Bounded Littlewood-type identity related to alternating sign matrices

Ilse Fischer, Universität Wien

Outline

- I. The classical (unbounded) Littlewood identity
- II. Littlewood-type identity related to alternating sign matrices
- **III.** Alternating sign arrays and plane partitions
- **IV. Arrowed Gelfand-Tsetlin patterns**
- V. Bounded identities
- VI. Combinatorial interpretations in the bounded cases

I. The classical (unbounded) Littlewood identity

The classical (unbounded) Littlewood identity

$$\sum_{\lambda} s_{\lambda}(X_1, \dots, X_n) = \prod_{i=1}^n \frac{1}{1 - X_i} \prod_{1 \le i < j \le n} \frac{1}{1 - X_i X_j}$$

Here $s_{\lambda}(X_1, \ldots, X_n)$ is the Schur polynomial of the partition λ and the sum is over all partitions λ .

Combinatorial model of Schur polynomials in terms of Gelfand-Tsetlin patterns: A Gelfand-Tsetlin pattern is a triangular array of integers of the form

with weak increase in \nearrow - and \searrow -direction.

The weight of a Gelfand-Tsetlin pattern is $\prod_{i=1}^{n} X_{i}^{\sum_{j} a_{i,j} - \sum_{j} a_{i-1,j}}$ and $s_{\lambda}(X_{1}, \ldots, X_{n})$ is the sum of weights of all Gelfand-Tsetlin patterns with bottom row $(\lambda_{n}, \lambda_{n-1}, \ldots, \lambda_{1})$, where we allow zero parts in $\lambda = (\lambda_{1}, \ldots, \lambda_{n})$.

Example $\lambda = (4, 2, 2)$

 $s_{(4,2,2)}(X_1, X_2, X_3) = X_1^2 X_2^2 X_3^2 (X_1^2 + X_1 X_2 + X_1 X_3 + X_2^2 + X_2 X_3 + X_3^2)$

Unusual (?) combinatorial proof of the Littlewood identity Combinatorial interpretation of the RHS:

$$\prod_{k=1}^{n} \frac{1}{1 - X_{i}} \prod_{1 \le i < j \le n} \frac{1}{1 - X_{i}X_{j}} = \prod_{i=1}^{n} \sum_{a_{i,i} \ge 0} X_{i}^{a_{i,i}} \prod_{1 \le i < j \le n} \sum_{a_{i,j} \ge 0} (X_{i}X_{j})^{a_{i,j}}$$

Example:

Two-line array: $a_{i,j} \rightarrow {j \choose i}^{a_{i,j}}$ ordered lexicographically

Goal: transform this into a Gelfand-Tsetlin pattern with 6 rows.

Initial GT-pattern: 0

We insert the columns of the two-line array from left to right into the pattern.

Insert column $\binom{j}{i}$:

• Start a path in the pattern at the end of row i with unit \swarrow - and \searrow -steps.

• Whenever the \searrow -neighbor of the current entry is equal to that entry, we extend our path to the next entry in \searrow -direction, otherwise we go to the next entry in \swarrow -direction. Continue until we have reached the bottom row and add 1 to all the entries in the path.

• If $i \neq j$, add 1 to the entry left of the bottom entry of the path.

When progressing from a column $\binom{j}{i}$ to a column $\binom{j+1}{k}$, copy the bottom row, prepend a 0 and add that row to the bottom of the pattern.

3 ' 5 7 5 $\binom{5}{4}$ 5 7 2 \rightarrow 37 5 5 8 3 5 8 3 6 8 4 7 5 7 2 5 ' 2 3 5 9 2 3 7 2 7 1 5 7 1 3 5 9 $\binom{6}{1}$ $\binom{6}{2}$ 1 1 2 3 7 9 2 3 7 2 2 3 7 9

 $\binom{6}{4}$ $\binom{6}{5}^2$ $\binom{6}{6}$ Homework: Well-defined and inverse?

