Bounded Littlewood-type identity related to alternating sign matrices

Ilse Fischer, Universität Wien

Outline
I. The classical (unbounded) Littlewood identity
II. Littlewood-type identity related to alternating sign matrices
III. Alternating sign arrays and plane partitions
IV. Arrowed Gelfand-Tsetlin patterns
V. Bounded identities
VI. Combinatorial interpretations in the bounded cases

I. The classical (unbounded) Littlewood identity

The classical (unbounded) Littlewood identity

$$
\sum_{\lambda} s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \frac{1}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{1}{1-X_{i} X_{j}}
$$

Here $s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)$ is the Schur polynomial of the partition λ and the sum is over all partitions λ.

Combinatorial model of Schur polynomials in terms of Gelfand-Tsetlin patterns: A Gelfand-Tsetlin pattern is a triangular array of integers of the form

			$a_{1,1}$		
		$a_{2,1}$		$a_{2,2}$	
	\ldots		\cdots		\cdots

with weak increase in \nearrow - and \searrow-direction.
The weight of a Gelfand-Tsetlin pattern is $\prod_{i=1}^{n} X_{i}^{\sum_{j} a_{i, j}-\sum_{j} a_{i-1, j}}$ and $s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)$ is the sum of weights of all Gelfand-Tsetlin patterns with bottom row ($\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1}$), where we allow zero parts in $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Example $\lambda=(4,2,2)$

$$
\begin{aligned}
& 23 \\
& 3 \text { 4 }
\end{aligned}
$$

$$
\begin{aligned}
& s_{(4,2,2)}\left(X_{1}, X_{2}, X_{3}\right)=X_{1}^{2} X_{2}^{2} X_{3}^{2}\left(X_{1}^{2}+X_{1} X_{2}+X_{1} X_{3}+X_{2}^{2}+X_{2} X_{3}+X_{3}^{2}\right)
\end{aligned}
$$

Unusual (?) combinatorial proof of the Littlewood identity Combinatorial interpretation of the RHS:

$$
\prod_{i=1}^{n} \frac{1}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{1}{1-X_{i} X_{j}}=\prod_{i=1}^{n} \sum_{a_{i, i} \geq 0} X_{i}^{a_{i i}} \prod_{1 \leq i<j \leq n} \sum_{a_{i, j} \geq 0}\left(X_{i} X_{j}\right)^{a_{i j}}
$$

Example:

$$
\left(\begin{array}{cccccc}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} & a_{1,6} \\
& a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} & a_{2,6} \\
& & a_{3,3} & a_{3,4} & a_{3,5} & a_{3,6} \\
& & & a_{4,4} & a_{4,5} & a_{4,6} \\
& & & & a_{5,5} & s_{5,6} \\
& & & & & a_{6,6}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 2 & 0 & 0 & 1 & 1 \\
& 1 & 0 & 2 & 1 & 1 \\
& 2 & 1 & 0 & 0 \\
& & & 0 & 2 & 1 \\
& & & & 0 & 2 \\
& & & & 1
\end{array}\right)
$$

Two-line array: $a_{i, j} \rightarrow\binom{j}{i}^{a_{i j}}$ ordered lexicographically

$$
\left(\begin{array}{lllllllllllllllllll}
1 & 2 & 2 & 2 & 3 & 3 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 6 & 6 \\
1 & 1 & 1 & 2 & 3 & 3 & 2 & 2 & 3 & 1 & 2 & 4 & 4 & 1 & 2 & 4 & 5 & 5 & 6
\end{array}\right)
$$

Goal: transform this into a Gelfand-Tsetlin pattern with 6 rows.

Initial GT-pattern: 0

We insert the columns of the two-line array from left to right into the pattern.
Insert column $\binom{j}{i}$:

- Start a path in the pattern at the end of row i with unit \swarrow - and \searrow-steps.
- Whenever the \searrow-neighbor of the current entry is equal to that entry, we extend our path to the next entry in \searrow-direction, otherwise we go to the next entry in \swarrow-direction. Continue until we have reached the bottom row and add 1 to all the entries in the path.
- If $i \neq j$, add 1 to the entry left of the bottom entry of the path.

When progressing from a column $\binom{j}{i}$ to a column $\binom{j+1}{k}$, copy the bottom row, prepend a 0 and add that row to the bottom of the pattern.

