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Abstract

We consider bipartite graphs definable in o-minimal structures,
in which the edge relation G is a finite union of graphs of certain
measure-preserving maps.

We establish a fact on the existence of definable matchings with
few short augmenting paths. Under the additional assumptions that
G ⊆ [0, 1]n and 2-regularity, this yields the existence of definable
matchings covering all vertices outside of a set of arbitrarily small
positive measure (Lebesgue measure of the standard part). As an ap-
plication we obtain an approximate 2-cancellation result for the semi-
group of definable subsets of [0, 1]n modulo an equivalence relation
induced by measure-preserving maps.

1 Introduction

This paper is a first step towards understanding definable matchings in defin-
able bipartite graphs in o-minimal structures. Matchings play an important
part in many areas of mathematics, such as the theory of equidecomposi-
tions, and we believe they will prove higly relevant in the o-minimal setting
as well.

Here, a graph consists of a nonempty set of vertices V and a symmetric,
antireflexive relation E ⊆ V 2 whose elements are called edges . So graphs
have no loops, no multiple edges, and edges are not oriented. A bipartite
graph is a graph whose set of vertices can be partitioned into two disjoint
sets A and B so that each edge has one vertex in A and the other vertex in
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B. A matching in a bipartite graph (A∪̇B,E) is a subset of E which is the
graph of a bijection between a subset of A and a subset of B. A matching is
perfect if it covers all vertices, i.e. if it is a bijection of A onto B.

Throughout, we let R be an o-minimal expansion of an ordered field.
Definable shall mean definable in R. A graph (V,E) is definable if both
V ⊆ Rn and E ⊆ R2n are definable. A definable bipartite graph (A∪̇B,E)
is a definable graph with a definable bipartition, i.e. both A and B are
definable.

What is the situation like for perfect matchings in (infinite) bipartite
graphs without any definability assumptions? By König’s Theorem, every
k-regular bipartite graph admits a perfect matching. This is a special case of
the infinite (two-sided) Hall-Rado-Hall Theorem, according to which a locally
finite bipartite graph admits a perfect matching if it satisfies the marriage
condition for finite sets (for each k, every k-element set of vertices has at
least k neighbors) in either part. However, the definable versions of these
two theorems fail, as evidenced by an example by Laczkovich [2]. Laczkovich
defines a semilinear graph whose edge relation E is a closed subset of the
unit square and which consists of finitely many line segments with slopes ±1
(in fact, E is, when considered as a space with normalized linear measure –
up to a measure-preserving homeomorphism – just the unit circle). While
E contains a perfect matching by König’s Theorem, Laczkovich shows that
it does not contain a Borel matching nor a Lebesgue measurable matching.
This is, roughly, due to the fact that, while the normalized linear measure of
a matching M in E would be 1

2
, M would also have to be fixed by a certain

map which is essentially an irrational rotation of the circle, hence ergodic.
Given that E is in particular definable in an o-minimal structure, this dashes
the hope of a definable analogue of König, or even Hall-Rado-Hall.

One way around this, in the presence of a measure, is to relax the re-
quirement of the matching being perfect to being perfect only outside of a
small set. This has been done in the Borel case by Lyons and Nazarov in [3],
p.8, Remark 2.6. (for a detailed exposition of the proof see Wang [7]). Lyons
and Nazarov prove the following. Below, a set of vertices is independent , if
no two vertices in that set are neighbors, i.e. they are not incident with the
same edge. For a set of vertices Y and edge relation G,

NG(Y ) = {x : ∃y ∈ Y (x, y) ∈ G}.

Theorem 1.1 ([3]) Let G = (X,G) be a Borel graph on a standard Borel
space with a Borel probability measure ν that is locally finite, ν-preserving,
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bipartite, and satisfies the follwing expansion condition:

∃c > 1 such that for all independent Y ⊆ X, νNG(Y ) ≥ c · νY.

Then G has a Borel perfect matching ν-a.e..

We are interested in an o-minimal counterpart of this theorem. While the
existence of definable matchings in o-minimal graphs is of interest in its own
right, another reason is the following. The condition of being ν-preserving
corresponds, in our setting, to the edge relation being a finite union of graphs
of isomorphisms (roughly, definable C1-diffeomorphisms with Jacobian de-
terminant equal to ±1). Such graphs and the question of the existence of
a perfect matching in them come up when dealing with the semigroup of
bounded definable sets modulo the equivalence relation induced by isomor-
phisms, with the operation being given by disjoint union. These semigroups
are in turn closely linked to a long-standing open question about the existence
of invariant measures on definable sets in o-minimal structures.

We obtain Theorem 1.2 below, an approximate version of Theorem 1.1,
when the measure under consideration is Lebesgue measure of the standard
part and when we restrict ourselves to 2-regular graphs. The assumption of
2-regularity replaces the expansion condition in Theorem 1.1, which is never
satisfied in the bounded definable setting, given that the bipartition of a
definable bipartite graph is assumed to be definable.

