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Abstract. Working in any model theoretic structure, we single out a
class of definable bipartite graphs that admit definable, close to perfect
matchings. We use this result to prove a strengthening of a theorem by
Tarski on paradoxical decompositions for the definable setting.

1. Introduction

A well-known theorem by Tarski from 1929 (see Tarski [10], and Tarski
[11] for a proof) relates the non-existence of paradoxical decompositions
with the existence of finitely additive measures. It can be stated as follows
(see G. Tomkowicz, S. Wagon [12], p. 194, Theorem 11.1), where ≤ denotes
the pre-order on the monoid M given by α ≤ β if there is γ such that
α + γ = β.

Theorem 1.1 (Tarski). Let (M ; 0,+, α) be a commutative monoid with
identity element 0 and a distinguished element α. Then the following are
equivalent.

(1) For every k, (k + 1)α 6≤ kα.
(2) There is a homomorphism of monoids µ : M → [0,∞] such that

µα = 1.

From a model-theoretic perspective, a situation of interest is as follows.
Given a structure S, we let Defn(S) be the boolean algebra of definable
subsets of Sn. We then set M := Defn(S)/∼, the quotient of Defn(S) by
the equivalence relation induced by isomorphisms, where isomorphisms are
some singled-out definable bijections that we think of as being measure-
preserving.1 The binary operation + is disjoint union, 0 = ∅/∼ and c =
X/∼, where X ⊆ Sn is a definable set for which we would like to prove or
disprove the existence of a finitely additive isomorphism-invariant measure
on Defn(S) which assigns 1 to X. Such finitely additive measures on the
boolean algebras of definable sets are called Keisler measures, and they have
played a prominent role in model theory since the mid 2000’s, especially in
so-called NIP theories (see for instance Starchenko [9]).

We show that in the model-theoretic setting, (1) in Tarski’s Theorem can
be replaced, roughly, by “two copies of X almost embed isomorphically into

2020 Mathematics Subject Classification. Primary 03C07; Secondary 05C70, 28E15.
1The particular notion of isomorphism will depend on the structure one is interested

in. For instance, if S is an o-minimal expansion of a real closed field, then isomorphisms
might be the definable C1-diffeomorphisms Sn → Sn with Jacobian determinant equal
to ±1.
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one copy of X”. For the meaning of “Y almost isomorphically embeds into
Z” (denoted by Y ≤0 Z) see Definition 4.4. Intuitively, for every m ∈ N,
there is a definable Y0 ⊆ Y which is m times smaller than Y , and Y \ Y0
isomorphically embeds into Z (see Definition 4.4). We obtain:

Theorem 1.2. Let S be a model theoretic structure and X ∈ Defn(S). The
following are equivalent.

(1) 2X 6≤0 X.
(2) There is a finitely additive invariant measure µ : Defn(S) → [0,∞]

such that µX = 1.

Note that there is a finitely additive invariant measure µ : Defn(S) →
[0,∞] assigning 1 to X iff there is a finitely additive invariant probability
measure on the definable subsets of X. For the right to left implication,
extend the probability measure by assigning ∞ to Y ∈ Defn(S) such that
Y/∼ does not have a representative that is a definable subset of X.

The proof of Theorem 1.2 goes via a definability result for “close to
perfect” matchings in certain definable bipartite graphs. In particular, given
any structure S, we show that if a definable k-regular bipartite graph is built
up from finitely many graphs of isomorphisms, then it admits, for every m,
a definable matching, which covers the vertex V outside of a subset whose
m copies embed isomorphically into V . The proof was inspired by results of
Lyons, Nazarov [7] and Elek, Lippner [3] in the Borel setting. Namely, we
first show, for every K, the existence of a definable matching that does not
admit augumenting paths of length K. Then, given such a matching M , we
use the regularity of the graph to compute a bound on the relative size of
Y0, the set of vertices not covered by M , in terms of K. The relative size
of Y0 is given by its the number of copies that embed isomorphically into
the vertex set. We note that by an example of Laczkovich [6], our matching
theorem cannot be improved to yield a perfect definable matching in the
conclusion.

