
THE MYSTERIOUS STORY OF SQUARE ICE,

PILES OF CUBES, AND BIJECTIONS

ILSE FISCHER AND MATJAŽ KONVALINKA

Abstract. When combinatorialists discover two different types of objects that are counted

by the same numbers, they usually want to prove this by constructing an explicit bijective

correspondence. Such proofs frequently reveal many more details about the relation between
the two types of objects than just equinumerosity. A famous set of problems that has resisted

various attempts to find bijective proofs for almost 40 years is concerned with alternating sign
matrices (which are equivalent to a well-known physics model for two-dimensional ice), and their

relations to certain classes of plane partitions. In this note, we tell the story of how the first

bijections were found.

1. Introduction

All mathematicians recognize 1,1,2,3,5,8,13, . . . as Fibonacci numbers, and many of them,
especially combinatorialists, recognize 1,1,2,5,14,42,132, . . . as Catalan numbers. Both sequences
appear frequently in combinatorics and other areas, they have many beautiful properties, and are
extremely well studied. However, there is the mysterious sequence 1,1,2,7,42,429,7436, . . ., whose
terms are sometimes called Robbins numbers. They can be expressed with a product formula
(see (1)), and the mystery comes from the fact that they count four different families of objects
that, until now, could not be translated into one another.

More precisely, there are many known objects enumerated by this sequence (13 of them are
illustrated in different rows of Figure 1). There are easy bijections between some of these objects,
for example between alternating sign matrices and square ice configurations, and these bijections
split the families of objects into four classes (separated by a line in Figure 1): alternating sign
matrices, descending plane partitions, totally symmetric self-complementary plane partitions, and
alternating sign triangles. We invite readers looking for a challenge to try to guess the definitions of
some of the objects in Figure 1 that are not defined in the paper, and to find bijections, for example,
among the objects illustrated in the first six rows. However, until now, no bijection was known
between any two of these four classes, despite the problem being open for almost four decades (for
the first three classes; the fourth class was only discovered recently). In this manuscript, we describe
the first such bijection, one that connects alternating sign matrices and descending plane partitions.
Let us emphasize right away that the bijection is far from simple. It is, however, completely explicit.
We expect that the tools used in the paper can be used to find other complicated bijections.

Let us mention that the combinatorial objects described are also commonly encountered in
statistical mechanics, so this work has direct applications to questions in physics.

2. A brief history

An alternating sign matrix (ASM) is a square matrix with entries in {0,1,−1} such that in
each row and each column the non-zero entries alternate and sum up to 1. See row 1 of Figure
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1 for all ASMs of size 3 × 3. Robbins and Rumsey introduced alternating sign matrices in the
1980s [RR86] when studying their λ-determinant (a generalization of the classical determinant)
and showing that the λ-determinant can be expressed as a sum over all alternating sign matrices
of fixed size, thus generalizing Leibniz formula that expresses the ordinary determinant as a sum
over all permutations.

Numerical experiments led Robbins and Rumsey to conjecture that the number of n×n alternating
sign matrices is given by the surprisingly simple product formula

(1) ∣ASMn ∣ =
n−1

∏
j=0

(3j + 1)!
(n + j)!

.

They also conjectured a formula for the number of ASMs of size n×n with the unique 1 in the first
row being in column i:

(2) ∣ASMn,i ∣ =
(n+i−2
n−1

)(2n−i−1
n−1

)
(3n−2

2n−1
)

n−1

∏
j=0

(3j + 1)!
(n + j)!

.

One of the two bijections we have discovered establishes a bijective proof of (2) which, by taking
the union over all i, also leads to such a proof of (1).