Rewrite the classical Littlewood identity

Bialternant formula for the Schur polynomial:

$$s_{(\lambda_1,\dots,\lambda_n)}(X_1,\dots,X_n) = \frac{\det_{1\leq i,j\leq n}\left(X_i^{\lambda_j+n-j}\right)}{\prod_{1\leq i< j\leq n}(X_i-X_j)} = \frac{\operatorname{ASym}_{X_1,\dots,X_n}\left[\prod_{i=1}^n X_i^{\lambda_i+n-i}\right]}{\prod_{1\leq i< j\leq n}(X_i-X_j)},$$

$$\operatorname{ASym}_{X_1,\ldots,X_n} f(X_1,\ldots,X_n) = \sum_{\sigma\in\mathcal{S}_n} \operatorname{sgn} \sigma \cdot f(X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

Littlewood identity:

with

$$\frac{\operatorname{ASym}_{X_1,\dots,X_n}\left[\sum_{0 \le k_1 < k_2 < \dots < k_n} X_1^{k_1} X_2^{k_2} \cdots X_n^{k_n}\right]}{\prod_{1 \le i < j \le n} (X_j - X_i)} = \prod_{i=1}^n \frac{1}{1 - X_i} \prod_{1 \le i < j \le n} \frac{1}{1 - X_i X_j}$$

11

II. Littlewood-type identity related to ASMs

Littlewood-type identity related to ASMs

In two of my papers from 2019:

$$\frac{\operatorname{ASym}_{X_1,\dots,X_n}\left[\prod_{1\leq i< j\leq n} (1+X_j+X_iX_j)\sum_{0\leq k_1< k_2<\dots< k_n} X_1^{k_1}X_2^{k_2}\cdots X_n^{k_n}\right]}{\prod_{1\leq i< j\leq n} (X_j-X_i)}$$
$$=\prod_{i=1}^n \frac{1}{1-X_i}\prod_{1\leq i< j\leq n} \frac{1+X_i+X_j}{1-X_iX_j}$$

Generalization by Hans Höngesberg:

$$\frac{\operatorname{ASym}_{X_1,\dots,X_n}\left[\prod_{1\leq i< j\leq n} (\mathbf{Q} + (\mathbf{Q} - \mathbf{1})\mathbf{X}_{\mathbf{i}} + X_j + X_i X_j) \sum_{0\leq k_1 < k_2 < \dots < k_n} \prod_{i=1}^n \left(\frac{X_i(\mathbf{1} + \mathbf{X}_i)}{\mathbf{Q} + \mathbf{X}_i}\right)^{k_i}\right]}{\prod_{1\leq i< j\leq n} (X_j - X_i)}$$
$$= \prod_{i=1}^n \frac{\mathbf{Q} + X_i}{\mathbf{Q} - X_i^2} \frac{\prod_{1\leq i< j\leq n} (\mathbf{Q}(1 + X_i)(1 + X_j) - X_i X_j)}{\prod_{1\leq i< j\leq n} (\mathbf{Q} - X_i X_j)}.$$

Set $\mathbf{Q} = \mathbf{1}$ to obtain the previous identity.

Further generalizations

Different generalization:

$$\frac{\operatorname{ASym}_{X_{1},...,X_{n}}\left[\prod_{1 \leq i < j \leq n} (1 + (1 + \mathbf{r})\mathbf{X}_{i} + X_{j} + X_{i}X_{j}) \sum_{0 \leq k_{1} < k_{2} < ... < k_{n}} X_{1}^{k_{1}}X_{2}^{k_{2}} \cdots X_{n}^{k_{n}}\right]}{\prod_{1 \leq i < j \leq n} (X_{j} - X_{i})}$$
$$= \prod_{i=1}^{n} \frac{1}{1 - X_{i}} \prod_{1 \leq i < j \leq n} \frac{1 + X_{i} + X_{j} + (1 + \mathbf{r})\mathbf{X}_{i}\mathbf{X}_{j}}{1 - X_{i}X_{j}}$$