Rewrite the classical Littlewood identity

Bialternant formula for the Schur polynomial:

$$
s_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}\left(X_{1}, \ldots, X_{n}\right)=\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{\lambda_{j}+n-j}\right)}{\prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right)}=\frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{i=1}^{n} X_{i}^{\lambda_{i}+n-i}\right]}{\prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right)},
$$

with

$$
\operatorname{ASym}_{X_{1}, \ldots, X_{n}} f\left(X_{1}, \ldots, X_{n}\right)=\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sgn} \sigma \cdot f\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

Littlewood identity:

$$
\frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} X_{1}^{k_{1}} X_{2}^{k_{2}} \cdots X_{n}^{k_{n}}\right]}{\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)}=\prod_{i=1}^{n} \frac{1}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{1}{1-X_{i} X_{j}}
$$

II. Littlewood-type identity related to ASMs

Littlewood-type identity related to ASMs

In two of my papers from 2019:

$$
\begin{aligned}
& \operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq \mathbf{i}<\mathbf{j} \leq \mathbf{n}}\left(\mathbf{1}+\mathbf{X}_{\mathbf{j}}+\mathbf{X}_{\mathbf{i}} \mathbf{X}_{\mathbf{j}}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} X_{1}^{k_{1}} X_{2}^{k_{2}} \cdots X_{n}^{k_{n}}\right] \\
& \prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right) \\
& =\prod_{i=1}^{n} \frac{1}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{\mathbf{1}+\mathbf{X}_{\mathbf{i}}+\mathbf{X}_{\mathbf{j}}}{1-X_{i} X_{j}}
\end{aligned}
$$

Generalization by Hans Höngesberg:

$$
\begin{array}{r}
\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i<j \leq n}\left(\mathbf{Q}+(\mathbf{Q}-\mathbf{1}) \mathbf{X}_{\mathbf{i}}+X_{j}+X_{i} X_{j}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} \prod_{i=1}^{n}\left(\frac{X_{i}\left(\mathbf{1}+\mathbf{X}_{\mathbf{i}}\right)}{\mathbf{Q}+\mathbf{X}_{\mathbf{i}}}\right)^{k_{i}}\right] \\
\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right) \\
=\prod_{i=1}^{n} \frac{\mathbf{Q}+X_{i}}{\mathbf{Q}-X_{i}^{2}} \frac{\prod_{1 \leq i<j \leq n}\left(\mathbf{Q}\left(1+X_{i}\right)\left(1+X_{j}\right)-X_{i} X_{j}\right)}{\prod_{1 \leq i<j \leq n}\left(\mathbf{Q}-X_{i} X_{j}\right)}
\end{array}
$$

Set $\mathrm{Q}=1$ to obtain the previous identity.

Further generalizations

Different generalization:

$$
\begin{array}{r}
\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i<j \leq n}\left(1+(1+\mathbf{r}) \mathbf{X}_{\mathbf{i}}+X_{j}+X_{i} X_{j}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} X_{1}^{k_{1}} X_{2}^{k_{2}} \cdots X_{n}^{k_{n}}\right] \\
\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right) \\
=\prod_{i=1}^{n} \frac{1}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{1+X_{i}+X_{j}+(\mathbf{1}+\mathbf{r}) \mathbf{X}_{\mathbf{i}} \mathbf{X}_{\mathbf{j}}}{1-X_{i} X_{j}}
\end{array}
$$

Common generalization of Hans' generalization and the above generalization:

$$
\begin{array}{r}
\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i<j \leq n}\left(\mathbf{Q}+(\mathbf{Q}+\mathbf{r}) \mathbf{X}_{\mathbf{i}}+X_{j}+X_{i} X_{j}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} \prod_{i=1}^{n}\left(\frac{X_{i}\left(\mathbf{1}+\mathbf{X}_{\mathbf{i}}\right)}{\mathbf{Q}+\mathbf{X}_{\mathbf{i}}}\right)^{k_{i}}\right] \\
\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right) \\
=\prod_{i=1}^{n} \frac{\mathbf{Q}+X_{i}}{\mathbf{Q}-X_{i}^{2}} \frac{\prod_{1 \leq i<j \leq n} \mathbf{Q}\left(1+X_{i}\right)\left(1+X_{j}\right)+r X_{i} X_{j}}{\prod_{1 \leq i<j \leq n}\left(\mathbf{Q}-X_{i} X_{j}\right)}
\end{array}
$$

III. Alternating sign arrays and plane partitions

Alternating sign triangles $=$ ASTs

An AST of order n is a triangular array of 1 ' $s,-1$'s and 0 's with n centered rows

such that
(1) the non-zero entries alternate in each row and each column,
(2) all row sums are 1, and
(3) the topmost non-zero entry of each column is 1 (if such an entry exists).