Theorem 1.2 Let G = (A∪̇B,G) be a definable bipartite µ-preserving graph
which is 2-regular and such that A,B ⊆ [0, 1]n. Then for every ε ∈ R>0 there
is a definable matching M ⊆ G covering all vertices of G outside of a set of
µ-measure < ε.

The proof follows the general outline of the proof in [7]. That is, we first
prove the existence of matchings with few short augmenting paths, starting
with the archimedean case. This is Proposition 2.6 – the measure under
consideration is Lebesgue measure and there is no need to use 2-regularity.
The general case (Theorem 3.5) is then derived using results from Mař́ıková
[4], [5] concerning the structure induced on the residue field by the standard
part map. Theorem 1.2 it then derived by an argument similar to the one in
[7], but with 2-regularity yielding an expansion condition.

We remark that Theorem 4.2 cannot be improved to yield a definable
matching µ-a.e. due to the example in [2].
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An application of Theorem 1.2 concerns cancellation in the semigroup of
bounded definable sets modulo the equivalence relation induced by isomor-
phisms. More precisely, let B[n] be the lattice of bounded definable subsets
of Rn, and set

SB[n] = {X ∈ B[n] : X ⊆ [−m,m]n for some m ∈ N},

the lattice of strongly bounded definable subsets of Rn. For X, Y ∈ SB[n]
and ε ∈ R>0, we write X =ε Y iff µ(X4Y ) < ε, where µ is the standard part
map composed with Lebesgue measure, and 4 is symmetric difference. We
write X =a Y iff X =ε Y for all ε ∈ R>0. Let ∼ be the equivalence relation
induced on B[n] by isomorphisms (see Definition 5.1). Then Tn = B[n]/ ∼
is a semigroup with addition given by disjoint union. For α, β ∈ Tn, we write
α =a β iff there are X ∈ α, Y ∈ β such that X, Y ∈ SB[n] and X =a Y .
Then Theorem 1.2 yields the following.

Theorem 1.3 Let α, β ∈ Tn. Then 2α =a 2β implies α =a β.

Some further conventions and definitions. We let O be the convex hull
of Q in R. Then O is a valuation ring in R with maximal ideal m and residue
map st : O → k, where k = O/m is the ordered residue field. The residue
map extends coordinate-wise to st : On → kn. If R is sufficiently saturated,
then O/m = R and the residue map is called the standard part map. In that
case, we denote by Rind the o-minimal structure on R which is generated by
the standard part map, i.e. the ordered field R expanded by the relations
stX, where X ∈ Defn(R) and stX := st(X ∩Rn).

Definition 1.4 1. By a measure on SB[n] we mean a finitely additive
map µ : SB[n] → R≥0 (addition on SB[n] is given by disjoint union)
such that µ(∅) = 0.

2. An n-isomorphism is a definable C1-diffeomorphism f : U → f(U),
where U ⊆ Rn is definable and open, and |Jf(x)| = 1 for all x ∈ U .

3. Given a measure µ on SB[n], we say that µ is invariant if µ(X) =
µ(f(X)) whenever X ∈ SB[n] and f is an n-isomorphism.

4. Let G = (V,G) be a definable graph with V ⊆ On, and let ν be an
invariant measure on SB[n]. We say that G is ν-preserving, if there
is a partition of V into cells such that for each open cell C in this
partition, G ∩ (C ×Rn) is the graph of an n-isomorphism.
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For R sufficiently saturated, we define an invariant measure µ on SB[n] by
assigning to X ∈ SB[n] the n-dimensional Lebesgue measure of its standard
part (see [4], p. 18, proof of Lemma 6.4, for a proof of invariance).

Remark 1.5 It will be easy to see that Theorems 3.5, 4.2, and 5.2 remain
valid if we replace 2.-4. in Definition 1.4 by the following, perhaps more
natural, notions.

Definition 1.6 1. An n-isomorphism is a definable C1-diffeomorphism
f : Rn → Rn with |Jf(x)| = 1 for all x ∈ Rn.

2. Given a measure µ on SB[n], we say that µ is invariant if µ(X) =
µ(f(X)) whenever X ∈ SB[n] and f is an n-isomorphism.

3. Let G = (V,G) be a definable graph, and let ν be an invariant measure
on SB[n]. We say that G is ν-preserving if there is a partition of V
into cells such that for each open cell C in this partition, G∩ (C ×Rn)
is the graph of an n-isomorphism restricted to C.

For x, y ∈ Rn and definable, bounded X ⊆ Rn, we let d(x, y) be the euclidean
distance between x and y, and we set

d(X, y) = inf{d(x, y) : x ∈ X}.

For x ∈ Rn and r > 0, we denote by Br(x) the open ball of radius r centered
at x, i.e. the set {y ∈ Rn : d(x, y) < r}.

