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I. Alternating sign matrices (ASMs)
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How many?

Alternating sign matrices = ASMSs

Square matrix with entries in {0,4+1} such

O O that in each row and each column
1 O
-1 1 e the non—zero entries appear with alter-
O O nating signs, and
1 O
e the sum of entries is 1.
n 1 2 3 4
O 1 O
(1) (é ?)(? é) 34+ |1 —1 1] |42
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Origin of ASMs: \—determinant

The Desnanot—Jacobi identity:

det det

det x det -det

det det

Charles L. Dodgson (Lewis Carroll) used this to devise an algorithm
for calculating determinants that required only 2 x 2 determinants.
(Condensation of determinants, 1866)
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3 x 3 determinants are expressible in terms of 2 x 2 determinants..
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SO are 4 x 4 determinants!
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David P. Robbins and Howard Rumsey, Jr. in the 1980s: What happens
if we generalize the definition of a 2 x 2 determinant to

a a
dety [ 11 "12 ) = aq1a00 4+ Aajoan;
az1 ano

and, furthermore, use the previous observations to generalize the nxn
determinant?

Theorem (Robbins and Rumsey, 1986). Let A = (a;;) be an n xn
matrix, ASM,, the set of n x n alternating sign matrices, then
B’L,j

dety(A) = > MEB@QLAHVNE) T o7,

BeASM,, i,j=1
where Z(B) the inversion number of B and N (B) the number of —1's
in B.



ASMSs in statistical physics

( O O 1 O \ H_I('{) H—I(|{) H—;—H (P')I_H
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1 —1 0 1 H—;)I—H I(:{) H—cl)H H—E—H

\ O 1 @) @) ) H—cl) H-0—H (l)—H (l)—H
ASM Square ice

The connection was established in 1992 by Elkies, Kuperberg, Larsen
and Propp. The tools (e.g.,Yang-Baxter equation) physicists had de-
veloped turned out to be very useful in the following.



ASMs and Bumpless Pipe Dreams

00 1 0 O v )
10 -1 1 0 Ve

01 0 -1 1 - A
00 1 0 O - ;
00 0 1 0 .

In 1982, Grothendieck polynomials have been introduced to study the
K-theory of the complete flag variety and they can be written as a
certain generating function of bumpless pipe dreams (as revealed by
Weigandt in 2020).
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T he number of n x n ASMS

Conjecture (Mills, Robbins, Rumsey 1980s). The number of n X n
alternating sign matrices is

114171 ... (3n — 2)! _”_1 (3i 4+ 1)! B

David Robbins, 1991: “These conjectures are of such compelling sim-
plicity that it is hard to know how any mathematician can bear the
pain of living without understanding why they are true.”

(13)
Ant1) _ 3(3n+2)(3n+4)

@ — 4(2n+1)(2n+3)

Double quotient:
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The conjecture was presented by David Robbins at an Oberwolfach workshop in
1982. Doron Zeilberger was in the audience:

“So Dave was the first (and as far as I know only) person to give two hour-talks at
the same Oberwolfach combinatorics meeting. I remember these talks like they were
given yesterday. They were definitely in the top ten talks that I have ever heard.
What is so captivating about Dave’s lecture style is that unlike the rest of us, that try
to state things in the most general setting (thereby completely obscuring the ideas),
Dave went the other way, and made things as concrete as possible and actually had
numbers in his talk, not general formulas. The formulas only came at the end, after
the ideas and concepts were internalized.”

e Zeilberger then provided the first proof of the conjecture in 1996. The paper has
84 pages and an army of “proof checkers” was required before the proof was believed
to be true.

e In the same year, Greg Kuperberg came up with another proof that is based on
techniques developed by physicists.

e About ten years later, I gave yet another proof. The most concise version (9 pages)
can be found in the 50th anniversary issue of JCT-A (2016).
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Symmetry classes of ASMs

8 symmetry classes; Robbins conjectured product formulas for 5% classes.

No symmetry

Zeilberger 1996

V~H

Kuperberg 2002

VY and H

Okada 2004

Rr

n even.
Kuperberg 2002
n odd:
Razumov &
Stroganov 2005

RT('/Q

n even:
Kuperberg 2002
n odd:
Razumov &
Stroganov 2005

Many cases were dealt with by Greg Kuperberg in his 2002 Ann. Math. paper.
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n | #

T [ 1

212

3|5

4 | 24

5| 67

6 | 24.23

7| 2-5.-263
8 | 23.11.277

All symmetries

n | #

T [ 1
210
311
410
5|1
6|0
712
8|0

9 | 22

10 | O

11 | 13

12 |0

13 | 2.23
14 | 0

15 | 23.31
16 | O

17 | 22.379

D and A
n | #
— 1 1
22
— 313
4 | 23
— 51 3-5
6 | 22.13
— 71 2.-32.7
8 | 23.71
— 9| 2.3%.11
10 | 22.2609
—» 11 | 33.112.13
12 | 23.31-1303
— 131 2-.-32.11-132.17

Behrend, F., and Konvalinka 2016; Robbins prize 20109.
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II. Cyclically symmetric lozenge tilings with
a central triangular hole
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What is a plane partition?

