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I. The classical (unbounded) Littlewood
identity



The classical (unbounded) Littlewood identity
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Here s,(X+,..., X, ) is the Schur polynomial of the partition A and the sum is over
all partitions ).

Combinatorial model of Schur polynomials in terms of Gelfand-Tsetlin pat-
terns: A Gelfand-Tsetlin pattern is a triangular array of integers of the form

ai i
a1 a2

a/71/71 e o o o o o aj’l’Lv’]’L

with weak increase in - and \,-direction.

The weight of a Gelfand-Tsetlin pattern is |] X,le“'f~-f—Z/-M and s, (Xq,...,X,) is
i=1

the sum of weights of all Gelfand-Tsetlin patterns with bottom row (A, A\, 1...., A1),

where we allow zero parts in A = (M1, ..., \,).



Example A = (4,2,2)

2 2 3
2 2 2 3 2 3
2 2 4 2 2 4 2 2 4
2y 2y4 2v3x3 32y 3
X2X32X4 X2X3X3 X3X32X3
2 3 4
2 4 2 4 2 4
2 2 4 2 2 4 2 2 4
234~ 2 3Ixw3x?2 AN 272
X2X4X32 X3X3X2 X4X2X3

S(4.2.0)(X1, X2, X3) = XTX5X5(XT+ X1 X0+ X1 X3+ X5+ X X3+ X3)



Unusual (?7) combinatorial proof of the Littlewood identity

Combinatorial interpretation of the RHS:

n
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Example:
/al,l a2 ai3 ai4 ais a176\ (1 2 0 0 1 1
a22 @23 0G24 25 Q26 1 0 2 11
a33 a34 Q35 36 | _ 2 1 0 O
as4 Q45 Q46 0 2 1
ass 856 0 2
\ ae 6) K 1)

a;,j

Two-line array: a;; — (z) ordered lexicographically

1 2 2 2 3 3 4 4 45 5 5 5 6 6 6 6 6 6
111 2 3 3 2 2 312 441 2 45 5 6

Goal: transform this into a Gelfand-Tsetlin pattern with 6 rows.



Initial GT-pattern: O

We insert the columns of the two-line array from left to right into the pattern.
Insert column (7):

e Start a path in the pattern at the end of row ¢ with unit /- and \-steps.

e \Whenever the \-neighbor of the current entry is equal to that entry, we extend
our path to the next entry in \-direction, otherwise we go to the next entry in
/-direction. Continue until we have reached the bottom row and add 1 to all the
entries in the path.

e If : %= 7, add 1 to the entry left of the bottom entry of the path.

When progressing from a column (J) to a column (34121) copy the bottom row, prepend
a 0 and add that row to the bottom of the pattern.



(1) 1 () 2 ) 3 ®) 3 3 ®)
0O —- 1 — — — — — 2 4 —
0] 1 1 2 2 3 2 4 0 5 4
3 3 4 3 4
0 > 6 0 2 6} 0] 3 6
0 0 2 6 0 1 3 6
3 4 3 2 2 6 5
2 6 © 2 6 . 0 . . 9,
0] 4 6 0 4 7 0 5 5 -
0 2 4 6 0 2 5 0 0 5 5 -
4 4
3 6 5 3 7 5
1 4 7 (i) 1 5 7 (i>)
1 2 5 7 1 3 5 7






Homework: Well-defined and inverse?
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Rewrite the classical Littlewood identity

Bialternant formula for the Schur polynomial:

detlgi,jgn (X,Ai‘f‘n—j) ASmel,...,Xn [H?:l Xi)\i—l—n—z'

1

S(A1,,\) (Xla R 7Xn) —

ngiq’gn(Xi - Xj) H1§i<j§n(Xi — Xj) ,
with
ASymy, ¢ f(X1,...,Xn) =) sano - f(Xoa) - Xom):
oES,
Littlewood identity:
ki y k2 n
ASmeh‘__,Xn [20§k1<k2<...<kn X1 X5 Xﬁ] _ H 1 H 1
H1§i<j§n(Xj — X3) bl 1 — X, | <ici<n 1 — XX,
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II. Littlewood-type identity related to ASMs
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Littlewood-type identity related to ASMs

