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I. Alternating sign matrices (ASMs)
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Alternating sign matrices = ASMs


0 1 0 0 0
1 -1 0 1 0
0 1 0 -1 1
0 0 1 0 0
0 0 0 1 0


Square matrix with entries in {0,±1} such
that in each row and each column

• the non–zero entries appear with alter-
nating signs, and

• the sum of entries is 1.

How many?

n 1 2 3 4

(1)

(
1 0
0 1

)
,

(
0 1
1 0

)
3! +

0 1 0
1 −1 1
0 1 0

 42
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Origin of ASMs: λ–determinant

The Desnanot–Jacobi identity:

=det det det

det

det det

det

Charles L. Dodgson (Lewis Carroll) used this to devise an algorithm

for calculating determinants that required only 2 × 2 determinants.

(Condensation of determinants, 1866)
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3× 3 determinants

det

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =
1

a2,2

× det


det

(
a2,2 a2,3
a3,2 a3,3

)
det

(
a2,1 a2,2
a3,1 a3,2

)

det

(
a1,2 a1,3
a2,2 a2,3

)
det

(
a1,1 a1,2
a2,1 a2,2

)

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4× 4 determinants

det

 a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

 =
1

det

(
a2,2 a2,3

a3,2 a3,3

)

× det


det

 a2,2 a2,3 a2,4

a3,2 a3,3 a3,4

a4,2 a4,3 a4,4

 det

 a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a4,1 a4,2 a4,3


det

 a1,2 a1,3 a1,4

a2,2 a2,3 a2,4

a3,2 a3,3 a3,4

 det

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3





3×3 determinants are expressible in terms of 2×2 determinants...and

so are 4× 4 determinants!
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David P. Robbins and Howard Rumsey, Jr. in the 1980s: What happens

if we generalize the definition of a 2× 2 determinant to

detλ

(
a11 a12
a21 a22

)
= a11a22 + λa12a21

and, furthermore, use the previous observations to generalize the n×n
determinant?

Theorem (Robbins and Rumsey, 1986). Let A = (ai,j) be an n × n
matrix, ASMn the set of n× n alternating sign matrices, then

detλ(A) =
∑

B∈ASMn

λI(B)(1 + λ−1)N (B)
n∏

i,j=1

a
Bi,j
i,j ,

where I(B) the inversion number of B and N (B) the number of −1’s

in B.
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ASMs in statistical physics



0 0 1 0
0 1 0 0
1 −1 0 1
0 1 0 0


ASM

H

H

H

H

H H

H

O H H O H

H

H

H O H H

H

H

H

HH OH O

H

H

HO

OH O H O

H

H

H

H

H

O

H

O

OOO

O O

Square ice

The connection was established in 1992 by Elkies, Kuperberg, Larsen

and Propp. The tools (e.g.,Yang-Baxter equation) physicists had de-

veloped turned out to be very useful in the following.
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ASMs and Bumpless Pipe Dreams


0 0 1 0 0
1 0 −1 1 0
0 1 0 −1 1
0 0 1 0 0
0 0 0 1 0


2

3 5421

4

3

5

1

In 1982, Grothendieck polynomials have been introduced to study the

K-theory of the complete flag variety and they can be written as a

certain generating function of bumpless pipe dreams (as revealed by

Weigandt in 2020).
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The number of n× n ASMs

Conjecture (Mills, Robbins, Rumsey 1980s). The number of n × n

alternating sign matrices is

1!4!7! · · · (3n− 2)!

n!(n+ 1)! · · · (2n− 1)!
=

n−1∏
i=0

(3i+ 1)!

(n+ i)!
=: An.

David Robbins, 1991: “These conjectures are of such compelling sim-

plicity that it is hard to know how any mathematician can bear the

pain of living without understanding why they are true.”

Double quotient:

(
An+2
An+1

)
(
An+1
An

) = 3
4

(3n+2)(3n+4)
(2n+1)(2n+3)
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The conjecture was presented by David Robbins at an Oberwolfach workshop in
1982. Doron Zeilberger was in the audience:

“So Dave was the first (and as far as I know only) person to give two hour-talks at
the same Oberwolfach combinatorics meeting. I remember these talks like they were
given yesterday. They were definitely in the top ten talks that I have ever heard.
What is so captivating about Dave’s lecture style is that unlike the rest of us, that try
to state things in the most general setting (thereby completely obscuring the ideas),
Dave went the other way, and made things as concrete as possible and actually had
numbers in his talk, not general formulas. The formulas only came at the end, after
the ideas and concepts were internalized.”

• Zeilberger then provided the first proof of the conjecture in 1996. The paper has
84 pages and an army of “proof checkers” was required before the proof was believed
to be true.

• In the same year, Greg Kuperberg came up with another proof that is based on
techniques developed by physicists.