Common generalization of Hans' generalization and the above generalization:

$$\frac{\operatorname{ASym}_{X_1,\dots,X_n}\left[\prod_{1\leq i< j\leq n} (\mathbf{Q} + (\mathbf{Q} + \mathbf{r})\mathbf{X}_{\mathbf{i}} + X_j + X_iX_j) \sum_{0\leq k_1 < k_2 < \dots < k_n} \prod_{i=1}^n \left(\frac{X_i(\mathbf{1} + \mathbf{X}_i)}{\mathbf{Q} + \mathbf{X}_i}\right)^{k_i}\right]}{\prod_{1\leq i< j\leq n} (X_j - X_i)}$$
$$= \prod_{i=1}^n \frac{\mathbf{Q} + X_i}{\mathbf{Q} - X_i^2} \frac{\prod_{1\leq i< j\leq n} (\mathbf{Q} - X_iX_j)}{\prod_{1\leq i< j\leq n} (\mathbf{Q} - X_iX_j)}$$

III. Alternating sign arrays and plane partitions

Alternating sign triangles = ASTs

An AST of order n is a triangular array of 1's, -1's and 0's with n centered rows

such that

(1) the non-zero entries alternate in each row and each column,

(2) all row sums are 1, and

(3) the topmost non-zero entry of each column is 1 (if such an entry exists).

Example:

Totally symmetric self-complementary plane partitions = TSSCPPs

a = 4, b = 3, c = 5

A (boxed) plane partition in an $a \times b \times c$ box is a subset

 $PP \subseteq \{1, 2, \dots, a\} \times \{1, 2, \dots, b\} \times \{1, 2, \dots, c\}$

with

 $(i, j, k) \in PP \Rightarrow (i', j', k') \in PP \quad \forall (i', j', k') \leq (i, j, k).$

• Totally symmetric: $(i, j, k) \in PP \Rightarrow \sigma(i, j, k) \in PP \ \forall \sigma \in S_3$ (MacMahon 1899, 1915/16)

• Self-complementary: Equal to its complement in the $2n \times 2n \times 2n$ box (Mills, Robbins and Rumsey 1986)

Now: "Our" Littlewood-type identity was the crucial point in showing that there is the same number of ASTs with n rows as there is of TSSCPPs in a $2n \times 2n \times 2n$ box.

Alternating sign trapezoids

For $n \ge 1, l \ge 2^*$, an (n, l)-alternating sign trapezoid is an array of 1's, -1's and 0's with n centered rows and l elements in the bottom row, arranged as follows

such that the following conditions are satisfied.

- (1) In each row and column, the non-zero entries alternate.
- (2) All row sums are 1.
- (3) The topmost non-zero entry in each column is 1.
- (4) The column sums are 0 for the middle l 2 columns.

*Can be extended to l = 1.

Cyclically symmetric lozenge tilings of a hexagon with a central triangular hole

Theorem (Behrend, F. 2018). There is the same number of (n, l)-alternating sign trapezoids as there is of cyclically symmetric lozenge tilings of a hexagon with side lengths n + l - 1, n, n + l - 1, n, n + l - 1, n that has a central triangular hole of size l - 1.

The Littlewood-type identities were also crucial in one proof of this theorem. The proof is especially useful when including several statistics.

Christian in a survey on plane partitions in 2016: "However, the greatest, still unsolved, mystery concerns the question what plane partitions have to do with alternating sign matrices."

IV. Arrowed Gelfand-Tsetlin patterns

Signed intervals:

$$\underline{[a,b]} = \begin{cases} [a,b], & a \le b \\ \emptyset, & b = a - 1 \\ [b+1,a-1], & b < a - 1 \end{cases}$$

The interval is said to be negative in the last case.