In two of my papers from 2019:

ASmel, ¢ H1<1<J<n(1 + X + X X ) ZO<k1<k2< <k, kale?z Xﬁ”}
H1§i<j§n(Xj — Xi)

1l 14X+ X
1— XX,

[

~
I
[y

' 1<i<j<n

Generalization by Hans Hongesberg:

.......

ki
H1<Z<J<”(Q +(Q-DX;i+ X + XiX; )Zo<k1<k2< <k, Hz 1 (X(gl-izi_XX)) ]

H1<i<j<n (Xj - Xi)
_ H Q + X [[10icjen Q1 + X)) (1 + X)) — X X))
Q- X7 [I (Q-X:X;) '

1<i<j<n

Set Q = 1 to obtain the previous identity.
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Further generalizations
Different generalization:

ASmel, L X H1<z<]<n(l + A +1r)X; + X; + Xi X )Zo<k1<k2< <k, Xlek2 Xﬁ
H1§i<j§n(Xj - Xi)

H 14+ X + X5 + (1 4 r) XX

1— XX,

i=1 " Ui<i<j<n

Common generalization of Hans' generalization and the above generalization:

ki
Asmel, ¢ H1<z<]<n(Q + (Q _I_ r)X —I_ X —I_ X X )ZO<I€1<I€2< <k, HZ 1 (Xz(g];:_X}IL)) ]

H1<i<j<n(Xj _ Xz)
Q+ X [T1cicicn QML+ X)) (1 + X;) + r X X

_HQ X7 [I (Q-XiX;)

1<i<g<n
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III. Alternating sign arrays and plane
partitions
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Alternating sign triangles —= ASTs

An AST of order n is a triangular array of 1's, —1's and 0’'s with n centered rows

such that
(1) the non-zero entries alternate in each row and each column,
(2) all row sums are 1, and

(3) the topmost non-zero entry of each column is 1 (if such an entry exists).

Example:
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Totally symmetric self-complementary plane partitions =
TSSCPPs

A (boxed) plane partition in an a x b X ¢ box is a subset
PP C{1,2,...,a} x{1,2,...,b} x {1,2,...,¢}
with

(i,5,k) € PP = (i,j',k") € PP V(i j,K) < (i,5, k).

e Totally symmetric:
(i,7,k) € PP = o(i,j,k) € PP Vo € S3
(MacMahon 1899, 1915/16)

e Self-complementary:
Equal to its complement in the 2n X 2n X 2n box
(Mills, Robbins and Rumsey 1986)

Now: “Our” Littlewood-type identity was the crucial point in showing that there is the same
number of ASTs with n rows as there is of TSSCPPs in a 2n x 2n x 2n boxX.
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Alternating sign trapezoids

Forn>1,1> , an (n,l)-alternating sign trapezoid is an array of 1's, —1's and 0’'s
with n centered rows and [ elements in the bottom row, arranged as follows

such that the following conditions are satisfied.

(1) In each row and column, the non-zero entries alternate.
(2) All row sums are 1.

(3) The topmost non-zero entry in each column is 1.

(4) The column sums are 0 for the middle [ — 2 columns.

“Can be extended to [ = 1.
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Cyclically symmetric lozenge tilings of a hexagon
with a central triangular hole

Theorem (Behrend, F. 2018). There is the same number of (n,[)-alternating sign
trapezoids as there is of cyclically symmetric lozenge tilings of a hexagon with side

lengths n+1—-1,n,n4+1—1,n,n 41— 1,n that has a central triangular hole of size
[—1.

The Littlewood-type identities were also crucial in one proof of this theorem.
The proof is especially useful when including several statistics.