Back then the surprise was even bigger when Robbins and Rumsey, now joined by Mills, learned
from Stanley (see [BP99, Bre99]) that the product formula in (1) had recently also appeared in
Andrews’ paper [And79] on his proof of the weak Macdonald conjecture, which in turn provides a
formula for the number of cyclically symmetric plane partitions (plane partitions can be visualized as
piles of cubes stacked in the corner of a box). As a byproduct, Andrews had introduced descending
plane partitions (DPPs), fillings of a shifted diagram with positive integers that decrease weakly
along rows and strictly along columns, such that the first part in each row is greater than the length
of its row and less than or equal to the length of the previous row; see row 8 of Figure 1. Andrews
proved that the number of DPPs with parts at most n is also equal to (1), and Mills, Robbins
and Rumsey [MRR82] proved that (2) is the number of such DPPs with exactly i − 1 copies of n.
Note that it is possible to interpret DPPs as certain sets of non-intersecting paths, and as cyclically
symmetric lozenge tilings with a central triangular hole of size 2, see rows 9 and 10 of Figure 1.
The latter objects are somewhat reminiscent of Penrose’s impossible stairs.

Since then the problem of finding an explicit bijection between alternating sign matrices and
descending plane partitions has attracted considerable attention from combinatorialists, and to
many of them it is a miracle that such a bijection has not been found so far. All the more so because
Mills, Robbins and Rumsey also introduced several “statistics” on alternating sign matrices and on
descending plane partitions for which they had strong numerical evidence that the joint distributions
coincide as well, see [MRR83]. On the other hand, some believe that a natural bijection is in some
sense impossible, but it is unclear how to interpret such a statement mathematically and even more
unclear how to prove it. The second bijection we have discovered explains for the first time the
relation between ASMs and DPPs bijectively.

There were a few further surprises yet to come. Robbins introduced a new operation on plane
partitions, complementation, and had strong numerical evidence that totally symmetric self-com-
plementary plane partitions (TSSCPPs) in a box of dimensions 2n × 2n × 2n are also counted by
(1), see row 11 of Figure 1. Note that a plane partition is totally symmetric if it is invariant under
every permutation of the coordinate axes, and that there is a simple bijection between TSSCPPs
and certain triangular shifted plane partitions, see row 12 of Figure 1. Again this was further
supported by statistics that have the same joint distribution as well as certain refinements, see
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Figure 1. Families of objects counted by the same enumeration formula, for n = 3:
ASMs; the six vertex model with domain wall boundary conditions; square ice;
fully packed loop configurations; classes of perfect matchings of the Aztec diamond
graph; (not necessarily reduced) bumpless pipe dreams; monotone triangles with
bottom row 12 . . . n; DPPs; certain non-intersecting paths; cyclically symmetric
lozenge tilings with a central hole; TSSCPPs; certain triangular shifted plane
partitions; ASTs.
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[MRR86, Kra96, Kra16, BC16]. We still lack an explicit bijection between TSSCPPs and ASMs,
as well as between TSSCPPs and DPPs, but we are optimistic that the methods we sketch in this
note will also lead to such bijections.

In his collection of bijective proof problems (which is available from his web page) Stanley says
the following about the problem of finding all these bijections: “This is one of the most intriguing
open problems in the area of bijective proofs.” In Krattenthaler’s survey on plane partitions [Kra16]
he expresses his opinion by saying: “The greatest, still unsolved, mystery concerns the question of
what plane partitions have to do with alternating sign matrices.”

Many of the above-mentioned conjectures have since been proved by non-bijective means. Zeil-
berger [Zei96a] was the first who proved that n × n ASMs are counted by (1). Kuperberg gave a
shorter proof [Kup96] based on the remarkable observation that the six vertex model (which had
been introduced by physicists several decades earlier) with domain wall boundary conditions (see
row 2 of Figure 1) is equivalent to ASMs, and he used the techniques that had been developed by
physicists to study this model. Note that other equivalent ways to think about ASMs are the square
ice model, fully packed loop configurations, classes of perfect matchings of the Aztec diamond graph
and (not necessarily reduced) bumpless pipe dreams, see rows 3–6 of Figure 1. Andrews enumerated
TSSCPPs in [And94]. The equivalence of certain statistics for ASMs and of certain statistics for
DPPs was proved in [BDFZJ13], while for ASMs and TSSCPPs see [Zei96b, FZJ08], and note in
particular that already in Zeilberger’s first ASM paper [Zei96a] he could deal with an important
refinement. Further work including the study of symmetry classes has been accomplished; for a
more detailed description of this we defer to [BFK17]. Then, in very recent work, alternating sign
triangles (ASTs) were introduced in [ABF16], which establishes a fourth class of objects that are
equinumerous with ASMs, see row 13 of Figure 1, and also in this case nobody has so far been able
to construct a bijection. Also in this case, we expect that the approach presented in this note will
be used to construct such a bijection. In fact, the planned bijection between ASMs and TSSCPPs
will be most likely via ASTs.