Example:

$$
\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
& 1 & -1 & 1 & 0 & 0 & \\
& & 1 & -1 & 1 & & \\
& & & 1 & & &
\end{array}
$$

Totally symmetric self-complementary plane partitions $=$ TSSCPPs

A (boxed) plane partition in an $a \times b \times c$ box is a subset

$$
P P \subseteq\{1,2, \ldots, a\} \times\{1,2, \ldots, b\} \times\{1,2, \ldots, c\}
$$

with

$$
(i, j, k) \in P P \Rightarrow\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \in P P \quad \forall\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \leq(i, j, k) .
$$

- Totally symmetric:
$(i, j, k) \in P P \Rightarrow \sigma(i, j, k) \in P P \forall \sigma \in \mathcal{S}_{3}$ (MacMahon 1899, 1915/16)
- Self-complementary:

Equal to its complement in the $2 n \times 2 n \times 2 n$ box (Mills, Robbins and Rumsey 1986)

Now: "Our" Littlewood-type identity was the crucial point in showing that there is the same number of ASTs with n rows as there is of TSSCPPs in a $2 n \times 2 n \times 2 n$ box.

Alternating sign trapezoids

For $n \geq 1, l \geq 2^{\text {fen }}$, an (n, l)-alternating sign trapezoid is an array of 1 's, -1 's and 0 's with n centered rows and l elements in the bottom row, arranged as follows
such that the following conditions are satisfied.
(1) In each row and column, the non-zero entries alternate.
(2) All row sums are 1.
(3) The topmost non-zero entry in each column is 1 .
(4) The column sums are 0 for the middle $l-2$ columns.
*Can be extended to $l=1$.

Cyclically symmetric lozenge tilings of a hexagon with a central triangular hole

Theorem (Behrend, F. 2018). There is the same number of (n, l)-alternating sign trapezoids as there is of cyclically symmetric lozenge tilings of a hexagon with side lengths $n+l-1, n, n+l-1, n, n+l-1, n$ that has a central triangular hole of size $l-1$.

The Littlewood-type identities were also crucial in one proof of this theorem. The proof is especially useful when including several statistics.
Christian in a survey on plane partitions in 2016: "However, the greatest, still unsolved, mystery concerns the question what plane partitions have to do with alternating sign matrices."

IV. Arrowed Gelfand-Tsetlin patterns

Signed intervals:

$$
\underline{[a, b]}= \begin{cases}{[a, b],} & a \leq b \\ \emptyset, & b=a-1 \\ {[b+1, a-1],} & b<a-1\end{cases}
$$

The interval is said to be negative in the last case.
An arrowed Gelfand-Tsetlin pattern is a triangular array of the following form

where each entry $a_{i, j}$ is an integer decorated with an element from $\{\nwarrow, \nearrow, \nwarrow \nearrow, \emptyset\}$ and the following is satisfied for each entry a not in the bottom row: Suppose b is the \swarrow-neighbor of a and c is the \searrow-neighbor of a, respectively, i.e.,

```
b c
```

Depending on the decoration of b, c, denoted by decor(b) and decor(c), respectively, we need to consider four cases:

- $(\operatorname{decor}(b), \operatorname{decor}(c)) \in\{\nwarrow, \emptyset\} \times\{\nearrow, \phi\}: a \in[b, c]$
- $(\operatorname{decor}(b), \operatorname{decor}(c)) \in\{\nwarrow, \emptyset\} \times\{\nwarrow, \widetilde{\chi}\}: a \in \underline{[b, c}-1]$
- $(\operatorname{decor}(b), \operatorname{decor}(c)) \in\{\nearrow, \nwarrow \not \subset\} \times\{\nearrow, \emptyset\}: a \in[b+1, c]$
- $(\operatorname{decor}(b), \operatorname{decor}(c)) \in\{\nearrow,\lceil\not \subset\} \times\{\mathbb{K}, \Gamma \not \subset\}: a \in[b+1, c-1]$

Example:

Sign: Each negative interval $\left[a_{i+1, j}(+1), a_{i+1, j+1}(-1)\right]$ with $i \geq 1$ and $j \leq i$ contributes a multiplicative -1 .

In our example, there are no negative intervals in rows $1,2,3$, two in rows 4,5 and three in row 6 , so that the sign of the pattern is -1 .