Christian in a survey on plane partitions in 2016: “However, the greatest, still un-

solved, mystery concerns the question what plane partitions have to do with alter-
nating sign matrices.”

19



IV. Arrowed Gelfand-Tsetlin patterns
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Signed intervals:

[a, b], a<b
[a,b] = < 0, b=a-—1
- b+1,a—1], b<a-—1
The interval is said to be negative in the last case.

An arrowed Gelfand-Tsetlin pattern is a triangular array of the following form

ai,1
a2,1 a2

a/”.’l o« e DR an,_'n/

where each entry «,; is an integer decorated with an element from {~_, 7, ", 0} and the following
is satisfied for each entry a not in the bottom row: Suppose b is the -neighbor of a and ¢ is the
N\,-heighbor of a, respectively, i.e.,

a
b c -
Depending on the decoration of b, ¢, denoted by decor(b) and decor(c), respectively, we need to
consider four cases:

e (decor(b),decor(c)) € {\,0} x { ,0}: a € [bc]

e (decor(b),decor(c)) € {",0} x {N\,X}: a€[bc—1]
e (decor(b),decor(c)) e { 1\ KX} x{ 0}: ae b+ 1,c]

e (decor(b),decor(c)) e { "X x{N,X}: ae b+ 1,¢c— 1]
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Example:

N2
2 N3/
Ny’ 2/ 3/
3 Np) N3/ N3/
2/ 4 N2/ 37 2
N6 N2/ 5 1./ N4 N2/

Sign: Each negative interval [a;t+1;(4+1), ai+1j4+1(—1)] with i > 1 and 5 <1 contributes a multiplicative
—1.

In our example, there are no negative intervals in rows 1,2,3, two in rows 4,5 and three in row 6, soO
that the sign of the pattern is —1.

We associate the following weight to a given arrowed Gelfand-Tsetlin pattern A = (ai;)1<j<i<n:

/ i i—1
L aij— Y . ai1;+#n row i@ —##Nin row i
W(A) = sgn(A) - 10 F# S GHFN X H X/}ZJA Zv,zl 1

1=1

n

The weight of our example is
—tPuP W X1 X3 X3 X X2 XL,

Compare to the Schur function weight for Gelfand-Tsetlin patterns!
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Generating function of arrowed Gelfand-Tsetlin patterns with
prescribed bottom row

Theorem (F., Schreier-Aigner). The generating function of arrowed Gelfand-
Tsetlin patterns with bottom row ki1,...,k, IS

v Micicjon (0 +wX; + X5+ uXi X)) [T Xt
H1§i<j§n(Xj — Xi)

Our Littlewood-type identity, slightly rewritten:

.......

H1<Z<7<n(1—|—wX + X; —|—XX)ZO<k1<k2< L qu 1sz 1 ngn—l
H1<z'<j<n(X’ - X*)

n

H 1+(1+w)+X T 14+ X + X + wXiX;
Pt — X 1— XX

.......

1<i<i<n

The left-hand side is the generating function of all arrowed Gelfand-Tsetlin patterns
with strictly increasing bottom row of non-negative integers, setting t = v = v = 1.
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Combinatorial interpretation of the RHS

n

HX1.1+(1+w>+X@ H 14+ X+ X+ wX X

1- X, 1 - X, X,
i=1 1<i<j<n '

Generating function of two-line arrays with entries in {1,2,...,n} that are

e ordered lexicographically,

e the top element of each column is greater than or equal to the bottom element,

e for each i, j, there is a distinguished column (i) that is either overlined, underlined, both or neither.

Weight: .
columns (‘Z) different from the distinguished columns contribute X;X; if ¢ # 35 and X; if 1 = j,

an overline of a column (Z) contributes Xj,

an underline of a column (Z) contributes X; if i # j and X, ' if i = j,
a column that is overlined and underlined contributes w.

Open problem: Find a combinatorial proof!