Starting in around 2005, the first author published a series of papers in which monotone triangles
feature very prominently [Fis05, Fis06, Fis07, Fis10, Fis11, Fis12a, Fis12b, Fis16]. Alluding to
Krattenthaler’s citation above, one could argue that among the objects that are in easy bijective
correspondence with ASMs, monotone triangles are the closest to plane partitions. In order to
define them note that a Gelfand–Tsetlin pattern (or GT pattern) is a triangular array of integers
that are weakly increasing along ↗- and ↘-diagonals. A monotone triangle is a GT pattern with
strictly increasing rows. There are 8 GT patterns with bottom row 123, and all but one of them (the
one with two 2s in row 2) are monotone triangles; see row 7 of Figure 1. There is an easy bijection
between ASMs of size n×n and monotone triangles with bottom row 1,2, . . . , n: add to each entry
the entries that are above in the same column, and record the positions of the 1s in the rows of the
new matrix. There is a simple product formula for the number of GT patterns with fixed bottom
row, and the first author found an operator formula for the number of monotone triangles with
fixed bottom row. This formula will also be crucial in our construction (see (8)), which will give a
bijective proof of the fact that the number of ASMs of size n × n equals the number of DPPs with
entries at most n.

Our method of proof involves signed sets and sijections (signed bijections). We are able to
build complicated sijections out of simple building blocks by extending classical notions such as the
Cartesian product, disjoint union, and composition to signed sets. In some sense, this framework is
implicit in, say, the groundbreaking works of Garsia and Milne, see [And86, GM81a, GM81b], but
we needed to make it more explicit and to extend it to be able to deal with the more complicated
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situation. For example, the Garsia–Milne involution principle is equivalent to the special case
of the composition of two sijections when only the “intermediate” set has a non-empty negative
part. The “naturalness” of the composition might let us argue that the involution principle is
not as bad as the reputation it sometimes has. After all, enumeration results often have natural
extensions to certain signed sets, and then sijections and compositions thereof are unavoidable.
We also believe that the tools employed in our constructions could prove very useful in the search
for bijective proofs of other identities that are of interest to combinatorialists. Roughly speaking,
the framework should be applicable for translating “computational” proofs of identities that only
involve additions, subtractions and multiplications (but not divisions), as detailed below. Note that
it is probably more complicated to transfer ASM proofs using the six vertex model approach (see
[Kup96]), as such proofs typically employ an interpolation argument.

3. Signed sets and sijections

It is widely accepted in combinatorics that bijective proofs of identities are “the best” in most
circumstances: they typically bring the most clarity to a statement, they yield interesting gener-
alizations, and they are usually esthetically pleasing. For example, the statement ∑nk=0 (n

k
) = 2n

can be proved in a variety of ways, e.g. by induction, or by finding the expansion of (1 + x)n and
plugging in x = 1. On the other hand, a bijective proof of this statement is the simple observation
that the right-hand side counts all subsets of an n-element set, while the left-hand side splits them
according to size.

Things are a little different when the identity involves signs. For example, consider the identity

∑nk=0(−1)k(n
k
) = 0 for n ∈ Z>0. In this case, a “bijective” proof means that we find the right

cancellations: we have to cancel a set of even size with a set of odd size. For example, we could
map a set A to A ∖ {n} or A ∪ {n}, depending on whether or not n ∈ A. This map has the added

benefit of proving ∑mk=0(−1)k(n
k
) = (−1)m(n−1

m
) at no extra cost.

Since the identity (2) has no signs, a proof that would avoid signs and cancellations would be
preferable. Our proof, however, uses them quite substantially. This stems from the fact that this
proof has been developed from the non-bijective proof by the first author which contains calculations
that involve signs. This also raises the question of whether a possible bijective proof that avoids
signs can in turn be translated into a “computational” proof that avoids signs. No such non-bijective
proof is currently known.