Our matching theorem yields approximate weak cancellation in Defn(S)/∼
(Theorem 5.2), by essentially the same argument as in the non-definable
setting. This, in turn, yields that Condition (1) from Tarski’s Theorem is
equivalent to having 2 copies of the set in question almost embed into 1
copy (Corollary 6.1), and hence the definable Tarski’s Theorem 1.2.

We remark that Mař́ıková [8] contains a very a special case of our match-
ing theorem. Namely, it is shown that certain 2-regular measure-preserving
graphs definable in o-minimal structures admit definable matchings cover-
ing all vertices outside of a set whose standard part has arbitrarily small
positive Lebesgue measure. This result is of course only meaningful if the
standard part of the vertex set has non-empty interior. The proofs in [8]
rely heavily on nontrivial results about o-minimal structures, in particular,
on a reduction to the reals, where certain definable colorings exist. Here,
we replace these proofs by purely combinatorial ones. In particular, the use
of colorings is entirely avoided by using that the edge relation is a union of
finitely many graphs of bijections.

For a general reference on graph theory see for instance Diestel [1].
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2. Notation and definitions

Given a structure S = (S; . . . ), definable shall mean “definable in S”,
possibly with parameters. We let Defn(S) be the boolean algebra of definable
subsets of Sn, and for X ∈ Defn(S), we set

DefX := {Y ∈ Defn(S) : Y ⊆ X}.

A function f : A→ Sn, A ⊆ Sm, is said to be definable, if its graph

Γf = {(x, y) ∈ Sm+n : f(x) = y}

is definable. By πn
m : Sn → Sm we denote the projection onto the first m

coordinates, whenever 1 ≤ m ≤ n.
A graph G is a pair of sets (V,E), where V 6= ∅ is called the set of vertices,

and E ⊆ V 2 is a symmetric and antireflexive relation whose elements are
called edges. Our graphs are thus not oriented, have no loops, and we shall
think of edges, when convenient, as two-element subsets of V . In this sense,
a vertex v and an edge e are incident if v ∈ e. Two vertices v, w are adjacent
if (v, w) ∈ E. The degree of a vertex is the number of edges incident with it.
If v ∈ e, then we also say that e covers v. If Y ⊆ E, then Y (V ) denotes the
set of vertices covered by the edges in Y . A graph is definable if V and E
are definable. A subset of X ⊆ V is independent if no two distinct vertices
in X are incident with the same edge. Similarly, a set Y ⊆ E is independent
if no two distinct edges in Y share a vertex. A graph is called k-regular, if
each vertex is incident with exactly k edges.

A graph (V,E) is bipartite if V = A∪̇B and E ⊆ A × B. Such A, B is
called a bipartition. A definable bipartite graph is a definable graph with a
definable bipartition.

A matching in a graph G is an independent set of edges. A matching is
perfect if it covers V . Given a matching M ⊆ E, a path in G is alternat-
ing if its edges alternate belonging to M . An augmenting path is a simple
alternating path such that the starting vertex and the final vertex are not
covered by M . So an augmenting path is necessarily of odd length. A k-path
is a path of length k, where the length of a path is its number of edges. A
k-augmenting path is an augmenting path of length k. To flip an augment-
ing path p means to remove the edges of p that were in M from M , and to
place the edges of p that were not in M into M . Note that, after flipping
an augmenting path, M remains a matching.

The letters i, j, k, l,m, n,K,N are used to denote natural numbers, where
N = {0, 1, 2, . . . }.

