Alternating sign trapezoids and cyclically symmetric lozenge tilings with a central hole

Ilse Fischer
Universität Wien

Partly joint work with Arvind Ayyer and Roger Behrend

I have to apologize...

No (planned) random process in this talk!

But there will be lozenge tilings...

Outline

I. ASMs, DPPs and TSSCPPs
II. Alternating sign triangles
III. Alternating sign trapezoids
IV. Proofs

I. ASMs, DPPs and TSSCPPs

Alternating sign matrices $=$ ASMs

$$
\left(\begin{array}{rrrrr}
0 & 1 & 0 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Square matrix with entries in $\{0, \pm 1\}$ such that in each row and each column

- the non-zero entries appear with alternating signs, and
- the sum of entries is 1 .

How many?

n	1	2	3	4
	(1)	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$3!+\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0\end{array}\right)$	42

The number of $n \times n$ ASMs

Theorem (Zeilberger, Kuperberg 1996). The number of $n \times n$ alternating sign matrices is

$$
\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!\cdots(2 n-1)!}=\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!} .
$$

Conjectured by Mills, Robbins and Rumsey in the 1980s.

Plane partitions

A plane partition in an $a \times b \times c$ box is a subset

$$
P P \subseteq\{1,2, \ldots, a\} \times\{1,2, \ldots, b\} \times\{1,2, \ldots, c\}
$$

with

$$
(i, j, k) \in P P \Rightarrow\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \in P P \quad \forall\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \leq(i, j, k)
$$

$$
a=5, b=3, c=5
$$

Cyclically symmetric plane partitions $=$ CSPPs

An $n \times n \times n$ plane partition PP is cyclically symmetric if

$$
(i, j, k) \in P P \Rightarrow(j, k, i) \in P P .
$$

In 1979, George Andrews proved that the number of $n \times n \times n$ cyclically symmetric plane partitons is

$$
\prod_{i=0}^{n-1} \frac{(3 i+2)(3 i)!}{(n+i)!}
$$

A determinant in Andrews' proof

In his proof, Andrews shows that the number of CSPPs of order n is given by the following determinant

$$
\operatorname{det}_{0 \leq i, j \leq n-1}\left(\delta_{i, j}+\binom{i+j}{i}\right)
$$

and then proves that

$$
\operatorname{det}_{0 \leq i, j \leq n-1}\left(\delta_{i, j}+\binom{i+j}{i}\right)=\prod_{i=0}^{n-1} \frac{(3 i+2)(3 i)!}{(n+i)!} .
$$

Then he also considered the following more general determinant:

$$
\operatorname{det}_{0 \leq i, j \leq n-1}\left(\delta_{i, j}+\binom{k+i+j}{i}\right):=D_{n}(k)
$$

$D_{n}(k)$ for small values of n

$$
\begin{gathered}
k+5 \\
(k+4)(k+5) \\
\frac{1}{12}(k+4)^{2}(k+9)(k+11) \\
\frac{1}{72}(k+4)^{2}(k+6)(k+9)(k+11)^{2} \\
\frac{(k+4)^{2}(k+6)^{2}(k+11)^{2}(k+13)(k+15)(k+17)}{8640} \\
\frac{(k+4)^{2}(k+6)^{2}(k+8)(k+10)(k+11)(k+13)(k+15)^{2}(k+17)^{2}}{518400} \\
\frac{(k+4)^{2}(k+6)^{2}(k+8)^{2}(k+10)^{2}(k+15)^{2}(k+17)^{3}(k+19)(k+21)(k+23)}{870912000}
\end{gathered}
$$

Surprise:

$$
D_{n}(2)=\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}
$$

Combinatorial interpretation for $D_{n}(2)$

Christian Krattenthaler (2003):

Cyclically symmetric lozenge tilings of a hexagon with side lengths $n+2, n, n+2, n, n+$ $2, n$ with a central hole of size 2 .

To obtain the combinatorial interpretation for any k, replace 2 by k !

Column strict shifted plane partitions of a fixed class aka DPPs

- With each strict partition (= partition with distinct parts), we associate a shifted Ferrers diagram. The shifted Ferrers diagram of $(5,4,2,1)$ is

- A column strict shifted plane partition is a filling of a shifted Ferrers diagram with positive integers such that the rows are weakly decreasing and the columns are strictly decreasing.

Example.

