New Littlewood-type identities and the sequence $1,4,60,3328 \ldots$

Ilse Fischer, Universität Wien

Outline

I. Unbounded Littlewood-type identities related to alternating sign matrices
II. Where do they come from: AST(Z)s and PPs
III. Combinatorial interpretation of the LHS
IV. Bounded identities
V. Combinatorial interpretation of the RHS
VI. 1, 4, 60, 3328, 678912 ...

I. Unbounded Littlewood-type identities related to alternating sign matrices

The classical (unbounded) Littlewood identity

$$
\sum_{\lambda} s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \frac{1}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{1}{1-X_{i} X_{j}}
$$

Proof: RSK and exploiting its symmetry.
We rewrite the classical Littlewood identity:

$$
\begin{aligned}
& \quad s_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}\left(X_{1}, \ldots, X_{n}\right)=\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{\lambda_{j}+n-j}\right)}{\prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right)}=\frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{i=1}^{n} X_{i}^{\lambda_{i}+n-i}\right]}{\prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right)}, \\
& \text { with } \operatorname{ASym}_{X_{1}, \ldots, X_{n}} f\left(X_{1}, \ldots, X_{n}\right)=\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sgn} \sigma \cdot f\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
\end{aligned}
$$

Change of variables: $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0 \Rightarrow \underbrace{\lambda_{1}+n-1}_{k_{n}}>\underbrace{\lambda_{2}+n-2}_{k_{n-1}}>\ldots>\underbrace{\lambda_{n}}_{k_{1}} \geq 0$

$$
\frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} X_{1}^{k_{1}} X_{2}^{k_{2}} \cdots X_{n}^{k_{n}}\right]}{\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)}=\prod_{i=1}^{n} \frac{1}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{1}{1-X_{i} X_{j}}
$$

Littlewood-type identity related to ASMs

In two of my papers from 2019:

$$
\begin{aligned}
& \frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}}\left(1+\mathbf{X}_{\mathbf{j}}+\mathbf{X}_{\mathbf{i}} \mathbf{X}_{\mathbf{j}}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} X_{1}^{k_{1}} X_{2}^{k_{2}} \cdots X_{n}^{k_{n}}\right]}{\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)} \\
& =\prod_{i=1}^{n} \frac{1}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{1+\mathbf{X}_{\mathbf{i}}+\mathbf{X}_{\mathbf{j}}}{1-X_{i} X_{j}}
\end{aligned}
$$

Since then Hans Höngesberg and I realized that we can introduce two additional parameters:

$$
\begin{array}{r}
\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i<j \leq n}\left(\mathrm{Q}+(\mathrm{Q}+\mathrm{r}) \mathbf{X}_{\mathbf{i}}+X_{j}+X_{i} X_{j}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} \prod_{i=1}^{n}\left(\frac{X_{i}\left(1+\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{Q}+\mathrm{X}_{\mathrm{i}}}\right)^{k_{i}}\right] \\
\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right) \\
=\prod_{i=1}^{n} \frac{\mathrm{Q}+X_{i}}{\mathrm{Q}-X_{i}^{2}} \frac{\prod_{1 \leq i<j \leq n} \mathrm{Q}\left(1+X_{i}\right)\left(1+X_{j}\right)+r X_{i} X_{j}}{\prod_{1 \leq i<j \leq n}\left(\mathrm{Q}-X_{i} X_{j}\right)}
\end{array}
$$

Set $\mathrm{Q}=1$ and $\mathrm{r}=-1$ to obtain the previous identity.

II. Where do they come from: AST(Z)s and PPs

Alternating sign triangles $=$ ASTs

An AST of order n is a triangular array of 1 ' $s,-1$'s and 0 ' s with n centered rows

such that
(1) the non-zero entries alternate in each row and each column,
(2) all row sums are 1, and
(3) the topmost non-zero entry of each column is 1 (if such an entry exists).