2 The archimedean case

In this section, we assume that the underlying set of R is R. Then SB[n] =
B[n] and Lebesgue measure λ is an invariant measure on B[n].

2.1 Colorings

Definition 2.1 Let G = (V,G) be a definable graph. We say that a definable
map c : V → X is a definable coloring of G if X is a finite set, and whenever
(v, w) ∈ G, then c(v) 6= c(w).
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Lemma 2.2 Let G = (V,G) with V ∈ B[n] be a definable graph such that
every vertex has finite degree. Then there is a definable coloring of G outside
of a definable subset of the vertex set of arbitrarily small positive λ-measure,
i.e. for every ε > 0 there is a definable V ′ ⊆ V with λ(V \ V ′) < ε and a
definable coloring of G ′ := (V ′, G ∩ (V ′)2).

Proof: Let C be a decomposition of R2n into cells partitioning G, and let

D = {π2n
n C : C ∈ C&C ⊆ G& dimC = n}.

Then, because every vertex of G has finite degree, we may assume that for
each D ∈ D, G ∩ (D × Rn) is a finite disjoint union of graphs of definable,
continuous functions. Let FD be the collection of these functions.

Claim Let ε > 0, D ∈ D and f ∈ FD. By Gf we denote the graph
(D∪f(D),Γf). Then there is a definable coloring of Gf outside of a definable
subset of D ∪ f(D) of λ-measure < ε.

Proof of Claim: We set

Dδ := {x ∈ D : d(x, ∂D) ≥ δ},

where ∂D := cl(D) \ int(D), and δ > 0 is such that λ(D \ Dδ) <
ε
2

and
λ(f(D \Dδ)) <

ε
2

(the existence of such a δ follows from the boundedness of
the vertex set). Define

F : Dδ → R≥0 : x 7→ d(x, f(x)).

Then, because Γf |Dδ ⊆ G, G is antireflexive, f is continuous and Dδ is closed,
F is bounded away from 0, say by r > 0. Since Dδ is compact, we can find a
finite covering B of Dδ by open balls of radius r

2
. For x ∈ Dδ, define c(x) = i,

where i is the smallest index of a ball from B containing x. If x, y ∈ Dδ are
such that c(x) = c(y), then x, y ∈ B for some B ∈ B, so d(x, y) < r and x, y
cannot be neighbors. � (Claim)

Let ε > 0. We shall now define V ′ ⊆ V with λ(V ′ \ V ) < ε, and find a
definable coloring of the graph (V ′, G ∩ (V ′)2).

Let |D| = N , and let M be an upper bound for the degrees of the vertices
of G. Since vertices of degree 0 may be colored by any color, we may as well
assume that FD 6= ∅ for each D ∈ D. For every D ∈ D and every f ∈ FD,
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use the claim to find a definable coloring cf of Gf outside of a definable
Sf ⊆ D∪f(D) of λ-measure < ε

MN
. We set V ′ := V \

⋃
D∈D

⋃
f∈FD Sf . Note

that
λ(
⋃
D∈D

⋃
f∈FD

Sf ) < M ·N · ε

MN
= ε.

Define a map c with domain(c) = V ′ and range the power set of
⋃̇

rng(cf ),
where the union is taken over all D ∈ D and all f ∈ FD as follows. For x ∈ V ′
let c(x) consist of all the cf (x) with x ∈ domain(cf ). Suppose x, y ∈ V ′ and
(x, y) ∈ G ∩ (V ′)2. Then f(x) = y for some f ∈ FD with x ∈ D. Hence
cf (x) 6= cf (y), and so c(x) 6= c(y). It follows that c is as required. �

Given a definable graph G = (V,G) and a measure on V , we shall say that
G is definably almost-colorable if for every ε ∈ R>0, there is Vε ⊆ V with
measure of V \ Vε less than ε, and a definable coloring of (Vε, G ∩ (Vε)

2).

Remark 2.3 Lemma 2.2 fails for R non-archimedean: Let ε be a positive
infinitesimal in R, and consider the graph G = ([0, 1]R, G), where (x, y) ∈ G
iff y = x+ ε and 0 ≤ x ≤ 1− ε. Then G is not definably almost colorable.

2.2 Matchings with few short augmenting paths

Here, we let G = (A∪̇B,G) be a definable, λ-preserving, bipartite graph with
A,B ∈ B[n], and M ⊆ G a definable matching. We fix K ≥ 0.

We say that a finite set of subsets of a definable X ⊆ Rn is an open
partition of X, if each of its members is an open cell contained in X, and its
union covers X outside of a set of λ-measure 0. We say that an open partition
{Xi} of X partitions a definable Y ⊆ X if a subset of {Xi} constitutes an
open partition of Y . An open partition {Yj} of X is a refinement of another
open partition {Xi} of X if {Yj} partitions each Xi.

