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I. Introduction: Four types of objects

counted by 1!4!7!···(3n−2)!
n!(n+1)!···(2n−1)!
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Alternating sign matrices = ASMs
0 1 0 0 0
1 -1 0 1 0
0 1 0 -1 1
0 0 1 0 0
0 0 0 1 0


Square matrix with entries in {0,±1} such that in
each row and each column

• the non–zero entries appear with alternating
signs, and

• the sum of entries is 1.

How many?
n 1 2 3 4

(1)
(

1 0
0 1

)
,

(
0 1
1 0

)
3! +

(
0 1 0
1 −1 1
0 1 0

)
42

Conjecture (Mills, Robbins, Rumsey 1980s). The number of n× n alternating sign matrices is

1!4!7! · · · (3n− 2)!

n!(n+ 1)! · · · (2n− 1)!
=

n−1∏
i=0

(3i+ 1)!

(n+ i)!
=: An.

Zeilberger gave the first proof (of a generalization including an additional parameter) in 1996. Ku-
perberg gave another proof (of the special case), using methods from statistical physics such as the
Yang-Baxter equation.
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Descending Plane Partitions = DPPs
• A strict partition is a partition λ = (λ1, . . . , λl) with distinct parts, i.e., λ1 > λ2 > . . . > λl > 0. The
shifted Young diagram of shape (5,3,2) is as follows.

• A column strict shifted plane partition is a filling of a shifted Young diagram with positive integers
such that rows decrease weakly and columns decrease strictly.

6 6 5 5 2

5 4 4

3 1
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• A DPP is such a column strict shifted PP where the first part in each row is greater than the length
of its row and less than or equal to the length of the previous row.

• Krattenthaler (2003) showed that they can be viewed as cyclically symmetric lozenge tilings of a
hexagon with central triangular hole of size 2.

7

7

6

6

3

6

5

5

1

4

2

• DPPs with parts no greater than 3: ∅, 2 , 3 , 3 1 , 3 2 , 3 3 ,
3 3

2

Theorem (Andrews 1979). The number of DPPs with parts no greater than n is (also)
n−1∏
i=0

(3i+1)!
(n+i)!

.

• In 2013 Behrend, Di Francesco and Zinn-Justin proved for quadruples of statistics on ASMs and on
DPPs, respectively, that they have the same joint distribution (for certain “sub”-triples of statistics,
this was already conjectured by Mills, Robbins and Rumsey 30 years earlier).

• Recently, Matjaž Konavlinka and I have constructed a (complicated) bijection between ASMn×DPPn−1

and ASMn−1×DPPn. It involves the involution principle.
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Totally symmetric self-complementary plane partitions =

TSSCPPs

a = 4, b = 3, c = 5

A plane partition in an a× b× c box is a subset

PP ⊆ {1,2, . . . , a} × {1,2, . . . , b} × {1,2, . . . , c}

with

(i, j, k) ∈ PP ⇒ (i′, j′, k′) ∈ PP ∀(i′, j′, k′) ≤ (i, j, k).

• Totally symmetric:
(i, j, k) ∈ PP ⇒ σ(i, j, k) ∈ PP ∀σ ∈ S3

(MacMahon 1899, 1915/16)

• Self-complementary:
Equal to its complement in the 2n× 2n× 2n box
(Mills, Robbins and Rumsey 1986)

Theorem (Andrews 1994). The number of TSSCPPs in a 2n× 2n× 2n box is (again)
n−1∏
i=0

(3i+1)!
(n+i)!

.
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Alternating sign triangles =ASTs
An AST of order n is a triangular array of 1’s, −1’s and 0’s with n centered rows

• • • • • • •
• • • • •
• • •
•

such that

(1) the non-zero entries alternate in each row and each column,

(2) all row sums are 1, and

(3) the topmost non-zero entry of each column is 1 (if such an entry exists).

Example:

0 0 1 0 0 0 0
1 −1 1 0 0

1 −1 1
1

Theorem (Ayyer, Behrend, and F., 2020). The number of ASTs with n rows is (again)
n−1∏
i=0

(3i+1)!
(n+i)!

.
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II. Arrowed monotone triangles
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ASMs −→ monotone triangles

 0 1 0 0 0
1 -1 0 1 0
0 1 0 -1 1
0 0 1 0 0
0 0 0 1 0

 ⇒

 0 1 0 0 0
1 0 0 1 0
1 1 0 0 1
1 1 1 0 1
1 1 1 1 1

 ⇒

2
1 4

1 2 5
1 2 3 5

1 2 3 4 5

• A monotone triangle is a triangular array of integers with weak increase along ↗- and ↘-diagonals,
and strict increase along rows.

• Monotone triangles with bottom row 1,2, . . . , n are in easy bijective correspondence with n×n ASMs.

• Arrowed monotone triangles are monotone triangles where each entry is “decorated” with either
↖,↗ or ↖↗ such that two conditions are satisfied for each entry e:

• If e is equal to its ↖-neighbor, e must not carry ↖,↖↗ (and therefore carries ↗).