Example:

$$
\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
& 1 & -1 & 1 & 0 & 0 & \\
& & 1 & -1 & 1 & & \\
& & & 1 & & &
\end{array}
$$

Totally symmetric self-complementary plane partitions $=$ TSSCPPs

$a=4, b=3, c=5$

A (boxed) plane partition in an $a \times b \times c$ box is a subset

$$
P P \subseteq\{1,2, \ldots, a\} \times\{1,2, \ldots, b\} \times\{1,2, \ldots, c\}
$$

with

$$
(i, j, k) \in P P \Rightarrow\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \in P P \quad \forall\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \leq(i, j, k)
$$

- Totally symmetric:
$(i, j, k) \in P P \Rightarrow \sigma(i, j, k) \in P P \forall \sigma \in \mathcal{S}_{3}$
(MacMahon 1899, 1915/16)
- Self-complementary:

Equal to its complement in the $2 n \times 2 n \times 2 n$ box (Mills, Robbins and Rumsey 1986)

Now: "Our" first Littlewood-type identity was the crucial point in showing that there is the same number of ASTs with n rows as there is of TSSCPPs in a $2 n \times 2 n \times 2 n$ box.

Second application: ASTZs and DPPs

alternating sign trapezoids

cyclically symmetric lozenge tilings of a hexagon with a central triangular hole

- Central hole has size $2 \rightarrow$ descending plane partition (DPP)
- The Q is necessary to take care of the numbers of -1 's in the alternating sign trapezoids.

All proofs of these relations between alternating sign arrays and plane partition objects are very complicated. One of my motivations to study these Littlewood-type identities is to improve the combinatorial understanding of the relations.

III. Combinatorial interpretation of the LHS

Gelfand-Tsetlin patterns

A Gelfand-Tsetlin pattern is a triangular array of integers of the form

			$a_{1,1}$			
		$a_{2,1}$		$a_{2,2}$		
	\cdots		\cdots		\cdots	
$a_{n, 1}$		\cdots		\cdots		$a_{n, n}$

with weak increase in \nearrow - and \searrow-direction.
The weight of a Gelfand-Tsetlin pattern is $\prod_{i=1}^{n} X_{i}^{\sum_{j} a_{i j}-\sum_{j} a_{i-1, j}}$ and $s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)$ is the sum of weights of all Gelfand-Tsetlin patterns with bottom row $\left(0, \ldots, 0, \lambda_{l}, \ldots, \lambda_{1}\right)$. Example:

Arrowed Gelfand-Tsetlin patterns

An arrowed Gelfand-Tsetlin pattern is a Gelfand-Tsetlin pattern where each entry is decorated with an element from $\{\nwarrow, \nearrow,\lceil\chi, \emptyset\}$ such that for the little triangles in the pattern

$$
x^{y} \underset{z}{ }
$$

we have the following:

- If $x=y$ and $\operatorname{decor}(x) \in\{\nearrow, \mathbb{X}\}$, then $z=y=x$ and $\operatorname{decor}(z) \in\{\mathbb{K}, \mathbb{X}\}$, and
- if $y=z$ and $\operatorname{decor}(z) \in\{\nwarrow,\lceil\chi\}$, then $x=y=z$ and $\operatorname{decor}(x) \in\{\nearrow, \not \subset \chi\}$.

Both instances contribute -1 to the sign.
Summary: Arrows between diagonal neighbours indicate that the entries are different, except when we have two such occurrences appearing in a little triangle. In this case, we have a contribution of -1 to the sign.