In the remainder of this section, we briefly introduce the concepts of signed sets and sijections,
signed bijections between signed sets. We present the basic concepts here, and refer the reader to
[FK19a, §2] for all the details and more examples.

A signed set is a pair of disjoint finite sets: S = (S+, S−) with S+∩S− = ∅. Equivalently, a signed
set is a finite set S together with a sign function sign∶S → {1,−1}. Signed sets are usually underlined
throughout the manuscript with the following exception: an ordinary set S always induces a signed
set S = (S,∅), and in this case we identify S with S.

We summarize related notions. The size of a signed set S is ∣S∣ = ∣S+∣− ∣S−∣. The opposite signed
set of S is

(3) − S = (S−, S+).
The Cartesian product of signed sets S and T is S ×T = (S+ ×T + ∪S− ×T −, S+ ×T − ∪S− ×T +). The
disjoint union of signed sets S and T is S ⊔T = (S × ({0},∅))∪ (T × ({1},∅)). These constructions
correspond as usual to arithmetic operations on the sizes, i.e.,

(4) ∣S × T ∣ = ∣S∣ ⋅ ∣T ∣ and ∣S ⊔ T ∣ = ∣S∣ + ∣T ∣.
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The disjoint union of a family of signed sets St indexed with a signed set T is

⊔
t∈T

St = ⋃
t∈T

(St × {t}).

Here {t} is ({t},∅) if t ∈ T + and (∅,{t}) if t ∈ T −. Most of the usual properties of Cartesian

products and disjoint unions (commutativity, distributivity etc.) of ordinary sets extend to signed
sets.

An important type of signed sets are signed intervals: for a, b ∈ Z, define

[a, b] =
⎧⎪⎪⎨⎪⎪⎩

([a, b],∅) if a ≤ b
(∅, [b + 1, a − 1]) if a > b

.

Here [a, b] stands for the usual interval in Z, defined when a ≤ b. Note that we always have
∣[a, b]∣ = b − a + 1. The signed sets that are of relevance in this manuscript are usually constructed

from signed intervals using Cartesian products and disjoint unions.
The role of bijections for signed sets is played by “signed bijections”, which we call sijections,

and they are manifestations of the fact that two signed sets have the same size. A sijection ϕ from
S to T ,

ϕ∶S Ô⇒ T ,

is an involution on the set (S+ ∪S−)⊔ (T + ∪T −) with the property ϕ(S+ ⊔T −) = S− ⊔T +. It follows
that also ϕ(S−⊔T +) = S+⊔T −. A sijection can also be thought of as a collection of a sign-reversing
involution on a subset of S, a sign-reversing involution on a subset of T , and a sign-preserving
matching between the remaining elements of S with the remaining elements of T . The existence of
a sijection ϕ∶S ⇒ T clearly implies ∣S∣ = ∣S+∣− ∣S−∣ = ∣T +∣− ∣T −∣ = ∣T ∣. See Figure 2, left drawing; the
sijection is a bijection between the blue (resp. green) parts of S+ and S− (resp. T + and T −), and
between the light gray (resp. dark gray) parts of S+ and T + (resp. S− and T −).

A sijection between two signed sets with no negative elements is clearly a bijection. Our two
bijections are constructed from two chains of sijections with several intermediate sets connecting
the two pairs of sets for which we want to show equinumerosity. However, in order to be able to
use these sijections to construct the two bijections, we need a notion of composing sijections. While
composing bijections is of course trivial, this turns to be slightly more complicated for general
sijections. There seems to be only one natural choice for how to do this; indeed, the construction is
a generalization of the Garsia-Milne involution principle. For an illustration of this, see Figure 2,
right drawing. There we have a sijection ϕ between S and T (solid lines), and a sijection ψ between
T and U (dashed lines); through ϕ (resp. ψ), we have a bijection between the blue (resp. green)
parts of S (resp. U), and all other elements of S+ or U− are mapped to a unique element of S− or
U+ via an alternating sequence of applications of ϕ and ψ. For the formal definition of composition
as well as of the Cartesian product and the disjoint union of sijections see Proposition 2 of [FK19a].