We associate the following weight to a given arrowed Gelfand-Tsetlin pattern $A=\left(a_{i, j}\right)_{1 \leq j \leq i \leq n}$:

$$
\mathrm{W}(A)=\operatorname{sgn}(A) \cdot t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow} \prod_{i=1}^{n} X_{i}^{\sum_{j=1}^{i} a_{i, j}-\sum_{j=1}^{i-1} a_{i-1, j}+\# \text { in row } i-\# \nwarrow \text { in row } i}
$$

The weight of our example is

$$
-t^{5} u^{5} v^{5} w^{6} X_{1} X_{2}^{3} X_{3}^{3} X_{4}^{3} X_{5}^{4} X_{6}^{6}
$$

Compare to the Schur function weight for Gelfand-Tsetlin patterns!

Generating function of arrowed Gelfand-Tsetlin patterns with prescribed bottom row

Theorem (F., Schreier-Aigner). The generating function of arrowed GelfandTsetlin patterns with bottom row k_{1}, \ldots, k_{n} is

$$
\frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i \leq j \leq n}\left(v+w X_{i}+t X_{j}+u X_{i} X_{j}\right) \prod_{i=1}^{n} X_{i}^{k_{i}-1}\right]}{\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)} .
$$

Our Littlewood-type identity, slightly rewritten:

$$
\begin{array}{r}
\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i \leq j \leq n}\left(1+w X_{i}+X_{j}+X_{i} X_{j}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} X_{1}^{k_{1}-1} X_{2}^{k_{2}-1} \cdots X_{n}^{k_{n}-1}\right] \\
\\
\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right) \\
\prod_{i=1}^{n} \frac{X_{i}^{-1}+(1+w)+X_{i}}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{1+X_{i}+X_{j}+w X_{i} X_{j}}{1-X_{i} X_{j}}
\end{array}
$$

The left-hand side is the generating function of all arrowed Gelfand-Tsetlin patterns with strictly increasing bottom row of non-negative integers, setting $t=u=v=1$.

Combinatorial interpretation of the RHS

$$
\prod_{i=1}^{n} \frac{X_{i}^{-1}+(1+w)+X_{i}}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{1+X_{i}+X_{j}+w X_{i} X_{j}}{1-X_{i} X_{j}}
$$

Generating function of two-line arrays with entries in $\{1,2, \ldots, n\}$ that are

- ordered lexicographically,
- the top element of each column is greater than or equal to the bottom element,
- for each i, j, there is a distinguished column $\binom{j}{i}$ that is either overlined, underlined, both or neither.

Weight:

- columns $\binom{j}{i}$ different from the distinguished columns contribute $X_{i} X_{j}$ if $i \neq j$ and X_{i} if $i=j$,
- an overline of a column $\binom{j}{i}$ contributes X_{j},
- an underline of a column $\binom{j}{i}$ contributes X_{i} if $i \neq j$ and X_{i}^{-1} if $i=j$,
- a column that is overlined and underlined contributes w.

Open problem: Find a combinatorial proof!

From these over- and underlined two-line arrays, we need to construct arrowed monotone triangles.
\rightarrow Flo, Hans, Moritz, Seamus

V. Bounded identities

Bounded classical Littlewood identity

Bounded? $\sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} \rightarrow \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n} \leq m}$

$$
\begin{aligned}
\sum_{\lambda \subseteq\left(M^{n}\right)} s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)= & \sum_{0 \leq k_{1} \leq k_{2} \leq \ldots \leq k_{n} \leq m} s_{\left(k_{n}, k_{n-1}, \ldots, k_{1}\right)}\left(X_{1}, \ldots, X_{n}\right) \\
= & \frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{j-1}-X_{i}^{M+2 n-j}\right)}{\prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)\left(1-X_{i} X_{j}\right)}
\end{aligned}
$$

Macdonald in his book. (Note that $m=M+n-1$.)

