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I. The classical (unbounded) Littlewood

identity
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The classical (unbounded) Littlewood identity

∑
λ

sλ(X1, . . . , Xn) =
n∏
i=1

1

1−Xi

∏
1≤i<j≤n

1

1−XiXj

Here sλ(X1, . . . , Xn) is the Schur polynomial of the partition λ and the sum is over
all partitions λ.

Combinatorial model of Schur polynomials in terms of Gelfand-Tsetlin pat-
terns: A Gelfand-Tsetlin pattern is a triangular array of integers of the form

a1,1

a2,1 a2,2

. . . . . . . . .
an,1 . . . . . . an,n

with weak increase in ↗- and ↘-direction.

The weight of a Gelfand-Tsetlin pattern is
n∏
i=1

X

∑
j
ai,j−
∑

j
ai−1,j

i and sλ(X1, . . . , Xn) is

the sum of weights of all Gelfand-Tsetlin patterns with bottom row (λn, λn−1, . . . , λ1),
where we allow zero parts in λ = (λ1, . . . , λn).
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Example λ = (4,2,2)
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1X

2
2X

2
3(X2

1 +X1X2 +X1X3 +X2
2 +X2X3 +X2

3)
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Unusual (?) combinatorial proof of the Littlewood identity

Combinatorial interpretation of the RHS:

n∏
i=1

1

1−Xi

∏
1≤i<j≤n

1

1−XiXj
=

n∏
i=1

∑
ai,i≥0

X
ai,i
i

∏
1≤i<j≤n

∑
ai,j≥0

(XiXj)
ai,j

Example: 
a1,1 a1,2 a1,3 a1,4 a1,5 a1,6

a2,2 a2,3 a2,4 a2,5 a2,6

a3,3 a3,4 a3,5 a3,6

a4,4 a4,5 a4,6

a5,5 s5,6

a6,6

 =


1 2 0 0 1 1

1 0 2 1 1
2 1 0 0

0 2 1
0 2

1


Two-line array: ai,j →

(
j
i

)ai,j
ordered lexicographically(

1 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 6
1 1 1 2 3 3 2 2 3 1 2 4 4 1 2 4 5 5 6

)
Goal: transform this into a Gelfand-Tsetlin pattern with 6 rows.
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Initial GT-pattern: 0

We insert the columns of the two-line array from left to right into the pattern.

Insert column
(
j
i

)
:

• Start a path in the pattern at the end of row i with unit ↙- and ↘-steps.

• Whenever the ↘-neighbor of the current entry is equal to that entry, we extend
our path to the next entry in ↘-direction, otherwise we go to the next entry in
↙-direction. Continue until we have reached the bottom row and add 1 to all the
entries in the path.

• If i 6= j, add 1 to the entry left of the bottom entry of the path.

When progressing from a column
(
j
i

)
to a column

(
j+1
k

)
, copy the bottom row, prepend

a 0 and add that row to the bottom of the pattern.
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0
(1

1)
→ 1 → 1

0 1

(2

1)
→ 2

1 2

(2

1)
→ 3

2 3

(2

2)
→ 3

2 4
→

3
2 4

0 2 4

(3

3)
2

→

3
2 4

0 2 6
→

3
2 4

0 2 6
0 0 2 6

(4

2)
→

3
2 5

0 3 6
0 1 3 6

(4

2)
→

3
2 6

0 4 6
0 2 4 6

(4

3)
→

3
2 6

0 4 7
0 2 5 7

→

3
2 6

0 4 7
0 2 5 7

0 0 2 5 7

(5

1)
→

4
3 6

1 4 7
1 2 5 7

1 1 2 5 7

(5

2)
→

4
3 7

1 5 7
1 3 5 7

1 2 3 5 7

(5

4)
→
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4
3 7

1 5 7
1 3 5 8

1 2 3 6 8

(5

4)
→

4
3 7

1 5 7
1 3 5 9

1 2 3 7 9

→

4
3 7

1 5 7
1 3 5 9

1 2 3 7 9
0 1 2 3 7 9

(6

1)
→

5
4 7

2 5 7
2 3 5 9

2 2 3 7 9
1 2 2 3 7 9

(6

2)
→
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5
4 8

2 5 8
2 3 6 9

2 2 4 7 9
1 2 3 4 7 9

(6

4)
→

5
4 8

2 5 8
2 3 6 10

2 2 4 7 10
1 2 3 4 8 10

(6

5)
2

→

5
4 8

2 5 8
2 3 6 10

2 2 4 7 12
1 2 3 4 10 12

(6

6)
→

5
4 8

2 5 8
2 3 6 10

2 2 4 7 12
1 2 3 4 10 13

Homework: Well-defined and inverse?
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Rewrite the classical Littlewood identity