A plane partition in an a x b X ¢ box is a subset
PP C{1,2,...,a} x{1,2,...,b} x{1,2,...,¢}
with
(i,5,k) € PP = (i',5/,K'Y e PP V(' i K) < (,5,k).
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Cyclically symmetric plane partitions = CSPPs

An n X n X n plane partition PP is cyclically symmetric if

(i,5,k) € PP = (j,k,i) € PP.
In 1979, George Andrews proved that the number of n x n x n cyclically
symmetric plane partitions is
”ﬁl (3i 4 2)(3i)!
o (n4+dr

17



A determinant in Andrews’ proof

In his proof, Andrews shows that the number of CSPPs of order n is
given by the following determinant
1+
detp<; j<n—1 (5i,j‘|‘< . ))

1
and then proves that

4 =1 (3i 4 2)(30)!

T hen, probably out of curiousity, he also considered the following more
general determinant:

k+i+j)

1

detoéi,jén_l (52',]' —+ ( ) .= Dn(k)
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Dy (k) for small values of n
2

k+5
(k+4)(k+5)

%(k + 4)%(k 4+ 9)(k + 11)

5 (k+4)2(k + 6)(k + 9) (k + 11)?

(k+4)?(k+6)?(k+ 11)?(k + 13)(k + 15)(k + 17)
8640
(k4 4)2(k 4+ 6)2(k 4+ 8)(k + 10)(k + 11)(k + 13)(k + 15)?(k + 17)?
518400
(k+ 4)2(k+ 6)%(k 4+ 8)%(k 4+ 10)2(k + 15)2(k + 17)3(k + 19)(k + 21)(k + 23)
870912000

(k+4)2(k+6)%(k+ 8)2(k + 10)3(k + 12)(k + 15)(k + 17)3(k 4+ 19)2(k 4+ 21)2(k + 23)?

731566080000
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Double quotient:

Dn+_2(’f)) 3n4k41)(3n+k+3)(3n+k+5
(Dn+1(’<) _ (4(n+1)()2(n+k+1)()2(n+k+3)) n even
D11 (k) — ) (Bn+2k+1)(3n+2k+3)(3n+2k+5) n odd
(W) 4(n+k+1)(2n+k+1)(2n+k+3)

This can be used to derive a (conjectural) product formula for Dy (k).

Big surprise (Richard Stanley?):

n—1(3i 4+ 1)!
Dn(2) = @'1:—[0 (n + 4)!
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Combinatorial interpretation for D, (2)

Cyclically symmetric lozenge tiling of a hexagon with side lengths n+2,n,n4+2,n,n+
2,n with a central triangular hole of size 2.

To obtain the combinatorial interpretation for any k, replace 2 by k!
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Summary: Thereis the same number of nxn alternating sign matrices
as there is of cyclically symmetric lozenge tilings of a hexagon with side

lengths n 4+ 2,n,n + 2,n,n + 2,n with a central triangular hole of size
2.

Where is the bijection ?

Stanley 2009: “This is one of the most intriguing open problems in
the area of bijective proofs.”
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Two bijections (Fischer and Konvalinka, 2020)
ASM, = set of n x n ASMs
ASM,,; = subset of ASM,, of matrices (apq)1<pq<n With a1, =1

CSLT(2), = cyclically symmetric lozenge tilings of a hexagon with side lengths n4+2,n,n+2,n,n+2,n
with a central triangular hole of size 2.

CSLT(2),,; = subset of CSLT(2), of tilings with ¢ horizontal lozenges along the NW side.

We have constructed a bijection between the following sets:

CSLT(2)p-1 x ASM,,; — ASM,,_1 x CSLT (2)

e Once such a bijection is constructed, it follows that

| CSLT(2)n-1] - |ASMy, ;| = |ASM,,_1 | - | CSLT (2)1.4]-

e By induction, we can assume |CSLT(2),, 1| =|ASM, 1| and so |ASM,,;| = |CSLT(2),.].

e Summing this over all i implies | CSLT(2),| = |ASM,, |.
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Bijective Proof of the Product Formula

B, = set of (2n — 1)-subsets of [3n — 2] = {1,2,...,3n —2}; |B,| = (321?)

