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Abstract. Alternating sign matrix (ASM) counting is fascinating because it pushes the limits of
counting tools. Nowadays, the standard method to attack such problems is the six-vertex model
approach which involves computing a certain generating function of ASMs with—at first sight—
nonorthodox weights originating from statistical mechanics. Still nobody has been able to use this
technique to reprove the generalization of the ASM theorem that Zeilberger has actually established
in the first proof of the ASM theorem, where he showed that there is the same number of n× k Gog-
trapezoids as there is of n × k Magog-trapezoids nor has anybody proved Krattenthaler’s conjectural
generalization of this result. In 2007 I have presented a proof of the ASM theorem in a 12 page paper
which does not involve the six-vertex model, but relies on another 24 page paper as well as Andrew’s
determinant evaluation that he used to enumerated descending plane partitions. Over the years I have
discovered many simplifications of my original proof and it is the main purpose of this paper to present
now a 6 page self-contained proof of the ASM theorem. In addition, I speculate on how to possibly
transform this computational proof into a more combinatorial proof and I also provide a new constant
term expression for the number of monotone triangles with prescribed bottom row.

1. Introduction

An alternating sign matrix (ASM) is a square matrix in which each entry is either 1, −1 or 0, and,
along each row and each column, non-zero elements alternate and add up to 1, see Figure 1 (left)
for an example. Mills, Robbins and Rumsey [RR86, MRR82, MRR83] defined ASMs in the course

of generalizing the determinant and conjectured that there are
n−1∏
j=0

(3j+1)!
(n+j)! ASMs of order n. After

considerable efforts, Zeilberger [Zei96a] provided the first proof of the ASM theorem, and soon after
that, Kuperberg [Kup96] used six-vertex model techniques to provide a shorter proof. Accounts on
the history of ASM counting are given in [Bre99, BP99].

There are several different directions of related research that were followed after that, many of them
concern exact enumerations of subclasses of ASMs. For instance, already Mills, Robbins and Rumsey
[MRR83] conjectured that the number of n × n ASMs where the unique 1 in the top row is situated
in column i is also given by a simple product formula, namely by(

n+i−2
n−1

)(
2n−i−1
n−1

)(
3n−2
n−1

) n−1∏
j=0

(3j + 1)!

(n+ j)!
. (1.1)

The first proof of this result was again provided by Zeilberger [Zei96b], then also employing six-
vertex model techniques. The ASM theorem then follows by summing over all i and using the Chu-
Vandermonde summation. Several other results on doubly and triply refined enumerations (where
the 1’s on two or three boundary rows and/or columns are fixed) were obtained until finally three
years ago Ayyer and Romik [AR13] and Behrend [Beh13] derived formulas for the quadruply refined
enumeration of ASMs fixing the 1’s in all four boundary rows and columns. Behrend’s result involves
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0 0 0 1 0 0
0 1 0 −1 1 0
1 −1 0 1 −1 1
0 1 0 −1 1 0
0 0 0 1 0 0
0 0 1 0 0 0

→


0 0 0 1 0 0
0 1 0 0 1 0
1 0 0 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

→
4

2 5
1 4 6

1 2 5 6
1 2 4 5 6

1 2 3 4 5 6

Figure 1. ASM → partial columnsums → monotone triangle

in addition two so-called bulk statistics, namely the number of −1’s in the ASM and the inversion
number of ASMs.

On the other hand, Stanley suggested in the 1980s the systematic study of symmetry classes of
ASMs, see [Rob91, Rob00], which led Robbins [Rob00] to conjecture that several symmetry classes of
ASMs are also counted by simple product formulas. All the conjectures are proven now by using the
six-vertex model approach. More precisely, Kuperberg [Kup02] dealt with vertically symmetric ASMs,
half-turn symmetry ASMs of even order and quarter-turn symmetric ASMs of even order, Razumov
and Stroganov proved the odd order cases of half-turn symmetry ASMs [RS06b] and quarter-turn sym-
metric ASMs [RS06a], Okada [Oka06] enumerated vertically and horizontally symmetric ASMs, while
Behrend, Fischer and Konvalinka [BFK] recently dealt with diagonally and antidiagonally symmetric
ASMs of odd order.

To mention briefly a third direction of related research, the Razumov-Stroganov (ex-)Conjecture
[RS04], proved by Cantini and Sportiello [CS11], provides a fascinating connection between the O(1)
loop model and fully packed loop configurations (and thus ASMs because they are in bijective corre-
spondence with fully packed loop configurations).

However, there are several ASM mysteries that have still not been resolved, two of which are
certainly the unknown bijections between order n ASMs and 2n × 2n × 2n totally symmetric self-
complementary plane partitions (TSSCPP) [MRR86, And94], respectively descending plane parti-
tions with parts no greater than n [MRR83, And79]. By defining objects that generalize ASMs
(GOG-trapezoids) and TSSCPPs (MAGOG-trapezoids) respectively, and proving that also these gen-
eralizations are equinumerous, Zeilberger [Zei96a] provided progress concerning the first bijection, and
Krattenthaler [Kra96] generalized these objects further and provided a pair of statistics on the two
types of objects that seem to have the same distribution. However, to prove (bijectively or not) that
this is indeed the case is an open problem up to this day and it is unclear whether the six-vertex model
approach is the right tool.