From these over- and underlined two-line arrays, we need to construct arrowed monotone
triangles.

— Flo, Hans, Moritz, Seamus
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V. Bounded identities
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Bounded classical Littlewood identity
Bounded? ) og<i,<ko<. <k, > 2o0<ki<ko<..<kn<m

Z SA(Xla---,Xn) p— Z S(knakn—lw-akl)(Xl""’Xn)
AC(M™) 0<k1 <kx<...<kn<m

—1 M~+2n—j
deti<ijen (X7 = X,TH)

I (1= X)) T <icjan(Xj — X)) (1 — X;X5)
Macdonald in his book. (Note that m=M +n —1.)
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Bounded Littlewood identity related to ASMs

[ @+@+nXi+X;+ X:X))

1<i<j<n

) > <X1(1+X1>)‘“ (X2(1+X2>>k{“ (Xn(1+Xn))k"
Q+ X1 Q + Xo Q+ Xn

O§k1<k:2<<kn§m
deti<ij<n (jmn(Q,7; X;))

ASmel ..... X,

[[ (@-X:X;) I (X;—X)

1<i<j<n 1<i<j<n
with
ajmn(Q,m X) = (1+ QX HX/(1+ XY HQ+rX +QX)"™

- XQnQ—n ((1Q++X)27X>m (1 + X) (QX—l)] (1 + QX_l)j_l(Q _I_ ’I"QX_l —l_ QQX_l)n_j.

The proof has more than 7 pages, but it is elementary.
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The case Q =1

ASmel’n_,X” ngigjgn(l + wX; + X; + X;X;) ZO§k1<k2<...<kn§m lel_lXéb_l o Xfﬂf"_l
[ (X;—Xi)
1<i<y<n

=] +H1+w+X)
1=1
dets<ij<n (xg—1<1 + X)L 4 wX)" T — X (1 XTI+ wX{l)"—ﬂ')
X

ﬁlu -X) I (- XiX)(X; - X)

We are interested in finding a combinatorial proof.
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V. Combinatorial interpretations in the
bounded cases
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The classical case

The classical bounded Littlewood identity:

deti<ij<n (X;.?_l — Xm+2n—]>

7

H?:l(l o Xz') H1§Z’<j§n(Xj _ Xz)(l o XLXJ)

Z S/\(Xl,...,Xn) =

AC(mn)

This identity is equivalent to

m/2
Z SA(Xl’ T 7Xn> - H X@ ! SO?SLC}Q,m/Q ..... m/2) (X17 T ’Xn>’
AC(m™) 1=1

where s009%( X1, ..., X,) is the irreducible character of the special orthogonal group
S05,4+1(C) associated with the partition A = (A1, ..., \,).

30



Combinatorial interpretation of the irreducible characters of

502,41(C)
A 2n-split orthogonal pattern is an array of non-negative integers or non-negative half-integers with
2n rows of lengths 1,1,2,2,...,n,n, which are aligned as follows for n = 3
ai i
az 1
as;1 as2
a4,1 aq.2 ’
as 1 as,2 as,3
ae,1 ae,2 ae,3

such that

e the entries are weakly increasing along -diagonals and “\-diagonals,

e the entries, except for the first entries in the odd rows (called odd starters), are either all non-
negative integers or all non-negative half-integers, and

e cach starter is independently either a non-negative integer or a non-negative half-integer.