3. Matchings without short augmenting paths

Let S = (S; . . . ) be a first order-structure. In this section, we shall
consider definable bipartite graphs built up from finitely many bijections.
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Definition 3.1. Let G be an S-definable bipartite graph with bipartition
A,B ⊆ Sn and edge relation E ⊆ A × B. We call G nice if there is a
definable finite partition {Ai} of A, and for each i,

E ∩ (Ai × Sn) =
⋃̇

j∈Fi

Γfij,

where Fi is a finite set of definable bijections fij : Ai → B.

Note that if G is nice, then there is N such that the degrees of the vertices
of G are bounded byN . Also note that for every path (x0, x1, . . . , xk) starting
in A there is a unique sequence (f1, . . . , fk) of bijections from

⋃
iFi such

that x2i+1 = f2i+1(x2i) and x2i+2 = f−12i+2(x2i+1). We shall call (f1, . . . , fk)
the generating sequence of the path (x0, . . . , xk).

Proposition 3.2. Let G = (V,E) be nice. Given a definable matching M0 ⊆
E and K ∈ N there is a definable matching M ⊆ E which does not admit
any augmenting paths of length ≤ 2K + 1, and such that M0(V ) ⊆M(V ).

Proof. Let G, {Ai} and {Fi} be as in Definition 3.1. Note that we may
assume that {Ai} = {A1, . . . , Al} partitions π2n

n M0. This is because restric-
tions of definable maps to definable subsets of the original domain are again
definable.

The proof proceeds by induction on K. At each stage we show that, after
flipping a given set of augmenting paths, a) we obtain a matching, and b)
we did not introduce any new augmenting paths of equal or shorter length
than the flipped ones.

Let i ∈ {1, . . . , l} be the first index such that there is a 1-augmenting
path starting in Ai, say with generating sequence f ∈ Fi. Then all vertices
of Ai are starting vertices of an augmenting path of length 1 with generat-
ing sequence f , and we add Γf to M0 to obtain M . Observe that M is a
matching, because we only added edges between vertices not covered by M0,
and each vertex in Ai∪ f(Ai) is incident with exactly one added edge, since
f is a bijection. Also, we did not introduce any new 1-augmenting paths,
M0(V ) ⊆M(V ), and there are no more 1-augmenting paths starting in Ai.

Assume that k is maximal subject to i ≤ k ≤ l and there are no 1-
augmenting paths for M starting in

⋃k
j=1Aj. If k = l, then we are done.

So suppose k < l and Ak+1 contains a starting vertex for a 1-augmenting
path for M , say with generating sequence f ∈ Fk+1. Then the set X ⊆
Ak+1 of starting vertices of 1-augmenting paths with generating sequence
f is definable. We replace M by M ∪ Γf |X and observe that M is again a
matching in which the previously covered vertices remain covered. No new
1-augmenting paths were introduced, and there are no more 1-augmenting
paths starting in Ak+1 with generating sequence f . One by one, we consider
the remaining generating sequences g ∈ Fk+1, and we proceed as before.
Since Fk+1 is finite, after finitely many steps we arrive at a matching M

which does not admit any 1-augmenting paths starting in
⋃k+1

j=1 Aj, and such

that M0(V ) ⊆M(V ).
Since {Ai} is finite, after repeating finitely many times the steps starting

with “Assume that k is maximal subject to ...”, we arrive at a definable
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matching M which covers all vertices that were covered by M0, and which
does not admit any 1-augmenting paths (as an augmenting path starting in
B ends in A).

Now assume that M ⊆ E is a definable matching which does not admit any
augmenting paths of length ≤ 2K − 1, where K ≥ 1. We wish to construct
a matching which does not admit any augmenting paths of length ≤ 2K+1
and that covers all vertices covered by M .

Let i be the first index in {1, . . . , l} such that Ai contains a (definable)
non-empty set X of starting vertices of (2K + 1)-augmenting paths, say
with generating sequence (f) = (f1, f2, . . . , f2K+1). We shall denote the set
of these augmenting paths by PX,(f) ⊆ V 2K+2. Flip the paths in PX,(f) and
call the resulting relation M ′.