Bialternant formula for the Schur polynomial:

s(λ1,...,λn)(X1, . . . , Xn) =
det1≤i,j≤n

(
X
λj+n−j
i

)
∏

1≤i<j≤n(Xi −Xj)
=

ASymX1,...,Xn

[∏n
i=1X

λi+n−i
i

]
∏

1≤i<j≤n(Xi −Xj)
,

with

ASymX1,...,Xn
f(X1, . . . , Xn) =

∑
σ∈Sn

sgnσ · f(Xσ(1), . . . , Xσ(n)).

Littlewood identity:

ASymX1,...,Xn

[∑
0≤k1<k2<...<kn

Xk1

1 X
k2

2 · · ·Xkn
n

]∏
1≤i<j≤n(Xj −Xi)

=
n∏
i=1

1

1−Xi

∏
1≤i<j≤n

1

1−XiXj
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II. Littlewood-type identity related to ASMs

12



Littlewood-type identity related to ASMs

In two of my papers from 2019:

ASymX1,...,Xn

[∏
1≤i<j≤n(1 + Xj + XiXj)

∑
0≤k1<k2<...<kn

Xk1

1 X
k2

2 · · ·Xkn
n

]
∏

1≤i<j≤n(Xj −Xi)

=
n∏
i=1

1

1−Xi

∏
1≤i<j≤n

1 + Xi + Xj

1−XiXj

Generalization by Hans Höngesberg:

ASymX1,...,Xn

[∏
1≤i<j≤n(Q + (Q− 1)Xi +Xj +XiXj)

∑
0≤k1<k2<...<kn

∏n
i=1

(
Xi(1+Xi)
Q+Xi

)ki]
∏

1≤i<j≤n (Xj −Xi)

=
n∏
i=1

Q +Xi

Q−X2
i

∏
1≤i<j≤n(Q(1 +Xi)(1 +Xj)−XiXj)∏

1≤i<j≤n
(Q−XiXj)

.

Set Q = 1 to obtain the previous identity.
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Further generalizations

Different generalization:

ASymX1,...,Xn

[∏
1≤i<j≤n(1 + (1 + r)Xi +Xj +XiXj)

∑
0≤k1<k2<...<kn

Xk1

1 X
k2

2 · · ·Xkn
n

]
∏

1≤i<j≤n(Xj −Xi)

=
n∏
i=1

1

1−Xi

∏
1≤i<j≤n

1 +Xi +Xj + (1 + r)XiXj

1−XiXj

Common generalization of Hans’ generalization and the above generalization:

ASymX1,...,Xn

[∏
1≤i<j≤n(Q + (Q + r)Xi +Xj +XiXj)

∑
0≤k1<k2<...<kn

∏n
i=1

(
Xi(1+Xi)
Q+Xi

)ki]
∏

1≤i<j≤n(Xj −Xi)

=
n∏
i=1

Q +Xi

Q−X2
i

∏
1≤i<j≤nQ(1 +Xi)(1 +Xj) + rXiXj∏

1≤i<j≤n
(Q−XiXj)
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III. Alternating sign arrays and plane

partitions
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Alternating sign triangles = ASTs
An AST of order n is a triangular array of 1’s, −1’s and 0’s with n centered rows

• • • • • • •
• • • • •
• • •
•

such that

(1) the non-zero entries alternate in each row and each column,

(2) all row sums are 1, and

(3) the topmost non-zero entry of each column is 1 (if such an entry exists).