Example:

Generating function

We associate the following weight to a given arrowed Gelfand-Tsetlin pattern $A=\left(a_{i, j}\right)_{1 \leq j \leq i \leq n}$:

$$
\mathrm{W}(A)=\operatorname{sgn}(A) \cdot t^{\# \emptyset} u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nwarrow} \prod_{i=1}^{n} X_{i}^{\sum_{j=1}^{i} a_{i, j}-\sum_{j=1}^{i-1} a_{i-1, j}+\# \text { in row } i-\# \nwarrow \text { in row } i}
$$

The weight of our example is

$$
-t^{3} u^{5} v^{3} w^{3} X_{1}^{3} X_{2}^{4} X_{3}^{4} X_{4}^{6} X_{5}^{6}
$$

Compare to the Schur function weight for Gelfand-Tsetlin patterns!
Theorem (F., Schreier-Aigner). The generating function of arrowed Gelfand-Tsetlin patterns with bottom row k_{1}, \ldots, k_{n} is

$$
\frac{\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i \leq j \leq n}\left(v+w X_{i}+t X_{j}+u X_{i} X_{j}\right) \prod_{i=1}^{n} X_{i}^{k_{i}-1}\right]}{\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)} .
$$

Application to our LHS

Our Littlewood-type identity, slightly rewritten:

$$
\begin{aligned}
& \operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i \leq j \leq n}\left(1+w X_{i}+X_{j}+X_{i} X_{j}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n}} X_{1}^{k_{1}-1} X_{2}^{k_{2}-1} \cdots X_{n}^{k_{n}-1}\right] \\
& \prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right) \\
&= \prod_{i=1}^{n} \frac{X_{i}^{-1}+(1+w)+X_{i}}{1-X_{i}} \prod_{1 \leq i<j \leq n} \frac{1+X_{i}+X_{j}+w X_{i} X_{j}}{1-X_{i} X_{j}}
\end{aligned}
$$

The left-hand side is the generating function of all arrowed Gelfand-Tsetlin patterns with strictly increasing bottom row of non-negative integers when setting $t=u=$ $v=1$.

IV. Bounded identities

Bounded classical Littlewood identity

Bounded? $\sum 0 \leq k_{1}<k_{2}<\ldots<k_{n} \rightarrow \sum 0 \leq k_{1}<k_{2}<\ldots<k_{n} \leq m$

$$
\sum_{\lambda \subseteq\left(m^{n}\right)} s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)=\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{j-1}-X_{i}^{m+2 n-j}\right)}{\prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)\left(1-X_{i} X_{j}\right)}
$$

Macdonald in his book.

Bounded Littlewood identity related to ASMs

$$
\begin{aligned}
& \frac{1}{\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)} \operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i<j \leq n}\left(Q+(Q+r) X_{i}+X_{j}+X_{i} X_{j}\right)\right. \\
& \left.\times \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n} \leq \mathrm{m}}\left(\frac{X_{1}\left(1+X_{1}\right)}{Q+X_{1}}\right)^{k_{1}}\left(\frac{X_{2}\left(1+X_{2}\right)}{Q+X_{2}}\right)^{k_{2}} \cdots\left(\frac{X_{n}\left(1+X_{n}\right)}{Q+X_{n}}\right)^{k_{n}}\right] \\
& =\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(a_{j, m, n}\left(Q, r ; X_{i}\right)\right)}{\prod_{1 \leq i \leq j \leq n}\left(Q-X_{i} X_{j}\right) \prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)}
\end{aligned}
$$

with

$$
\begin{aligned}
& a_{j, m, n}(Q, r ; X)=\left(1+Q X^{-1}\right) X^{j}(1+X)^{j-1}(Q+r X+Q X)^{n-j} \\
& -X^{2 n} Q^{-n}\left(\frac{(1+X) X}{Q+X}\right)^{m}(1+X)\left(Q X^{-1}\right)^{j}\left(1+Q X^{-1}\right)^{j-1}\left(Q+r Q X^{-1}+Q^{2} X^{-1}\right)^{n-j}
\end{aligned}
$$

The proof has more than 7 pages, but it is elementary.