Claim M ′ is a matching in G.

Proof of Claim:
The only way the claim could fail is if there were p, q ∈ PX,(f) such that

for some i, j ∈ {0, . . . , 2K+1}, pi = qj. Then i 6= j and both i and j are even,
or both are odd. Say i < j. Then p1, . . . , pi, qj+1, . . . , q2K+2 is an augmenting
path of length ≤ 2K + 1, contradicting the inductive assumption. �
(Claim)

Claim Suppose p is an augmenting path for M ′ of length ≤ 2K+1 starting
in A. Then p is an augmenting path for M .

Proof of Claim: We shall use the following convention. If q = (q0, . . . , qn)
is a path, then we denote by q̂ the path q traversed in the opposite direction,
i.e. q̂ = (qn, qn−1, . . . , q0). If q and q′ are paths such that q|q| = q′0, then
qq′ = q0 . . . q|q|q

′
1 . . . q|q′| is the concatenation of q and q′.

If p is a 1-augmenting path for M ′ and |p| = 1, then p is an augmenting
path for M , since flipping augmenting paths cannot uncover vertices. So we
may assume that |p| ≥ 3. We assert towards a contradiction that p is an
augmenting path for M ′ but not for M . Then p contains at least one edge
that was flipped as part of a path in PX,(f). Let c1, . . . , cl be the connected
components of p that were flipped as part of a path in PX.(f), in the order
of their occurrence in p, that is, the maximal subpaths of p consisting of
flipped edges such that if i < j then every edge in ci occurs in p before
every edge in cj. Note that the first and last edge of each ci are necessarily
covered by M ′ and not covered by M , because M ′ is a matching by the
previous claim. For each i, let qi be the unique path in PX,(f) such that ĉi

is a subpath of qi. Then |qi| = 2K + 1 for each i. For simplicity, we shall
proceed assuming l = 3, but the same proof works for any l ≥ 1.

We write p as a concatenation of paths a1c1a2c2a3c3a4, where the aj’s
are uniquely determined by the ci’s. Furthermore, we write qi = qi2ĉiqi1 for
i = 1, 2, 3. Then

(3.1)
4∑

i=1

|ai|+
3∑

i=1

|ci| ≤ 2K + 1
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and

(3.2) |qi1|+ |qi2|+ |ci| = 2K + 1 for each i ∈ {1, 2, 3}.
We aim to show that then at least one of

a1q11, q21â2q12, q31â3q22, â4q32

is an augmenting path for M of length ≤ 2K − 1, which will yield a con-
tradiction with our assumption on M . Clearly, each of these paths is an
augmenting path for M . Suppose to the contrary that the four augmenting
paths above are all of length > 2K − 1. Since they are augmenting paths,
they are of odd length, hence

|a1|+ |q11| ≥ 2K + 1
|a4|+ |q32| ≥ 2K + 1

|q21|+ |a2|+ |q12| ≥ 2K + 1
|q31|+ |a3|+ |q22| ≥ 2K + 1.

Then
4∑

i=1

|ai|+
3∑

i=1

2∑
j=1

|qij| ≥ 8K + 4,

and so by equations 3.1 and 3.2,

8K + 4− 2
3∑

i=1

|ci| ≥ 8K + 4,

thus 0 ≥
∑3

i=1 ci, contradicting the assumption that at least one edge in p
was flipped while flipping PX,(f).

� (Claim)

Given that there are only finitely many possible generating sequences for
(2K + 1)-augmenting paths starting in Ai, using the above two claims, we
can eliminate all (2K + 1)-augmenting paths starting in Ai in finitely many
steps while maintaining that M ′ is a matching and keeping covered vertices
covered. Each subsequent Aj is handled similarly. After finitely many steps
we thus arrive at a matching M ′′ which does not admit any augmenting
paths of length≤ 2K+1 starting in A, and for which M0(V ) ⊆M ′′(V ).Then
M ′′ also does not admit any augmenting paths of length ≤ 2K + 1 starting
in B, since such a path would end in A.