Bounded Littlewood identity related to ASMs

$$
\begin{array}{r}
\frac{1}{\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)} \operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i<j \leq n}\left(Q+(Q+r) X_{i}+X_{j}+X_{i} X_{j}\right)\right. \\
\left.\quad \times \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n} \leq m}\left(\frac{X_{1}\left(1+X_{1}\right)}{Q+X_{1}}\right)^{k_{1}}\left(\frac{X_{2}\left(1+X_{2}\right)}{Q+X_{2}}\right)^{k_{2}} \cdots\left(\frac{X_{n}\left(1+X_{n}\right)}{Q+X_{n}}\right)^{k_{n}}\right] \\
\\
=\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(a_{j, m, n}\left(Q, r ; X_{i}\right)\right)}{\prod_{1 \leq i \leq j \leq n}\left(Q-X_{i} X_{j}\right) \prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)}
\end{array}
$$

with

$$
\begin{aligned}
& a_{j, m, n}(Q, r ; X)=\left(1+Q X^{-1}\right) X^{j}(1+X)^{j-1}(Q+r X+Q X)^{n-j} \\
& -X^{2 n} Q^{-n}\left(\frac{(1+X) X}{Q+X}\right)^{m}(1+X)\left(Q X^{-1}\right)^{j}\left(1+Q X^{-1}\right)^{j-1}\left(Q+r Q X^{-1}+Q^{2} X^{-1}\right)^{n-j}
\end{aligned}
$$

The proof has more than 7 pages, but it is elementary.

The case $Q=1$

$$
\begin{gathered}
\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i \leq j \leq n}\left(1+w X_{i}+X_{j}+X_{i} X_{j}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n} \leq m} X_{1}^{k_{1}-1} X_{2}^{k_{2}-1} \cdots X_{n}^{k_{n}-1}\right] \\
\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right) \\
\times \frac{\prod_{i=1}^{n}\left(X_{i}^{-1}+1+w+X_{i}\right)}{\prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(1-X_{i} X_{j}\right)\left(X_{j}-X_{i}\right)}
\end{gathered}
$$

We are interested in finding a combinatorial proof.

V. Combinatorial interpretations in the bounded cases

The classical case

The classical bounded Littlewood identity:

$$
\sum_{\lambda \subseteq\left(m^{n}\right)} s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)=\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{j-1}-X_{i}^{m+2 n-j}\right)}{\prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)\left(1-X_{i} X_{j}\right)}
$$

This identity is equivalent to

$$
\sum_{\lambda \subseteq\left(m^{n}\right)} s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} X_{i}^{m / 2}{ }_{s o_{(m / 2, m / 2, \ldots, m / 2)}^{\circ \mathrm{odd}}\left(X_{1}, \ldots, X_{n}\right), ~, ~}^{\text {. }}
$$

where ${ }^{\text {odd }}\left(X_{1}, \ldots, X_{n}\right)$ is the irreducible character of the special orthogonal group $S_{2 n+1}(\mathbb{C})$ associated with the partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Combinatorial interpretation of the irreducible characters of $S_{2 n+1}(\mathbb{C})$

A $2 n$-split orthogonal pattern is an array of non-negative integers or non-negative half-integers with $2 n$ rows of lengths $1,1,2,2, \ldots, n, n$, which are aligned as follows for $n=3$

such that

- the entries are weakly increasing along \nearrow-diagonals and \searrow-diagonals,
- the entries, except for the first entries in the odd rows (called odd starters), are either all nonnegative integers or all non-negative half-integers, and
- each starter is independently either a non-negative integer or a non-negative half-integer.

The weight of a $2 n$-split orthogonal pattern is

$$
\prod_{i=1}^{n} X_{i}^{r_{2 i}-2 r_{2 i-1}+r_{2 i-2}}
$$

where r_{i} is the sum of entries in row i and $r_{0}=0$.

$$
\text { Formula for } \text { so }_{\lambda}^{\text {odd }}\left(X_{1}, \ldots, X_{n}\right)
$$

Theorem (Proctor 1994). Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a partition (allowing zero parts) or a half-integer partition. Then the generating function of $2 n$-split orthogonal patterns with respect to the above weight that have λ as bottom row, written in increasing order, is

$$
\prod_{i=1}^{n} X_{i}^{n-1 / 2} \frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{-\lambda_{j}-n+j-1 / 2}-X_{i}^{\lambda_{j}+n-j+1 / 2}\right)}{\left(1+\left[\lambda_{n}=0\right]\right) \prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)\left(1-X_{i} X_{j}\right)}
$$

This gives a combinatorial interpretation of $\prod_{i=1}^{n} X_{i}^{m / 2}{ }_{\text {so }}^{(m / 2, m / 2, \ldots, m / 2)}$ odd $\left(X_{1}, \ldots, X_{n}\right)$, which is the RHS of the classical bounded Littlewood identity.