In 2007 I have given an alternative proof of the ASM theorem [Fis07] which does not involve the six-
vertex model. However, this proof relies heavily on another paper [Fis06], where an operator formula
for monotone triangles with prescribed bottom row was derived, and also on Andrew’s evaluation
of the determinant that counts descending plane partitions [And79]. In the past few years, I have
discovered many shortcuts (some of which appeared in [Fis10, Fis11]) and it is the main purpose of
this paper to present the most concise version of this proof (see also [Rie14]). This is accomplished
on about 6 pages in Section 2. The proof relies at one place on the famous Lindström-Gessel-Viennot
Theorem [Lin73, GV85, GV89] and is otherwise self-contained. Hopefully this makes this alternative
approach to ASMs complementing six-vertex model techniques easier to digest. In the final section,
we present some thoughts on how to possibly “combinatorialize” this computational proof as well as
a new constant term expression that counts monotone triangles with prescribed bottom row.

Monotone triangles. The proof makes use of the well-known equivalence between order n ASMs
and monotone triangles with bottom row 1, 2, . . . , n. A Gelfand-Tsetlin pattern is a triangular array
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(ai,j)1≤j≤i≤n of integers, where the elements are usually arranged as follows

a1,1
a2,1 a2,2

. . . . . . . . .
an−2,1 . . . . . . an−2,n−2

an−1,1 an−1,2 . . . . . . an−1,n−1
an,1 an,2 an,3 . . . . . . an,n

, (1.2)

and increase in northeast and in southeast direction, that is ai+1,j ≤ ai,j ≤ ai+1,j+1 for all i, j with
1 ≤ j ≤ i < n. A monotone triangle is a Gelfand-Tsetlin pattern with strictly increasing rows. To
transform an ASM into the corresponding monotone triangle, compute the partial column sums, that
is add to each entry all the entries that are in the same column above the entry, and record then row
by row the positions of the 1’s, see Figure 1 for an example.

We say that the integer partitions λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn−1) are interlacing (in
symbols: µ ≺ λ), if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ µn−1 ≥ λn,
that is the skew shape λ/µ is a horizontal strip. Consecutive rows of monotone triangles are obviously
interlacing partitions if read them from right to left. In fact, monotone triangle of order n with bottom
row λ can be seen as a sequence of n strict partitions λ(1), . . . , λ(n) with λ(i) ≺ λ(i+1), i = 1, 2, . . . , n−1,
and λ(n) = λ.

2. The proof

2.1. Monotone triangles with prescribed bottom row. We fix notation that is needed in this
paper: We use the shift operator Ex, defined as Ex p(x) = p(x+ 1), and set

Strictx,y = Ex + E−1y −Ex E−1y .

The forward difference is defined as ∆x = Ex − Id, while the backward difference is defined as ∆x =

Id−E−1x . For a vector x = (x1, . . . , xn), we let ∆x =
n∏
i=1

∆xi and ∆x =
n∏
i=1

∆xi . Note that shift

operators with respect to different variables commute, which has the important consequence that all
operators used in this paper commute. We define two polynomials as follows:

GTn(x) =
∏

1≤i<j≤n

xi − xj + j − i
j − i

and Mn(x) =
∏

1≤p<q≤n
Strictxq ,xp GTn(x).

Multivariate Laurent polynomials in shift operators with respect to several variables also act on
functions in these variables in the obvious way.

Theorem 2.1 ([Fis06, Fis10]). Suppose λ = (λ1, . . . , λn) is a strict partition, then the number of MTs
with bottom row λ is the evaluation of the polynomial Mn(x) at (x1, . . . , xn) = (λ1, . . . , λn).

For n = 3, we have∏
1≤p<q≤3

(E−1xp + Exq −E−1xp Exq) =− E−2x1 + E−1x1 + E−2x1 E−1x2 + Ex3 +3 E−2x1 Ex3 −3 E−1x1 Ex3 −2 E−2x1 E−1x2 Ex3

+ E−1x1 E−1x2 Ex3 −E−2x1 Ex2 Ex3 + E−1x1 Ex2 Ex3 −2 E−2x1 E2
x3 +3 E2

x3 E−1x1

+ E−2x1 E−1x2 E2
x3 −E−1x1 E−1x2 E2

x3 + Ex2 E2
x3 + E−2x1 Ex2 E2

x3 −2 E−1x1 Ex2 E2
x3 .

and applying this operator to the polynomial 1
2(x1 − x2 + 1)(x1 − x3 + 2)(x2 − x3 + 1) results in

1

2
(3x1 + x21 + 2x1x2 + x21x2 − 2x22 − x1x22 − 3x3 − 4x1x3 − x21x3 + 2x2x3 + x22x3 + x23 + x1x

2
3 − x2x23).
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Evaluating at (x1, x2, x3) = (3, 2, 1) gives 7, and this is, by the correspondence between monotone
triangles and ASMs, the number of 3× 3 ASMs.