Generating sequences of paths. We shall define a sequence

A0,A2, . . . ,A2K+2

of open partitions of A, and a sequence

B1,B3, . . . ,B2K+1

of open partitions of B. In each sequence, every open partition will be a
refinement of its predecessor.
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Let C be a decomposition of R2n into cells, which partitions both G and
M . Set

A0 = {π2n
n C : C ∈ C& dim π2n

n C = n&π2n
n C ⊆ A}.

Since G is λ-preserving, we may assume that for each A0,i ∈ A0, G|A0,i
:=

G∩ (A0,i×Rn) is a finite union of graphs of n-isomorphisms. We denote the
set of these isomorphisms by F0,i.

Assuming that for each A2m,i ∈ A2m, where 0 ≤ m ≤ K, A2m and F2m,i

have already been defined, we let B2m+1 be an open partition ofB partitioning
f(A2m,i), for each f ∈ F2m,i and each A2m,i ∈ A2m. For B2m+1,j ∈ B2m+1,
let F2m+1,j be the set of all f−1|B2m+1,j

, with f ∈
⋃
iF2m,i, where the sum is

taken over all i such that A2m,i ∈ A2m, and B2m+1,j ⊆ rng(f).
To define A2m+2, where 0 ≤ m ≤ K, assume that B2m+1 and F2m+1

have been defined. Let A2m+2 be an open partition of A which partitions
f−1(B2m+1,j) for each f−1 ∈ F2m+1,j and each B2m+1,j ∈ B2m+1.

Now set

Ci =

{
Ai if i is even

Bi if i is odd.

Let P be the set of paths p in G of length l ≤ 2K + 1 such that if p0 ∈ A,
then pi ∈

⋃
Ci for each i = 0, . . . , l, and if p0 ∈ B, then pi ∈

⋃
Ci+1 for each

i = 0, . . . , l.

Definition 2.4 Given a path p ∈ P of length l ≤ 2K + 1, the generating
sequence of p is the unique sequence (g0, . . . , gl−1) of isomorphisms such that

1. if p0 ∈
⋃
A0, then each gi ∈ Fi,j for some j, and

2. if p0 ∈
⋃
B1, then each gi ∈ Fi+1,j for some j, and

3. pi+1 = gi(pi) for all i ∈ {0, . . . , l − 1}.

Let s be the generating sequence of a path p ∈ P . We denote by Ss the
set of all possible starting vertices of paths in P with generating sequence s.
Note that Ss ⊆ A0,j or Ss ⊆ B1,j for some j, and that we may identify P
with

⋃̇
sSs, where the disjoint union is taken over all generating sequences s

of paths in P .
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We now define a measure ν on the definable subsets P ′ of P . We have
P ′ =

⋃̇
sS ′s, where S ′s ⊆ Ss and s ranges over the generating sequences of

paths in P . We set

ν(P ′) :=
∑
s

λS ′s,

so ν on P is just Lebesgue measure on
⋃̇
sSs.

Let H = (P , H) be the definable graph with vertex set P and (p, q) ∈ H
iff p 6= q and pk = ql for some 0 ≤ k, l ≤ 2K + 1. Since every vertex of H has
finite degree, by Lemma 2.2 we obtain the following.

Lemma 2.5 The graph H is definably almost-colorable (with respect to ν).

Augmenting paths. Our aim now is to define a matching M ′ which covers
the vertices covered by M , but which has only few “short” augmenting paths.

We shall use the following terminology. If p is an augmenting path of
length l for a matching M (hence p0 and pl are not covered by M and
each (p2i, p2i+1) 6∈ M and each (p2i+1, p2i+2) ∈ M), then by flipping p we
mean removing the edges (p2i+1, p2i+2) fromM and instead placing the edges
(p2i, p2i+1) into M. Note that flipping an augmenting path results in a new
matching, which covers the same vertices as M (and two additional ones).

Proposition 2.6 Let δ ∈ R>0. There is a definable matching M ′ ⊆ G
covering the vertices covered by M , and not having any augmenting paths of
length ≤ 2K + 1 outside of a definable subset of P of ν-measure < δ.

Proof: Since G is λ-preserving, dimA = dimB, and we may assume
that dimA = n. By Lemma 2.5, we can find a definable P ′ ⊆ P with
ν(P \ P ′) < δ

2
and a definable coloring c of the graph (P ′, H ∩ P ′2) with

rng(c) = {0, 1, . . . , C − 1} for some C ∈ N. Let a = (ak) be the sequence
with ak = (kmodC) for each k ∈ N.

We shall obtain the desired matching M ′ as a member of a sequence
M0,M1,M2, . . . of definable matchings. We set M0 := M . To obtain Mk+1

from Mk, k ≥ 0, flip all augmenting paths for Mk that are contained in
c−1(ak). Given that we are only flipping paths with the same color, in each
step we indeed obtain a new matching. Note that each Mk+1 covers the
vertices covered by Mk. It now suffices to establish the claim below.