• If e is equal to its ↗-neighbor, e must not carry ↗,↖↗ (and therefore carries ↖).

In other words: an arrow indicates a non-zero difference !
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Arrowed monotone triangle
Example:

↗
4

↖↗
2

↖
5

↖
2

↗
3

↗
5

↗
1

↖
3

↖↗
4

↗
6

↖
1

↗
2

↗
3

↖
5

↗
6

↖
1

↖
2

↖
3

↖↗
4

↗
5

↗
6

We associate the following weight to an arrowed monotone triangle with n rows,

u#↗v#↖w#↖↗
n∏
i=1

X(sum of entries in row i)−(sum of entries in row i− 1)+(#↗in row i)−(#↖in row i)
i

where the sum of entries in row 0 is defined to be 0. In our example, we obtain

u10v8w3X5
1X

2
2X

4
3X

5
4X

4
5X

3
6 .

The exponents of the u, v, w,X1, . . . , Xn are the n+ 3 statistics from the title...
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Remark: Analogy with Schur polynomials
• A Gelfand-Tsetlin pattern is a triangular array (of the same shape as monotone triangles) with weak
increase along ↗- and ↘-diagonals (i.e., we drop the condition on the strict increase along rows).

• We associate the following weight to Gelfand-Tsetlin patterns:

n∏
i=1

X(sum of entries in row i)−(sum of entries in row i− 1)
i

• The Schur polynomial s(λ1,...,λl)(X1, . . . , Xn) is the generating function of Gelfand-Tsetlin patterns
with bottom row

(0n−l, λl, λl−1, . . . , λ1)
and with respect to the weight just defined.
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Arrowed monotone triangles with bottom row (1,2)

In the following, we use ↖e↗ instead of ↖↗
e

in our arrowed monotone triangles.

AMT W SBCSPP AMT W SBCSPP

↖1
↖1 ↖2

v3 ∅ ↖2
↖1↗ 2↗

uvwX1X2
2

2 2

1

↖1↗
↖1 ↖2

v2wX1
1 ↖1↗

↖1 2↗
uvwX1X2

2

2,1 1

1↗
↖1 ↖2

uv2X2
1

1 1 2↗
↖1 2↗

u2vX3
1X2

2 1 1

1

↖1
↖1 ↖2↗

v2wX2
2 ↖2↗

↖1↗ 2↗
uw2X2

1X
2
2

2 2

1 1

↖2
↖1 2↗

uv2X1X2
2 1 1↗

↖1 2↗
u2vX2

1X
2
2

2 2 1

1

↖1↗
↖1 ↖2↗

vw2X1X2
2,1 2↗

↖1↗ 2↗
u2wX3

1X
2
2

2 2 1

1 1

↖1
↖1 2↗

uv2X2
2

2 2 ↖2
1↗ 2↗

u2vX1X3
2

2 2 2

1

↖2↗
↖1 2↗

uvwX2
1X2

2 1

1

↖2↗

1↗ 2↗
u2wX2

1X
3
2

2 2 2

1 1

1↗
↖1 ↖2↗

uvwX2
1X2

2,1 1 2↗

1↗ 2↗
u3X3

1X
3
2

2 2 2

1 1 1
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Arrowed monotone triangles with bottom row (1,2,3)

∗1∗
↖1 ∗2∗

↖1 ↖2 ∗3∗
v3X1X2X3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

∗1∗
↖1 ∗3∗

↖1 ∗2∗ 3↗
uv2X1X

2
2X

2
3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

∗2∗
∗1∗ 2↗

↖1 ↖2 ∗3∗
uv2X2

1X
2
2X3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

∗2∗
∗1∗ ∗3∗

↖1 ∗2∗ 3↗
uvX2

1X
2
2X

2
3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)2(uX3 + vX−1

3 + w)

∗2∗
↖2 ∗3∗

∗1∗ 2↗ 3↗
u2vX2

1X
2
2X

3
3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

∗3∗
∗1∗ 3↗

↖1 ∗2∗ 3↗
u2vX3

1X
2
2X

2
3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

∗3∗
∗2∗ 3↗

∗1∗ 2↗ 3↗
u3X3

1X
3
2X

3
3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)
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III. Set-valued balanced column strict plane

partitions (SBCSPPs)
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Almost self-conjugate partitions
Balanced shapes with at most 3 rows:

∅, , , , , , , , , ,

, , , , , , ,

, , ,
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Definition of balanced shapes
Let λ = (a1, . . . , al|b1, . . . , bl) be a partition in Frobenius notation, i.e., ai is the number of cells right of
the diagonal cell (i, i) in the same row, while bi is the number of cells below (i, i) in the same column.
We say that λ is balanced if, for all i, either ai = bi or ai = bi + 1. The weight is

W(λ) = wl+
∑l
i=1(bi−ai).