ASM-related identity

$$
\begin{gathered}
\frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i \leq j \leq n}\left(1+w X_{i}+X_{j}+X_{i} X_{j}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n} \leq m} X_{1}^{k_{1}-1} X_{2}^{k_{2}-1} \cdots X_{n}^{k_{n}-1}\right]}{\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)} \\
=\prod_{i=1}^{n}\left(X_{i}^{-1}+1+w+X_{i}\right) \\
\times \frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{j-1}\left(1+X_{i}\right)^{j-1}\left(1+w X_{i}\right)^{n-j}-X_{i}^{m+2 n-j}\left(1+X_{i}^{-1}\right)^{j-1}\left(1+w X_{i}^{-1}\right)^{n-j}\right)}{\prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(1-X_{i} X_{j}\right)\left(X_{j}-X_{i}\right)} .
\end{gathered}
$$

The LHS has a combinatorial interpretation in terms of arrowed Gelfand-Tsetlin patterns with bounded bottom row.

Combinatorial interpretation of the RHS in terms of non-intersecting lattice paths

Case $m=2 l+1$

The RHS is the weighted count of families of n lattice paths.

- The i-th lattice path starts in $A_{i}=\{(-3 i+1,-i+1),(-i+1,-3 i+1)\}$ and the end points are $E_{j}=(n-j+l+1, j-l-2)$.
- Below and on the line $x+y=0$, the step set is $\{(1,1),(-1,1)\}$ for steps that start in $(-3 i+1,-i+1)$ and it is $\{(1,1),(1,-1)\}$ for steps that start in $(-i+1,-3 i+1)$.
- Steps of type $(-1,1)$ and $(1,-1)$ with distance $0,2,4, \ldots$ from $x+y=0$ are equipped with the weights $X_{1}, X_{2}, X_{3}, \ldots$, while such steps with distance $1,3,5, \ldots$ are equipped with the weights $X_{1}^{-1}, X_{2}^{-1}, X_{3}^{-1}, \ldots$, respectively.
- Above the line $x+y=0$, the step set is $\{(1,0),(0,1)\}$. Above the line $x+y=j-1$, horizontal steps of the path that ends in E_{j} are equipped with the weight w.
- The paths can be assumed to be non-intersecting below the line $x+y=0$. In case $w=1$, we can also assume them to be non-intersecting above the line $x+y=0$. If $w=0, E_{j}$ can be replaced by $E_{j}^{\prime}=(n-j+l+1,2 j-n-l-2), j=1,2, \ldots, n$, and then we can also assume the paths to be non-intersecting above the line $x+y=0$.
- The sign of family of paths is the sign of the permutation σ with the property that the i-th path connects A_{i} to $E_{\sigma(i)}$ with an extra contribution of -1 if we choose $(-i+1,-3 i+1)$ from A_{i}. Moreover, we have an overall factor of $(-1){ }_{\binom{n+1}{2}}^{\prod_{i=1}^{n}} X_{i}^{l}\left(X_{i}^{-1}+1+w+X_{i}\right)\left(1+X_{i}\right)$.
- In case $w=0,1$, when restricting to non-intersecting paths, let $1 \leq i_{1}<i_{2}, \ldots<i_{m}<n$ be the indices for which we chose $(-3 i+1,-i+1)$ from A_{i}. Then the sign can assumed to be $(-1)^{i_{1}+\ldots+i_{m}}$ and the overall factor is $\prod_{i=1}^{n} X_{i}^{l}\left(X_{i}^{-1}+1+w+X_{i}\right)\left(1+X_{i}\right)$.

The interpretation is signless if $w=0$ and $l \geq n-2$

Theorem (F., 2022). Assume that $w=0$ and $m=2 l+1$. In case $l \geq n-2$, the RHS is the generating function of pairs of plane partitions (P, Q) of shape λ and μ, respectively, where

- μ is the complement of λ in the $n \times l$-rectangle,
- P is a column-strict plane partition such that the entries in the i-th row are bounded by $2 n+2-2 i$, and
- Q is a row-strict plane partition such that the entries in the i-th row are bounded by $n-i$.

The weight is

$$
\prod_{i=1}^{n-1} X_{i}^{l}\left(X_{i}^{-1}+1+X_{i}\right)\left(1+X_{i}\right) X_{i}^{\# \text { of } 2 i-1 \text { in } \mathrm{P}} X_{i}^{-\# \mathrm{of} 2 i \text { in } \mathrm{P}}
$$

Remark. The Q 's are in easy bijection with $2 n \times 2 n \times 2 n$ TSSCPPs. The P^{\prime} s are in easy bijection with symplectic tableaux.

Thanks!