For strict partitions λ, we let

MTλ = # of monotone triangles with bottom row λ.

To compute MTλ, we can use the recursion

MTλ =
∑
µ≺λ
µ strict

MTµ (2.1)

and the initial condition MTλ = 1 if `(λ) = 1. This is the approach we use to prove Theorem 2.1.
Two lemmas are necessary. In the first lemma, we apply the recursion in (2.1) to a particular class of
polynomials. As the polynomial in Theorem 2.1 belongs to this class, this will be enough to prove the
formula by induction on n.

Lemma 2.2. Let n ≥ 2. Suppose P (x), Q(x) are polynomials in x = (x1, . . . , xn−1) with P (x) =
∆xQ(x) and, for each i = 1, 2, . . . , n− 2, Strictxi,xi+1 Q(x) vanishes if we specialize xi+1 = xi + 1. If
λ is a partition with n parts, then∑

µ≺λ
µ strict

P (µ) =

n∑
r=1

(−1)r+nQ(λ1 + 1, . . . , λr−1 + 1, λr+1, . . . , λn). (2.2)

Proof. The crucial observation is the following identity which is an immediate consequence of the
definition of ≺ and Strict

λ
(1)
i ,λ

(2)
i

.

∑
(µi−1,µi)≺(λi−1,λi,λi+1)

µi−1>µi

f(µi−1, µi) =

Strict
λ
(1)
i ,λ

(2)
i

λi−1∑
µi−1=λ

(1)
i

λ
(2)
i∑

µi=λi+1

f(µi−1, µi)


∣∣∣∣∣∣∣
λ
(1)
i =λ

(2)
i =λi

Consequently, the left-hand side in (2.2) is equal toStrict
λ
(1)
2 ,λ

(2)
2

Strict
λ
(1)
3 ,λ

(2)
3

· · · Strict
λ
(1)
n−1,λ

(2)
n−1

λ1∑
µ1=λ

(1)
2

λ
(2)
2∑

µ2=λ
(1)
3

· · ·
λ
(2)
n−2∑

µn−2=λ
(1)
n−1

λ
(2)
n−1∑

µn−1=λn

P (µ)


∣∣∣∣∣∣∣
λ
(1)
i =λ

(2)
i =λi

.

(2.3)
We use P (µ) = ∆µQ(µ) and see that, by telescoping, the multiple sum

λ1∑
µ1=λ

(1)
2

λ
(2)
2∑

µ2=λ
(1)
3

· · ·
λ
(2)
n−1∑

µn−2=λ
(1)
n−1

λ
(2)
n−1∑

µn−1=λn

∆µQ(µ)

can be written as a sum of 2n−1 terms, where each term corresponds to the choice of either the upper
or the lower bound in each of the n− 1 sums. However, those terms where we choose the lower bound
in the i-th sum and the upper bound in the (i + 1)-st sum, for some i = 1, 2, . . . , n − 2, vanish after

the application of Strict
λ
(1)
i+1,λ

(2)
i+1

and setting λ
(1)
i+1 = λ

(2)
i+1, by the assumption on Q(x).

Thus, there is an r = 1, . . . , n such that we choose the upper bound in the first r− 1 sums and the
lower bound in the remaining sums; each of the n − r choices of the lower bound contributes a −1.
Using the fact that Strictx,y acts like the identity on functions that depend only on either x or y, we
obtain the right-hand side of (2.2). �
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Lemma 2.3. Let d1, d2, . . . , dn−1 ≥ 0 be integers and set dn = −1. If λ is a partition with n parts,
then∑

µ≺λ
µ strict

∏
1≤p<q≤n−1

Strictµq ,µp det
1≤i,j≤n−1

(
µi − i+ n− 1

dj

)
=

∏
1≤p<q≤n

Strictλq ,λp det
1≤i,j≤n

(
λi − i+ n

dj + 1

)
.

Proof. We apply Lemma 2.2 to

P (x) =
∏

1≤p<q≤n−1
Strictxq ,xp det

1≤i,j≤n−1

(
xi − i+ n− 1

dj

)
,

Q(x) =
∏

1≤p<q≤n−1
Strictxq ,xp det

1≤i,j≤n−1

(
xi − i+ n− 1

dj + 1

)
.

The polynomials fulfill the requirements: First, ∆x

(
x
d+1

)
=
(
x
d

)
implies ∆xQ(x) = P (x). Second, we

use that

Strictxi,xi+1

∏
1≤p<q≤n−1

Strictxq ,xp

is symmetric in xi, xi+1 and

Exi+1 det
1≤i,j≤n−1

(
xi − i+ n− 1

dj + 1

)
is antisymmetric in xi, xi+1 to deduce that also Exi+1 Strictxi,xi+1 Q(x) is antisymmetric in xi, xi+1,
and this shows that also the second requirement is fulfilled as antisymmetric polynomials in xi, xi+1

need to have the factor xi+1 − xi. Lemma 2.2 now implies that the left-hand side of (2.3) is equal to

n∑
r=1

(−1)r+nQ(λ1 + 1, . . . , λr−1 + 1, λr+1, . . . , λn)

=

n∑
r=1

(−1)r+n
∏

1≤p<q≤n
p,q 6=r

Strictλq ,λp

[
det

1≤i,j≤n−1

(
µi − i+ n− 1

dj + 1

)]∣∣∣∣
(µ1,...,µn−1)=(λ1+1,...,λr−1+1,λr+1,...,λn)

.