• About ten years later, I gave yet another proof. The most concise version (9 pages)
can be found in the 50th anniversary issue of JCT-A (2016).
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Symmetry classes of ASMs

8 symmetry classes; Robbins conjectured product formulas for 51
2

classes.

No symmetry V ∼ H V and H Rπ Rπ/2

Zeilberger 1996 Kuperberg 2002 Okada 2004 n even: n even:

Kuperberg 2002 Kuperberg 2002

n odd: n odd:

Razumov & Razumov &

Stroganov 2005 Stroganov 2005

Many cases were dealt with by Greg Kuperberg in his 2002 Ann. Math. paper.
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D ∼ A All symmetries D and A

n #
1 1
2 2
3 5
4 24

5 67
6 24 · 23
7 2 · 5 · 263
8 23 · 11 · 277

n #
1 1
2 0
3 1
4 0
5 1
6 0
7 2
8 0
9 22

10 0
11 13
12 0
13 2 · 23
14 0
15 23 · 31
16 0
17 22 · 379

n #
→ 1 1

2 2
→ 3 3

4 23

→ 5 3 · 5
6 22 · 13

→ 7 2 · 32 · 7
8 23 · 71

→ 9 2 · 34 · 11
10 22 · 2609

→ 11 33 · 112 · 13
12 23 · 31 · 1303

→ 13 2 · 32 · 11 · 132 · 17
Behrend, F., and Konvalinka 2016; Robbins prize 2019.
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II. Cyclically symmetric lozenge tilings with

a central triangular hole
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What is a plane partition?

A plane partition in an a× b× c box is a subset

PP ⊆ {1,2, . . . , a} × {1,2, . . . , b} × {1,2, . . . , c}
with

(i, j, k) ∈ PP ⇒ (i′, j′, k′) ∈ PP ∀(i′, j′, k′) ≤ (i, j, k).

a = 4, b = 3, c = 5
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Cyclically symmetric plane partitions = CSPPs

An n× n× n plane partition PP is cyclically symmetric if

(i, j, k) ∈ PP ⇒ (j, k, i) ∈ PP.
In 1979, George Andrews proved that the number of n×n×n cyclically
symmetric plane partitions is

n−1∏
i=0

(3i+ 2)(3i)!

(n+ i)!
.
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A determinant in Andrews’ proof

In his proof, Andrews shows that the number of CSPPs of order n is
given by the following determinant

det0≤i,j≤n−1

(
δi,j +

(i+ j

i

))
and then proves that

det0≤i,j≤n−1

(
δi,j +

(i+ j

i

))
=

n−1∏
i=0

(3i+ 2)(3i)!

(n+ i)!
.

Then, probably out of curiousity, he also considered the following more
general determinant:

det0≤i,j≤n−1

(
δi,j +

(k + i+ j

i

))
:= Dn(k)
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Dn(k) for small values of n
2

k + 5

(k + 4)(k + 5)

1

12
(k + 4)2(k + 9)(k + 11)

1

72
(k + 4)2(k + 6)(k + 9)(k + 11)2

(k + 4)2(k + 6)2(k + 11)2(k + 13)(k + 15)(k + 17)

8640

(k + 4)2(k + 6)2(k + 8)(k + 10)(k + 11)(k + 13)(k + 15)2(k + 17)2

518400

(k + 4)2(k + 6)2(k + 8)2(k + 10)2(k + 15)2(k + 17)3(k + 19)(k + 21)(k + 23)

870912000

(k + 4)2(k + 6)2(k + 8)2(k + 10)3(k + 12)(k + 15)(k + 17)3(k + 19)2(k + 21)2(k + 23)2

731566080000
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Double quotient:(
Dn+2(k)
Dn+1(k)

)
(
Dn+1(k)
Dn(k)

) =


(3n+k+1)(3n+k+3)(3n+k+5)

4(n+1)(2n+k+1)(2n+k+3) n even
(3n+2k+1)(3n+2k+3)(3n+2k+5)

4(n+k+1)(2n+k+1)(2n+k+3) n odd

This can be used to derive a (conjectural) product formula for Dn(k).

Big surprise (Richard Stanley?):

Dn(2) =
n−1∏
i=0

(3i+ 1)!

(n+ i)!
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Combinatorial interpretation for Dn(2)

7

7

6

6

3

6

5

5

1

4

2

Cyclically symmetric lozenge tiling of a hexagon with side lengths n+2, n, n+2, n, n+
2, n with a central triangular hole of size 2.

To obtain the combinatorial interpretation for any k, replace 2 by k!

21



Summary: There is the same number of n×n alternating sign matrices

as there is of cyclically symmetric lozenge tilings of a hexagon with side

lengths n + 2, n, n + 2, n, n + 2, n with a central triangular hole of size

2.

Where is the bijection ?