Example:

• • • • • • •

• • • • •

• • • •

• • •

• • •

• •

•
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Set-valued balanced column strict plane partitions
A set-valued balanced column strict plane partition (SBCSPP) D of shape λ and order n is a
filling of a balanced shape with non-empty subsets of {1,2, . . . , n} such that strictly above the diagonal
the subsets are singletons, and

1. rows decrease weakly in the sense that the maxima of the sets form a decreasing sequence if
read from left to right, and

2. columns decrease strictly in the sense that for two adjacent cells in a column, all elements in
the top cell are strictly greater than all elements in the bottom cell.

The weight of D is as follows

W(D) = W(λ) · u#of cells strictly above the main diagonal · v(n+1
2 )−#of entries on and below the main diagonal

· w#of entries−#of cells ·
n∏
i=1

X# of i in D
i .

Again: The exponents of the u, v, w,X1, . . . , Xn are the n+ 3 statistics from the title...
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Example:

8 8 8 7 7 6 4 1

7 7 7 6 5 5

6 6 5 4 4 4

5 4 3 3,2 3 2

3 2 2,1 1

2 1

1

Letting n = 9, the weight is

u16v26w3X5
1X

5
2X

4
3X

5
4X

4
5X

4
6X

5
7X

3
8 .
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The case n = 2

AMT W SBCSPP AMT W SBCSPP
↖1

↖1 ↖2 v3 ∅ ↖2
↖1↗ 2↗ uvwX1X

2
2

2 2

1

↖1↗
↖1 ↖2 v2wX1

1 ↖1↗
↖1 2↗ uvwX1X

2
2

2,1 1

1↗
↖1 ↖2 uv2X2

1
1 1 2↗

↖1 2↗ u2vX3
1X2

2 1 1

1

↖1
↖1 ↖2↗ v2wX2

2 ↖2↗
↖1↗ 2↗ uw2X2

1X
2
2

2 2

1 1

↖2
↖1 2↗ uv2X1X2

2 1 1↗
↖1 2↗ u2vX2

1X
2
2

2 2 1

1

↖1↗
↖1 ↖2↗ vw2X1X2

2,1 2↗
↖1↗ 2↗ u2wX3

1X
2
2

2 2 1

1 1

↖1
↖1 2↗ uv2X2

2
2 2 ↖2

1↗ 2↗ u2vX1X
3
2

2 2 2

1

↖2↗
↖1 2↗ uvwX2

1X2
2 1

1

↖2↗

1↗ 2↗ u2wX2
1X

3
2

2 2 2

1 1

1↗
↖1 ↖2↗ uvwX2

1X2
2,1 1 2↗

1↗ 2↗ u3X3
1X

3
2

2 2 2

1 1 1
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IV. The main result
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Theorem. The generating function of arrowed monotone triangles

with bottom row 1,2, . . . , n is equal to the generating function of set-

valued balanced column-strict plane partitions with parts in {1,2, . . . , n}.

But why should we care?
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The case n = 3

Multiplicity 1:
AMT W SBCSPP AMT W SBCSPP
↖1

↖1 ↖2
↖1 ↖2 ↖3

v6 ∅
↖1↗

↖1 ↖2
↖1 ↖2 ↖3

v5wX1
1

1↗
↖1 ↖2

↖1 ↖2 ↖3
uv5X2

1

1 1
↖1

↖1 ↖2↗
↖1 ↖2 ↖3

v5wX2
2

↖1↗
↖1 ↖2↗

↖1 ↖2 ↖3
v4w2X1X2

21
↖1

↖1 2↗
↖1 ↖2 ↖3

uv5X2
2

2 2

1↗
↖1 2↗

↖1 ↖2 ↖3
u2v4X2

1X
2
2

2 2 1

1

↖1
↖1 ↖2

↖1 ↖2 ↖3↗
v5wX3

3

↖1↗
↖1 ↖2

↖1 ↖2 ↖3↗
v4wX1X3

31
↖1

↖1 ↖2↗
↖1 ↖2 ↖3↗

v4w2X2X3
32

↖1↗
↖1 ↖2↗

↖1 ↖2 ↖3↗
v3w3X1X2X3

321
↖1

↖1 ↖2
↖1 ↖2 3↗

uv5X2
3

3 3

1↗
↖1 ↖2

↖1 ↖2 3↗
u2v4X2

1X
2
3

3 3 1

1

↖1
↖1 2↗

↖1 ↖2 3↗
u2v4X2

2X
2
3

3 3 2

2
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AMT W SBCSPP AMT W SBCSPP
↖1