Example:

0 0 1 0 0 0 0
1 −1 1 0 0

1 −1 1
1
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Totally symmetric self-complementary plane partitions =

TSSCPPs

a = 4, b = 3, c = 5

A (boxed) plane partition in an a× b× c box is a subset

PP ⊆ {1,2, . . . , a} × {1,2, . . . , b} × {1,2, . . . , c}

with

(i, j, k) ∈ PP ⇒ (i′, j′, k′) ∈ PP ∀(i′, j′, k′) ≤ (i, j, k).

• Totally symmetric:
(i, j, k) ∈ PP ⇒ σ(i, j, k) ∈ PP ∀σ ∈ S3

(MacMahon 1899, 1915/16)

• Self-complementary:
Equal to its complement in the 2n× 2n× 2n box
(Mills, Robbins and Rumsey 1986)

Now: “Our” Littlewood-type identity was the crucial point in showing that there is the same
number of ASTs with n rows as there is of TSSCPPs in a 2n× 2n× 2n box.
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Alternating sign trapezoids

For n ≥ 1, l ≥ 2∗, an (n, l)-alternating sign trapezoid is an array of 1’s, −1’s and 0’s
with n centered rows and l elements in the bottom row, arranged as follows

• • • • • • • • • •
• • • • • • • •

. . . . .
.

• • • •

,

such that the following conditions are satisfied.

(1) In each row and column, the non-zero entries alternate.

(2) All row sums are 1.

(3) The topmost non-zero entry in each column is 1.

(4) The column sums are 0 for the middle l − 2 columns.

∗Can be extended to l = 1.
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Cyclically symmetric lozenge tilings of a hexagon

with a central triangular hole

7

7

6

6

3

6

5

5

1

4

2

Theorem (Behrend, F. 2018). There is the same number of (n, l)-alternating sign
trapezoids as there is of cyclically symmetric lozenge tilings of a hexagon with side
lengths n + l − 1, n, n + l − 1, n, n + l − 1, n that has a central triangular hole of size
l − 1.

The Littlewood-type identities were also crucial in one proof of this theorem.
The proof is especially useful when including several statistics.

Christian in a survey on plane partitions in 2016: “However, the greatest, still un-
solved, mystery concerns the question what plane partitions have to do with alter-
nating sign matrices.”
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IV. Arrowed Gelfand-Tsetlin patterns
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Signed intervals:

[a, b] =

{
[a, b], a ≤ b
∅, b = a− 1
[b+ 1, a− 1], b < a− 1

The interval is said to be negative in the last case.

An arrowed Gelfand-Tsetlin pattern is a triangular array of the following form

a1,1
a2,1 a2,2

. . . . . . . . .
an,1 . . . . . . an,n

,

where each entry ai,j is an integer decorated with an element from {↖,↗,↖↗, ∅} and the following
is satisfied for each entry a not in the bottom row: Suppose b is the ↙-neighbor of a and c is the
↘-neighbor of a, respectively, i.e.,

a
b c .

Depending on the decoration of b, c, denoted by decor(b) and decor(c), respectively, we need to
consider four cases:
• (decor(b),decor(c)) ∈ {↖, ∅} × {↗, ∅}: a ∈ [b, c]

• (decor(b),decor(c)) ∈ {↖, ∅} × {↖,↖↗}: a ∈ [b, c− 1]

• (decor(b),decor(c)) ∈ {↗,↖↗}× {↗, ∅}: a ∈ [b+ 1, c]

• (decor(b),decor(c)) ∈ {↗,↖↗}× {↖,↖↗}: a ∈ [b+ 1, c− 1]
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Example:

↖2
2 ↖3↗

↖2 2↗ 3↗

3 ↖2 ↖3↗ ↖3↗

2↗ 4 ↖2↗ 3↗ 2
↖6 ↖2↗ 5 1↗ ↖4 ↖2↗

Sign: Each negative interval [ai+1,j(+1), ai+1,j+1(−1)] with i ≥ 1 and j ≤ i contributes a multiplicative

−1.

In our example, there are no negative intervals in rows 1,2,3, two in rows 4,5 and three in row 6, so
that the sign of the pattern is −1.