An arrowed Gelfand-Tsetlin pattern is a triangular array of the following form

where each entry $a_{i,j}$ is an integer decorated with an element from $\{ \nwarrow, \nearrow, \bigtriangledown, \diamondsuit, \emptyset \}$ and the following is satisfied for each entry a not in the bottom row: Suppose b is the $\sqrt{-neighbor}$ of a and c is the \searrow -neighbor of *a*, respectively, i.e.,

$$egin{array}{c} a \ b \ c \end{array}$$

Depending on the decoration of b, c, denoted by decor(b) and decor(c), respectively, we need to consider four cases:

- $(\operatorname{decor}(b), \operatorname{decor}(c)) \in \{\swarrow, \emptyset\} \times \{\nearrow, \emptyset\}: a \in [b, c]$
- $(\operatorname{decor}(b), \operatorname{decor}(c)) \in \{ \nwarrow, \emptyset \} \times \{ \nwarrow, \nwarrow \}$: $a \in [b, c-1]$ $(\operatorname{decor}(b), \operatorname{decor}(c)) \in \{ \nearrow, \searrow \} \times \{ \nearrow, \emptyset \}$: $a \in [b+1, c]$
- $(\operatorname{decor}(b), \operatorname{decor}(c)) \in \{\nearrow, \And\} \times \{\nwarrow, \And\}: a \in [b+1, c-1]$

,

Example:

Sign: Each negative interval $[a_{i+1,j}(+1), a_{i+1,j+1}(-1)]$ with $i \ge 1$ and $j \le i$ contributes a multiplicative -1.

In our example, there are no negative intervals in rows 1,2,3, two in rows 4,5 and three in row 6, so that the sign of the pattern is -1.

We associate the following weight to a given arrowed Gelfand-Tsetlin pattern $A = (a_{i,j})_{1 \le j \le i \le n}$:

$$W(A) = \operatorname{sgn}(A) \cdot t^{\#\emptyset} u^{\#\nearrow} v^{\#\swarrow} w^{\#\swarrow} \prod_{i=1}^{n} X_i^{\sum_{j=1}^{i} a_{i,j} - \sum_{j=1}^{i-1} a_{i-1,j} + \#\nearrow \text{ in row } i - \#\bigwedge \text{ in row } i$$

The weight of our example is

$$-t^5u^5v^5w^6X_1X_2^3X_3^3X_4^3X_5^4X_6^6.$$

Compare to the Schur function weight for Gelfand-Tsetlin patterns!

Generating function of arrowed Gelfand-Tsetlin patterns with prescribed bottom row

Theorem (F., Schreier-Aigner). The generating function of arrowed Gelfand-Tsetlin patterns with bottom row k_1, \ldots, k_n is

$$\frac{\operatorname{ASym}_{X_1,\dots,X_n}\left[\prod_{1 \le i \le j \le n} (v + wX_i + tX_j + uX_iX_j)\prod_{i=1}^n X_i^{k_i-1}\right]}{\prod_{1 \le i < j \le n} (X_j - X_i)}$$

Our Littlewood-type identity, slightly rewritten:

$$\frac{\operatorname{ASym}_{X_1,\dots,X_n} \left[\prod_{1 \le i \le j \le n} (1 + wX_i + X_j + X_iX_j) \sum_{0 \le k_1 < k_2 < \dots < k_n} X_1^{k_1 - 1} X_2^{k_2 - 1} \cdots X_n^{k_n - 1} \right]}{\prod_{1 \le i < j \le n} (X_j - X_i)}$$
$$= \prod_{i=1}^n \frac{X_i^{-1} + (1 + w) + X_i}{1 - X_i} \prod_{1 \le i < j \le n} \frac{1 + X_i + X_j + wX_iX_j}{1 - X_iX_j}$$

The left-hand side is the generating function of all arrowed Gelfand-Tsetlin patterns with strictly increasing bottom row of non-negative integers, setting t = u = v = 1.