The weight of a 2n-split orthogonal pattern is

n
X7“2/*27‘2/ 1+7r2i-2
7
=1

where r; is the sum of entries in row 7z and rg = O.
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Formula for soQ99(X;,..., Xy)

Theorem (Proctor 1994). Let A = (\{,...,\,) be a partition (allowing zero parts)
or a half-integer partition. Then the generating function of 2n-split orthogonal
patterns with respect to the above weight that have A as bottom row, written in
increasing order, is

n deti<ij<n (X.Af”ﬂl/Q — x et 2)

7

n-1/2 .
H Z (1+ [\ =0]) H?:l(l — Xi) H1§/[:<j§n(Xj — Xi)(1 — X7XJ)

=1

This gives a combinatorial interpretation of H?:1X;m/Q50?,?,32,,7,,/2,._,.,,T,,/z)(le---»Xn)v

which is the RHS of the classical bounded Littlewood identity.
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ASM-related identity

ki1 ko1 -
ASymy,  x, ngz’g]’gn(l + wX; + X; + XiX;) ZO§k1<k2<...<kn§m XX X
I (X5 —Xi)
1<i<g<n

=] +1+w+ X))
i=1
deti<; j<n (Xz-j_l(l + X)) M1+ wX)v I — XZnJrQn_j(l + Xz-_l)j_l(l + ”tUXZ'_1>n_j>
X

ﬁ1(1 — Xi) 1<H_< (1 - X:X;)(X; — Xi)

The LHS has a combinatorial interpretation in terms of arrowed Gelfand-Tsetlin
patterns with bounded bottom row.
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Combinatorial interpretation of the RHS in terms of
non-intersecting lattice paths
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Case m=2l+1
The RHS is the weighted count of families of n lattice paths.

e The i-th lattice path starts in A; = {(-3i+1,—i+1),(—i+ 1,—-3i+ 1)} and the end points are
Ei=m-—j+1+1,j—1-2).

e Below and on the line x+y = 0, the step set is {(1,1),(—1,1)} for steps that start in (—3i+1,—i+1)
and it is {(1,1),(1,—1)} for steps that start in (—i+1,—-37+ 1).

e Steps of type (—1,1) and (1,—1) with distance 0,2,4,... from =z + y = 0 are equipped with
the weights X, X5, X3,..., while such steps with distance 1,3,5,... are equipped with the weights
X7H X5 X L., respectively.

e Above the line z 4+ y = 0, the step set is {(1,0),(0,1)}. Above the line z +y = j — 1, horizontal
steps of the path that ends in E; are equipped with the weight w.

e T he paths can be assumed to be non-intersecting below the line x 4+y = 0. In case w = 1, we
can also assume them to be non-intersecting above the line  +y = 0. If w = 0, E; can be replaced
by E; =n—-j4+14+1,2j—n—-1-2), j=1,2,...,n, and then we can also assume the paths to be

non-intersecting above the line z 4+ y = 0.

e T he sign of family of paths is the sign of the permutation o with the property that the -th path
connects A; to E,; with an extra contribution of —1 if we choose (—i+1,-3i+1) from A;. Moreover,

we have an overall factor of (—1)("z") [T, XI(X P+ 14w+ X)(1 + X)).

e In case w = 0,1, when restricting to non-intersecting paths, let 1 < ;1 < i2,... < @ < n be the
indices for which we chose (—3i 4+ 1,—i+ 1) from A;. Then the sign can assumed to be (—1)a+t-Fin
and the overall factor is [['_, X/(X; '+ 1 4+w+ X;)(1 + X;).
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The interpretation is signless if w=0and [ >n — 2

T g e
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Theorem (F., 2022). Assume that w =0 and m =2/ + 1. In case [ > n — 2, the
RHS is the generating function of pairs of plane partitions (P, Q) of shape X\ and p,
respectively, where

e ., is the complement of A in the n x [-rectangle,

e PP is a column-strict plane partition such that the entries in the -th row are
bounded by 2n + 2 — 22, and

e () is a row-strict plane partition such that the entries in the i-th row are bounded
by n — 1.

The weight is

n—1
H XZZ(X]_l _|_ 1 _|_ Xz)(l _|_ Xz)X[#Of 27— 1 in PX[T#OT_ 27 in P.
1=1

Remark. The Q's are in easy bijection with 2n x 2n x 2n TSSCPPs. The P’s are in
easy bijection with symplectic tableaux.
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T hanks!
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