Since Strictλr,λp and Strictλq ,λr have no effect on a function that is independent of λr, we can extend∏
1≤p<q≤n
p,q 6=r

Strictλq ,λp to
∏

1≤p<q≤n
Strictλq ,λp and now, since the latter does not depend on r, we can pull

it out of the sum. Now the assertion follows as

det
1≤i,j≤n

(
λi − i+ n

dj + 1

)
=

n∑
r=1

(−1)r+n
[

det
1≤i,j≤n−1

(
µi − i+ n− 1

dj + 1

)]∣∣∣∣
(µ1,...,µn−1)=(λ1+1,...,λr−1+1,λr+1,...,λn)

,

by expanding the determinant on the left-hand side along the last column and using dn = −1. �

Theorem 2.1 now follows by induction on n from Lemma 2.3 and (2.1) as∏
1≤i<j≤n

xi − xj + j − i
j − i

= det
1≤i,j≤n

(
xi − i+ n

n− j

)
.

Indeed, this identity is a consequence of the Vandermonde determinant evaluation det
1≤i,j≤n

(
xj−1i

)
=∏

1≤i<j≤n
(xj − xi) as, by elementary column operations, det

1≤i,j≤n
(pj(xi)) = det

1≤i,j≤n

(
xj−1i

)
for any se-

quence of polynomials (pj(x))1≤j≤n, where pj(x) is of degree j − 1 and the leading coefficient of pj(x)
is 1.
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2.2. Rotating. So far, MTλ is only defined for strict partitions λ, however, Theorem 2.1 allows us
to extend the definition of MTλ to all integer vectors λ by setting MTλ = Mn(λ1, λ2, . . . , λn). For an
integer vector λ = (λ1, . . . , λn), we define

rot(λ) = (λn − n, λ1, . . . , λn−1).

Theorem 2.4 ([Fis07]). Suppose λ is an integer vector of length n, then

MTλ = (−1)n−1 MTrot(λ) . (2.4)

Recall that the r-th elementary symmetric polynomial is defined as

er(x1, . . . , xn) =
∑

T⊆{1,2,...,n}
|T |=r

∏
t∈T

xt.

The proof of the theorem is based on the following lemma.

Lemma 2.5. Let n ≥ 1 and 1 ≤ r ≤ n. Then

er(∆x1 , . . . ,∆xn)
∏

1≤i<j≤n

xi − xj + j − i
j − i

= er(∆x1 , . . . ,∆xn)
∏

1≤i<j≤n

xi − xj + j − i
j − i

= 0 (2.5)

Proof. As

Ex1 E2
x2 . . .E

n
xn er(∆x1 , . . . ,∆xn)

∏
1≤i<j≤n

xi − xj + j − i
j − i

= er(∆x1 , . . . ,∆xn)
∏

1≤i<j≤n

xi − xj
j − i

,

it suffices to show that the right-hand side vanishes in order to see that the first term in (2.5) vanishes.

Now,
∏

1≤i<j≤n

xi−xj
j−i is — up to a constant — the non-zero antisymmetric polynomial with the smallest

total degree. Since er(∆x1 , . . . ,∆xn) is symmetric in x1, . . . , xn, er(∆x1 , . . . ,∆xn)
∏

1≤i<j≤n

xi−xj
j−i is an-

tisymmetric as well, however, the total degree has been decreased as er(∆x1 , . . . ,∆xn) is homogeneous
of degree greater than zero, and thus it must be zero.

The proof that the second term of (2.5) vanishes too is analogous. �

Proof of Theorem 2.4. It suffices to show that

Mn(x1, . . . , xn) + (−1)nMn(xn − n, x1, . . . , xn−1). (2.6)

Observe that the operator in Mn(x1, . . . , xn) can also be expressed as

E−1xp + Exq − E−1xp Exq = Id +∆xp∆xq .