- A column strict shifted plane partition is of class k if the first part of each row exceeds the length of the row by precisely k. (Mills, Robbins and Rumsey 1987; Andrews 1979) The example is of class 2.
- There is a simple bijection between column strict shifted plane partitions of class k where the length of the top row does not exceed n and cyclically symmetric rhombus tilings of a hexagon with side lengths $n+k, n, n+k, n, n+k, n$ with a central triangular whole of size k.

Totally symmetric self-complementary plane partitions

- Totally symmetric:
$(i, j, k) \in P P \Rightarrow \sigma(i, j, k) \in P P \forall \sigma \in \mathcal{S}_{3}$
(MacMahon 1899, 1915/16)

- Self-complementary:

Equal to its complement in the $2 n \times 2 n \times 2 n$ box (Mills, Robbins and Rumsey 1986)

Theorem (Andrews 1994). The number of TSSCPPs in a $2 n \times 2 n \times 2 n$ box is (also) $\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}$.

Figure by Di Francesco / ZinnJustin

III. Alternating sign triangles

Alternating sign triangles $=$ ASTs

An AST of order n is a triangular array of 1 's, -1 's and 0 ' s with n centered rows

such that
(1) the non-zero entries alternate in each row and each column,
(2) all row sums are 1 , and
(3) the topmost non-zero entry of each column is 1 (if such an entry exists).

Example:

ASTs of order 3

Theorem (Ayyer, Behrend, and F., 2016). There is the same number of $n \times n$ ASMs as there is of ASTs with n rows.

Number of -1 's in ASMs and ASTs

Let A be an ASM or an AST. Then we define

$$
\mu(A)=\# \text { of }-1 \text { 's in } A .
$$

Obviously

$$
|\{A \in \operatorname{ASM}(n) \mid \mu(A)=0\}|=n!=|\{A \in \operatorname{AST}(n) \mid \mu(A)=0\}|
$$

Generalization of our theorem: Let m, n be non-negative integers. Then

$$
|\{A \in \operatorname{ASM}(n) \mid \mu(A)=m\}|=|\{A \in \operatorname{AST}(n) \mid \mu(A)=m\}| .
$$

Inversion numbers

Let $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ be a permutation and A be the permutation matrix of π, that is π_{i} is the column of the unique 1 in row i. Then

$$
\operatorname{inv}(A)=\sum_{1 \leq i^{\prime}<i \leq n, 1 \leq j^{\prime} \leq j \leq n} a_{i^{\prime} j} a_{i j^{\prime}}
$$

is the number of inversions in π. We use this to define the inversion number of ASMs.

Let $A=\left(a_{i, j}\right)_{1 \leq i \leq n, i \leq j \leq 2 n-i}$ be an AST. We define

$$
\operatorname{inv}(A)=\sum_{i^{\prime}<i, j^{\prime} \leq j} a_{i^{\prime} j} a_{i j^{\prime}}
$$

Generalization of the generalization of our theorem: Let m, n, i be non-negative integers. Then

$$
\begin{aligned}
\mid\{A \in \operatorname{ASM}(n) \mid \mu(A)=m, & \operatorname{inv}(A)=i\} \mid \\
& =|\{A \in \operatorname{AST}(n) \mid \mu(A)=m, \operatorname{inv}(A)=i\}|
\end{aligned}
$$

The case $n=3$

ASM		$\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}$					0 0 1								$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$				
μ	0				0					0									
inv	0				1					1					2				
AST	$\begin{array}{rr}1 & 0 \\ & 1\end{array}$	$\begin{array}{ll} 0 & 0 \\ 1 & 0 \\ & 1 \end{array}$	0	0	0	1	0 0 1	0	0	1	0	0 1	0		0	1	0	0	

ASM		0 0 1					1			$\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0\end{array}\right)$				
μ	0				0									
inv	2				3					1				
AST	0	0 0 1	1	0	0	0	0 0 1	O	1	0		$\begin{gathered} 1 \\ -1 \\ 1 \end{gathered}$		

Refined ASM-Theorem

Observation: There is a unique 1 in the top row of an ASM.

Theorem (Zeilberger, 1996): The number of $n \times n$ ASMs with a 1 in the top row and column r is

$$
\binom{n+r-2}{n-1} \frac{(2 n-r-1)!}{(n-r)!} \prod_{j=0}^{n-2} \frac{(3 j+1)!}{(n+j)!}=A_{n, r} .
$$

Find a statistic on ASTs that has the same distribution as the column of the 1 in the top row of an ASM!