↖1 ↖3
↖1 ↖2 3↗

uv5X2X3
3 2

↖1
↖1 3↗

↖1 ↖2 3↗
u2v4X3

2X3
3 2 2

2
↖1

↖1 ↖3↗
↖1 ↖2↗ 3↗

uv3w2X2
2X

2
3

3 3

2 2

↖1
↖1 3↗

↖1 ↖2↗ 3↗
uv3wX3

2X
2
3

3 3 2

2 2
↖1

↖1 ↖3
↖1 ↖2↗ 3↗

u2v4X2X
3
3

3 3 3

2

↖1
↖1 ↖3↗

↖1 ↖2↗ 3↗
u2v3wX2

2X
3
3

3 3 3

2 2
↖1

↖1 3↗
↖1 ↖2↗ 3↗

u3v3X3
2X

3
3

3 3 3

2 2 2

AMT W SBCSPP AMT W SBCSPP
↖2

↖1 2↗
↖1 ↖2 ↖3

uv5X1X2
2 1

2↗
↖1 2↗

↖1 ↖2 ↖3
u2v4X3

1X2
2 1 1

1
↖2↗

↖1↗ 2↗
↖1 ↖2 ↖3

uv3w2X2
1X

2
2

2 2

1 1

2↗
↖1↗ 2↗

↖1 ↖2 ↖3
u2v3wX3

1X
2
2

2 2 1

1 1
↖2

1↗ 2↗
↖1 ↖2 ↖3

u2v4X1X
3
2

2 2 2

1

↖2↗

1↗ 2↗
↖1 ↖2 ↖3

u2v3wX2
1X

3
2

2 2 2

1 1

2↗

1↗ 2↗
↖1 ↖2 ↖3

u3v3X3
1X

3
2

2 2 2

1 1 1
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AMT W SBCSPP AMT W SBCSPP
↖2

↖1 ↖3
↖1 ↖2 3↗

uv5X1X3
3 1

2↗
↖1 ↖3

↖1 ↖2 3↗
u2v4X3

1X3
3 1 1

1
↖2↗

↖1 ↖3
↖1 ↖2↗ 3↗

uv3w2X2
1X

2
3

3 3

1 1

2↗
↖1 ↖3

↖1 ↖2↗ 3↗
u2v3wX3

1X
2
3

3 3 1

1 1
↖2

↖1 ↖3
↖1 2↗ 3↗

u2v4X1X
3
3

3 3 3

1

↖2↗
↖1 ↖3

↖1 2↗ 3↗
u2v3wX2

1X
3
3

3 3 3

1 1

2↗
↖1 ↖3

↖1 2↗ 3↗
u3v3X3

1X
3
3

3 3 3

1 1 1

AMT W SBCSPP
↖2↗

↖1↗ ↖3↗
↖1 ↖2↗ 3↗

uvw4X2
1X

2
2X

2
3

3 3

21 21
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AMT W SBCSPP AMT W SBCSPP
↖2

1↗ 3↗
↖1 ↖2 3↗

u3v3X1X
4
2X3

3 2 2 2

2

1

↖2↗

1↗ 3↗
↖1 ↖2 3↗

u3v2wX2
1X

4
2X3

3 2 2 2

2 1

1

2↗

1↗ 3↗
↖1 ↖2 3↗

u4v2X3
1X

4
2X3

3 2 2 2

2 1 1

1

↖2
1↗ 3↗

↖1 ↖2↗ 3↗
u3v2wX1X

4
2X

2
3

3 3 2 2

2 2

1
↖2↗

1↗ 3↗
↖1 ↖2↗ 3↗

u3vw2X2
1X

4
2X

2
3

3 3 2 2

2 21

1

↖2
1↗ 3↗

↖1 2↗ 3↗
u4v2X1X

4
2X

3
3

3 3 3 2

2 2 2

1

2↗

1↗ 3↗
↖1 2↗ 3↗

u5vX3
1X

4
2X

3
3

3 3 3 2

2 2 2 1

1 1

AMT W SBCSPP AMT W SBCSPP
↖2

↖2 ↖3
1↗ 2↗ 3↗

u3v3X1X2X
4
3

3 3 3 3

2

1

↖2↗
↖2 ↖3

1↗ 2↗ 3↗
u3v2wX2

1X2X
4
3

3 3 3 3

2 1

1

2↗
↖2 ↖3

1↗ 2↗ 3↗
u4v2X3

1X2X
4
3

3 3 3 3

2 1 1

1

↖2
↖2 ↖3↗

1↗ 2↗ 3↗
u3v2wX1X

2
2X

4
3

3 3 3 3

2 2

1
↖2↗

↖2 ↖3↗

1↗ 2↗ 3↗
u3vw2X2

1X
2
2X

4
3

3 3 3 3

2 21

1

↖2
↖2 3↗

1↗ 2↗ 3↗
u4v2X1X

3
2X

4
3

3 3 3 3

2 2 2

1

2↗
↖2 3↗

1↗ 2↗ 3↗
u5vX3

1X
3
2X

4
3

3 3 3 3

2 2 2 1

1 1
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AMT W SBCSPP AMT W SBCSPP
3↗