Stanley 2009: “This is one of the most intriguing open problems in

the area of bijective proofs.”
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Two bijections (Fischer and Konvalinka, 2020)

ASMn = set of n× n ASMs

ASMn,i = subset of ASMn of matrices (ap,q)1≤p,q≤n with a1,i = 1

CSLT(2)n = cyclically symmetric lozenge tilings of a hexagon with side lengths n+2, n, n+2, n, n+2, n
with a central triangular hole of size 2.

CSLT(2)n,i = subset of CSLT(2)n of tilings with i horizontal lozenges along the NW side.

We have constructed a bijection between the following sets:

CSLT(2)n−1 ×ASMn,i −→ ASMn−1×CSLT(2)n,i

• Once such a bijection is constructed, it follows that

|CSLT(2)n−1| · |ASMn,i | = |ASMn−1 | · |CSLT(2)n,i|.

• By induction, we can assume |CSLT(2)n−1| = |ASMn−1 | and so |ASMn,i | = |CSLT(2)n,i|.

• Summing this over all i implies |CSLT(2)n| = |ASMn |.
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Example CSLT(2)3 ×ASM4,2 −→ ASM3×CSLT(2)4,2 for x = 0
(
∅,

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
↔

(
1 0 0
0 0 1
0 1 0

, 4 2 1
) (

∅,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

)
↔

(
0 1 0
1 −1 1
0 1 0

, 4 1 1
) (

∅,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)
↔

(
0 0 1
1 0 0
0 1 0

, 4 1
) (

∅,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
↔

(
1 0 0
0 1 0
0 0 1

, 4 2
)

(
∅,

0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

)
↔

(
1 0 0
0 1 0
0 0 1

, 4 1
) (

∅,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

)
↔

(
1 0 0
0 1 0
0 0 1

, 4
) (

∅,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

)
↔

(
0 1 0
0 0 1
1 0 0

, 4
) (

∅,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

)
↔

(
1 0 0
0 0 1
0 1 0

, 4 1 1
)

(
∅,

0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

)
↔

(
1 0 0
0 1 0
0 0 1

, 4 1 1
) (

∅,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

, 4
) (

∅,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

)
↔

(
1 0 0
0 0 1
0 1 0

, 4 2
) (

∅,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

)
↔

(
1 0 0
0 0 1
0 1 0

, 4
)

(
∅,

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
↔

(
0 1 0
1 −1 1
0 1 0

, 4 1
) (

∅,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

)
↔

(
1 0 0
0 0 1
0 1 0

, 4 1
) (

2 ,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
↔

(
1 0 0
0 1 0
0 0 1

, 4 3
) (

2 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

)
↔

(
0 1 0
1 0 0
0 0 1

, 4 3
)

(
2 ,

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)
↔

(
0 1 0
1 0 0
0 0 1

, 4 2
) (

2 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
↔

(
1 0 0
0 0 1
0 1 0

, 4 3
) (

2 ,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

)
↔

(
0 1 0
1 −1 1
0 1 0

, 4 3
) (

2 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

)
↔

(
0 0 1
1 0 0
0 1 0

, 4 3
)

(
2 ,

0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

)
↔

(
0 1 0
1 −1 1
0 1 0

, 4 2
) (

2 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

)
↔

(
0 0 1
1 0 0
0 1 0

, 4 2
) (

2 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

, 4 3
) (

2 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

, 4 3
)

(
2 ,

0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

, 4 2
) (

2 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

, 4 2
) (

2 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

, 4 1
) (

2 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

, 4 1
)

(
3 3 ,

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
↔

(
1 0 0
0 1 0
0 0 1

, 4 2 1
) (

3 3 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

)
↔

(
1 0 0
0 1 0
0 0 1

,
4 3 1

2

) (
3 3 ,

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)
↔

(
0 0 1
1 0 0
0 1 0

,
4 3 2

2

) (
3 3 ,

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
↔

(
1 0 0
0 1 0
0 0 1

, 4 2 2
)