Equivalent statistic on ASTs

In an AST, the elements of a column add up to 0 or 1 . We say that a column is a 1 -column if they add up to 1 .

Let T be an AST with n rows. Define

```
\rho(T)=(#1-columns in the left half of T that have a 0 at the bottom)
    +(#1-columns in the right half of T that have a 1 at the bottom) +1.
```

Theorem (F. 2019). The number of ASTs T with n rows and $\rho(T)=$ r is equal to $A_{n, r}$.

The case $n=3$

III. Alternating sign trapezoids

Back to Andrews' determinant

$$
D_{n}(k)=\operatorname{det}_{0 \leq i, j \leq n-1}\left(\delta_{i, j}+\binom{k+i+j}{i}\right)
$$

Recall:

- $D_{n}(2)$ is the number of $n \times n$ ASMs as well as the number of ASTs with n rows.
- $D_{n}(k)$ is the number of cyclically symmetric lozenge tilings of a hexagon with central triangular hole of size k.

> Is there a combinatorial realization of $D_{n}(k)$ in terms of ASM-like objects ?

Alternating sign trapezoids

For $n \geq 1, l \geq 2$ ', an (n, l)-alternating sign trapezoid is an array of 1 's, -1 's and 0 's with n centered rows and l elements in the bottom row, arranged as follows
such that the following conditions are satisfied.
(1) In each row and column, the non-zero entries alternate.
(2) All row sums are 1.
(3) The topmost non-zero entry in each column is 1 .
(4) The column sums are 0 for the middle $l-2$ columns.
*Can be extended to $l=1$.

Example

A (5, 4)-alternating sign trapezoid.

ASTs with n rows are equivalent to ($n-1,3$)-alternating sign trapezoids. (Delete the bottom row of the AST.)

Alternating sign trapezoids and cyclically symmetric rhombus tilings of a holey hexagon

Theorem (Behrend, F. 2018). There is the same number of (n, l)-alternating sign trapezoids as there is of cyclically symmetric rhombus tilings of a hexagon with side lengths $n+l-1, n, n+l-1, n, n+l-1, n$ that has a central triangular hole of size $l-1$.

Product formula

Corollary. The number of (n, l)-alternating sign trapezoids is

$$
2^{n} \prod_{i=0}^{n-1} q_{i}(l)^{n-i-1}
$$

where

$$
q_{i}(l)= \begin{cases}\frac{(l+3 i)(2+l+3 i)(4+l+3 i)}{(l+2 i)(2+l+2 i)(4+4 i)}, & i \text { even } \\ \frac{2\left(-\frac{1}{2}+l+\frac{3}{2} i\right)\left(\frac{1}{2}+l+\frac{3}{2} i\right)\left(\frac{3}{2}+l+\frac{3}{2} i\right)}{(l+2 i)(2+l+2 i)(l+i)}, & i \text { odd. }\end{cases}
$$

Three statistics on alternating sign trapezoids

- A 1 -column is a column with sum 1 .
- A 10-column is a 1 -column whose bottom element is 0 .

Simple fact: An (n, l)-alternating sign trapezoid has n 1-columns
The statistics on (n, l)-alternating sign trapezoids T :

$$
\begin{aligned}
& \mathrm{p}(T)=\# \text { of } 10 \text {-columns among the } n \text { leftmost columns, } \\
& \mathrm{q}(T)=\# \text { of } 10 \text {-columns among the } n \text { rightmost columns, } \\
& \mathrm{r}(T)=\# \text { of } 1 \text {-columns among the } n \text { leftmost columns. }
\end{aligned}
$$

In the example above, we have $\mathrm{p}(T)=1, \mathrm{q}(T)=0, \mathrm{r}(T)=2$.

Column strict shifted plane partitions of a fixed class aka DPPs

- With each strict partition (= partition with distinct parts), we associate a shifted Ferrers diagram. The shifted Ferrers diagram of $(5,4,2,1)$ is

- A column strict shifted plane partition is a filling of a shifted Ferrers diagram with positive integers such that the rows are weakly decreasing and the columns are strictly decreasing.

Example.

- A column strict shifted plane partition is of class k if the first part of each row exceeds the length of the row by precisely k. (Mills, Robbins and Rumsey 1987; Andrews 1979) The example is of class 2.
- There is a simple bijection between column strict shifted plane partitions of class k where the length of the top row does not exceed n and cyclically symmetric rhombus tilings of a hexagon with side lengths $n+k, n, n+k, n, n+k, n$ with a central triangular whole of size k.