↖1 3↗
↖1 ↖2 3↗

u3v3X4
1X2X3

3 1 1 1

2

1

3↗
↖1↗ 3↗

↖1 ↖2 3↗
u3v2wX4

1X
2
2X3

3 2 1 1

2 1

1

3↗

1↗ 3↗
↖1 ↖2 3↗

u4v2X4
1X

3
2X3

3 2 2 1

2 1 1

1

3↗
↖1 3↗

↖1 ↖2↗ 3↗
u3v2wX4

1X2X
2
3

3 3 1 1

2 1

1

3↗
↖1↗ 3↗

↖1 ↖2↗ 3↗
u3vw2X4

1X
2
2X

2
3

3 3 1 1

2 21

1

3↗
↖1 3↗

↖1 2↗ 3↗
u4v2X4

1X2X
3
3

3 3 3 1

2 1 1

1

3↗

1↗ 3↗
↖1 2↗ 3↗

u5vX4
1X

3
2X

3
3

3 3 3 2

2 2 1 1

1 1
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AMT W SBCSPP AMT W SBCSPP
3↗

↖2 3↗
↖1 2↗ 3↗

u4v2X4
1X

2
2X

2
3

3 3 2 1

2 1 1

1

↖3
2↗ 3↗

↖1 2↗ 3↗
u4v2X2

1X
4
2X

2
3

3 3 2 2

2 2 1

1

3↗

2↗ 3↗
↖1 2↗ 3↗

u5vX4
1X

4
2X

2
3

3 3 2 2

2 2 1 1

1 1

↖3↗
↖2↗ 3↗

↖1↗ 2↗ 3↗
u3w3X3

1X
3
2X

3
3

3 3 3

2 2 2

1 1 1

3↗
↖2↗ 3↗

↖1↗ 2↗ 3↗
u4w2X4

1X
3
2X

3
3

3 3 3 1

2 2 2

1 1

↖3↗

2↗ 3↗
↖1↗ 2↗ 3↗

u4w2X3
1X

4
2X

3
3

3 3 3 2

2 2 2

1 1 1

3↗

2↗ 3↗
↖1↗ 2↗ 3↗

u5wX4
1X

4
2X

3
3

3 3 3 2

2 2 2 1

1 1 1

↖3
↖2 3↗

1↗ 2↗ 3↗
u4v2X2

1X
2
2X

4
3

3 3 3 3

2 2 1

1

3↗
↖2 3↗

1↗ 2↗ 3↗
u5vX4

1X
2
2X

4
3

3 3 3 3

2 2 1 1

1 1

↖3↗
↖2↗ 3↗

1↗ 2↗ 3↗
u4w2X3

1X
3
2X

4
3

3 3 3 3

2 2 2

1 1 1

3↗
↖2↗ 3↗

1↗ 2↗ 3↗
u5wX4

1X
3
2X

4
3

3 3 3 3

2 2 2 1

1 1 1

↖3
2↗ 3↗

1↗ 2↗ 3↗
u5vX2

1X
4
2X

4
3

3 3 3 3

2 2 2 2

1 1
↖3↗

2↗ 3↗

1↗ 2↗ 3↗
u5wX3

1X
4
2X

4
3

3 3 3 3

2 2 2 2

1 1 1

3↗

2↗ 3↗

1↗ 2↗ 3↗
u6X4

1X
4
2X

4
3

3 3 3 3

2 2 2 2

1 1 1 1

In total: 71
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The case n = 3
Multiplicity 2: . . .31 . . .

Multiplicity 3: . . .6 . . .

Multiplicity 4: . . .14 . . .

Multiplicity 5: . . .6 . . .

Multiplicity 6:

AMTs W SBCSPPs
1↗

↖1 ↖3↗
↖1 ↖2↗ 3↗

↖2↗
↖1↗ 2↗

↖1 ↖2 3↗
u2v2w2X2

1X
2
2X

2
3

3 3 1

21 2
,

32 3 2

1 1
↖2↗

↖1 3↗
↖1 ↖2↗ 3↗

↖2↗

1↗ ↖3
↖1 ↖2↗ 3↗

3 3 1

2 21
,

3 3 2

21 1
↖2↗

↖2 ↖3↗
↖1 2↗ 3↗

↖3
↖1↗ 3↗

↖1 ↖2↗ 3↗

3 3 1

2 2

1

,
3 3 2

2 1

1
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V. Specializing to the ASM-DPP case

30



Specializing arrowed monotone triangles
Claim: When setting u = v = 1, w = −1 and (X1, . . . , Xn) = (1, . . . ,1) in the generating function
of arrowed monotone triangles with bottom row (k1, . . . , kn), we obtain the number of monotone
triangles with bottom row (k1, . . . , kn).

What do we need to do?

• For a given arrowed monotone triangle, let (−1)#↖↗ be its sign.

• We identify a set of positive arrowed monotone triangles that are in bijective correspondence with
monotone triangles.

• On the remaining set of arrowed monotone triangles, we define a sign-reversing involution.
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• In an (arrowed) monotone triangle, an entry is said to be free, if it is different from its ↖-neighbour
and its ↗-neighbour. In the example, the free entries are indicated in green.