The case $Q=1$

$$
\begin{gathered}
\begin{array}{c}
\operatorname{ASym}_{X_{1}, \ldots, X_{n}}\left[\prod_{1 \leq i \leq j \leq n}\left(1+w X_{i}+X_{j}+X_{i} X_{j}\right) \sum_{0 \leq k_{1}<k_{2}<\ldots<k_{n} \leq m} X_{1}^{k_{1}-1} X_{2}^{k_{2}-1} \cdots X_{n}^{k_{n}-1}\right] \\
\prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right) \\
\\
=\prod_{i=1}^{n}\left(X_{i}^{-1}+1+w+X_{i}\right) \\
\times \frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{j-1}\left(1+X_{i}\right)^{j-1}\left(1+w X_{i}\right)^{n-j}-X_{i}^{m+2 n-j}\left(1+X_{i}^{-1}\right)^{j-1}\left(1+w X_{i}^{-1}\right)^{n-j}\right)}{\prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(1-X_{i} X_{j}\right)\left(X_{j}-X_{i}\right)} .
\end{array} .
\end{gathered}
$$

LHS: Generating function of arrowed Gelfand-Tsetlin patterns with strictly increasing bottom that are bounded by m.

What about the RHS ?

V. Combinatorial interpretation of the RHS

The classical case

The classical bounded Littlewood identity:

$$
\sum_{\lambda \subseteq\left(m^{n}\right)} s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)=\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{j-1}-X_{i}^{m+2 n-j}\right)}{\prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(X_{j}-X_{i}\right)\left(1-X_{i} X_{j}\right)}
$$

This identity is equivalent to

$$
\sum_{\lambda \subseteq\left(m^{n}\right)} s_{\lambda}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} X_{i}^{m / 2} s o_{(m / 2, m / 2, \ldots, m / 2)}^{\text {odd }}\left(X_{1}, \ldots, X_{n}\right),
$$

where $s o_{\lambda}^{\text {odd }}\left(X_{1}, \ldots, X_{n}\right)$ is the irreducible character of the special orthogonal group $S O_{2 n+1}(\mathbb{C})$ associated with the partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
Now: $s o_{\lambda}^{\text {odd }}\left(X_{1}, \ldots, X_{n}\right)$ is the generating function of certain halved Gelfand-Tsetlin patterns.

Combinatorial interpretation of the RHS for $w=0$ and m large

One needs to distinguish between the cases that m is odd or even.
Theorem (F., 2022). Assume that $w=0$ and $m=2 l+1$. In case $l \geq n-2$, the RHS is the generating function of pairs of plane partitions (P, Q) of shape λ and μ, respectively, where

- μ is the complement of λ in the $n \times l$-rectangle,
- P is a column-strict plane partition such that the entries in the i-th row are bounded by $2 n+2-2 i$, and
- Q is a row-strict plane partition such that the entries in the i-th row are bounded by $n-i$.

The weight is

$$
\prod_{i=1}^{n-1} X_{i}^{l}\left(X_{i}^{-1}+1+X_{i}\right)\left(1+X_{i}\right) X_{i}^{\# \text { of } 2 i-1 \text { in } \mathrm{P}} X_{i}^{-\# \text { of } 2 i \text { in } \mathrm{P}} .
$$

Remark.

- The Q 's are in easy bijection with $2 n \times 2 n \times 2 n$ TSSCPPs.
- The P's are in easy bijection with symplectic tableaux.

Example $n=7$ and $l=12$

Translated into non-intersecting lattice paths

The general picture for m is odd

It is a signed enumeration!
VI. $1,4,60,3328,678912, \ldots$

$1,4,60,3328,678912 \ldots$

RHS of the new Littlewood-type identity for $Q=1$:

$$
\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{j-1}\left(1+X_{i}\right)^{j-1}\left(1+w X_{i}\right)^{n-j}-X_{i}^{m+2 n-j}\left(1+X_{i}^{-1}\right)^{j-1}\left(1+w X_{i}^{-1}\right)^{n-j}\right)}{\prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(1-X_{i} X_{j}\right)\left(X_{j}-X_{i}\right)}
$$

Setting all $X_{i}=1, w=-1$ and $m=n-1$, we obtain

$$
1,4,60,3328,678912, \ldots=2^{n(n-1) / 2} \prod_{j=0}^{n-1} \frac{(4 j+2)!}{(n+2 j+1)!}
$$

- This is a consequence of our Theorems 1 and 2 below.
- In fact, these theorems involve the additional parameter m, and the special case $m=n-1$ is an unpublished conjecture of Florian Schreier-Aigner from 2018.
- Note that $m=n-1$ just means that we consider arrowed Gelfand-Tsetlin patterns with bottom row $(0,1, \ldots, n-1)$.