Just as jeu de taquin is a building block for several constructions in algebraic combinatorics, the
fundamental sijection that is underlying many of our constructions is the following.

Problem 1. [FK19a, Problem 1] Given a, b, c ∈ Z, construct a sijection

α = αa,b,c∶ [a, c]Ô⇒ [a, b] ⊔ [b + 1, c] = [a, b] ⊔ −[c + 1, b].

Construction. The sijection is very simple, but we do have to split it into cases. If a ≤ b ≤ c, we
take the natural bijection [a, c] → [a, b] ⊔ [b + 1, c]. If a ≤ c < b, then [a, b] = [a, c] ∪ [c + 1, b] and
[b + 1, c] = (∅, [c+1, b]), so we simply cancel the two copies of elements in [c+1, b]. Other cases are

similar. �
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S+

S−

T+

T−

U+

U−

S+

S−

T+

T−

Figure 2. Illustration of a sijection, and of composition of sijections.

Note that to emphasize that we are not merely interested in the fact that two signed sets have
the same size, but that we want to use the constructed signed bijection later on, we will be using
a slightly unorthodox convention. Instead of listing our results as lemmas and theorems with their
corresponding proofs, we will be using the Problem–Construction terminology. See for instance
[Voe17] and [Bau19].

Finally, let us mention two crucial combinatorial objects: generalized GT patterns and generalized
monotone triangles. The difference is that now the rows are not necessarily increasing. For k ∈ Z,
define GT(k) to have a single positive element, and for k = (k1, . . . , kn) ∈ Zn, define recursively

GT(k) = GT(k1, . . . , kn) = ⊔
l∈[k1,k2]×⋯×[kn−1,kn]

GT(l1, . . . , ln−1).

One can think of an element of GT(k) as a triangular array A = (Ai,j)1≤j≤i≤n of (n+1
2

) numbers,
where we have Ai,j ≤ Ai−1,j ≤ Ai,j+1 or Ai,j > Ai−1,j > Ai,j+1 whenever all three terms are defined,
and the sign of a GT pattern is 1 if and only if the number of descents Ai,j > Ai,j+1 is even.

We skip the full definition of a generalized monotone triangle, and just reiterate that if the
bottom row of a monotone triangle is strictly increasing, then a monotone triangle is simply a GT
pattern with strictly increasing rows, and its sign is 1.

4. Main steps of the construction

Recall that our goal is to find a bijective proof of the fact that the number of ASM of size n × n
equals the number of DPP with elements ≤ n, and also that this number equals ∏n−1

j=0
(3j+1)!
(n+j)! . There

are four main steps of the proof. The first step is described in detail in [FK19a], and the other
three in [FK19b].

(1) First, we construct a sijection between generalized monotone triangles and a certain disjoint
union of GT patterns (called shifted GT patterns). That alone is a sijective proof of the
above-mentioned operator formula for the number of monotone triangles with a fixed bottom
row, but it allows us also to replace the complicated generalized monotone triangles with
the more convenient shifted GT patterns in what follows. However, this is the first place
in our proof where we produce signs; signs are necessary for shifted GT patterns even for
strictly increasing bottom rows.

(2) Then we show that the shifted GT patterns enjoy a certain rotational invariance (and,
thanks to the sijection from the previous item, the same is true also for generalized monotone
triangles). More precisely, performing a cyclic rotation of the prescribed bottom entries
together with a certain shift leads, up to sign, to a signed set of the same size. This is
proved by means of a sijection. For this step, it is necessary to allow also bottom rows that
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are not necessarily increasing (simply because the “rotation” of an increasing bottom row
is not increasing) and this makes the use of signs again unavoidable.

(3) In the next step, we use this sijection to construct “linear equations” for refined enumera-
tions of ASMs. Such equations make sense for signed sets using the constructions we have
introduced to mimic basic arithmetic operations, see (4).