It follows that (2.6) is equal to∏
1≤p<q≤n

(Id +∆xp∆xq)
∏

1≤i<j≤n

xi − xj + j − i
j − i

+ (−1)n E−nxn

∏
1≤p<q≤n−1

(Id +∆xp∆xq)
n−1∏
q=1

(Id +∆xn∆xq)
∏

1≤i<j≤n−1

xi − xj + j − i
j − i

n−1∏
j=1

xn − xj + j

j

=
∏

1≤p<q≤n−1
(Id +∆xp∆xq)

n−1∏
p=1

(Id +∆xp∆xn)−
n−1∏
q=1

(Id +∆xn∆xq)

 ∏
1≤i<j≤n

xi − xj + j − i
j − i

.
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By Lemma 2.5 and as

n−1∏
p=1

(Id +∆xp∆xn)−
n−1∏
q=1

(Id +∆xn∆xq) =
n−1∑
r=0

(
∆
r
xn er(∆x1 , . . . ,∆xn−1

)−∆r
xn er(∆x1 , . . . ,∆xn−1)

)
,

it suffices to show that

∆
r
xn er(∆x1 , . . . ,∆xn−1

)−∆r
xn er(∆x1 , . . . ,∆xn−1)

=

r∑
s=1

(−1)r+s∆
r
n∆r−s

n es(∆1, . . . ,∆n) +

r∑
s=1

(−1)r+s+1∆r
n∆

r−s
n es(∆1, . . . ,∆n), (2.7)

since the right-hand side is in the ideal of C[∆1, . . . ,∆n,∆1, . . . ,∆n] generated by ei(∆1, . . . ,∆n) and
ei(∆1, . . . ,∆n), i = 1, 2, . . . , n. Equation 2.7 is obvious for r = 0 and it follows for r > 0 by induction
with respect to r, after observing that

∆
r
n er(∆1, . . . ,∆n−1)−∆r

n er(∆1, . . . ,∆n−1)

= ∆
r
n(er(∆1, . . . ,∆n)−∆n er−1(∆1, . . . ,∆n−1))−∆r

n(er(∆1, . . . ,∆n)−∆n er−1(∆1, . . . ,∆n−1))

=
(
∆
r
n er(∆1, . . . ,∆n)−∆r

n er(∆1, . . . ,∆n)
)

−∆n∆n

(
∆
r−1
n er−1(∆1, . . . ,∆n−1)−∆r−1

n er−1(∆1, . . . ,∆n−1)
)

and applying then the induction hypothesis to

∆
r−1
n er−1(∆1, . . . ,∆n−1)−∆r−1

n er−1(∆1, . . . ,∆n−1).

�

2.3. Refined ASMs numbers and partial MTs. The following proposition contains certain ex-
pressions for the refined ASM numbers, i.e. the number An,i of n× n ASMs with a 1 in the first row
and i-th column.

Proposition 2.6 ([Fis11]). Let n, i be positive integers and Mn(x) denote the polynomial in (2.1).

(1) The number of MTs with bottom row 1, 2, . . . , n and i occurrences of 1 is equal to the evaluation
of the polynomial (−∆xn)i−1Mn(x1, . . . , xn) at (x1, . . . , xn) = (n, n− 1, . . . , 3, 2, 2).

(2) The number of MTs with bottom row 1, 2, . . . , n and i occurrences of n is equal to the evaluation
of the polynomial ∆i−1

x1 Mn(x1, . . . , xn) at (x1, . . . , xn) = (n− 1, n− 1, n− 2, . . . , 2, 1).

Order n ASMs that have the 1 in the top row in column i correspond to either of the two objects in
the proposition. To see this, rotate the ASM counterclockwise by 90◦ (resp. rotate clockwise by 90◦

and reflect then along the horizontal symmetry axis) and use the well-known bijection between ASMs
and MTs.

The proposition is a consequence of the following simple observations. A left-partial monotone
triangle of order n and depth i is an array of the form as a monotone triangle (ai,j)1≤j≤i≤n of order
n with the bottom i − 1 elements of the first NE-diagonal deleted, that is an,1, an−1,1, . . . , an−i+2,1,
see also (1.2). As usual we require weak increase along NE-diagonals and SE-diagonals, and strict
increase along rows, except for an−i+1,1 < an−i+1,2 does not have to be fulfilled. The number of
such arrays with (an,n, . . . , an,2) = (λ1, . . . , λn−1) and λn = an−i+1,1 is equal to the evaluation of

(−∆xn)i−1Mn(x1, . . . , xn) at (x1, . . . , xn) = (λ1, . . . , λn). This follows by induction with respect to i



8 ILSE FISCHER

and applying

∑
(µ1,...,µn−2)≺(λ1,...,λn−1)

(µ1,...,µn−2) strict

P (µ1, . . . , µn−2, λn) = −∆λn

 ∑
(µ1,...,µn−1)≺(λ1,...,λn)

(µ1,...,µn−1) strict

P (µ1, . . . , µn−1)

 .

So to speak, −∆λn “eats” the leftmost NE-diagonal. Analogously, we define right-partial monotone
triangles of order n and depth i as arrays (ai,j)1≤j≤i≤n with an,n, an−1,n−1, . . . , an−i+2,n−i+2 deleted,
and the usual monotonicity requirements except for an−i+1,n−i < an−i+1,n−i+1. The number of such
arrays with λ1 = an−i+1,n−i+1 and (an,n−1, . . . , an,1) = (λ2, . . . , λn) is equal to the evaluation of
(∆x1)i−1Mn(x1, . . . , xn) at (x1, . . . , xn) = (λ1, . . . , λn) as

∑
(µ2,...,µn−1)≺(λ2,...,λn)

(µ2,...,µn−1) strict

P (λ1, µ2, . . . , µn−1) = ∆λ1

 ∑
(µ1,...,µn−1)≺(λ1,...,λn)

(µ1,...,µn−1) strict

P (µ1, . . . , µn−1)

 .