We associate the following weight to a given arrowed Gelfand-Tsetlin pattern A = (ai,j)1≤j≤i≤n:

W(A) = sgn(A) · t#∅u#↗v#↖w#↖↗
n∏
i=1

X

∑i

j=1
ai,j−
∑i−1

j=1
ai−1,j+#↗in row i −#↖in row i

i

The weight of our example is

−t5u5v5w6X1X
3
2X

3
3X

3
4X

4
5X

6
6 .

Compare to the Schur function weight for Gelfand-Tsetlin patterns!
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Generating function of arrowed Gelfand-Tsetlin patterns with
prescribed bottom row

Theorem (F., Schreier-Aigner). The generating function of arrowed Gelfand-
Tsetlin patterns with bottom row k1, . . . , kn is

ASymX1,...,Xn

[∏
1≤i≤j≤n (v + wXi + tXj + uXiXj)

∏n
i=1X

ki−1
i

]
∏

1≤i<j≤n(Xj −Xi)
.

Our Littlewood-type identity, slightly rewritten:

ASymX1,...,Xn

[∏
1≤i≤j≤n(1 + wXi +Xj +XiXj)

∑
0≤k1<k2<...<kn

Xk1−1
1 Xk2−1

2 · · ·Xkn−1
n

]
∏

1≤i<j≤n(Xj −Xi)

=
n∏
i=1

X−1
i + (1 + w) +Xi

1−Xi

∏
1≤i<j≤n

1 +Xi +Xj + wXiXj

1−XiXj

The left-hand side is the generating function of all arrowed Gelfand-Tsetlin patterns
with strictly increasing bottom row of non-negative integers, setting t = u = v = 1.
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Combinatorial interpretation of the RHS

n∏
i=1

X−1
i + (1 + w) +Xi

1−Xi

∏
1≤i<j≤n

1 +Xi +Xj + wXiXj

1−XiXj

Generating function of two-line arrays with entries in {1,2, . . . , n} that are
• ordered lexicographically,
• the top element of each column is greater than or equal to the bottom element,
• for each i, j, there is a distinguished column

(
j
i

)
that is either overlined, underlined, both or neither.

Weight:
• columns

(
j
i

)
different from the distinguished columns contribute XiXj if i 6= j and Xi if i = j,

• an overline of a column
(
j
i

)
contributes Xj,

• an underline of a column
(
j
i

)
contributes Xi if i 6= j and X−1

i if i = j,
• a column that is overlined and underlined contributes w.

Open problem: Find a combinatorial proof!

From these over- and underlined two-line arrays, we need to construct arrowed monotone
triangles.

→ Flo, Hans, Moritz, Seamus
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V. Bounded identities

25



Bounded classical Littlewood identity

Bounded?
∑

0≤k1<k2<...<kn →
∑

0≤k1<k2<...<kn≤m

∑
λ⊆(Mn)

sλ(X1, . . . , Xn) =
∑

0≤k1≤k2≤...≤kn≤m
s(kn,kn−1,...,k1)(X1, . . . , Xn)

=
det1≤i,j≤n

(
X
j−1
i −XM+2n−j

i

)
∏n
i=1(1−Xi)

∏
1≤i<j≤n(Xj −Xi)(1−XiXj)

Macdonald in his book. (Note that m = M + n− 1.)
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Bounded Littlewood identity related to ASMs

1∏
1≤i<j≤n

(Xj −Xi)
ASymX1,...,Xn

 ∏
1≤i<j≤n

(Q+ (Q+ r)Xi +Xj +XiXj)

×
∑

0≤k1<k2<...<kn≤m

(
X1(1 +X1)

Q+X1

)k1
(
X2(1 +X2)

Q+X2

)k2

· · ·
(
Xn(1 +Xn)

Q+Xn

)kn
=

det1≤i,j≤n (aj,m,n(Q, r;Xi))∏
1≤i≤j≤n

(Q−XiXj)
∏

1≤i<j≤n
(Xj −Xi)

with

aj,m,n(Q, r;X) = (1 +QX−1)Xj(1 +X)j−1(Q+ rX +QX)n−j

−X2nQ−n
(

(1 +X)X

Q+X

)m
(1 +X)

(
QX−1

)j
(1 +QX−1)j−1(Q+ rQX−1 +Q2X−1)n−j.