(4) Finally, we use some “bijective linear algebra” (namely, we define the determinant of a family
[P ij]mi,j=1 of signed sets as a signed set in a natural way, and then use a sijective version of

Cramer’s rule) to “solve” the system of linear equations, i.e., to construct bijections

(5) DPPn−1 ×ASMn,i Ð→ ASMn−1 ×DPPn,i,

where ASMn is the set of all ASMs of size n × n, ASMn,i is the subset of those with 1 in
position (1, i), DPPn is the set of all DPPs with elements ≤ n, and DPPn,i is the subset of
those with exactly i − 1 occurrences of n. The system of linear equations can also be used
to construct bijections

(6) DPPn−1 ×Bn,1 ×ASMn,i Ð→ DPPn−1 ×ASMn,1 ×Bn,i,

where Bn,i is the set of (2n − 1)-subsets of {1,2, . . . ,3n − 2} with median n + i − 1. It can
readily be checked that this serves as a bijective proof of (2).

Note that (5) and (6) involve seemingly unnecessary factors, which cancel when taking cardinal-
ities. On the level of bijections it is somewhat more natural to keep these factors because division
cannot be mimicked as naturally as the three other basic arithmetic operations (see (3) and (4))
by a construction for signed sets.

A method we use several times in Step 1 is to use disjoint unions and Cartesian products of the
sijection α to construct some sijections for disjoint unions of signed boxes (Cartesian products of
signed intervals), then to use disjoint unions of those to construct sijections for disjoint unions of
GT patterns, and then to use those to construct sijections for monotone triangles. As an example,
let us sketch one such construction.

Problem 2. [FK19a, Problem 2] Given a = (a1, . . . , an−1) ∈ Zn−1, b = (b1, . . . , bn−1) ∈ Zn−1, x ∈ Z,
write Si = ({ai},∅) ⊔ (∅,{bi + 1}), and construct a sijection

β = βa,b,x∶ [a1, b1]×⋯×[an−1, bn−1]Ô⇒ ⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

[l1, l2]×[l2, l3]×⋯×[ln−2, ln−1]×[ln−1, x].

Construction. The case n = 2 is constructed in Problem 1. For n ≥ 3, we get, by induction, a
sijection to

⎛
⎝
[a1, b1] × ⊔

(l3,...,ln−1)∈S3×⋯×Sn−1

[a2, l3] ×⋯ × [ln−1, x]
⎞
⎠
⊔
⎛
⎝
[a1, b1] × ⊔

(l3,...,ln−1)∈S3×⋯×Sn−1

(−[b2 + 1, l3]) ×⋯ × [ln−1, x]
⎞
⎠
,

and we use sijections α from [a1, b1] to [a1, a2] ⊔ (−[b1 + 1, a2]) and [a1, b2 + 1] ⊔ (−[b1 + 1, b2 + 1]),
respectively. �

Problem 3. [FK19a, Problem 4] Given a = (a1, . . . , an−1) ∈ Zn−1, b = (b1, . . . , bn−1) ∈ Zn−1, x ∈ Z,
construct a sijection

ρ = ρa,b,x∶ ⊔
l∈[a1,b1]×⋯×[an−1,bn−1]

GT(l)Ô⇒ ⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

GT(l1, . . . , ln−1, x),

where Si = ({ai},∅) ⊔ (∅,{bi + 1}).



THE MYSTERIOUS STORY OF SQUARE ICE, PILES OF CUBES, AND BIJECTIONS 9

Construction. Take a disjoint union (properly defined) of sijections β, and we obtain a sijection

⊔
m∈[a1,b1]×⋯×[an−1,bn−1]

GT(m)Ô⇒ ⊔
m∈⊔(l1,...,ln−1)∈S1×⋯×Sn−1

[l1,l2]×[l2,l3]×⋯×[ln−2,ln−1]×[ln−1,x]
GT(m).