�

4. Matchings in k-regular bipartite graphs

The matching result in this section applies to all nice k-regular graphs
whose bijections are isomorphisms, i.e. they belong to some specified subcol-
lection of the set of definable bijections which is closed under composition
and inverses. While one could take for the collection of isomorphisms the
collection of all definable bijections, some choices will be more meaningful
than others, since isomorphisms are used to compare “sizes” of sets. For
instance, if S is an o-minimal expansion of a real closed field, and we chose
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to have the collection of isomorphisms be equal to the collection of all de-
finable bijections (rather than, for instance, the maps from the footnote on
the first page), then, the conclusion of Theorem 4.5 would simply be that
we can find a definable matching covering the vertex set up to a subset
that could potentially be the entire vertex set. This is because there is a
definable bijection between two S-definable sets iff the sets have the same
Euler characteristic and dimension (see van den Dries [2], p. 132, 2.11).

Definition 4.1. Given n, a set of isomorphisms In is any specified col-
lection of definable bijections Sn → Sn that is closed under composition
and inverses (so In forms a group under composition of functions and with
identity element x 7→ x).

Remark 4.2. Our proofs would still go through if in the above definition,
we would only require that In is a pseudogroup of partial definable bijections
Sn ⇀ Sn.

Definition 4.3. Given a collection of isomorphisms In, a measure-preserving
graph G = (A∪̇B,E), with A,B ⊆ Sn, is a nice graph whose bijections are
restricted isomorphisms, i.e. there are {Ai} and {Fi} as in Definition 3.1,

such that for each i and each f ∈ Fi, there is f̃ ∈ In such that f = f̃ |Ai
.

Definition 4.4. Let X, Y ∈ Defn(S).

(1) If there is a finite definable partition {Xi} of X and there are iso-
morphisms fi : S

n → Sn, such that fi(Xi) ∩ fj(Xj) = ∅ whenever
i 6= j, and

⋃
i fi(Xi) ⊆ Y , then we say that X isomorphically embeds

into Y , and we write X ≤ Y . If moreover
⋃
fi(Xi) = Y , then we

write X ' Y .
(2) We write nX for “union of n disjoint copies of X”, and p

q
X ≤ s

t
Y is

a short-hand for ptX ≤ qsY .
(3) For m > 0, we write X ≤m Y if there are p, q ∈ N>0 such that

m ≤ p
q

and pX ≤ qY .

(4) We write X ≤0 Y if for every m > 0 there is X0 ⊆ X such that
X0 ≤m X and (X \X0) ≤ Y .

Note that if there is a Keisler measure ν on S which is invariant under
isomorphisms, then X ≤m Y implies m · νX ≤ νY .

In the proof of the theorem below, for X ⊆ V and M ⊆ E, we set

NM(X) := {y ∈ V : ∃x ∈ X ∃e ∈M e = (x, y)}.

Theorem 4.5. Let G = (A∪̇B,E) be a k-regular measure-preserving graph,
where k ≥ 2. Then for every positive integer m, there is a definable matching
M ⊆ G covering the vertex set outside of a subset Y0 satisfying Y0 ≤m A∪̇B.

Proof. Let m ≥ 1 and K odd such that m ≤ k+1
k

(1 + K−1
2k

). By Prop 3.2, we
can find a definable matching M ⊆ G which does not admit any augmenting
paths of length ≤ K. We shall show that M has the required property. For
1 ≤ i ≤ K, we define Yi as follows. If i is odd, then Yi = NG(Yi−1). If i is
even, then Yi = NM(Yi−1).
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Note that every vertex v ∈ Y1 is incident with at most k−1 many vertices
of Y0, since Y1 is covered by M . To obtain a lower bound on Y1 in the sense
of Definition 4.4, consider that

Y1 ∪̇ (k − 2)Dk−1 ∪̇ (k − 3)Dk−2 ∪̇ . . . ∪̇D2 ' kY0,

where Dj consists of the vertices of Y1 that are incident with exactly j
vertices from Y0. Thus

Y1 ∪̇ (k − 2)Y1 ≥ kY0,

and hence Y1 ≥ k
k−1Y0.