(
3 3 ,

0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

)
↔

(
1 0 0
0 1 0
0 0 1

,
4 3 2

2

) (
3 3 ,

0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

)
↔

(
1 0 0
0 1 0
0 0 1

,
4 3 3

2

) (
3 3 ,

0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

)
↔

(
0 1 0
0 0 1
1 0 0

,
4 3 3

2

) (
3 3 ,

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

)
↔

(
0 1 0
1 −1 1
0 1 0

,
4 3 3

2

)
(

3 3 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

)
↔

(
0 1 0
1 0 0
0 0 1

,
4 3 2

2

) (
3 3 ,

0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

,
4 3 3

2

) (
3 3 ,

0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

)
↔

(
1 0 0
0 0 1
0 1 0

,
4 3 1

2

) (
3 3 ,

0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

)
↔

(
1 0 0
0 0 1
0 1 0

,
4 3 3

2

)
(

3 3 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
↔

(
0 1 0
1 −1 1
0 1 0

,
4 3 2

2

) (
3 3 ,

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

)
↔

(
1 0 0
0 0 1
0 1 0

,
4 3 2

2

) (
3 3

2 ,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
↔

(
1 0 0
0 1 0
0 0 1

,
4 3

2

) (
3 3

2 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

)
↔

(
0 1 0
1 0 0
0 0 1

,
4 3

2

)
(

3 3
2 ,

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)
↔

(
0 1 0
1 0 0
0 0 1

,
4 3 1

2

) (
3 3

2 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
↔

(
1 0 0
0 0 1
0 1 0

,
4 3

2

) (
3 3

2 ,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

)
↔

(
0 1 0
1 −1 1
0 1 0

,
4 3

2

) (
3 3

2 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

)
↔

(
0 0 1
1 0 0
0 1 0

,
4 3

2

)
(

3 3
2 ,

0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

)
↔

(
0 1 0
1 −1 1
0 1 0

,
4 3 1

2

) (
3 3

2 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

)
↔

(
0 0 1
1 0 0
0 1 0

,
4 3 1

2

) (
3 3

2 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

,
4 3

2

) (
3 3

2 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

,
4 3

2

)
(

3 3
2 ,

0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

,
4 3 1

2

) (
3 3

2 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

,
4 3 1

2

) (
3 3

2 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

,
4 3 2

2

) (
3 3

2 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

,
4 3 2

2

)
(

3 2 ,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
↔

(
1 0 0
0 1 0
0 0 1

, 4 3 3
) (

3 2 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

)
↔

(
0 1 0
1 0 0
0 0 1

, 4 3 3
) (

3 2 ,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)
↔

(
0 1 0
1 −1 1
0 1 0

, 4
) (

3 2 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
↔

(
1 0 0
0 0 1
0 1 0

, 4 3 3
)

(
3 2 ,

0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

)
↔

(
0 1 0
1 −1 1
0 1 0

, 4 3 3
) (

3 2 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

)
↔

(
0 0 1
1 0 0
0 1 0

, 4 3 3
) (

3 2 ,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

)
↔

(
1 0 0
0 0 1
0 1 0

, 4 2 2
) (

3 2 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

)
↔

(
0 0 1
1 0 0
0 1 0

, 4 1 1
)

(
3 2 ,

0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

, 4 3 3
) (

3 2 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

, 4 3 3
) (

3 2 ,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

)
↔

(
0 1 0
1 0 0
0 0 1

, 4 1 1
) (

3 2 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

)
↔

(
0 1 0
1 0 0
0 0 1

,
4 3 3

2

)
(

3 2 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
↔

(
0 1 0
1 0 0
0 0 1

, 4 1
) (

3 2 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

)
↔

(
0 0 1
1 0 0
0 1 0

,
4 3 3

2

) (
3 1 ,

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
↔

(
1 0 0
0 1 0
0 0 1

, 4 3 2
) (

3 1 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

)
↔

(
0 1 0
1 0 0
0 0 1

, 4 3 2
)

(
3 1 ,

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)
↔

(
0 1 0
1 0 0
0 0 1

, 4 2 2
) (

3 1 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
↔

(
1 0 0
0 0 1
0 1 0

, 4 3 2
) (

3 1 ,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

)
↔

(
0 1 0
1 −1 1
0 1 0

, 4 3 2
) (

3 1 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

)
↔

(
0 0 1
1 0 0
0 1 0

, 4 3 2
)

(
3 1 ,

0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

)
↔

(
0 1 0
1 −1 1
0 1 0

, 4 2 2
) (

3 1 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

)
↔

(
0 0 1
1 0 0
0 1 0

, 4 2 2
) (

3 1 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

, 4 3 2
) (

3 1 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

, 4 3 2
)

(
3 1 ,

0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

, 4 2 2
) (

3 1 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

, 4 2 2
) (

3 1 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
↔

(
0 1 0
1 0 0
0 0 1

, 4
) (

3 1 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

)
↔

(
0 0 1
1 0 0
0 1 0

, 4
)

(
3 ,

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
↔

(
1 0 0
0 1 0
0 0 1

, 4 3 1
) (

3 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

)
↔

(
0 1 0
1 0 0
0 0 1

, 4 3 1
) (

3 ,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)
↔

(
0 1 0
1 0 0
0 0 1

, 4 2 1
) (

3 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
↔

(
1 0 0
0 0 1
0 1 0

, 4 3 1
)

(
3 ,

0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

)
↔

(
0 1 0
1 −1 1
0 1 0

, 4 3 1
) (

3 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

)
↔

(
0 0 1
1 0 0
0 1 0

, 4 3 1
) (

3 ,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

)
↔

(
0 1 0
1 −1 1
0 1 0

, 4 2 1
) (

3 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

)
↔

(
0 0 1
1 0 0
0 1 0

, 4 2 1
)