4↗
↖2↗ ↖5

↖2 3↗ 5↗

1↗ ↖3 ↖4↗ 6↗
↖1 2↗ 3↗ ↖5 6↗

↖1 ↖2 ↖3 ↖4↗ 5↗ 6↗

• Free entries can be decorated with ↖,↗ or ↖↗, for all other entries, there is a unique choice (either
↖ or ↗).

• The set of positive arrowed monotone triangles that correspond to monotone triangles is a follows:
In a monotone triangle, decorate all free entries with ↖ and all other entries with the unique eligible
element in {↖,↗}.

• We have the following sign-reversing involution on the remaining arrowed monotone triangles:
Take the topmost and leftmost free entry that is not decorated with ↖. Change its decoration from
↗ to ↖↗, or vice-versa. This clearly changes the sign.
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Specializing SBCSPPs
Claim: When setting u = v = 1, w = −1 and (X1, . . . , Xn) = (1, . . . ,1) in the generating function of
SBCSPPs of order n, we obtain the number of DPPs of order n.

What do we need to do?

• For a given SBCSPP of shape (a1, . . . , al|b1, . . . , bl), let its sign be

(−1)l+
∑l
i=1(bi−ai)+(# of entries)−(# of cells) = (−1)# of entries

• We define two sign-reversing involutions to “cancel” certain subsets.

• The remaining set will be a set of positive SBCSPPs that is in easy bijective correspondence
with the set of DPPs.
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The first sign-reversing involution
• A principal SBCSPP has singletons in each cell. We can associate a principal SBCSPP to each
SBCSPP by just keeping the maximum in each cell.

9 8 8 7 7 5 3 2

7 6 5 4 3 3

6 5 4 3 2

4 4 3 1

3 3

2 1

1

9,8 8 8 7 7 5 3 2

7 6 5 4 3

6,5 5 4 3 2

4 4 3,2,1 1

3 3,2

2 1

1

• If for a fixed principal SBCSPP with more than one SBCSPP associated with it, there is the
following sign-reversing involution: Fix the topmost and leftmost cell c that can contain more than
one entry, and let e be the minimal possible entry for this cell (i.e., e − 1 is in the cell below). If c
contains e remove it, otherwise add it.

In the example: c = (1,1) and e = 8.



The second sign-reversing involution
• Principal SBCSPPs that have no other SBCSPP associated with it are characterized as follows: for
each diagonal entry d, the entries below in the same column are d− 1, d− 2, . . . ,1.

7 7 7 7 7 5 3 2

6 5 5 4 3 3

5 4 2 2 2

4 3 1 1

3 2

2 1

1

7 7 7 7 7 5 1 1

6 5 5 4 3 3

5 4 2 2 2

4 3 1 1

3 2

2 1

1

• We define a sign-reversing involution on the subset of the remaining SBCSPPs for which at least
one of the following is satisfied: the SBCSPP contains a 1 strictly above the diagonal or ai 6= bi+ 1
for an i.

• If ai 6= bi + 1 for an i, choose the minimal such i. If there is no 1 in row 1, . . . , i− 1, add a 1 at the
end of row i. Otherwise remove the topmost and rightmost 1.

In our examples, we have a2 6= b2 + 1. In the left example, we add a 1 to the second row, while in
the other example, we delete the last 1 from the first row.
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Analyzing the positive remainder

What remains are SBCSPPs such that (1) all cells contain a single element, (2) ai = bi + 1, (3)
weakly below a diagonal entry we have consecutive integers ending with 1, and (4) there are no 1’s
above the diagonal. All such SBCSPPs have weight 1.

7 6 6 5 5 5 3 2

6 4 4 4 3 3

5 3 2 2 2

4 2 1

3 1

2

1

(1)⇒ 7 6 6 5 5 5 3 2

4 4 4 3 3

2 2 2

(2)⇒ 6 5 5 4 4 4 2 1

3 3 3 2 2

1 1 1

(1) Remove all cells strictly below the main diagonal and obtain a column strict shifted plane
partition (CSSPP). From ai = bi + 1, it follows that the first part of each row is one less than the
length.

(2) Since there is no 1 in the plane partition, we may subtract 1 from each entry and obtain a column
strict shifted plane partition such that the first part of each row is two less than the length of
its row.



(3) By conjugating the partition in each row, such CSSPPs with parts no greater than n− 1 are
in easy bijective correspondence with CSSPPs with parts no greater than n + 1 such that the first
part of each row exceeds its length by precisely 2.

(4) To obtain the corresponding DPP, we subtract 1 from each entry and remove all 0s.

6 5 5 4 4 4 2 1

3 3 3 2 2

1 1 1

(3)⇒ 8 7 6 6 3 1

5 5 3

3

(4)⇒ 7 6 5 5 2

4 4 2

2

Lattice paths help in understanding that (3) leads to another CSSPP.

3 5

5

3

3

8

7

6

6

1

4

6

5 5

4 4

2

1

22

333

1 1 1



Would a weight-preserving bijection between arrowed monotone triangles and SBCSPPs
imply an ASM-DPP bijection?