Combinatorial interpretation of the RHS

$$\prod_{i=1}^{n} \frac{X_i^{-1} + (1+w) + X_i}{1 - X_i} \prod_{1 \le i < j \le n} \frac{1 + X_i + X_j + w X_i X_j}{1 - X_i X_j}$$

Generating function of two-line arrays with entries in $\{1, 2, ..., n\}$ that are

- ordered lexicographically,
- the top element of each column is greater than or equal to the bottom element,
- for each i, j, there is a distinguished column $\binom{j}{i}$ that is either overlined, underlined, both or neither.

Weight:

- columns $\binom{j}{i}$ different from the distinguished columns contribute $X_i X_j$ if $i \neq j$ and X_i if i = j,
- an overline of a column $\binom{j}{i}$ contributes X_j ,
- an underline of a column $\binom{j}{i}$ contributes X_i if $i \neq j$ and X_i^{-1} if i = j,
- a column that is overlined and underlined contributes w.

Open problem: Find a combinatorial proof!

From these over- and underlined two-line arrays, we need to construct arrowed monotone triangles.

 \rightarrow Flo, Hans, Moritz, Seamus

V. Bounded identities

Bounded classical Littlewood identity

Bounded? $\sum_{0 \leq k_1 < k_2 < \ldots < k_n} \rightarrow \sum_{0 \leq k_1 < k_2 < \ldots < k_n \leq m}$

$$\sum_{\lambda \subseteq (M^n)} s_{\lambda}(X_1, \dots, X_n) = \sum_{\substack{0 \le k_1 \le k_2 \le \dots \le k_n \le m}} s_{(k_n, k_{n-1}, \dots, k_1)}(X_1, \dots, X_n)$$
$$= \frac{\det_{1 \le i, j \le n} \left(X_i^{j-1} - X_i^{M+2n-j} \right)}{\prod_{i=1}^n (1 - X_i) \prod_{1 \le i < j \le n} (X_j - X_i)(1 - X_i X_j)}$$

Macdonald in his book. (Note that m = M + n - 1.)

Bounded Littlewood identity related to ASMs

$$\frac{1}{\prod_{1 \le i < j \le n} (X_j - X_i)} \mathbf{ASym}_{X_1, \dots, X_n} \left[\prod_{1 \le i < j \le n} (Q + (Q + r)X_i + X_j + X_iX_j) \times \sum_{0 \le k_1 < k_2 < \dots < k_n \le m} \left(\frac{X_1(1 + X_1)}{Q + X_1} \right)^{k_1} \left(\frac{X_2(1 + X_2)}{Q + X_2} \right)^{k_2} \cdots \left(\frac{X_n(1 + X_n)}{Q + X_n} \right)^{k_n} \right]$$
$$= \frac{\det_{1 \le i, j \le n} (a_{j,m,n}(Q, r; X_i))}{\prod_{1 \le i \le j \le n} (Q - X_iX_j) \prod_{1 \le i < j \le n} (X_j - X_i)}$$

with

$$a_{j,m,n}(Q,r;X) = (1+QX^{-1})X^{j}(1+X)^{j-1}(Q+rX+QX)^{n-j} -X^{2n}Q^{-n}\left(\frac{(1+X)X}{Q+X}\right)^{m}(1+X)\left(QX^{-1}\right)^{j}(1+QX^{-1})^{j-1}(Q+rQX^{-1}+Q^{2}X^{-1})^{n-j}.$$

The proof has more than 7 pages, but it is elementary.

The case Q = 1

We are interested in finding a combinatorial proof.

