

(y +1)n−1

s−1
∏

i=1
(Bi +1)n−1

zn−1

(n− 1)!

Simple calculation:

x+ n− 1

y · n
=

(x− 1)(y + n− 1)

(y − 1)y · n
+

y − x

(y − 1)y
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Application

C55[1-c+k,b,3-a-c]:

3F2

[

1− a+ j, b, 1− c+ k

3− a− c, 1+ b
; 1

]

=
(2− a− c)(b+ c− k)

(−2+ a+ b+ c)(−c+ k)
3F2

[

1− a+ j, b, −c+ k

2− a− c, 1+ b
; 1

]

+
b(2− a− k)

(2− a− b− c)(−c+ k)
3F2

[

1− a+ j, b+1, −c+ k

3− a− c, b+1
; 1

]

The second 3F2 on the right-hand side can be computed using Chu-Vandermonde
summation:

3F2

[

1− a+ j, b+1, −c+ k

3− a− c, b+1
;1

]

= 2F1

[

1− a+ j, −c+ k

3− a− c
; 1

]

=
(3− a− k)a−j+1

(3− a− c)a−j+1

The first 3F2 on the right-hand side is another 3F2 that appears in our identity.
We have reduced the number of 3F2 to 5. We apply four more transformations
of this type such that in the end we obtain a polynomial of degree at most 2 in

3F2

[

1− a+ j, b, −c+ k

2− a− c, 1+ b
; 1

]

.

The coefficients of the polynomial are sums of quotients of products of Pochham-
mer functions. It is routine to check that the coefficients are in fact zero.
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General case k ≥ 0

H
k
a,b,c denotes the region obtained from Hk

a,b,c by augmenting it by

a string of k contiguous ▽ along its bottom row.

M(H
k
a,b,c) 6= 0
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Notation:

•α1, α2, . . . , αn+k: △-dents

•β1, β2, . . . , βn: ▽-dents

•γ1, γ2, . . . , γk: ▽-triangles

below bottom row

Let δ1, δ2, . . . , δ2n+2k be a

cyclic order of these ele-

ments
γ1, γ2, α1, γ3, γ4, α2, γ5, α3, β1, β2,

β3, β4, α4, α5, α6, α7, α8, β5, β6, β7,

β8, α9, α10, α11, α12, α13
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Ciucu’s extension of Kuo’s graphical condensation implies

M(Hk
a,b,c − {α1, . . . , αn+k, β1, . . . , βn})

=
Pf[M(H

k
a,b,c − {δi, δj})1≤i<j≤2n+2k]

M(H
k
a,b,c)

n+k−1
.

We need to show: Each quantity on the right-hand side can be

computed.

Assumption: one of the three sides on which ▽-dents can occur does

not actually have any dents. W.l.o.g. let this be the southwestern

side.
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Easy cases

Denominator: M(H
k
a,b,c) = M(H0

a,b+k,c)

Numerator:

M(H
k
a,b,c − {αi, αj}) = 0

M(H
k
a,b,c − {βi, βj}) = 0

M(H
k
a,b,c − {βi, γj}) = 0

M(H
k
a,b,c − {γi, γj}) = 0
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M(H
k
a,b,c − {αi, βj}))

The number is zero if either

• αi shares an edge with one of the γl, or

• αi is on the northwestern side, at distance at most k − 1 from

the western corner.

Otherwise it is given by Proposition 1 if αi and βj are along adjacent

sides, and by Proposition 2 if αi and βj are along opposite sides.
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M(H
k
a,b,c − {αi, γj})

The number is zero if either

• αi shares an edge with one of the γl with l 6= j, or

• αi is on the northwestern side, at distance at most j − 2 from

the western corner.