“Natural” approach: Consider the SBCSPPs that are left after the two sign-reversing involutions
(they are equinumerous with DPPs), take the corresponding arrowed monotone triangles in the
weight-preserving bijection and delete the arrows to obtain monotone triangles and thus ASMs.

Case n = 2.
AMT W SBCSPP AMT W SBCSPP

↖1
↖1 ↖2

v3 ∅ ↖2
↖1↗ 2↗

uvwX1X2
2

2 2

1

↖1↗
↖1 ↖2

v2wX1
1 ↖1↗

↖1 2↗
uvwX1X2

2

2,1 1

1↗
↖1 ↖2

uv2X2
1

1 1 2↗
↖1 2↗

u2vX3
1X2

2 1 1

1

↖1
↖1 ↖2↗

v2wX2
2 ↖2↗

↖1↗ 2↗
uw2X2

1X
2
2

2 2

1 1

↖2
↖1 2↗

uv2X1X2
2 1 1↗

↖1 2↗
u2vX2

1X
2
2

2 2 1

1

↖1↗
↖1 ↖2↗

vw2X1X2
2,1 2↗

↖1↗ 2↗
u2wX3

1X
2
2

2 2 1

1 1

↖1
↖1 2↗

uv2X2
2

2 2 ↖2
1↗ 2↗

u2vX1X3
2

2 2 2

1

↖2↗
↖1 2↗

uvwX2
1X2

2 1

1

↖2↗

1↗ 2↗
u2wX2

1X
3
2

2 2 2

1 1

1↗
↖1 ↖2↗

uvwX2
1X2

2,1 1 2↗

1↗ 2↗
u3X3

1X
3
2

2 2 2

1 1 1

The two SBCSPPs that remain after applying the two sign-reversing involutions are ∅ and 2 2 2

1
. If

we ignore the arrows in the corresponding arrowed monotone triangles, we obtain the bijection to
monotone triangles.
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Already for n = 3, this can’t work!

For n = 3, the following 7 SBCSPP are left after applying the two sign-reversing involutions (we also
provide the weights):

(∅, v6),

(
2 2 2

1
, u2v4X1X

3
2

)
,

 3 2 2 2

2

1

, u3v3X1X
4
2X3

 ,

 3 3 2 2

2

1

, u3v3X1X
3
2X

2
3

 ,

 3 3 3 2

2

1

, u3v3X1X
2
2X

3
3

 ,

 3 3 3 3

2

1

, u3v3X1X2X
4
3

 ,

 3 3 3 3

2 2 2 2

1 1

, u5vX2
1X

4
2X

4
3

 .

Crucial observation 1: Only for one of these SBCSPPs, the exponent of X1 in the weight is greater
than 1.



∗1∗
↖1 ∗2∗

↖1 ↖2 ∗3∗
v3X1X2X3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

∗1∗
↖1 ∗3∗

↖1 ∗2∗ 3↗
uv2X1X

2
2X

2
3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

∗2∗
∗1∗ 2↗

↖1 ↖2 ∗3∗
uv2X2

1X
2
2X3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

∗2∗
∗1∗ ∗3∗

↖1 ∗2∗ 3↗
uvX2

1X
2
2X

2
3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)2(uX3 + vX−1

3 + w)

∗2∗
↖2 ∗3∗

∗1∗ 2↗ 3↗
u2vX2

1X
2
2X

3
3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

∗3∗
∗1∗ 3↗

↖1 ∗2∗ 3↗
u2vX3

1X
2
2X

2
3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

∗3∗
∗2∗ 3↗

∗1∗ 2↗ 3↗
u3X3

1X
3
2X

3
3(uX1 + vX−1

1 + w)(uX2 + vX−1
2 + w)(uX3 + vX−1

3 + w)

Crucial observation 2: For two (out of the 7) monotone triangles, the exponents of X1 in the weight
of the associated arrowed monotone triangles is at least 2 (namely for those that have a 3 at the
top).

Therefore, “forgetting arrows” can’t work!
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VI. Schur expansion:

Totally symmetric plane partitions !
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Formula for the generating function

The generating function of arrowed monotone triangles with bottom row 1,2, . . . , n and of SBCSPPs
of order n is

n∏
i=1

Xn
i

ASymX1,...,Xn

[∏
1≤p≤q≤n

(
uXq + vX−1

p + w
)]∏

1≤i<j≤n(Xj −Xi)
=

n∏
i=1

Xn
i

det1≤i,j≤n
(

(uXi + w)j − (−vX−1
i )j

)∏
1≤i<j≤n(Xj −Xi)

.

This is obviously a symmetric function in X1, X2, . . . , Xn.

Schur polynomial expansion of
∏n

i=1
Xn−1
i

ASymX1,...,Xn

[∏
1≤p<q≤n

(uXq+vX−1
p +w)

]∏
1≤i<j≤n

(Xj−Xi)
?