The proof has more than 7 pages, but it is elementary.
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The case Q = 1

ASymX1,...,Xn

[∏
1≤i≤j≤n(1 + wXi +Xj +XiXj)

∑
0≤k1<k2<...<kn≤mX

k1−1
1 Xk2−1

2 · · ·Xkn−1
n

]
∏

1≤i<j≤n
(Xj −Xi)

=
n∏
i=1

(X−1
i + 1 + w +Xi)

×
det1≤i,j≤n

(
Xj−1
i (1 +Xi)j−1(1 + wXi)n−j −Xm+2n−j

i (1 +X−1
i )j−1(1 + wX−1

i )n−j
)

n∏
i=1

(1−Xi)
∏

1≤i<j≤n
(1−XiXj)(Xj −Xi)

.

We are interested in finding a combinatorial proof.
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V. Combinatorial interpretations in the

bounded cases
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The classical case

The classical bounded Littlewood identity:

∑
λ⊆(mn)

sλ(X1, . . . , Xn) =
det1≤i,j≤n

(
Xj−1
i −Xm+2n−j

i

)
∏n
i=1(1−Xi)

∏
1≤i<j≤n(Xj −Xi)(1−XiXj)

This identity is equivalent to∑
λ⊆(mn)

sλ(X1, . . . , Xn) =
n∏
i=1

X
m/2
i soodd

(m/2,m/2,...,m/2)(X1, . . . , Xn),

where soodd
λ (X1, . . . , Xn) is the irreducible character of the special orthogonal group

SO2n+1(C) associated with the partition λ = (λ1, . . . , λn).
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Combinatorial interpretation of the irreducible characters of

SO2n+1(C)

A 2n-split orthogonal pattern is an array of non-negative integers or non-negative half-integers with
2n rows of lengths 1,1,2,2, . . . , n, n, which are aligned as follows for n = 3

a1,1
a2,1

a3,1 a3,2
a4,1 a4,2

a5,1 a5,2 a5,3
a6,1 a6,2 a6,3

,

such that
• the entries are weakly increasing along ↗-diagonals and ↘-diagonals,
• the entries, except for the first entries in the odd rows (called odd starters), are either all non-
negative integers or all non-negative half-integers, and
• each starter is independently either a non-negative integer or a non-negative half-integer.

The weight of a 2n-split orthogonal pattern is

n∏
i=1

Xr2i−2r2i−1+r2i−2

i

where ri is the sum of entries in row i and r0 = 0.
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Formula for sooddλ (X1, . . . , Xn)

Theorem (Proctor 1994). Let λ = (λ1, . . . , λn) be a partition (allowing zero parts)
or a half-integer partition. Then the generating function of 2n-split orthogonal
patterns with respect to the above weight that have λ as bottom row, written in
increasing order, is

n∏
i=1

X
n−1/2
i

det1≤i,j≤n

(
X
−λj−n+j−1/2
i −Xλj+n−j+1/2

i

)
(1 + [λn = 0])

∏n
i=1(1−Xi)

∏
1≤i<j≤n(Xj −Xi)(1−XiXj)

.

This gives a combinatorial interpretation of
∏n
i=1X

m/2
i soodd

(m/2,m/2,...,m/2)(X1, . . . , Xn),

which is the RHS of the classical bounded Littlewood identity.

32



ASM-related identity

ASymX1,...,Xn

[∏
1≤i≤j≤n(1 + wXi +Xj +XiXj)

∑
0≤k1<k2<...<kn≤mX

k1−1
1 Xk2−1

2 · · ·Xkn−1
n

]
∏

1≤i<j≤n
(Xj −Xi)

=
n∏
i=1

(X−1
i + 1 + w +Xi)

×
det1≤i,j≤n

(
Xj−1
i (1 +Xi)j−1(1 + wXi)n−j −Xm+2n−j

i (1 +X−1
i )j−1(1 + wX−1

i )n−j
)

n∏
i=1

(1−Xi)
∏

1≤i<j≤n
(1−XiXj)(Xj −Xi)

.