(
3 ,

0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

, 4 3 1
) (

3 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

, 4 3 1
) (

3 ,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

, 4 2 1
) (

3 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

, 4 2 1
)

(
3 ,

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
↔

(
0 1 0
0 0 1
1 0 0

, 4 1 1
) (

3 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

)
↔

(
0 0 1
0 1 0
1 0 0

, 4 1 1
)
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Bijective Proof of the Product Formula

Bn = set of (2n− 1)-subsets of [3n− 2] = {1,2, . . . ,3n− 2}; |Bn | =
(

3n−2
2n−1

)
Bn,i = set of elements of Bn whose median is n+ i− 1; |Bn,i | =

(
n+i−2
n−1

)(
2n−i−1
n−1

)
We have constructed a bijection between the following sets:

CSLT(2)n−1 ×Bn,1×ASMn,i −→ CSLT(2)n−1 ×ASMn−1×Bn,i

Then we also have a bijection

CSLT(2)n−1 ×Bn,1×ASMn −→ CSLT(2)n−1 ×ASMn−1×Bn .

Iterating this, we obtain a bijection

CSLT(2)0 × · · · ×CSLT(2)n−1 ×B1,1× · · · ×Bn,1×ASMn −→
CSLT(2)0 × · · · ×CSLT(2)n−1 ×B1× · · · ×Bn .
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Example: CSLT(2)2 ×B3,1×ASM3,2 −→ CSLT(2)2 ×ASM2×B3,2