Three statistics on column strict shifted plane partitions

For $d \in\{1, \ldots, k\}$ and a column strict shifted plane partition C of class k, we define

```
\mp@subsup{p}{d}{}}(C)=#\mathrm{ of parts j-i+d where i is the row and j is the column,
    q(C) = # of 1's,
    r(C) = # of rows.
```

In the example above, we have $\mathrm{p}_{1}(C)=1, \mathrm{q}(C)=1, \mathrm{r}(C)=3$.
Theorem (F. 2019). The number of (n, l)-alternating sign trapezoids T with $\mathrm{p}(T)=p, \mathrm{q}(T)=q, \mathrm{r}(T)=r$ is equal to the number of column strict shifted plane partitions of class $l-1$ with $\mathrm{p}_{d}(C)=p, \mathrm{q}(C)=q, r(C)=r$, where the length of the first row does not exceed n.

Recently, Höngesberg could add another statistic (number of -1 's on the alternating sign trapezoid side).

The case $n=2, l=4$

Alternating sign trapezoids:

$$
\begin{aligned}
& \begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 0 & 0 & 0 & \\
& & (0,0,2) & & \\
& & & & & \\
& 0 & 1 & 0 & 0
\end{array} \\
& \begin{array}{lccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 1 & \\
& & & (0,0, & 1) & \\
& & 0 & 0 & 0 & 1
\end{array} \\
& \begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 1 & \\
& & & (1,0,1) & &
\end{array} \\
& \begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
& 1 & -1 & 0 & 1 & \\
& & & (0,0,1) & & \\
& & 0 & & 0 & \\
& & &
\end{array}
\end{aligned}
$$

Column strict shifted plane partitions:

	\emptyset	4	$5 \quad 1$	$5 \quad 2$	$5 \quad 3$	$5 \quad 4$	$5 \quad 5$	5	5
$d=1$	$(0,0,0)$	$(0,0,1)$	$(0,1,1)$	$(1,0,1)$	$(0,0,1)$	$(0,0,1)$	$(0,0,1)$	$(0,0,2)$	
$d=2$	$(0,0,0)$	$(0,0,1)$	$(0,1,1)$	$(0,0,1)$	$(1,0,1)$	$(0,0,1)$	$(0,0,1)$	$(0,0,2)$	
$d=3$	$(0,0,0)$	$(0,0,1)$	$(0,1,1)$	$(0,0,1)$	$(0,0,1)$	$(1,0,1)$	$(0,0,1)$	$(0,0,2)$	

IV. Proofs

Monotone triangles

Triangular arrays of integers with monotonicity requirements:

Monotone triangles with bottom row $1,2, \ldots, n \Leftrightarrow n \times n$ ASMs

Formula for the number of monotone triangles with prescribed bottom row

Antisymmetrizer:

$$
\operatorname{ASym}_{Y_{1}, \ldots, Y_{n}} F\left(Y_{1}, \ldots, Y_{n}\right)=\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sgn} \sigma F\left(Y_{\sigma(1)}, \ldots, Y_{\sigma(n)}\right)
$$

Define

$$
M_{n}(\mathrm{x})=\mathrm{C}_{Y_{1}, \ldots, Y_{n}} \frac{\operatorname{ASym}_{Y_{1}, \ldots, Y_{n}}\left[\prod_{i=1}^{n}\left(1+Y_{i}\right)^{x_{i}} \prod_{1 \leq i<j \leq n}\left(1+Y_{j}+Y_{i} Y_{j}\right)\right]}{\prod_{1 \leq i<j \leq n}\left(Y_{j}-Y_{i}\right)},
$$

where $\mathrm{CT}_{Y_{1}, \ldots, Y_{n}}$ denotes the constant term in Y_{1}, \ldots, Y_{n}.
Theorem (F., 2006). The number of monotone triangles with bottom row b_{1}, \ldots, b_{n} is $M_{n}\left(b_{1}, \ldots, b_{n}\right)$.

Truncated monotone triangles: (s, t)-trees

- $\mathrm{s}=\left(s_{1}, s_{2}, \ldots, s_{l}\right)$ weakly decreasing sequence: prescribes the number of entries deleted at the bottom of the \nearrow-diagonals.
- $\mathrm{t}=\left(t_{n-r+1}, \ldots, t_{n}\right)$ weakly increasing sequence: prescribes the number of entries deleted at the bottom of the \searrow-diagonals.