The LHS has a combinatorial interpretation in terms of arrowed Gelfand-Tsetlin
patterns with bounded bottom row.
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Combinatorial interpretation of the RHS in terms of

non-intersecting lattice paths

x

y

A1
A2

A3
A4

A5
A6

A1

A2

A3

A4

A5

A6

E1

E2

E3

E4

E5

E6
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Case m = 2l + 1
The RHS is the weighted count of families of n lattice paths.

• The i-th lattice path starts in Ai = {(−3i + 1,−i + 1), (−i + 1,−3i + 1)} and the end points are
Ej = (n− j + l + 1, j − l − 2).

• Below and on the line x+y = 0, the step set is {(1,1), (−1,1)} for steps that start in (−3i+1,−i+1)
and it is {(1,1), (1,−1)} for steps that start in (−i+ 1,−3i+ 1).

• Steps of type (−1,1) and (1,−1) with distance 0,2,4, . . . from x + y = 0 are equipped with
the weights X1, X2, X3, . . ., while such steps with distance 1,3,5, . . . are equipped with the weights
X−1

1 , X−1
2 , X−1

3 , . . ., respectively.

• Above the line x + y = 0, the step set is {(1,0), (0,1)}. Above the line x + y = j − 1, horizontal
steps of the path that ends in Ej are equipped with the weight w.

• The paths can be assumed to be non-intersecting below the line x + y = 0. In case w = 1, we
can also assume them to be non-intersecting above the line x+ y = 0. If w = 0, Ej can be replaced
by E′j = (n − j + l + 1,2j − n − l − 2), j = 1,2, . . . , n, and then we can also assume the paths to be
non-intersecting above the line x+ y = 0.

• The sign of family of paths is the sign of the permutation σ with the property that the i-th path
connects Ai to Eσ(i) with an extra contribution of −1 if we choose (−i+1,−3i+1) from Ai. Moreover,

we have an overall factor of (−1)(n+1
2 )
∏n

i=1
X l
i(X

−1
i + 1 + w +Xi)(1 +Xi).

• In case w = 0,1, when restricting to non-intersecting paths, let 1 ≤ i1 < i2, . . . < im < n be the
indices for which we chose (−3i+ 1,−i+ 1) from Ai. Then the sign can assumed to be (−1)i1+...+im

and the overall factor is
∏n

i=1
X l
i(X

−1
i + 1 + w +Xi)(1 +Xi).
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The interpretation is signless if w = 0 and l ≥ n− 2

x

y

x+ y = 0

A1

A2

A3

A4

A5

A6

A7
E1

E2

E3

E4

E5

E6

E7

2
2

2
2

2
2

2
1 2

4 5 64
4

4
4 3

3
3 2

2

2 3
56

6
6 5

5
5 4

4
4 3

1
38

8
8

6
6

6
6

6
6

4
4

2

10
10

10
10

10
8

8 7
7

5
5

5

11
11

11
11

11
11 10

10
8

8
8 7

12
12

12
12

12
12

12 11
9

9
9

9
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12 12 12 12 12 12 12 11 9 9 9 9

11 11 11 11 11 11 10 10 8 8 8 7

10 10 10 10 10 8 8 7 7 5 5 5

8 8 8 6 6 6 6 6 6 4 4 2

6 6 6 5 5 5 4 4 4 3

4 4 4 4 3 3 3 2 2

2 2 2 2 2 2 2

,

6 5 4 2 1

5 3 2

3 1





Theorem (F., 2022). Assume that w = 0 and m = 2l + 1. In case l ≥ n − 2, the
RHS is the generating function of pairs of plane partitions (P,Q) of shape λ and µ,
respectively, where

• µ is the complement of λ in the n× l-rectangle,

• P is a column-strict plane partition such that the entries in the i-th row are
bounded by 2n+ 2− 2i, and

• Q is a row-strict plane partition such that the entries in the i-th row are bounded
by n− i.

The weight is

n−1∏
i=1

X l
i(X

−1
i + 1 +Xi)(1 +Xi)X

#of 2i− 1 in P
i X−#of 2i in P

i .

Remark. The Q’s are in easy bijection with 2n× 2n× 2n TSSCPPs. The P ’s are in
easy bijection with symplectic tableaux.
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Thanks!
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