Claim There is k such that Mk has no augmenting paths of length ≤ 2K+1
outside of a definable subset of P of ν-measure < δ.
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Proof of Claim: First note that an edge (a, b) ∈ G can flip belonging to
Mk for only finitely many k’s. This follows by an argument as in [7], p.12:
Set

Ra := {x : x is reachable from a in ≤ 2K + 1 many steps}.

Then b ∈ Ra, and Ra is finite because every vertex of G has finite degree.
Every time we flip (a, b), this happens because (a, b) is part of an augmenting
path of length ≤ 2K + 1 whose flipping results in an increase of the covered
vertices of Ra. But given the finiteness of Ra, this can only happen finitely
many times.

Also note that since G is definable, there is a uniform bound, say N , on
the number of times an edge can flip (take, for instance, N = d2K+1, where
d is an upper bound on the degrees in G).

It suffices to show that for i ∈ {0, . . . , C − 1} there is ki such that for
every m ≥ ki, c

−1(i) contains no augmenting paths of length ≤ 2K + 1 for
Mi+mC outside of a definable subset of P of ν-measure < δ

2C
.

Let APi+mC ⊆ P be the set of augmenting paths for Mi+mC in c−1(i),
and assume to the contrary that there are arbitrarily large k such that
ν(APi+kC) ≥ ε. To create Mi+kC+1, the paths in APi+mC are flipped, but
because each edge flips at most N times, this can only happen at most
ν(c−1(i))

ε
·N times, a contradiction. � (Claim)

Set k := max{k0, . . . , kC−1}. Then the set of augmenting paths for Mk of
length ≤ 2K + 1 has measure < δ

2
+ C · δ

2C
= δ.

�

3 Reduction to the archimedean case

In this section, we drop the assumption that the underlying set of R is R.
Instead, we assume that R is (2ℵ0)+-saturated. We will use the following
definitions and lemma from [4].

By a Q-ball in Rn we mean an open ball with rational radius, i.e. a ball
of the form

Br(x) = {y ∈ Rn : d(x, y) < r, x ∈ Rn, r ∈ Q>0}.

The lemma below is Lemma 4.1, p. 183 in [4] (here, we prefer to state it in
terms of Q-balls rather than Q-boxes).
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Lemma 3.1 ([4]) Suppose X ⊆ Rn is definable and dim(stX) = n. Then
X contains a Q-ball.

The following definition (Definition 3.1, p.179, [4]) and theorem (a slightly
weaker version of Corollary 6.2, p.191, in [4]) will be crucial.

Definition 3.2 ([4]) Given functions f : X → R, X ⊆ Rn, and F : Y → R
with Y ⊆ Rn, we say that f induces F if f is definable (so X is definable),
Y h ⊆ X, f |Ch is continuous, f(Ch) ⊆ O and ΓF = st(Γf) ∩ (Y × R).

For f : X → Rn and F : Y → Rn, where X ⊆ Rn and Y ⊆ Rn, we say
that f induces F if the coordinate functions of f induce the corresponding
coordinate functions of F .

Theorem 3.3 ([4]) If f : Y → R, where Y ⊆ Rn and Γf ⊆ On+1, is defin-
able, then there is a decomposition C of Rn into cells that partitions stY and
such that if C ∈ C is open and C ⊆ stY , then f is continuously differentiable
on an open X ⊆ Y containing st−1(C) and f, ∂f

∂x1
, . . . , ∂f

∂xn
, as functions on

X, induce functions g, g1, . . . , gn : C → R such that g is C1 and gi = ∂g
∂xi

for
each i.

Furthermore, we shall use the following results from [5], where 1. is Propo-
sition 5.1, and 2. is extracted from the proof of Lemma 2.15.

Proposition 3.4 1. If C ∈ Defn(Rind) is closed, then there is a Z ∈
Defn(R) such that stZ = cl(C).

2. If X, Y ∈ Defn(R) and X, Y ⊆ On, then there is ε > 0 such that
stX ∩ stY = st(X ∩ Y ε), where Y ε = {x ∈ Rn : d(x, Y ) < ε}.

Below, ν-measure is defined just as in the case when the underlying set of
the structure is R, except using µ rather than λ.

Theorem 3.5 Let G = (A∪̇B,G) be a definable µ-preserving bipartite graph
with A,B ⊆ On and d an upper bound on the degrees of its vertices, and let
M ⊆ G be a definable matching. Let further K ∈ N, δ ∈ R>0, and ε ∈ R>0

subject to ε < δ
d2K+2 . Then there is a definable matching X ⊆ G such that

X covers all vertices covered by M outside of a definable set of µ-measure
< ε and X has no augmenting paths of length ≤ 2K + 1 outside of a set of
ν-measure < δ.
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Proof: We may assume that dim(stA) = n = dim(stB). Let D be a
decomposition of R2n into cells which partitions G and M . Set

D0 = {π2n
n D : D ∈ D&D ⊆ G& dim π2n

n D = n}.