For i odd, 1 ≤ i ≤ K − 2, we have Yi ' Yi+1, since each vertex of Yi is
covered by M - otherwise there would be an augmenting path of length i.

Now let i be odd such that 1 < i ≤ K. Note that then Yi contains Y1,
and Yi = Y1∪̇(Yi \ Y1). If v ∈ Y1, then v is adjacent to some element from
Y0, hence can be adjacent to at most (k − 1) many vertices from Yi−1. It
follows that

Yi∪̇(k − 2)Y1∪̇(k − 1)(Yi \ Y1) ≥ kYi−1,

hence
(k − 1)Yi∪̇(Yi \ Y1) ≥ kYi−1,

and so kYi ≥ kYi−2∪̇Y1. Inductively, we obtain kYi ≥ (k + i−1
2

)Y1. Taking
K for i yields

YK ≥
(
1 +

K − 1

2k

)k + 1

k
Y0.

So Y0 ≤m A∪̇B by our choice of K.
�

The following is an immediate consequence of Theorem 4.5.

Corollary 4.6. Let G = (A∪̇B,E) be a k-regular measure-preserving graph
with k ≥ 2. Suppose µ is a finitely additive invariant probability measure on
Def(A∪̇B). Then for every ε ∈ R>0 there is a definable matching M ⊆ G
such that M covers A∪̇B apart from a definable subset of µ-measure < ε.

Here is a straight-forward corollary of the proof of Theorem 4.5 for the
case when we are interested in matchings covering only the first part of the
bipartition:

Corollary 4.7. Let G = (A∪̇B,E) be a measure-preserving graph which
is k-regular in A, and of maximal degree k in B. Then for every positive
integer m there is a definable matching M covering A outside of a definable
Y0 ⊆ A with Y0 ≤m A.

It is easy to see that the above also holds for definable measure-preserving
bipartite multigraphs , which will appear in the proof of the Weak Cancella-
tion Law. Those are defined in the same way as definable measure-preserving
bipartite graphs, except that one is additionally given a definable symmetric
map I : E → {1, . . . , N}. For e ∈ E, the value I(e) is called the multiplic-
ity of e. The degree of a vertex is then the number of edges incident with
it, counting multiplicities. So an edge (v, w) with I(v, w) = i contributes i
towards the degree of v.
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Corollary 4.8. If G = (A∪̇B,E) is a definable measure-preserving bipartite
multigraph which is k-regular in A, and of maximal degree k in B, then for
every m > 0 there is a definable matching covering A up to a definable
Y0 ⊆ A such that Y0 ≤m A.

5. Cancellation

We let Ksemi be the Grothendieck semigroup of S. That is, Ksemi is the
commutative monoid

Ksemi(S) = (Defn(S)/' ; 0,+),

where 0 = ∅/' and + is disjoint union (recall that ' was introduced in
Definition 4.4). We define a pre-ordering on Ksemi by α ≤ β if there is γ
such that α + γ = β. Note that A ≤ B iff A/' ≤ B/' in Ksemi. The
Grothendieck semigroup of a structure has appeared in numerous model
theoretic settings; see e.g. Kraj́ıček, Scanlon [5], or Hrushovski, Peterzil,
Pillay [4].

Definition 5.1. Let α, β ∈ Ksemi.

(1) For m > 0, we write α ≤m β to mean there are positive integers p, q
with m ≤ p

q
such that pα ≤ qβ.

(2) We write α ≤0 β if for every m > 0 there are α′, α′′ ∈ Ksemi such
that α′ + α′′ = α, α′ ≤m α and α′′ ≤ β.