2.4. Linear equation system for the refined ASM numbers.

Proposition 2.7. Let n ≥ 1. Then

An,i =
n∑
j=1

(
2n− i− 1

n− i− j + 1

)
(−1)j+1An,j , i = 1, 2, . . . , n. (2.8)

Proof. By Proposition 2.6 (1) and Theorem 2.4,

An,i = (−∆xn)i−1Mn(n, n− 1, . . . , 2, xn)
∣∣
xn=2

= (−1)n+i∆
i−1
xn Mn(xn − n, n, n− 1, . . . , 2)

∣∣∣
xn=2

As ∆xn = Exn ∆xn , this is equal to

(−1)n+i E−2n+i+1
xn ∆i−1

xn Mn(xn + 1, n, n− 1, . . . , 2)
∣∣
xn=n−1

= (−1)n+i(Id−∆xn)2n−i−1∆i−1
xn Mn(xn, n− 1, n− 2, . . . , 1)

∣∣
xn=n−1 ,

where we use E−1xn = (Id−∆xn) and Mn(x + 1) = Mn(x). Now we expand (Id−∆xn)2n−i−1 using the
Binomial Theorem, and then employ Proposition 2.6 (2), to obtain∑

j≥0

(
2n− i− 1

j

)
(−1)n+i+jAn,i+j =

n∑
j=1

(
2n− i− 1

j − i

)
(−1)n+jAn,j ,

where we use that An,j = 0 if j > n and the binomial coefficient vanishes if j < i. This is now equal
to the right-hand side in the statement as An,j = An,n+1−j . �

2.5. The linear equation system determines An,i. To show that the linear equation system in
(2.8) determines the numbers An,i for fixed n up to a multiplicative constant independent of i, it

suffices to show that the rank of the n× n matrix (
(

2n−i−1
n−i−j+1

)
(−1)j + δi,j)1≤i,j≤n is n− 1. For n = 1,

this is easy to see, and otherwise this is accomplished by showing that the matrix Bn obtained by

deleting the first row and the first column is non-singular. Let Sn =
((

n
j−i
)
(−1)i+j

)
1≤i,j≤n−1

and

use the Chu-Vandermonde summation to see that S−1n =
((

n+j−i−1
j−i

))
1≤i,j≤n−1

. Chu-Vandermonde
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summation also shows that SnBnS
−1
n =

((
i+j
j−1
)
(1− δi,n−1) + δi,j

)
1≤i,j≤n−1

. Now

detBn = det
1≤i,j≤n−1

((
i+ j

j − 1

)
(1− δi,n−1) + δi,j

)
= det

1≤i,j≤n−2

((
i+ j

j − 1

)
+ δi,j

)
,

where the second equality follows from expanding with respect to the last row. The latter determinant
is equal to

n−2∑
k=0

∑
1≤t1<t2<...<tk≤n−2

det
1≤i,j≤k

((
ti + tj
tj − 1

))
,

and thus positive as det1≤i,j≤k

((ti+tj
tj−1

))
is by the Lindström-Gessel-Viennot theorem [Lin73, GV85,

GV89] just the number of families of k non-intersection lattice paths with unit north steps and east
steps, and starting points (0,−t1 − 1), (0,−t2 − 1), . . . , (0,−tk − 1) and ending points (t1 − 1, 0), (t2 −
1, 0), . . . , (tk − 1, 0).

Showing that the proposed numbers in (1.1) fulfill (2.8) (using again the Chu-Vandermonde sum-
mation) implies that we have the right numbers up to a constant independent of i but still possibly
dependence on n. That this constant is in fact 1 follows then by induction with respect to n basically
by showing (using Chu-Vandermonde summation) that the proposed numbers fulfill also the identity
n−1∑
i=1

An−1,i = An,1.

3. Miscellaneous

3.1. “Combinatorializing”. A drawback of all existing proofs of the ASM theorem is that they
are computational proofs. Combinatorial proofs are more desirable. For instance, it would be very
interesting to have a bijective explanation for (2.8). We present some thoughts on “combinatorializing”
the proof presented in this paper, see also [Fis12].

3.1.1. Combinatorial proof of Theorem 2.1? Theorem 2.1 is an important ingredient in our proof
and so it would be interesting to provide a combinatorial proof. To this end, we point out that the
evaluation of the polynomial Mn(x) at (x1, . . . , xn) = (λ1, . . . , λn) has a quite obvious combinatorial
interpretation (besides the one proved in Theorem 2.1) in terms of a signed enumeration. A combi-
natorial proof of Theorem 2.1 could then consist in bijectively explaining the equivalence of the two
combinatorial interpretations.