for x = 0(
∅,12345,

0 1 0
1 0 0
0 0 1

)
↔

(
∅, 1 0

0 1 ,23457
) (

∅,12345,
0 1 0
1 −1 1
0 1 0

)
↔

(
∅, 0 1

1 0 ,23456
) (

∅,12345,
0 1 0
0 0 1
1 0 0

)
↔

(
∅, 1 0

0 1 ,23456
)(

∅,12346,
0 1 0
1 0 0
0 0 1

)
↔

(
∅, 1 0

0 1 ,13457
) (

∅,12346,
0 1 0
1 −1 1
0 1 0

)
↔

(
∅, 0 1

1 0 ,13456
) (

∅,12346,
0 1 0
0 0 1
1 0 0

)
↔

(
∅, 1 0

0 1 ,13456
)(

∅,12347,
0 1 0
1 0 0
0 0 1

)
↔

(
∅, 1 0

0 1 ,12457
) (

∅,12347,
0 1 0
1 −1 1
0 1 0

)
↔

(
∅, 0 1

1 0 ,12456
) (

∅,12347,
0 1 0
0 0 1
1 0 0

)
↔

(
∅, 1 0

0 1 ,12456
)(

∅,12356,
0 1 0
1 0 0
0 0 1

)
↔

(
2, 1 0

0 1 ,13456
) (

∅,12356,
0 1 0
1 −1 1
0 1 0

)
↔

(
2, 0 1

1 0 ,12456
) (

∅,12356,
0 1 0
0 0 1
1 0 0

)
↔

(
2, 1 0

0 1 ,12456
)(

∅,12357,
0 1 0
1 0 0
0 0 1

)
↔

(
2, 1 0

0 1 ,13457
) (

∅,12357,
0 1 0
1 −1 1
0 1 0

)
↔

(
2, 0 1

1 0 ,12457
) (

∅,12357,
0 1 0
0 0 1
1 0 0

)
↔

(
2, 1 0

0 1 ,12457
)(

∅,12367,
0 1 0
1 0 0
0 0 1

)
↔

(
2, 1 0

0 1 ,13467
) (

∅,12367,
0 1 0
1 −1 1
0 1 0

)
↔

(
2, 0 1

1 0 ,12467
) (

∅,12367,
0 1 0
0 0 1
1 0 0

)
↔

(
2, 1 0

0 1 ,12467
)(

2,12345,
0 1 0
1 0 0
0 0 1

)
↔

(
∅, 1 0

0 1 ,23467
) (

2,12345,
0 1 0
1 −1 1
0 1 0

)
↔

(
∅, 0 1

1 0 ,23467
) (

2,12345,
0 1 0
0 0 1
1 0 0

)
↔

(
∅, 0 1

1 0 ,23457
)(

2,12346,
0 1 0
1 0 0
0 0 1

)
↔

(
∅, 1 0

0 1 ,13467
) (

2,12346,
0 1 0
1 −1 1
0 1 0

)
↔

(
∅, 0 1

1 0 ,13467
) (

2,12346,
0 1 0
0 0 1
1 0 0

)
↔

(
∅, 0 1

1 0 ,13457
)(

2,12347,
0 1 0
1 0 0
0 0 1

)
↔

(
∅, 1 0

0 1 ,12467
) (

2,12347,
0 1 0
1 −1 1
0 1 0

)
↔

(
∅, 0 1

1 0 ,12467
) (

2,12347,
0 1 0
0 0 1
1 0 0

)
↔

(
∅, 0 1

1 0 ,12457
)(

2,12356,
0 1 0
1 0 0
0 0 1

)
↔

(
2, 1 0

0 1 ,23456
) (

2,12356,
0 1 0
1 −1 1
0 1 0

)
↔

(
2, 0 1

1 0 ,23456
) (

2,12356,
0 1 0
0 0 1
1 0 0

)
↔

(
2, 0 1

1 0 ,13456
)(

2,12357,
0 1 0
1 0 0
0 0 1

)
↔

(
2, 1 0

0 1 ,23457
) (

2,12357,
0 1 0
1 −1 1
0 1 0

)
↔

(
2, 0 1

1 0 ,23457
) (

2,12357,
0 1 0
0 0 1
1 0 0

)
↔

(
2, 0 1

1 0 ,13457
)(

2,12367,
0 1 0
1 0 0
0 0 1

)
↔

(
2, 1 0

0 1 ,23467
) (

2,12367,
0 1 0
1 −1 1
0 1 0

)
↔

(
2, 0 1

1 0 ,23467
) (

2,12367,
0 1 0
0 0 1
1 0 0

)
↔

(
2, 0 1

1 0 ,13467
)

The python code is available at https://www.fmf.uni-lj.si/~konvalinka/asmcode.html.

26

https://www.fmf.uni-lj.si/~konvalinka/asmcode.html


Our approach

• We translate some non-bijective (“computational”) proofs into combinatorics!

• All arithmetic operations accept for division can be “modelled”: Addition through
disjoint unions, subtraction through signed sets, multiplication through Cartesian
products.

• The fact that we cannot deal with division explains the “redundant” factors in
our bijections.

• In the original proofs, signs are unavoidable and this makes it necessary to work
with signed sets.

• Is there a non-bijective proof that avoids signs? Is there a bijective proof that
avoids signed sets (and can this proof be translated into a simpler computation)?
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Sijections

A signed set is a pair of disjoint finite sets: S = (S+, S−) with S+∩S− =
∅. The size of a signed set S is |S| = |S+| − |S−|.

The role of bijections for signed sets is played by “signed bijections”,
which we call sijections: A sijection ϕ from S to T , ϕ : S ⇒ T , is an
involution on the set (S+∪S−)t(T+∪T−) with ϕ(S+tT−) = S−tT+.

S+

S�

T+

T�

U+

U�

S+

S�

T+

T�

This implies: |S| = |S+| − |S−| = |T+| − |T−| = |T |
28



Composition of sijections

Suppose S, T , U are signed sets and ϕ : S ⇒ T , ψ : T ⇒ U , then we
can construct a sijection ψ ◦ ϕ : S → U by alternating applications of ϕ
(solid lines) and ψ (dashed lines) as sketched next.

S+

S�

T+

T�

U+

U�

S+

S�

T+

T�

The special case S− = U− = ∅ is the Garsia-Milne involution princi-
ple.
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III. Totally symmetric self-complementary

plane partitions (TSSCPPs)
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Totally symmetric self-complementary plane partitions

Figure by Di Francesco / Zinn-
Justin

• Totally symmetric:
(i, j, k) ∈ PP ⇒ σ(i, j, k) ∈ PP ∀σ ∈ S3

(MacMahon 1899, 1915/16)

• Self-complementary:
Equal to its complement in the 2n×2n×2n box

It was again David Robbins who introduced this
new operation of complementation.
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Another surprise!

The number of TSSCPPs in a 2n× 2n× 2n box is (again)
n−1∏
i=0

(3i+1)!
(n+i)! .

Conjectured by Mills, Robbins and Rumsey in 1986, proved by Andrews

in 1994.

Where are the bijections ?

• . . . between TSSCPPs and ASMs.

• . . . between TSSCPPs and cyclically symmetric lozenge tilings of a

hexagon with a central triangular hole of size 2.

32



TSSCPPs and triangular arrays of numbers

1
1 2

1 1 3
1 1 3 3

1 1 2 3 4
1 1 2 3 4 6

Triangular arrays of positive integers such that
• the entries increase weakly along ↗-diagonals,
• the entries increase weakly along ↘-diagonals, and
• the entries in the i-th diagonal, counted from the
left, are bounded by i.

= Magog triangles
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ASMs and triangular arrays of numbers


0 1 0 0 0
1 -1 0 1 0
0 1 0 -1 1
0 0 1 0 0
0 0 0 1 0

⇒


0 1 0 0 0
1 0 0 1 0
1 1 0 0 1
1 1 1 0 1
1 1 1 1 1

⇒
2

1 4
1 2 5

1 2 3 5
1 2 3 4 5

• Monotonicity requirements:

• Bottom row: 1,2, . . . , n.