B, = set of elements of B, whose median is n+i—1; |B,;| = (”::2) (2’:1?1_1)
We have constructed a bijection between the following sets:
CSLT(2)n-1 X Bp1 Xx ASM,,; — CSLT(2)p—1 X ASM,,_1 X By
Then we also have a bijection
CSLT(2)p—1 X Bp1 Xx ASM,, — CSLT(2)p—1 X ASM,,_1 X By, .

Iterating this, we obtain a bijection

CSLT(2)o x --- X CSLT(2)p—1 X B11 X -+ X Bp1 X ASM,, —

CSLT(2)p x --- X CSLT(2)p—1 X B1 x - -+

X By, .
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CSLT(Q)Q X B3,1 X ASM3’2 — CSLT(Q)Q X ASMQ X B372
for z =0

Example

(0, 39,23456)

T

(0,49,13456)

?

(0,39,12456)

T

(2,49,12456)

T

(2,49,12457)

?

(2,4 9,12467)

T

(0,938,23457)

T

(0,98,13457)

T

(0,9 4,12457)

T

(2,98,13456)

T

(2,98,13457)

T

(2,98,13467)

g
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The python code is available at https://www.fmf.uni-1j.si/~konvalinka/asmcode.html.
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Our approach
We translate some non-bijective (“computational’”’) proofs into combinatorics!

All arithmetic operations accept for division can be “modelled” : Addition through
disjoint unions, subtraction through signed sets, multiplication through Cartesian
products.

The fact that we cannot deal with division explains the “redundant” factors in
our bijections.

In the original proofs, signs are unavoidable and this makes it necessary to work
with signed sets.

Is there a non-bijective proof that avoids signs? Is there a bijective proof that
avoids signed sets (and can this proof be translated into a simpler computation)?
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Sijections

A signed set is a pair of disjoint finite sets: S = (ST,57) with STnhS— =
@. The size of a signed set S is |S| = |ST| —|57|.

The role of bijections for signed sets is played by ‘“signed bijections’,
which we call sijections: A sijection ¢ from S to 7, ¢: S = 7', is an
involution on the set (STUS ) LU(TTUT ) with p(STUT ) = S LT,

S+
T+
-
.
This implies: S| = [T —[S 7| = [T~ |T"| = |T]|
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Composition of sijections

Suppose S,7, U are signed sets and ¢ : S = 7', v T = U, then we
can construct a sijection v oy : S — U by alternating applications of ¢
(solid lines) and ¢ (dashed lines) as sketched next.

.
o T~ T+ P U+
/>><\ \ -]
_ T— i U~
-
The special case S = U~ = () is the Garsia-Milne involution princi-

ple.
29



III. Totally symmetric self-complementary
plane partitions (TSSCPPs)
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It was again David Robbins who introduced this

Equal to its complement in the 2n x 2n x 2n box
new operation of complementation.

(i,5,k) € PP = o(i,7,k) € PP Vo € S3
(MacMahon 1899, 1915/16)

e Totally symmetric:
e Self-complementary:

L 7 L AN N S NN NN

NN AN NN 7NN N N NN N/
’ N N

SIS 0"" “0“0""00"00"00“00‘0
OO AL A=A K

.0’0.0’ "0..00. O, ﬁ’%

Totally symmetric self-complementary plane partitions

NANNNNN /777
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Another surprise!

n—1 :
The number of TSSCPPs in a 2n x 2n x 2n box is (again) ] ((37;::_’21))"
i=0 '

Conjectured by Mills, Robbins and Rumsey in 1986, proved by Andrews
in 1994.

Where are the bijections ?
o ... between TSSCPPs and ASMs.

o ... between TSSCPPs and cyclically symmetric lozenge tilings of a
hexagon with a central triangular hole of size 2.
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Magog triangles

33

e the entries in the :-th diagonal, counted from the

e the entries increase weakly along 7-diagonals,
left, are bounded by 1.

© e the entries increase weakly along \,-diagonals, and

Triangular arrays of positive integers such that

L7 L L AN N SN NN

Y, NN

SO 42 SIS SR (==Y
SEOELPESIEEEIE LK
R O R R AR
SRR TP RPN
LSS IR0
CINNN N INNN 7 INN .“
S

TSSCPPs and triangular arrays of numbers

NAIANNSNNN /777




ASMs and triangular arrays of numbers

O 1 0 0 O O 1 0 0 O 2

1 -1 0 1 O 1 0 0 1 O 1 4

O 1 0 -1 1 | = 1 1 0 0 1 |= 1 2 5
O O 1 0 O 1 1 1 0 1 1 2 3

O O O 1 O 1 1 1 1 1 1 2 3 4

Z X
e Monotonicity requirements:
=

e Bottom row: 1,2,...,n.