The number of (s, t)-trees

Forward difference operator: $\bar{\Delta}_{x} p(x)=p(x+1)-p(x)$
Backward difference operator: $\underline{\Delta}_{x} p(x)=p(x)-p(x-1)$

The evaluation of

$$
\left(-\bar{\Delta}_{x_{1}}\right)^{s_{1}} \cdots\left(-\bar{\Delta}_{x_{l}}\right)^{s_{l}} \underline{\Delta}_{x_{n-r+1}}^{t_{n-r+1}} \cdots \Delta_{x_{n}}^{t_{n}} M_{n}(\mathrm{x})
$$

at $\mathbf{x}=\left(b_{1}, \ldots, b_{n}\right)$ is the number of (\mathbf{s}, \mathbf{t})-trees of order n with the following properties:

- The bottom entry of the i-th \nearrow-diagonal is b_{i} for $1 \leq i \leq n-r$.
- The bottom entry of the i-th \searrow-diagonal is b_{i} for $n-r+1 \leq i \leq n$.

From alternating sign triangles to truncated monotone triangles

$$
\begin{array}{ccccccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & \\
& & 0 & 0 & 0 & 1 & 0 & -1 & 1 & & \\
& & & 0 & 1 & -1 & 0 & 1 & & & \\
& & & & 0 & 0 & 1 & & & & \\
& & & & & 1 & & & & &
\end{array}
$$

1-column $=$ a column with sum 1.

- An AST with n rows has precisely n 1-columns.
- First goal: Constant term formula for the number of ASTs with prescribed positions of the 1 -columns.

$$
\begin{array}{ccccccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
& & & & & & & & & & \\
& & & & & & \Downarrow & & & & \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}
$$

-5	-4	-3	-2	-1	0	1	2	3	4	5
0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0
0	1	0	0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	0	1	0	1	1	1	0	0
0	1	0	0	1	1	1		1	1	0
0										

- Orange entries are redundant. Delete them in order to obtain an (s,t)-tree.
- Number of deleted entries in a fixed diagonal equals the absolute value of the bottom entry in the truncated diagonal.

The number of ASTs with prescribed positions of

the 1-columns

Using the formula for the number of (\mathbf{s}, t)-tree, we can deduce the following (after a few pages of calculations).

Theorem (F. 2019). The number of ASTs with n rows that have the 1 -columns in positions $j_{1}, j_{2}, \ldots, j_{n-1}$, where we count from the left starting with 0 and disregard the central column, is the coefficient of $X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots X_{n-1}^{j_{n-1}}$ in

$$
\prod_{i=1}^{n-1}\left(1+X_{i}\right) \prod_{1 \leq i<j \leq n-1}\left(1+X_{i}+X_{i} X_{j}\right)\left(X_{j}-X_{i}\right)
$$

Total number of ASTs

The number of ASTs with n rows is the constant term of

$$
\begin{aligned}
\sum_{0 \leq j_{1}<j_{2}<\ldots<j_{n-1}} \prod_{i=1}^{n-1}\left(1+X_{i}^{-1}\right) X_{i}^{j_{i}} & \prod_{1 \leq i<j \leq n-1}\left(1+X_{i}^{-1}+X_{i}^{-1} X_{j}^{-1}\right)\left(X_{j}^{-1}-X_{i}^{-1}\right) \\
& =\frac{\prod_{i=1}^{n-1}\left(1+X_{i}\right) X_{i}^{i-2 n+2} \prod_{1 \leq i<j \leq n-1}\left(1+X_{j}+X_{i} X_{j}\right)\left(X_{i}-X_{j}\right)}{\prod_{i=1}^{n-1}\left(1-\prod_{j=i}^{n-1} X_{j}\right)}
\end{aligned}
$$

"Trick:" Apply the symmetrizer in X_{1}, \ldots, X_{n}. The constant term is then multiplied by $n!$.

"Magic:" The symmetrizer can actually be computed!