We may assume that if D ∈ D, D ⊆ G is such that π2n
n D ∈ D0, then D is

the union of finitely many Γf , where each f is an n-isomorphism, and we
denote the collection of these n-isomorphisms on π2n

n D by Fπ2n
n D.

Set

G1 = G ∩
⋃
D∈D0

(D ×Rn) and M1 = M ∩
⋃
D∈D0

(D ×Rn),

and let C be a decomposition of R2n into cells partitioning stG1 and stM1

and such that {π2n
n C : C ∈ C} partitions each stD where D ∈ D0. Let

C0 = {π2n
n C : C ∈ C&C ⊆ stG1 & dimC = n}.

Suppose D ∈ D0 and f ∈ FD, and let C ∈ C0 be such that C ⊆ stD. Then by
Theorem 3.3, we may assume that f induces an n-isomorphism g : C → g(C).
For C ∈ C0, let FC be the set of all g : C → Rn that are induced by some
f ∈ FD, where D ∈ D0 and C ⊆ stD.

We set
G′ = stG1 ∩

⋃
C∈C0

(C × Rn).

Then G′ is the edge relation of the Rind-definable, λ-preserving, bipartite
graph G ′ with bipartition A′, B′, where A′ = π2n

n G
′ and B′ the projection of

G′ onto the last n coordinates.

Claim The relation M ′ = stM1 ∩G′ is a definable matching in G′.

Proof of Claim: To see thatM ′ is the graph of a function, assume towards
a contradiction that (X, Y ), (X, Y ′) ∈M ′ and Y 6= Y ′. Then X ∈ C for some
C ∈ C0 and C ⊆ stD for some D ∈ D. Since C is open, st−1(X) ⊆ D, and
there are x1, x2 ∈ D such that stx1 = stx2 = X, and st f(x1) = Y and
st f(x2) = Y ′ for the unique f ∈ FD with Γf ⊆ M1, contradicting that f
induces a function C → Rn.

Suppose now that (X, Y ), (X ′, Y ) ∈ M ′ with X 6= X ′. If there is C ∈ C0
such that X,X ′ ∈ C, then st−1X, st−1X ′ ⊆ D for some D ∈ D, and for
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f ∈ FD with Γf ⊆ M1, we have st f(x) = st f(x′) for some x ∈ st−1X,
x′ ∈ st−1X ′, contradicting that f induces an isomorphism C → Rn.

So assume X ∈ C1, X
′ ∈ C2, where C1, C2 ∈ C0, C1 6= C2. Let F : C1 →

Rn and G : C2 → Rn be induced by f ∈ FD1 and by g ∈ FD2 respectively,
where Γf,Γg ⊆ M1 and F (X) = Y = G(X ′). Then there is δ > 0 such
that Bδ(X) ⊆ C1 and Bδ(X

′) ⊆ C2 and, since F , G are homeomorphisms,
F (Bδ(X)), G(Bδ(X

′)) are open subsets of Rn.
Since st−1(Bδ(X)) ⊆ D1 and st−1(Bδ(X

′)) ⊆ D2, we have B δ
2
(x) ⊆ D1

and B δ
2
(x′) ⊆ D2, where x, x′ are such that stx = X and stx′ = X ′.

So F (B δ
2
(X)) ⊆ st f(B δ

2
(x)) and G(B δ

2
(X ′)) ⊆ st g(B δ

2
(x′)). Since Y ∈

F (B δ
2
(X)) ∩G(B δ

2
(X ′)), there is ε > 0 such that

Bε(Y ) ⊆ F (B δ
2
(X)) ∩G(B δ

2
(X ′)),

hence Bε(Y ) ⊆ st f(B δ
2
(x)) ∩ st g(B δ

2
(x′)) - a contradiction with

f(B δ
2
(x)) ∩ g(B δ

2
(x′)) = ∅

and Lemma 3.1.
� (Claim)

By Proposition 2.6, we can find an Rind-definable matching M ′′ ⊆ G′ such
that all augmenting paths outside of a definable P ⊆ P of ν-measure < δ

2

are of length > 2K + 1.
Let C ′ be a decomposition of R2n into cells which is a refinement of C and

partitions M ′′, and let C ′0 consist of the cells π2n
n C of dimension n such that

C ∈ C ′ and C ⊆M ′′. Find α ∈ R>0 such that

ΣC∈C′0λ(C \ Cα) <
δ

4 · d2K+1
<
ε

2
,

where
Cα = {x ∈ C : d(∂C, x) ≥ α}.