V. Combinatorial interpretations in the bounded cases

The classical case

The classical bounded Littlewood identity:

$$\sum_{\lambda \subseteq (m^n)} s_{\lambda}(X_1, \dots, X_n) = \frac{\det_{1 \le i, j \le n} \left(X_i^{j-1} - X_i^{m+2n-j} \right)}{\prod_{i=1}^n (1 - X_i) \prod_{1 \le i < j \le n} (X_j - X_i) (1 - X_i X_j)}$$

This identity is equivalent to

$$\sum_{\lambda \subseteq (m^n)} s_{\lambda}(X_1, \dots, X_n) = \prod_{i=1}^n X_i^{m/2} so_{(m/2, m/2, \dots, m/2)}^{\mathsf{odd}}(X_1, \dots, X_n),$$

where $so_{\lambda}^{\text{odd}}(X_1, \ldots, X_n)$ is the irreducible character of the special orthogonal group $SO_{2n+1}(\mathbb{C})$ associated with the partition $\lambda = (\lambda_1, \ldots, \lambda_n)$.

Combinatorial interpretation of the irreducible characters of $SO_{2n+1}(\mathbb{C})$

A 2*n*-split orthogonal pattern is an array of non-negative integers or non-negative half-integers with 2*n* rows of lengths 1, 1, 2, 2, ..., n, n, which are aligned as follows for n = 3

such that

- the entries are weakly increasing along \nearrow -diagonals and \searrow -diagonals,
- the entries, except for the first entries in the odd rows (called odd starters), are either all non-negative integers or all non-negative half-integers, and
- each starter is independently either a non-negative integer or a non-negative half-integer.

The weight of a 2n-split orthogonal pattern is

$$\prod_{i=1}^{n} X_i^{r_{2i}-2r_{2i-1}+r_{2i-2}}$$

where r_i is the sum of entries in row *i* and $r_0 = 0$.

Formula for $so_{\lambda}^{\text{odd}}(X_1, \ldots, X_n)$

Theorem (Proctor 1994). Let $\lambda = (\lambda_1, ..., \lambda_n)$ be a partition (allowing zero parts) or a half-integer partition. Then the generating function of 2n-split orthogonal patterns with respect to the above weight that have λ as bottom row, written in increasing order, is

$$\prod_{i=1}^{n} X_{i}^{n-1/2} \frac{\det_{1 \le i,j \le n} \left(X_{i}^{-\lambda_{j}-n+j-1/2} - X_{i}^{\lambda_{j}+n-j+1/2} \right)}{(1 + [\lambda_{n} = 0]) \prod_{i=1}^{n} (1 - X_{i}) \prod_{1 \le i < j \le n} (X_{j} - X_{i})(1 - X_{i}X_{j})}.$$

This gives a combinatorial interpretation of $\prod_{i=1}^{n} X_i^{m/2} so_{(m/2,m/2,...,m/2)}^{\text{odd}}(X_1,\ldots,X_n)$, which is the RHS of the classical bounded Littlewood identity.

ASM-related identity

$$\frac{\operatorname{ASym}_{X_{1},...,X_{n}}\left[\prod_{1\leq i\leq j\leq n}(1+wX_{i}+X_{j}+X_{i}X_{j})\sum_{0\leq k_{1}< k_{2}<...< k_{n}\leq m}X_{1}^{k_{1}-1}X_{2}^{k_{2}-1}\cdots X_{n}^{k_{n}-1}\right]}{\prod_{1\leq i< j\leq n}(X_{j}-X_{i})}$$

$$=\prod_{i=1}^{n}(X_{i}^{-1}+1+w+X_{i})$$

$$\times \frac{\det_{1\leq i,j\leq n}\left(X_{i}^{j-1}(1+X_{i})^{j-1}(1+wX_{i})^{n-j}-X_{i}^{m+2n-j}(1+X_{i}^{-1})^{j-1}(1+wX_{i}^{-1})^{n-j}\right)}{\prod_{i=1}^{n}(1-X_{i})\prod_{1\leq i< j\leq n}(1-X_{i}X_{j})(X_{j}-X_{i})}.$$

The LHS has a combinatorial interpretation in terms of arrowed Gelfand-Tsetlin patterns with bounded bottom row.