For n = 3:

v3 + uv2s(1,1)(x1, x2, x3) + uvws(1,1,1)(x1, x2, x3) + u2vs(2,1,1)(x1, x2, x3) + u3s(2,2,2)(x1, x2, x3).

(BTW, this is the generating function of a natural variation of arrowed monotone triangles, which
we call down-arrowed monotone triangles.)



The case n = 3

v3 + uv2s(1,1)(x1, x2, x3) + uvws(1,1,1)(x1, x2, x3) + u2vs(2,1,1)(x1, x2, x3) + u3s(2,2,2)(x1, x2, x3)

T : ∅

π(T ): ∅

ωπ(T )(u, v)): v3 uv2 uvw u2v u3

Here we see all totally symmetric plane partitions in a 2 × 2 × 2 box, its slightly modified “profile”
along the diagonal y = x together with a certain weight.
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Thin partitions

Definition. A partition in Frobenius notation (a1, . . . , al|b1, . . . , bl) is said to be thin (a.k.a. modified
balanced) if ai < bi.

Thin partitions whose parts do not exceed n − 1 are counted by the n-th Catalan number. That is
why we see C3 = 5 Schur polynomials in the expansion above.

We consider totally symmetric plane partitions.

T diag(T ) π(T )

Suppose diag(T ) = (a1, . . . , al|b1, . . . , bl) is the diagonal profil of the totally symmetry plane partition
T in Frobenius notation, then it is not terribly hard to see that π(T ) = (a1, . . . , al|b1 + 1, . . . , bl + 1) is
a thin partition.

The weight of a thin partition λ = (a1, . . . , al|b1 + 1, . . . , bl + 1) of order n is defined to be

ωλ(u, v) = u
∑l
i=1(ai+1)v(n2)−

∑l
i=1 biw

∑l
i=1(bi−ai).
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Theorem (F. Aigner, I. Fischer, M. Konvalinka, P. Nadeau, V. Tewari, FPSAC
2020). The generating function of down-arrowed monotone triangles of order n has
the following Schur polynomial expansion.∑

T∈TSPPn−1

ωπ(T )(u, v) · sπ(T )(X1, . . . , Xn)



Why is it so hard to find a (nice) ASM-DPP

bijection?

• In order to have a significance increase in the number of equivalent

statistics, it was necessary to extend the objects.

• The ASM-DPP relation follows from a certain (−1)-enumeration.

Are signs unavoidable?

• It is not even clear that a bijection between arrowed monotone tri-

angles and SBCSPPs will lead to an ASM-DPP bijection.
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Merci !
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A multivariate operator formula
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Basics on signed sets

• A signed set is a pair of disjoint sets S = (S+, S−). The size of a signed set is

|S| = |S+| − |S−|.

• More generally, for given weights on the elements of S, the generating function is defined as∑
s∈S+

W(s)−
∑
s∈S−

W(s).

• We will use signed intervals: for a, b ∈ Z, we let

[a, b] =

{
([a, b], ∅) a ≤ b
(∅, [b+ 1, a− 1]) b+ 1 ≤ a− 1
(∅, ∅) b+ 1 = a

.
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Generalized arrowed monotone triangles

• A generalized arrowed monotone triangle is a triangular array of the following form

a1,1
a2,1 a2,2

. . . . . . . . .
an−2,1 . . . . . . an−2,n−2

an−1,1 an−1,2 . . . . . . an−1,n−1
an,1 an,2 an,3 . . . . . . an,n

,

where each ai,j is an integer decorated with an element from {s↖↗t|s, t ∈ Z} and the following is satisfied
for each integer a not in the bottom row: Suppose

a
b c ,

and decor(b) = sb↖↗tb and decor(c) = sc↖↗tc, then we require a ∈ [b+ tb, c− sc].

• Arrowed monotone triangles are the subclass of generalized arrowed monotone triangles with possible
decorations s↖↗t with (s, t) ∈ {(1,0), (0,1), (1,1)}.
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The weights and the theorem

Suppose we are given arbitrary weights ω(s↖↗t) for all s, t ∈ Z, and, moreover, we define α(s↖↗t) = t−s.
Then the weight of a given generalized arrowed monotone triangle A = (ai,j)1≤j≤i≤n is

W(A) =
∏
p,q∈Z

ω(p↖↗q)# of p↖↗q

n∏
i=1

X

∑i

j=1
ai,j−
∑i−1

j=1
ai−1,j+

∑i

j=1
α(decor(ai,j))

i .

Theorem. Suppose almost all weights ω(p↖↗q), p, q ∈ Z, vanish. The generating function of general-
ized arrowed monotone triangles with bottom row k1, . . . , kn is

n∏
i=1

∑
s,t∈Z

ω(s↖↗t)Xt−s
i

∏
1≤p<q≤n

(∑
s,t∈Z

ω(s↖↗t)Et
kp

E−skq

)
s(kn,kn−1,...,k1)(X1, . . . , Xn).
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