These numbers also appear in recent work of Philippe Di Francesco related to the twenty vertex model and domino tilings. He conjectured the following theorem of which I saw a proof last week by Christoph Koutschan.

Theorem.

$$
\operatorname{det}_{0 \leq i, j \leq n-1}\left(2^{i}\binom{i+2 j+1}{2 j+1}-\binom{i-1}{2 j+1}\right)=2^{n(n-1) / 2} \prod_{j=0}^{n-1} \frac{(4 j+2)!}{(n+2 j+1)!}
$$

- Christian Krattenthaler has found a conjectural generalization.
- Michael Schlosser has found several variations.

Explicit product formulas in case $X_{i}=1, w=-1$ and $m=2 l+1$

Theorem 1 (F., Schreier-Aigner, 2022). For $\left(X_{1}, \ldots, X_{n}\right)=(1, \ldots, 1), w=-1$ and $m=2 l+1$, we have that

$$
\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{j-1}\left(1+X_{i}\right)^{j-1}\left(1+w X_{i}\right)^{n-j}-X_{i}^{m+2 n-j}\left(1+X_{i}^{-1}\right)^{j-1}\left(1+w X_{i}^{-1}\right)^{n-j}\right)}{\prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(1-X_{i} X_{j}\right)\left(X_{j}-X_{i}\right)}
$$

is, for n is odd, equal to

$$
\begin{aligned}
& \frac{1}{3^{n-1} 2^{\frac{(n-1)(n-2)}{2}} \prod_{i=1}^{n-1}(5 / 2)_{i-1}} \\
& \times(2 l+n+1) \prod_{i=0}^{(2 n-3) / 8}(2 l-n+3+4 i)_{2 n-3-8 i} \prod_{i=0}^{(2 n-4) / 8}(2 l+n+5+4 i)_{2 n-4-8 i} \prod_{i=0}^{(n-5) / 4}(2 l+n-3-4 i),
\end{aligned}
$$

and, for n is even, it is equal to

$$
\begin{aligned}
& \frac{1}{3^{n-1} 2^{\frac{(n-1)(n-2)}{2}} \prod_{i=1}^{n-1}(5 / 2)_{i-1}} \\
& \times(2 l+n+4) \prod_{i=0}^{(2 n-2) / 8}(2 l-n+3+4 i)_{2 n-2-8 i} \prod_{i=0}^{(2 n-5) / 8}(2 l+n+6+4 i)_{2 n-5-8 i} \prod_{i=0}^{(n-6) / 4}(2 l+n+8+4 i)
\end{aligned}
$$

with $(a)_{n}=1$ if $n<0$.

Explicit product formulas in case $X_{i}=1, w=-1$ and $m=2 l$
Theorem 2 (F., Schreier-Aigner, 2022). For $\left(X_{1}, \ldots, X_{n}\right)=(1, \ldots, 1), w=-1$ and $m=2 l$, we have that

$$
\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(X_{i}^{j-1}\left(1+X_{i}\right)^{j-1}\left(1+w X_{i}\right)^{n-j}-X_{i}^{m+2 n-j}\left(1+X_{i}^{-1}\right)^{j-1}\left(1+w X_{i}^{-1}\right)^{n-j}\right)}{\prod_{i=1}^{n}\left(1-X_{i}\right) \prod_{1 \leq i<j \leq n}\left(1-X_{i} X_{j}\right)\left(X_{j}-X_{i}\right)}
$$