End of the proof

Lemma. Let $n \geq 1$. Then

$$
\begin{aligned}
\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i<j \leq n}\left(1+X_{j}+X_{i} X_{j}\right)\right. & \left.\prod_{i=1}^{n} X_{i}^{i-1}\left(1-\prod_{j=i}^{n} X_{j}\right)^{-1}\right] \\
& =\prod_{i=1}^{n}\left(1-X_{i}\right)^{-1} \prod_{1 \leq i<j \leq n} \frac{\left(1+X_{i}+X_{j}\right)\left(X_{j}-X_{i}\right)}{\left(1-X_{i} X_{j}\right)}
\end{aligned}
$$

After some further steps, one can see that the number is the constant term of

$$
(-1) \begin{gathered}
\binom{n-1}{2} \\
\sum_{0 \leq b_{1}<b_{2}<\ldots<b_{n-1}} \operatorname{det}_{1 \leq i, j \leq n-1}\left(\left(1+X_{j}\right)^{i} X_{j}^{i-2 n+2+b_{j}}\right), ~
\end{gathered}
$$

and this leads directly to an expression that gives the number of totally symmetric self-complementary plane partitions in a $2 n \times 2 n \times 2 n$ box (Lindström-Gessel-Viennot).

The number of alternating sign trapezoids with prescribed positions of the 1 -columns

Theorem (Aigner). The number of (n, l)-alternating sign trapezoids with the 1 -columns in positions $0 \leq j_{1}<j_{2}<\ldots<j_{n} \leq 2 n-1$ where we index the columns from left to right starting with 0 and disregard the $l-2$ central columns is the coefficient of $X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots X_{n}^{j_{n}}$ in

$$
\prod_{i=1}^{m}\left(1+X_{i}\right) \prod_{i=m+1}^{n} X_{i}^{-l+3}\left(1+X_{i}\right)^{l-2} \prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)\left(1+X_{i}+X_{i} X_{j}\right),
$$

where m is maximal such that $j_{m} \leq n-1$.

Only for $l=3$ (ASTs!), there is no dependency on m.

Crucial step in the enumeration of AS-trapezoids

Definition.

$$
\begin{aligned}
& \operatorname{Subsets}_{m} F\left(Y_{1}, \ldots, Y_{n}\right) \\
&= \sum_{\substack{\sigma \in \mathcal{S}_{n} \\
\sigma(1)<\sigma(2)<\ldots<\sigma(m), \sigma(m+1)<\sigma(m+2)<\ldots<\sigma(n)}} F\left(Y_{\sigma(1)}, \ldots, Y_{\sigma(n)}\right)
\end{aligned}
$$

The number is the constant term of

$$
\begin{aligned}
& \sum_{m=0}^{n} \text { Subsets }_{m} \prod_{i=m+1}^{n}\left(1+Y_{i}\right)^{l-1} \prod_{i, j=1}^{m} \frac{1}{1+Y_{i}+Y_{j}} \prod_{i, j=m+1}^{n} \frac{1}{1-Y_{i} Y_{j}} \\
& \times \prod_{i=1}^{m} \prod_{j=m+1}^{n} \frac{1+Y_{j}+Y_{i} Y_{j}}{\left(Y_{j}-Y_{i}\right)\left(1+Y_{i}+Y_{j}\right)\left(1-Y_{i} Y_{j}\right)} .
\end{aligned}
$$

Using the Cauchy determinant, it follows that

$$
\prod_{i=m+1}^{n}\left(1+Y_{i}\right)^{l-1} \prod_{i, j=1}^{m} \frac{1}{1+Y_{i}+Y_{j}} \prod_{i, j=m+1}^{n} \frac{1}{1-Y_{i} Y_{j}}
$$

$$
\times \prod_{i=1}^{m} \prod_{j=m+1}^{n} \frac{1+Y_{j}+Y_{i} Y_{j}}{\left(Y_{j}-Y_{i}\right)\left(1+Y_{i}+Y_{j}\right)\left(1-Y_{i} Y_{j}\right)}
$$

$$
\left.\left.=\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(\left\{\begin{array}{ll}
\frac{1}{1+Y_{i}+Y_{j}}, & i \leq m \\
\frac{\left(1+Y_{i}\right)^{-1}}{1-Y_{j}} & 1-Y_{i} Y_{j}
\end{array}\right.\right.}{i>m}\right\}\right) .
$$

Applying Subsets ${ }_{m}$ and summing over all m then gives

$$
\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(\frac{1}{1+Y_{i}+Y_{j}}+\frac{\left(1+Y_{i}\right)^{l-1}}{1-Y_{i} Y_{j}}\right)}{\prod_{1 \leq i<j \leq n}\left(Y_{j}-Y_{i}\right)^{2}} .
$$

After some further manipulations we obtain Andrews generalization of the determinant for the number of cyclically symmetric plane partitions.

Thank you!