= Gog triangles (or monotone triangles).
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Generalization: Gog trapezoids

(n, k)-Gog trapezoid: arrangement of positive integers of the following form

•
• •

• • •
• • • •

• • • • •
• • • • •

• • • • •

n = number of rows = 7

k = number of ↗-diagonals = 5

such that

• ↗- and ↘-diagonals are weakly increasing,

• rows are strictly increasing,

• entries in the i-th ↘-diagonal are bounded from above by i.

n = k: Gog triangles
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Example: (7,5)-Gog trapezoid

4
3 5

3 4 5
2 3 4 5

1 2 3 5 6
1 2 3 4 6

1 2 3 4 5
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Generalization: Magog trapezoids

(n, k)-Magog trapezoid: arrangement of positive integers of the following form

•
• •

• • •
• • • •

• • • • •
• • • • •
• • • • •

n = number of rows = 7

k = number of ↘-diagonals = 5

such that

• ↗- and ↘-diagonals are weakly increasing,

• entries in the i-th ↗-diagonal are bounded from above by i.

n = k: Magog triangles
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Example: (7,5)-Magog trapezoid

1
1 2

1 2 3
1 1 2 3

1 1 2 3 4
1 2 3 4 6

2 3 3 5 6
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Generalized conjecture

Conjecture (Mills, Robbins, Rumsey, 1986). There is the same number

of (n, k)-Gog trapezoids as there is of (n, k)-Magog trapezoids.

• Zeilberger actually proved this conjecture. His proof is non-bijective

and involves complicated computations.

• Kuperberg “only”provided a (non-bijective) proof for the special case

n = k.
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Statistics on Gogs and Magogs

(n, k)-Gog trapezoids:

• A minimum is an entry equal to 1.

• A maximum is an entry in the k-th ↗-diagonal that is equal to the upper bound
for the entries in its ↘-diagonal.

(n, k)-Magog trapezoids:

• A minimum is an entry equal to 1 that is located in the leftmost ↘-diagonal.

• A maximum is an entry in the rightmost ↘-diagonal that is equal to the upper
bound for the entries in its ↗-diagonal.
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Example

Gog:

4
3 5

3 4 5
2 3 4 5

1 2 3 5 6
1 2 3 4 6

1 2 3 4 5

Magog:

1
1 2

1 2 3
1 1 2 3

1 1 2 3 4
1 2 3 4 6

2 3 3 5 6

Minima and Maxima
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Refined generalized conjecture

Conjecture (Mills, Robbins, Rumsey, 1986). The number of (n, k)-

Gog trapezoids with p minima and q maxima is equal to the number

of (n, k)-Magog trapezoids with p maxima and q minima.

Where is the bijection that switches the number of maxima

and minima ?

• So far there is not even a “computational” proof of this conjecture.

• In a recent article, I have provided constant term formulas for the

quantities involved. To prove the conjecture, it would suffice to show

that the constant terms of two expressions are the same.
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Krattenthaler’s additional parameter m

(m,n, k)-Gog trapezoid: arrangement of positive integers of the following form

•
• •

• • •
• • • •

• • • • •
• • • • •

• • • • •

n = number of rows = 7

k = number of ↗-diagonals = 5

such that

• ↗- and ↘-diagonals are weakly increasing,

• rows are strictly increasing,

• entries in the i-th ↘-diagonal are bounded from above by m+ i.
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(m,n, k)-Magog trapezoid: arrangement of positive integers of the following form

•
• •

• • •
• • • •

• • • • •
• • • • •
• • • • •

n = number of rows = 7

k = number of ↘-diagonals = 5

such that

• ↗- and ↘-diagonals are weakly increasing,

• entries in the i-th ↗-diagonal are bounded from above by m+ i.
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Generalization of the refined generalized conjecture

Conjecture (Krattenthaler, 1997). The number of (m,n, k)-Gog trapezoids with p
minima and q maxima is equal to the number of (m,n, k)-Magog trapezoids with p
maxima and q minima.

• For k = 1, it is not difficult to find a bijection that switches the number of maxima
and minima.

• 2011: Biane and Chebellah provided an explicit bijection for m = 0 and k = 2.

• 2015: Bettinelli presented another explicit bijection for m = 0 and k = 2.

• The parameter m can also be included in my constant term formulas.

• 2014: Biane and Chebellah found further exciting conjectures.
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IV. Alternating sign triangles
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Alternating sign triangles =ASTs
An AST of order n is a triangular array of 1’s, −1’s and 0’s with n centered rows

• • • • • • •
• • • • •
• • •
•

such that

(1) the non-zero entries alternate in each row and each column,

(2) all row sums are 1, and

(3) the topmost non-zero entry of each column is 1 (if such an entry exists).

Example:

0 0 1 0 0 0 0
1 −1 1 0 0

1 −1 1
1

Theorem (Ayyer, Behrend, and F., 2016). There is the same number of n×n ASMs
as there is of ASTs with n rows.
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Back to Andrews’ determinant

Dn(k) = det0≤i,j≤n−1

(
δi,j +

(k + i+ j

i

))

Recall:

• Dn(2) is the number of n× n ASMs as well as the number of ASTs
with n rows.