By basic constructions, we get a sijection to

⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

⊔
m∈[l1,l2]×⋯×[ln−2,ln−1]×[ln−1,x]

GT(m),

and by definition of GT, this is equal to ⊔(l1,...,ln−1)∈S1×⋯×Sn−1
GT(l1, . . . , ln−1, x). �

After several such results concerning the signed sets of GT patterns, we can prove that the signed
set of shifted GT patterns, denoted by SGT(k), satisfy the same recursive identity as the signed
set of generalized monotone triangles MT(k). For monotone triangles with a strictly increasing
bottom row, the recursion can be understood quite easily: if we delete the bottom row, say, k =
(k1, . . . , kn) of a monotone triangle, then we obtain a monotone triangle with a new bottom row,
say, l = (l1, . . . , ln−1) where k1 ≤ l1 ≤ k2 ≤ l2 ≤ . . . ≤ ln−1 ≤ kn and l1 < l2 < . . . < ln−1. It is also
possible to write the resulting recursion more conveniently as a disjoint union over signed boxes.
For n = 3, this would be

(7) MT(k1, k2, k3) = ⊔
(l1,l2)∈[k1,k2−1]×[k2,k3]

MT(l1, l2)

⊔ ⊔
(l1,l2)∈[k1,k2]×[k2+1,k3]

MT(l1, l2) ⊔
⎛
⎜
⎝
− ⊔

(l1,l2)∈[k1,k2−1]×[k2+1,k3]
MT(l1, l2)

⎞
⎟
⎠
.

The difficult part is to show that the shifted GT patterns satisfy the same recursive identity, see
[FK19a]; the construction uses many previously constructed sijections such as ρ. We omit the
details here due to space limitations, but the resulting sijection is of the form

Φ = Φk,x∶ ⊔
µ∈ARn

⊔
l∈e(k,µ)

SGT(l)Ô⇒ SGT(k).

Here ARn is a certain (simple) signed set of arrow rows, and e(k, µ) is a certain deformation of k.
Together with the sijection that proves the same recursion for generalized monotone triangles, we
obtain a sijection

(8) Γ = Γk,x∶MT(k)Ô⇒ SGT(k)
by induction.

This allows one to prove statements for monotone triangles via GT patterns, which are much
more accessible. For example, a crucial step in [FK19b] is the sijection

MT(k)Ô⇒ (−1)n−1 MT(rot(k)),
where rot(k) = (k2, . . . , kn, k1−n). See [FK19b, Problem 16]. Note that the construction is far from
easy, even assuming that we have the map Γ. See [FK19b, §6] for a proof.

Following several other constructions, we arrive at the following system of “linear equalities”,
i.e. sijections

(9)
n

⊔
j=1

(−1)j+1([2n − i − 1]
n − i − j + 1

) ×ASMn,j Ô⇒ ASMn,i

for i ∈ {1, . . . , n}. See [FK19b, Problem 22].
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To complete the construction, we need, among some other results, a few ingredients from
“bijective linear algebra”. Denote by Sm the signed set of permutations (with the usual sign).
Given signed sets P i,j , 1 ≤ i, j ≤ m, define the determinant of P = [P ij]mi,j=1 as the signed set

det(P) = ⊔π∈Sm
P 1,π(1) × ⋯ × Pm,π(m). Among other classical properties, we have the following

version of Cramer’s rule.

Problem 4. [FK19b, Problem 9] Given P = [P p,q]mp,q=1, signed sets Xi, Y i and sijections ⊔mq=1 P i,q×
Xq ⇒ Y i for all i ∈ [m], construct sijections

det(P) ×Xj Ô⇒ det(Pj),

where Pj = [P jp,q]mp,q=1, P
j
p,q = P p,q if q ≠ j, P jp,j = Y p, for all j ∈ [m].

Essentially, sijections like the one in Problem 4 tell us that “linear equalities” for sijections like
(9) can be used to find sijections on the signed sets involved. As a result, we get a sijection (and
hence a bijection) between DPPn−1 ×ASMn,j and ASMn−1 ×DPPn,j . By induction, that implies
that ASMn,j and DPPn,j have the same number of elements, so we have indeed constructed the
first bijective proof of this result. Similar considerations lead to the bijection (6).

We expect that one can use similar techniques to find other elusive bijective proofs, both for
results related to alternating sign matrices, and in other areas of enumerative combinatorics. We
intend to use them to connect ASMs and DPPs with the remaining two classes of objects mentioned
here, TSSCPPs and ASTs.
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