By 3.4, we can find for each C ∈ C ′0 and D ∈ D0 with C ⊆ stD a definable
DC ⊆ D such that stDC = cl(Cα). Note that

M ′′′ := M ′′ ∩
⋃
C∈C′0

(Cα × Rn)

13



covers the same vertices as M ′′ outside of a set of measure < ε, hence M ′

does, too. Moreover, M ′′′ has no augmenting paths of length ≤ 2K + 1
outside of a subset of P of ν-measure < d2K+1 · δ

2·d2K+1 + δ
2

= δ.
We now define the desired matching X ⊆ G as a subset of⋃

C∈C′0

(DC ×Rn) ∩G.

For each C ∈ C ′0 and D and DC as above, let fDC be the restriction to DC of
the first function in FD which induces the function with graph M ′′∩(C×Rn).
Then

X =
⋃
{ΓfDC : C ∈ C ′0}.

It is left to check that X satisfies the desired properties.

X ⊆ G is a matching: The only way X can fail to be a matching is, if there
are x1 ∈ DC1 and x2 ∈ DC2 where C1 6= C2 and (x1, y), (x2, y) ∈ X. But
then (stx1, st y), (stx2, st y) ∈ M ′′, so stx1 = stx2, a contradiction with
d(DC1 , DC2) > m.

X has < δ augmenting paths of length ≤ 2K + 1: Let P be a set of augment-
ing paths for X of length ≤ 2K+1 and generating sequence s. Then we may
identify P with the set of starting vertices of the paths in P . Assume that
µ(P0) = ρ > 0. If suffices to show that then P induces a set of augmenting
paths for M ′′′ of length ≤ 2K + 1 and set of starting vertices of λ-measure
≥ ρ. Note that we may assume that P is a set of paths in G1. But then
it follows straightforwardly from the definitions of G1, G

′, X, M ′′′ and from
Lemma 3.1 that µ-a.e. on P , if p = (p0, . . . , pl) ∈ P , then each st pi is a
vertex of G′; st p0, st pl are not covered by M ′′′; (st pi, st pi+1) ∈ G′; and
(pi, pi+1) ∈ X iff (st pi, st pi+1) ∈M ′′′.

X covers the same vertices covered by M outside of a set of µ-measure < ε :
Let V ⊆ A∪̇B be definable and covered by M but not by X, and µ(V ) ≥ ε.
Then V is µ-a.e. covered by M1, and hence stV is covered by M ′ outside
of a set of λ-measure 0. Since λ(stV ) > ε, this yields a contradiction with
stX = cl(M ′′′) and M ′′′ covering the same vertices as M ′ outside of a set of
measure < ε.

�
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4 Matchings in 2-regular bipartite graphs

Let R be a sufficiently saturated expansion of a real closed field. In this
section, we assume that G = (A∪̇B,G) is a definable, µ-preserving, 2-regular,
bipartite graph with G ⊆ O2n. We will show the existence of a definable
matching in G covering all vertices outside of a set of arbitrarily small positive
µ-measure.

We first consider the case in which we are given a definable matching in G
without any short augmenting paths: Let K be an even integer and let M ⊆
G be a definable matching without augmenting paths of length ≤ 2K+1. Let
Y0 ⊆ A∪̇B consist of the vertices not covered by M . For k = 0, 1, . . . , K−2

2
,

we set Y2k+1 := NG(Y2k) and Y2k+2 := NM(Y2k+1).

Lemma 4.1 µYK = K · µY0.

Proof: We sketch the proof of this lemma; the details can be easily filled
in by the reader, using induction and the absence of short augmenting paths.

Let v ∈ Y0. We denote by Tv the following tree rooted in v. From now
on, we shall assume that l ∈ {0, . . . , K−2

2
}. If x is a vertex of Tv at depth 2l,

then x has two children, labeled by the two vertices incident with x in G. If
x is at depth 2l+ 1, then x has one child, labeled by the vertex incident with
x via an edge in M . For simplicity, we assume that for l > 0, the left child
of x at depth 2l is matched and the right child is unmatched. Furthermore,
if x is a vertex of Tv, then we denote by Tx the maximal subtree of Tv rooted
in x. We denote by Xl the set of labels of vertices in Tv at depth l, and
by depth we shall always mean depth with respect to Tv (even when talking
about a subtree).

By 2-regularity of G, v has two children, a left child x1 and a right child
y1. Due to M not having any short augmenting paths and G being bipartite
(so G has no odd cycles), |X2l+1| = |X2l+2|.
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v

x1

x2

x1

x2

x1 x3

x3

x4

x3 x5

y1

y2

y1

y2

y1 y3

y3

y4

y3 y5

Claim The set of labels of Tx1 and the set of labels of Ty1 are disjoint. In
Tx1 and in Ty1 respectively, after identifying vertices with same labels at each
depth (so a label can only repeat at different depths), at depth 2l + 1, there
are exactly two vertices with indegree 1 (so all other vertices have indegree
2).