— Gog triangles (or monotone triangles).
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Generalization: Gog trapezoids

(n, k)-Gog trapezoid: arrangement of positive integers of the following form

[ ] [ ]
° ° ° n = number of rows =7
° ° ° ° ]
. . . . . k = number of ~-diagonals =5
[ ] [ ] [ ] [ ] [ ]
o o o o o

such that

e /- and \-diagonals are weakly increasing,

e rows are strictly increasing,

e entries in the i-th \~diagonal are bounded from above by i.

n = k. Gog triangles
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Example: (7,5)-Gog trapezoid
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Generalization: Magog trapezoids

(n,k)-Magog trapezoid: arrangement of positive integers of the following form

o o
° ° ° n = number of rows =7
¢ ¢ ¢ ¢ k = number of \,-diagonals =5
o o o [ ] o
o o o o o
® ® ® ® ®

such that
e - and \-diagonals are weakly increasing,

e entries in the ¢-th ~-diagonal are bounded from above by .

n = k. Magog triangles
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Example: (7,5)-Magog trapezoid

38



Generalized conjecture

Conjecture (Mills, Robbins, Rumsey, 1986). There is the same number
of (n, k)-Gog trapezoids as there is of (n, k)-Magog trapezoids.

e Zeilberger actually proved this conjecture. His proof is non-bijective
and involves complicated computations.

e Kuperberg “only"” provided a (non-bijective) proof for the special case

n =%k.
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Statistics on Gogs and Magogs
(n, k)-Gog trapezoids:
e A minimum is an entry equal to 1.

e A maximum is an entry in the k-th “-diagonal that is equal to the upper bound
for the entries in its \,diagonal.

(n, k)-Magog trapezoids:
e A minimum is an entry equal to 1 that is located in the leftmost \-diagonal.

e A maximum is an entry in the rightmost \,-diagonal that is equal to the upper
bound for the entries in its ~-diagonal.
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Gog:

Example

Magog:
1
5 1
5 1 1
5 §) 1 1
§) 1 2
5 2

Minima and Maxima
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Refined generalized conjecture

Conjecture (Mills, Robbins, Rumsey, 1986). The number of (n,k)-
Gog trapezoids with p minima and ¢ maxima is equal to the number
of (n,k)-Magog trapezoids with p maxima and ¢ minima.

Where is the bijection that switches the number of maxima
and minima ?

e SO far there is not even a ‘“‘computational” proof of this conjecture.

e In a recent article, I have provided constant term formulas for the
quantities involved. To prove the conjecture, it would suffice to show
that the constant terms of two expressions are the same.
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Krattenthaler’s additional parameter m

(m,n,k)-Gog trapezoid: arrangement of positive integers of the following form

o o
° ° ° n = number of rows =7
° ° ° ° _
o o o o o k = number of ~-diagonals =5
o o o o o
o o o o o

such that
e - and \~diagonals are weakly increasing,
e rows are strictly increasing,

e entries in the i-th \-diagonal are bounded from above by m + 1.
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(m,n,k)-Magog trapezoid: arrangement of positive integers of the following form

o o
° ° ° n = number of rows =7
¢ ¢ ¢ ¢ k = number of \,-diagonals =5
o o o o o
o o o o o
® @ o @ @

such that
e - and \-diagonals are weakly increasing,

e entries in the ¢-th ~-diagonal are bounded from above by m + <.
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Generalization of the refined generalized conjecture

Conjecture (Krattenthaler, 1997). The number of (m,n, k)-Gog trapezoids with p
minima and ¢ maxima is equal to the number of (m,n, k)-Magog trapezoids with p
maxima and g minima.

e For k=1, it is not difficult to find a bijection that switches the number of maxima
and minima.

e 2011: Biane and Chebellah provided an explicit bijection for m = 0 and k = 2.
e 2015: Bettinelli presented another explicit bijection for m = 0 and k = 2.
e T he parameter m can also be included in my constant term formulas.

e 2014: Biane and Chebellah found further exciting conjectures.
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IV. Alternating sign triangles
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Alternating sign triangles =ASTSs

An AST of order n is a triangular array of 1's, —1's and 0's with n centered rows

such that
(1) the non-zero entries alternate in each row and each column,
(2) all row sums are 1, and

(3) the topmost non-zero entry of each column is 1 (if such an entry exists).
Example:

Theorem (Ayyer, Behrend, and F., 2016). There is the same number of n x n ASMs
as there is of ASTs with n rows.

a7



Back to Andrews’ determinant

Dn(k) = deto< j<n—1 (5@9' T <k +§ ' ]>>

Recall:

e D,(2) is the number of n x n ASMs as well as the number of ASTs
with n rows.

e Dy(k) is the number of cyclically symmetric lozenge tilings of a
hexagon with central triangular hole of size k.