• Dn(k) is the number of cyclically symmetric lozenge tilings of a
hexagon with central triangular hole of size k.

Is there a combinatorial realization of Dn(k) in terms of
ASM-like objects ?
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Alternating sign trapezoids

For n ≥ 1, l ≥ 2∗, an (n, l)-alternating sign trapezoid is an array of 1’s, −1’s and 0’s
with n centered rows and l elements in the bottom row, arranged as follows

• • • • • • • • • •
• • • • • • • •

. . . . .
.

• • • •

,

such that the following conditions are satisfied.

(1) In each row and column, the non-zero entries alternate.

(2) All row sums are 1.

(3) The topmost non-zero entry in each column is 1.

(4) The column sums are 0 for the middle l − 2 columns.

∗Can be extended to l = 1.
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Example

A (5,4)-alternating sign trapezoid.

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 −1 1 0 0

0 1 0 −1 0 1 −1 1
0 0 0 1 −1 1

1 0 −1 1

ASTs with n rows are (n − 1,3)-alternating sign trapezoids. (Delete

the bottom row.)
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Alternating sign trapezoids and cyclically symmetric lozenge

tilings of a holey hexagon

Theorem (Behrend, F. 2018). There is the same number of (n, l)-alternating sign
trapezoids as there is of cyclically symmetric lozenge tilings of a hexagon with side
lengths n + l − 1, n, n + l − 1, n, n + l − 1, n that has a central triangular hole of size
l − 1.

7

7

6

6

3

6

5

5

1

4

2

51



Thank you!
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Three statistics on alternating sign trapezoids

• A 1-column is a column with sum 1.

• A 10-column is a 1-column whose bottom element is 0.

Simple fact: An (n, l)-alternating sign trapezoid has n 1-columns

The statistics on (n, l)-alternating sign trapezoids T :

p(T ) = # of 10-columns among the n leftmost columns,

q(T ) = # of 10-columns among the n rightmost columns,

r(T ) = # of 1-columns among the n leftmost columns.

In the example above, we have p(T ) = 1,q(T ) = 0, r(T ) = 2.
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Column strict shifted plane partitions of a fixed class aka

CSLTs with a central triangular hole

With each strict partition (= partition with distinct parts), we associate a shifted Ferrers diagram.
The shifted Ferrers diagram of (5,4,2,1) is

.

A column strict shifted plane partition is a filling of a shifted Ferrers diagram with positive integers
such that the rows are weakly decreasing and the columns are strictly decreasing.

Example.

7 7 6 6 3
6 5 5 1

4 2

A column strict shifted plane partition is of class k if the first part of each row exceeds the length of
the row by precisely k.

It is easy to construct a bijection between column strict shifted plane partitions of class k where the
length of the top row does not exceed n and CSLTs with a central triangular whole of size k.
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Three statistics on column strict shifted plane

partitions

For d ∈ {1, . . . , k} and a column strict shifted plane partition C of class k, we define

pd(C) = # of parts j − i+ d where i is the row and j is the column,

q(C) = # of 1’s,

r(C) = # of rows.

In the example above, we have p1(C) = 1,q(C) = 1, r(C) = 3.

Theorem (F. 2018). The number of (n, l)-alternating sign trapezoids T with p(T ) =
p,q(T ) = q, r(T ) = r is equal to the number of column strict shifted plane partitions
of class l − 1 with pd(C) = p,q(C) = q, r(C) = r, where the length of the first row
does not exceed n.

The case of no statistic was conjectured first by Behrend and then by Aigner. The
three statistics were conjectured independently by Behrend.
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The case n = 2, l = 4

Alternating sign trapezoids:
1 0 0 0 0 0

1 0 0 0
1 0 0 0 0 0

0 0 0 1
0 1 0 0 0 0

0 0 0 1
0 0 1 0 0 0

1 −1 0 1
(0,0,2) (0,0,1) (1,0,1) (0,0,1)

0 0 0 1 0 0
1 0 −1 1

0 0 0 0 1 0
1 0 0 0

0 0 0 0 0 1
1 0 0 0

0 0 0 0 0 1
0 0 0 1

(0,0,1) (0,1,1) (0,0,1) (0,0,0)

Column strict shifted plane partitions:

∅ 4 5 1 5 2 5 3 5 4 5 5 5 5
4

d = 1 (0,0,0) (0,0,1) (0,1,1) (1,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,2)
d = 2 (0,0,0) (0,0,1) (0,1,1) (0,0,1) (1,0,1) (0,0,1) (0,0,1) (0,0,2)
d = 3 (0,0,0) (0,0,1) (0,1,1) (0,0,1) (0,0,1) (1,0,1) (0,0,1) (0,0,2)

.
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