is, for n is odd, equal to

$$
\begin{aligned}
& \frac{1}{3^{n-1} 2^{\frac{(n-1)(n-2)}{2}} \prod_{i=1}^{n-1}(5 / 2)_{i-1}} \\
& \quad \times(2 l+n) \prod_{i=0}^{(2 n-3) / 8}(2 l-n+2+4 i)_{2 n-3-8 i} \prod_{i=0}^{(2 n-4) / 8}(2 l+n+4+4 i)_{2 n-4-8 i} \prod_{i=0}^{(n-5) / 4}(2 l+n-4-4 i)
\end{aligned}
$$

and, for n is even, it is equal to

$$
\begin{aligned}
& \frac{1}{3^{n-1} 2^{\frac{(n-1)(n-2)}{2}} \prod_{i=1}^{n-1}(5 / 2)_{i-1}} \\
& \times(2 l+n+3) \prod_{i=0}^{(2 n-2) / 8}(2 l-n+2+4 i)_{2 n-2-8 i} \prod_{i=0}^{(2 n-5) / 8}(2 l+n+5+4 i)_{2 n-5-8 i} \prod_{i=0}^{(n-6) / 4}(2 l+n+7+4 i)
\end{aligned}
$$

Thank you!

Sketch of proof of Theorem 1

After transforming the bialternant-type formula into a Jacobi-Trudi-type formula (in which we can then easily set $X_{i}=1$), it turns out that we need to compute

$$
\operatorname{det}_{1 \leq i, j \leq n}\left(\sum_{p}\binom{n-j}{p}\binom{l-p+i}{2 i-j}\right) .
$$

We could guess the LU-decomposition.
Let

$$
x_{i, j}= \begin{cases}(-1)^{i+1} \frac{(j)_{j}}{(2 l-n+3 j+2)_{j-1}(2 l-n+i+2)_{j}} & i \leq j \\ \times \sum_{t} 2^{2 i-4 t-n} \frac{(i-j-2 t+1)_{2 t}(i-2 j+1)_{j-1-t}(l-n / 2+j / 2+t+3 / 2)_{i-2 t-1}}{(1)_{t}(1)_{i-2 t-1}} & \text { otherwise } \\ 0 & \end{cases}
$$

Setting $a_{i, j}=\sum_{p}\binom{n-j}{p}\binom{l-p+i}{2 i-j}$, we could prove that $\left(a_{i, j}\right)_{1 \leq i, j \leq n} \cdot\left(x_{i, j}\right)_{1 \leq i, j \leq n}$ is a lower triangular matrix with 1 's on the main diagonal.

A triple sum

It suffices to show that

$$
\begin{aligned}
& \sum_{\substack{s, t \\
k \leq j}}(-1)^{1+k+s+t} 2^{2-k-s} \\
& \quad \times \frac{(k-n)_{s}(-r)_{k-1+2 t}(-1 / 2-i+2 k-n / 2-r / 2+s)_{2 i-k-s}(2-2 j+r)_{j-1-2 t}(j-t)_{j-t-1}}{(1)_{2 i-k-s}(1)_{s}(1)_{k-1-2 t}(1)_{t}} \\
& \quad= \begin{cases}\frac{(-r)_{2 j-1}(-1+3 j-r)_{j-1}}{(j)_{j}}, & i=j, \\
0, & i<j\end{cases}
\end{aligned}
$$

We use Sister Celine's algorithm, which is implemented in the MultiSum package from RISC. It turned out that the case $j \geq 2 i$ is easier to deal with and this serves as our induction hypothesis.

Now let $f(n, r, i, j, k, s, t)$ denote the summand of the tripe sum. Then MultiSum found the following recursion.

$$
\begin{aligned}
& \quad 4(3 j-r-2)(r+1)_{4} f(n, r, i, j, k, s, t)= \\
& 2(2 j+1)(2 j-r-3)_{2} f(n+2, r+4, i+1, j+1, k+2, s, t+1)+(j-r-3) f(n+2, r+4, i+1, j+2, k+2, s, t+1)
\end{aligned}
$$

Given its simplicity, it is not difficult to prove it without computer algebra. This is the main ingredient in the proof of the tripe sum.