First, let us note that GTn(x) is the number of semistandard tableaux of shape x = (x1, . . . , xn),
or, equivalently, the number of Gelfand-Tsetlin patterns with bottom row (xn, xn−1, . . . , x1) if x1 ≥
x2 ≥ . . . ≥ xn ≥ 0. If we expand the operator

∏
1≤p<q≤n

(
E−1xp + Exq −E−1xp Exq

)
into monomials in

E±1x1 ,E
±1
x2 , . . . ,E

±1
xn and apply the shift operators to GTn(x), we obtain a signed sum of expressions

each of which count Gelfand-Tsetlin patterns with a prescribed bottom row that is a “deformation”
of (xn, xn−1, . . . , x1). (In fact, these deformations count what we call “generalized” Gelfand-Tsetlin
patterns because after the deformation the bottom row does not have to be increasing, see below.)

The signed sum and the deformations have an easy description as follows: Let us define a direction
pattern d of order n to be a function d assigning each element in {(i, j)|1 ≤ j ≤ i ≤ n− 1} an element
in {←,→,↔}, and define the sign of d to be sgn(d) = (−1)# of ↔. So the domain of an order n
direction pattern is just the “index set” of the elements of an order n Gelfand-Tsetlin pattern, where
the bottom row is excluded, see also (1.2). The background is that we identify (i, j) in the domain
of the direction pattern with the factor corresponding to the pair (i − j + 1, n − j + 1) =: (p, q) in∏

1≤p<q≤n

(
E−1xp + Exq −E−1xp Exq

)
, where the assignment “d(i, j) =→” corresponds to choosing E−1xp
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from the factor
(

E−1xp + Exq −E−1xp Exq

)
when expanding the product, “d(i, j) =←” corresponds to

choosing Exq and “d(i, j) =↔” corresponds to choosing E−1xp Exq .

Now given a direction pattern p of ordern n, the corresponding deformation (x1, . . . , xn)d =:
(y1, . . . , yn) is computed as follows: We arrange the direction pattern in the form of a Gelfand-Tsetlin
pattern (1.2) and add xn, xn−1, . . . , x1 as bottom row. Then

yi = xi − (# of →,↔ in the NW diagonal of xi) + (# of ←,↔ in the NE diagonal of xi).

In conclusion, we can write Mn(x) as ∑
d direction pattern of order n

sgn(d) GT(xd).

One important final observation in this respect is that GT(xd) is not necessarily the number of
Gelfand-Tsetlin patterns with bottom row xd, since, because of the deformation, the sequence xd
does not have to be non-increasing (even if x was decreasing). However, there exists a combinatorial
interpretation of GT(x) for all x ∈ Zn which extends Gelfand-Tsetlin patterns, see [Fis05, Section 5.1]:
a generalized Gelfand-Tsetlin pattern is a triangular array of integers (ai,j)1≤j≤i≤n such that the
following is fullfilled for each entry ai,j with i < n:

• If ai+1,j ≤ ai+1,j+1, then ai+1,j ≤ ai,j ≤ ai+1,j+1.
• If ai+1,j > ai+1,j+1, then ai+1,j > ai,j > ai+1,j+1.

(This implies that there is no generalized Gelfand-Tsetlin pattern with ai+1,j = ai+1,j+1+1.) Whenever
we are in the second case, we say that ai,j is an inversion. The sign of a generalized Gelfand-Tsetlin

pattern is (−1)# of inversions and the signed enumeration of a generalized Gelfand-Tsetlin pattern with
bottom row x is equal to GT(x).

3.1.2. Combinatorial proof of Lemma 2.4? On the other hand, Theorem 2.1 is only needed to prove
Lemma 2.4, so one could immediately go for a combinatorial proof of Lemma 2.4. Since rot(λ) is not
a strict partition if λ is, one prerequisite is a combinatorial interpretation of MTλ for all finite integer
sequences λ. (Recall that MTλ is for arbitrary finite integer sequences defined as the evaluation of the
polynomial Mn(x) at λ.) I have provided several such interpretations in [Fis12] (see also [Rie12]) in
terms of a signed enumeration and repeat my favorite interpretation here. (The sign seems unavoidable,
because (2.4) involves a sign.)

We start by providing an alternative combinatorial interpretation for MTλ if λ is a strict partition.
Here a direction pattern d of order n is a function d assigning each element in {(i, j)|1 ≤ j ≤ i ≤ n}
an element in {←,→,↔} and its sign is sgn(d) = (−1)# of ↔. So the domain of an order n direction
pattern is now the entire index set of the elements of Gelfand-Tsetlin patterns of order n. We say that
a Gelfand-Tsetlin pattern (ai,j)1≤j≤i≤n respects the direction pattern if the following is fulfilled: For
all entries ai,j with i < n, we need to have the following.

• If d(i+ 1, j) ∈ {→,↔}, then ai+1,j < ai,j .
• If d(i+ 1, j + 1) ∈ {←,↔}, then ai,j < ai+1,j+1.

Then MTλ is equal to∑
d direction pattern of order n

sgn(d) (# of Gelfand-Tsetlin patterns with bottom row λ respecting d).