Claim Suppose l > 0. Then |X2l| = 2l.

The Lemma now follows from the next claim.

Claim Let v, v′ ∈ Y0, v 6= v′. Then the sets of labels at depth l of the tree
Tv and of the tree Tv′ are disjoint.

�

Theorem 4.2 Let ε ∈ R>0. Then there is a definable matching M ⊆ G such
that M covers all vertices outside of a set of measure < ε.

Proof: Let ε ∈ R>0 and let K be even, such that 1
K
< ε

2
. By Theorem

3.5, we can find a definable matching M ⊆ G with < ε
2

augmenting paths of
length ≤ 2K + 1. Let Y0 be the set of vertices not covered by M , and let
Z ⊆ Y0 be the set of starting vertices of augmenting paths of length ≤ 2K+1.
Then, by the proof of Lemma 4.1,

K · µ(Y0 \ Z) = µ(Y0 \ Z)K ,
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where (Y0 \ Z)K is defined just as YK , except that one starts with Y0 \ Z
instead of Y0 in the inductive definition. Since µ(Y0 \ Z) is bounded above
by 1, µ(Y0 \ Z) ≤ 1

K
, so

µY0 <
1

K
+
ε

2
< ε.

�

5 A cancellation result

Let R be a sufficiently saturated expansion of a real closed field. We define
an equivalence relation ∼ on B[n] as follows.

Definition 5.1 Let X, Y ∈ B[n]. Then X ∼ Y iff there are definable
open partitions of {X}k1=1, {Yi}ki=1 of X and Y respectively and there are
n-isomorphisms f1, . . . , fk such that Yi = f(Xi) for each i.

We let B be the semigroup (B[n]/ ∼,+), where the binary operation + is
given by a + b = c, with c the equivalence class containing a disjoint union
of a, b.

The proof of the next theorem is essentially the proof of cancellation from
Tomkowicz, Wagon [6], p. 177. While [6] uses the Hall-Rado-Hall Infinite
Marriage Theorem, we only have Theorem 4.2 at our disposition.

Theorem 5.2 Let α, β ∈ B have strongly bounded representatives and sup-
pose α + α =a β + β in B. Then α =a β.

Proof: Let ε ∈ R>0, and let A,A′, and B,B′ respectively, be two pairs of
disjoint copies of strongly bounded representatives of α, and of β respectively.
Let φ : A → A′, ψ : B → B′ and θ : A∪̇A′ → B∪̇B′ witness A ∼ A′, B ∼ B′

and A∪̇A′ ∼ ε
2
B∪̇B′ respectively. We define a bipartite graph H as follows.

The bipartition consists of the two sets

Ā = {(a, φ(a)) : a ∈ A)} and B̄ = {(b, ψ(b)) : b ∈ B},

and we let (a, φ(a)) be incident with (b, ψ(b)) iff θ(a) = b or θ(φ(a)) = b or
θ(a) = ψ(b) or θ(φ(a)) = ψ(b).

To construct a map witnessing α =ε β, it will suffice to find a definable
matching M ⊆ H covering Ā ∪ B̄ outside of a set of µ-measure < ε. Note
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that the subset of Ā, and of B̄ respectively, of vertices of degree 0 is of µ-
measure < ε

2
. Let Ā1 ⊆ Ā and B̄1 ⊆ B̄ be the sets of vertices of degree

1. Then H restricts to a µ-preserving matching between Ā1 and B̄1, so
we may replace H by the graph with bipartition Ā \ Ā1, B̄ \ B̄1 and edge
relation H ∩

(
(Ā \ Ā1) × (B̄ \ B̄1)

)
. Then H is a definable µ-preserving 2-

regular bipartite graph. By Theorem 4.2, H contains a definable matching M
covering all vertices outside of a set of µ-measure < ε

2
. A map f witnessing

α =ε β can now be defined as follows. First, suppose a ∈ A is such that
(a, φ(a)) ∈ Ā\A1. If (a, φ(a)) is covered by M , then f(a) = b where b is such
that ((a, φ(a)), (b, ψ(b))) ∈M . If (a, φ(a)) is not covered by M , then f(a) is
undefined. Finally, suppose a ∈ A is such that (a, φ(a)) ∈ A1, then f maps
a to the unique b ∈ B1 such that (a, φ(a)) and (b, ψ(b)) are incident in H.

�

References

[1] G. Elek and G. Lippner, Borel oracles. An analytical approach to
constant-time algorithms, Proc. Amer. Math. Soc. 138 (8): 2939–2947
(2010).

[2] M. Laczkovich, Closed sets without measurable matching, Proc. Amer.
Math. Soc. 103 (3): 894-896 (1988).

[3] R. Lyons, F. Nazarov, Perfect matchings as IID factors of non-amenable
groups. Eur. J. of Comb. 32(7): 1115–1125 (2011).
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