Combinatorial interpretation of the RHS in terms of non-intersecting lattice paths

Case m = 2l + 1

The RHS is the weighted count of families of n lattice paths.

• The *i*-th lattice path starts in $A_i = \{(-3i+1, -i+1), (-i+1, -3i+1)\}$ and the end points are $E_j = (n-j+l+1, j-l-2)$.

• Below and on the line x+y = 0, the step set is $\{(1,1), (-1,1)\}$ for steps that start in (-3i+1, -i+1) and it is $\{(1,1), (1,-1)\}$ for steps that start in (-i+1, -3i+1).

• Steps of type (-1,1) and (1,-1) with distance $0,2,4,\ldots$ from x + y = 0 are equipped with the weights X_1, X_2, X_3, \ldots , while such steps with distance $1,3,5,\ldots$ are equipped with the weights $X_1^{-1}, X_2^{-1}, X_3^{-1}, \ldots$, respectively.

• Above the line x + y = 0, the step set is $\{(1,0), (0,1)\}$. Above the line x + y = j - 1, horizontal steps of the path that ends in E_j are equipped with the weight w.

• The paths can be assumed to be non-intersecting below the line x + y = 0. In case w = 1, we can also assume them to be non-intersecting above the line x + y = 0. If w = 0, E_j can be replaced by $E'_j = (n - j + l + 1, 2j - n - l - 2)$, j = 1, 2, ..., n, and then we can also assume the paths to be non-intersecting above the line x + y = 0.

• The sign of family of paths is the sign of the permutation σ with the property that the *i*-th path connects A_i to $E_{\sigma(i)}$ with an extra contribution of -1 if we choose (-i+1, -3i+1) from A_i . Moreover, we have an overall factor of $(-1)^{\binom{n+1}{2}}\prod_{i=1}^n X_i^l(X_i^{-1}+1+w+X_i)(1+X_i)$.

• In case w = 0, 1, when restricting to non-intersecting paths, let $1 \le i_1 < i_2, \ldots < i_m < n$ be the indices for which we chose (-3i+1, -i+1) from A_i . Then the sign can assumed to be $(-1)^{i_1+\ldots+i_m}$ and the overall factor is $\prod_{i=1}^n X_i^l(X_i^{-1}+1+w+X_i)(1+X_i)$.

The interpretation is signless if w = 0 and $l \ge n - 2$

36

/	12	12	12	12	12	12	12	11	9	9	9	9					
	11	11	11	11	11	11	10	10	8	8	8	7					
	10	10	10	10	10	8	8	7	7	5	5	5	6	5	4	2	1
	8	8	8	6	6	6	6	6	6	4	4	2,	5	3	2		
	6	6	6	5	5	5	4	4	4	3			3	1			
	4	4	4	4	З	3	3	2	2					-	-		
	2	2	2	2	2	2	2										

Theorem (F., 2022). Assume that w = 0 and m = 2l + 1. In case $l \ge n - 2$, the RHS is the generating function of pairs of plane partitions (P,Q) of shape λ and μ , respectively, where

- μ is the complement of λ in the $n \times l$ -rectangle,
- P is a column-strict plane partition such that the entries in the *i*-th row are bounded by 2n + 2 2i, and
- Q is a row-strict plane partition such that the entries in the *i*-th row are bounded by n i.

The weight is

$$\prod_{i=1}^{n-1} X_i^l (X_i^{-1} + 1 + X_i) (1 + X_i) X_i^{\# \text{of } 2i - 1 \text{ in } \mathsf{P}} X_i^{-\# \text{of } 2i \text{ in } \mathsf{P}}.$$

Remark. The Q's are in easy bijection with $2n \times 2n \times 2n$ TSSCPPs. The P's are in easy bijection with symplectic tableaux.

Thanks!