If αi and γj are along the same side, the result follows from Propo-

sition 3 and if αi and γj are along different sides, the result follows

from Proposition 4.
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αi and γj are on the same side

Proposition 3. Let Tm,n(x1, . . . , xn) be the region obtained from the

trapezoid of side lengths m, n, m+n, n (clockwise from bottom) by

removing the down-pointing unit triangles from along its top that

are in positions x1, x2, . . . , xn as counted from left to right. Then

M(Tm,n(x1, . . . , xn)) =
∏

1≤i<j≤n

xj − xi

j − i
.

m

n

x 1 x 2 x n
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Special case

iγ αj
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αi and γj are on different sides

x

y

y

x+ k +1

k

+ k l

1

1

l

z

z

x

y

x+ k +1

+ k l

1

l

z

z

y

k

1
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Proposition 4, part 1

Let Ha,b,c(k, l) be the region obtained from the hexagon of side

lengths a, b+k+1, c, a+k+1, b, c+k+1 (clockwise from top) by

removing an up-pointing unit triangle from its northwestern side, l

units above the western corner, and an up-pointing triangle of side

k from its northeastern side, one unit above the eastern corner.

Let m = min(a, b) and M = max(a, b). Then we have

M(Ha,b,c(k, l)) = M(Ha,b,c)
p(c, l)

p(0, 0)
,

where the polynomial p(c, l) is defined to be
(l+1)b(c+ k − l+1)a

× (c+ k +2)(c+ k +3)2 · · · (c+ k +m+1)m(c+ k +m+2)m · · · (c+ k +M +1)m

× (c+ k +M +2)m−1(c+ k +M +3)m−2 · · · (c+ k +M +m)

×

k+1
∑

i=1

(−1)i−1

(i− 1)!(k − i+1)!
(l − k + i)k−i+1(l+ b+1)i−1(c+1)i−1(c+ i+1)k−i+1.
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Proposition 4, part 2

Let H ′
a,b,c(k, l) be the region defined precisely as Ha,b,c(k, l), with

the one exception that the up-pointing triangle of side k is one

unit below the northeastern corner, rather than one unit above the

eastern corner.

Let ν = min(b− 1, k), and define r(c) by

r(c) :=







(c+2)1 · · · (c+ ν +1)ν · · · (c+ b+ k − ν)ν · · · (c+ b+ k − 1)1, ν ≥ 1

1, ν = 0
1

(c+1)k
, ν = −1

(in the first branch the bases are incremented by 1 from each factor

to the next; the exponents are incremented by one until they reach

ν, stay equal to ν across the middle portion, and then they decrease

by one unit from each factor to the next).
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Then we have

M(H ′
a,b,c(k, l)) =

(a+ k

k

) q(c, l)

q(0,0)
,

where the polynomial q(c, l) is defined to be

r(c) (l+1)b(z + k − l+1)a

× (c+ k +2)(c+ k +3)2 · · · (c+ k +m+1)m(c+ k +m+2)m · · · (c+ k +M +1)m

× (c+ k +M +2)m−1(c+ k +M +3)m−2 · · · (c+ k +M +m)

×

k+1
∑

i=1

(−1)i−1

(i− 1)!(k − i+1)!
(l − k + i)k−i+1(l+ b+1)i−1(l − k − c)i−1(l− k − c+ i)k−i+1

(as in part 1, m = min(a, b) and M = max(a, b)).
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Allowing dents also on the southwestern side: nested Pfaffian

Theorem. Let α1, . . . , αn+k be arbitrary △-dents and β1, . . . , βn ar-

bitrary ▽-dents along the boundary of Hk
a,b,c. Then

M(Hk
a,b,c − {α1, . . . , αn+k, β1, . . . , βk})

is equal to a Pfaffian of a 2n × 2n matrix whose entries are Pfaffi-

ans of (2k + 2) × (2k + 2) matrices of the type as in the previous

“theorem” (that was never stated).
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Proof

D = region obtained from Hk
a,b,c by removing the dents αn+1, . . . , αn+k.

Apply Ciucu’s extension of Kuo’s condensation to the “dual” of D,

with the removed vertices to be α1, . . . , αn and β1, . . . , βn.

We obtain a 2n×2n Pfaffian with entries of the form M(D−{αi, βj}),
i, j ∈ {1,2, . . . , n}.

Now M(D−{αi, βj}) is a dented hexagon with all dents confined to

four of its sides (dents of type △ can only occur along the north-

western, northeastern and southern side, and there is a single dent

of type ▽).

By our previous theorem, M(D − {αi, βj}) can be expressed as the

Pfaffian of a (2k +2)× (2k +2) matrix.
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