In [12], p. 177, a proof of the Weak Cancellation Law in type semigroups
is presented in the general, non-definable setting. It uses the Hall-Rado-Hall
infinite Marriage Theorem and is a variation on König’s method. Essentially
the same proof goes through here, except that we use Corollary 4.8 instead
of the infinite Marriage theorem. We recount the proof for the reader’s
convenience.

Theorem 5.2 (Approximate Weak Cancellation Law). Let α, β ∈ Ksemi.
If kα ≤ kβ, then α ≤0 β.

Proof. Suppose kα ≤ kβ is witnessed by θ : kA→ kB, where A/' = α and
B/' = β, and

kA = A1∪̇A2 . . . ∪̇Ak,

where A1 = A and φi witnesses A ' Ai. We set φ1 = idA, and a =
(φ1(a), . . . , φk(a)) for a ∈ A. Similarly,

kB = B1∪̇B2 . . . ∪̇Bk,

where B1 = B, and ψi witnesses B ' Bi, with ψ1 = idB, and b =
(ψ1(b), . . . , ψk(b)).

Let H be the bipartite multigraph with bipartition

{a : a ∈ A and ai = φi(a)} ∪̇ {b : b ∈ B and bi = ψi(b)}

and edge (a, b) iff there are 1 ≤ i, j ≤ k such that θ(ai) = bj. Then H is
k-regular in the first part and of maximal degree k in the second part, so
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by Corollary 4.8, for m > 0 there is a definable matching M covering the
first part of the bipartition outside of a definable set Y0 with

mY0 ≤ {a ∈ Rk : a ∈ A and ai = φi(a1)}.

Let

Cij = {a ∈ A : ∃b
(
b ∈ B& (a, b) ∈M & θ ◦ φi(a) = ψj(b)

)
}

and

Dij = {b ∈ B : ∃a
(
a ∈ A& (a, b) ∈M & θ ◦ φi(a) = ψj(b)

)
}.

Then the conclusion of the theorem is witnessed by the partition {Cij} of
A \ Y0, the collection {Dij} of pairwise disjoint subsets of B, and the maps
ψ−1j ◦ θ ◦ φi : Cij → Dij.

�

6. Paradoxical decompositions

We shall now use Theorem 5.2 to show that, roughly, if (k + 1)X ≤ kX
for some k ≥ 1, then this is already witnessed by k = 1 and the same
definable set X.

The proof of the below corollary of Theorem 5.2 is standard and can
be found for instance in [12]. Again, we include it here for the reader’s
convenience.

Corollary 6.1. Let X ∈ Defn(S) be such that (n + 1)X ≤ nX. Then
2X ≤0 X.

Proof. By substituting (n+ 1)X ≤ X into itself, we obtain

nX ≥ (n+ 1)X = nX +X ≤ (n+ 1)X +X = nX + 2X,

and after repeating this finitely many times

nX ≥ nX + nX = 2(nX).

We now apply Theorem 5.2 to nX ≥ n(2X) to obtain 2X ≤0 X. �

Proof of Theorem 1.2. By Tarski’s Theorem, it suffices to show that if
(k + 1)X ≤ kX for some k, then 2X ≤0 X, and that 2X ≤0 X is an
obstruction to the existence of an invariant finitely additive measure on
Defn(S) that assigns 1 to X.

The first implication follows from Corollary 6.1. For the latter, suppose
2X ≤0 X. Then there is Y ∈ Def(2X) such that (2X \ Y ) ≤ X and
3Y ≤ 2X. If µ was an invariant finitely additive measure on Defn(S) such
that µX = 1, then µ(2X \ Y ) ≤ 1 because (2X \ Y ) ≤ X. On the other
hand, µY ≤ 2

3
, so µ(2X \ Y ) ≥ 2− 2

3
> 1, a contradiction.
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