This follows basically from (2.1) and the fact that (2.3) is equal to the left-hand side in (2.2). See
[Fis12, Subsection 6.1.2] for a more detailed explanation.1

1Note that this combinatorial interpretation of MTλ could also be useful in providing the combinatorial proof asked
for in the previous subsection. In fact, there it would also have been possible to work with direction patterns of order n
the domain of which include also the entire index set of the elements of Gelfand-Tsetlin patterns of order n.
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This can be extended to all finite integer sequences λ. Given a direction pattern d of order n, then
a triangular array (ai,j)1≤j≤i≤n respects d if, for each entry ai,j with i < n, the following is fulfilled.

(1) If d(i+ 1, j) =← and d(i+ 1, j + 1) ∈ {←,↔}, then ai+1,j ≤ ai,j < ai+1,j+1 or ai+1,j > ai,j ≥
ai+1,j+1.

(2) If d(i+1, j) =← and d(i+1, j+1) =→, then ai+1,j ≤ ai,j ≤ ai+1,j+1 or ai+1,j > ai,j > ai+1,j+1.
(3) If d(i+ 1, j) ∈ {↔,→} and d(i+ 1, j + 1) ∈ {←,↔}, then ai+1,j < ai,j < ai+1,j+1 or ai+1,j ≥

ai,j ≥ ai+1,j+1.
(4) If d(i+ 1, j) ∈ {↔,→} and d(i+ 1, j + 1) =→, then ai+1,j < ai,j ≤ ai+1,j+1 or ai+1,j ≥ ai,j >

ai+1,j+1.

In each case, we say that ai,j is an inversion if the second possibility applies. (If the bottom row of
such a triangular array is an increasing sequence, then there can be no inversion and (ai,j)1≤j≤i≤n is
just a Gelfand-Tsetlin pattern that respects the direction pattern d in the above defined sense.) Now
MTλ has the following combinatorial interpretation.∑

d direction pattern of order n
(ai,j)1≤j≤i≤n array with bottom row λ respecting d

sgn(d) (−1)# of inversions of (ai,j)1≤j≤i≤n .

3.2. Constant term formulation of Theorem 2.1.

Corollary 3.1. Suppose λ = (λ1, . . . , λn) is a strict partition, then the number of MTs with bottom
row λ is the constant term of the following Laurent polynomial.

n∏
i=1

(1 + xi)
λix−n+1

i

∏
1≤i<j≤n

(xj − xi)(1 + xi + xixj)

Proof. Applying the operator
∏n
i=1E

λi
xi to Mn(x) and computing the constant term of the resulting

polynomial gives the number of MTs with bottom row λ. As∏
1≤p<q≤n

E−1xp

∏
1≤i<j≤n

xi − xj + j − i
j − i

=
∏

1≤i<j≤n

xi − xj
j − i

= det
1≤i,j≤n

(
xi

n− j

)
,

and by expressing the shift operators by difference operators, i.e. using Ex = Id +∆x, this number is
also the constant term of the following polynomial,∑

σ∈Sn

sgnσ
n∏
i=1

(1 + ∆xi)
λi

∏
1≤p<q≤n

(Id +∆xp + ∆xp∆xq)
n∏
i=1

(
xi

n− σ(i)

)
,

where we have used the Leibniz formula for the determinant. Now, since

∆
s
x

(
x

t

)∣∣∣∣
x=0

=

(
x

t− s

)∣∣∣∣
x=0

= δs,t,

where δs,t is the Kronecker delta, this number is also∑
σ∈Sn

sgnσ 〈xn−σ(1)1 · · ·xn−σ(n)n 〉
n∏
i=1

(1 + xi)
λi

∏
1≤i<j≤n

(1 + xi + xixj),

where 〈xm1
1 · · ·xmnn 〉P (x1, . . . , xn) denotes the coefficient of xm1

1 · · ·xmnn in the polynomial P (x1, . . . , xn).
But this is also the constant term of∑

σ∈Sn

sgnσ x
σ(1)−n
1 · · ·xσ(n)−nn

n∏
i=1

(1 + xi)
λi

∏
1≤i<j≤n

(1 + xi + xixj),
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and since ∑
σ∈Sn

sgnσ x
σ(1)−1
1 · · ·xσ(n)−1n =

∏
1≤i<j≤n

(xj − xi)

this is the expression in the statement. �

In particular, this shows that the constant term of
n∏
i=1

(1 + xi)
n−ix−n+1

i

∏
1≤i<j≤n

(xj − xi)(1 + xi + xixj)

is the number of n × n ASMs. Similar identities have appeared before in the work of Di Francesco,
Fonseca and Zinn-Justin, for instance, the constant term of

n∏
i=1

(1 + xi)
2x2i−2n−1i

∏
1≤i<j≤n

(xi − xj)(1 + xi + xixj)

is also the number of n× n ASMs, see [FZJ08, (4.9)]. Compare also with [Rom14, Theorem 1.13].

3.3. Acknowledgement. I would like to thank an anonymous referee for his or her useful remarks
and for pointing out how to simplify the proof of Lemma 2.5.
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