Is there a combinatorial realization of D,(k) in terms of
ASM-like objects 7
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Alternating sign trapezoids

Forn>1,1> , an (n,l)-alternating sign trapezoid is an array of 1's, —1's and 0’'s
with n centered rows and [ elements in the bottom row, arranged as follows

such that the following conditions are satisfied.

(1) In each row and column, the non-zero entries alternate.
(2) All row sums are 1.

(3) The topmost non-zero entry in each column is 1.

(4) The column sums are 0 for the middle [ — 2 columns.

“Can be extended to [ = 1.
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Example

A (5,4)-alternating sign trapezoid.

co0ooo0oo o o0 1 0 00O
O o000 1 0 -1 1 0O
c10 -1 0 1 —-11

oo o 1 -1 1
1 0 -1 1

ASTs with n rows are (n — 1,3)-alternating sign trapezoids. (Delete
the bottom row.)
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Alternating sign trapezoids and cyclically symmetric lozenge
tilings of a holey hexagon

Theorem (Behrend, F. 2018). There is the same number of (n,[)-alternating sign
trapezoids as there is of cyclically symmetric lozenge tilings of a hexagon with side
lengths n4+1—-1,n,n+1—1,n,n+1— 1,n that has a central triangular hole of size
[—1.

N\ 7T

ST 77NN

AV
O
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Thank youl
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T hree statistics on alternating sign trapezoids
e A 1-column is a column with sum 1.
e A 10-column is a 1-column whose bottom element is O.
Simple fact: An (n,l)-alternating sign trapezoid has n 1-columns

The statistics on (n,l)-alternating sign trapezoids T

p(T) = # of 10-columns among the n leftmost columns,
a(T) = # of 10-columns among the n rightmost columns,
r(T) = # of 1-columns among the n leftmost columns.

In the example above, we have p(T) =1,a(T) = 0,r(T) = 2.
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Column strict shifted plane partitions of a fixed class aka
CSLTs with a central triangular hole

With each strict partition (= partition with distinct parts), we associate a shifted Ferrers diagram.
The shifted Ferrers diagram of (5,4,2,1) is

A column strict shifted plane partition is a filling of a shifted Ferrers diagram with positive integers
such that the rows are weakly decreasing and the columns are strictly decreasing.

Example.

OO
N OO
=W

A column strict shifted plane partition is of class k if the first part of each row exceeds the length of
the row by precisely k.

It is easy to construct a bijection between column strict shifted plane partitions of class k& where the
length of the top row does not exceed n and CSLTs with a central triangular whole of size k.
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Three statistics on column strict shifted plane

partitions

For d € {1,...,k} and a column strict shifted plane partition C of class k, we define

pgs(C) = # of parts j — i+ d where 7 is the row and j is the column,
a(C) = # of 1's,
r(C) = # of rows.

In the example above, we have p;(C) =1,q(C) =1,r(C) = 3.
Theorem (F. 2018). The number of (n,l)-alternating sign trapezoids T with p(T) =
p,d(T) = q,r(T) = r is equal to the number of column strict shifted plane partitions

of class [ — 1 with py(C) = p,a(C) = q,r(C) = r, where the length of the first row
does not exceed n.

The case of no statistic was conjectured first by Behrend and then by Aigner. The
three statistics were conjectured independently by Behrend.

55



Thecasen=2,l=4

Alternating sign trapezoids:

O
oo

0O

— O

O
oo
OOO./

oo

oo
oo«

OO

o

1

o
oo ©

OO

oo

oYe)

oo™

OOO:
N

o

— O
oo™
OOO:

N

o

Column strict shifted plane partitions:

(0,0,2)

(0,0,1)

(0,0,1) | (0,0,1) [ (0,0,2) .
(0,0,1) [ €(0,0,1) | (0,0,2)

(1,0,1)

(0,0,1)
(1,0,1)
(0,0,1)

(1,0,1)
(0,0,1)
(0,0,1)

(0,1,1)
(0,1,1)
(0,1,1)

(0,0,0) | (0,0,1)

(0,0,0) | (0,0,1)

(0,0,0) [ (0,0,1)

d=1

d=72

d=3
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