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Abstract

We let R be an o-minimal expansion of a field, V a convex subring,
and (R0, V0) an elementary substructure of (R, V ). Our main result
is that (R, V ) considered as a structure in a language containing con-
stants for all elements of R0 is model complete relative to quantifier
elimination in R, provided that kR (the residue field with structure in-
duced from R) is o-minimal. Along the way we show that o-minimality
of kR implies that the sets definable in kR are the same as the sets
definable in k with structure induced from (R, V ). We also give a
criterion for a superstructure of (R, V ) being an elementary extension
of (R, V ).

1 Introduction

Throughout, we let R be an o-minmial field (i.e. an o-minimal expansion
of a real closed field), V a convex subring (hence a valuation ring) with
unique maximal ideal m, and π : V → k the corresponding residue map
with (ordered) residue field k = V/m. For any X ⊆ Rn we let π(X) :=
π(X∩V n). Definable in a structure M (or M -definable) shall mean definable
in M with parameters from M , unless indicated otherwise. By kR we denote

∗During the work on this paper, the second author was partially supported by the
Fields Institute.
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the expansion of k by all sets πX, where X ⊆ Rn is R-definable. Similarly,
k(R,V ) is the expansion of k by all sets πX where X ⊆ Rn is (R, V )-definable.
By (R,V) we shall always denote a big elementary extension of (R, V ), and
by (R0, V0) we denote an elementary substructure of (R, V ).

O-minimal fields with convex subrings (thus o-minimal fields with valu-
ations) have been extremely useful in proving facts about the reals - see for
example Bröcker [3], [4] for results of real algebraic and semialgebraic char-
acter, van den Dries [9] for results on Hausdorff limits, or Wilkie’s famous
proof of the o-minimality of the real exponential field [19].

The structure (R, V ) is well-understood when R is a pure real closed field
(see Cherlin and Dickmann, [5]). In particular, in this case (R, V ) eliminates
quantifiers. With the emergence of numerous o-minimal expansions of real
closed fields, the need arose to consider a more general class of structures
(R, V ). In [10], van den Dries and Lewenberg identified T -convex subrings
of o-minimal fields as a good analogue of convex subrings of real closed fields
(see also van den Dries [7]). If V is T -convex, then (R, V ) has elimination
of quantifiers (relative to R), the structure kR is o-minimal, and kR defines
the same sets as the structure k(R,V ). However, certain cases of interest do
not fall into the T-convex category. For instance, the convex hull of Q in
R is not always a T -convex subring of R. Also, many of the nice properties
of T -convex subrings are only implications, not equivalences. For example,
T -convexity of V implies o-minimality of kR, but not vice versa.

We therefore believe that it is a useful undertaking to try to understand a
wider class of structures (R, V ). In this paper we continue the investigation
of the class of structures (R, V ) so that kR is o-minimal (see Mař́ıková [17],
[18] and van den Dries, Mař́ıková [11]). We point out that these structures
include all cases when V is the convex hull of Q in R (see Corollary 3.4).

We now state some results and definitions we are going to use. The
theorem below is Theorem 1.2 in [18].

Theorem 1.1 The structure kR is o-minimal iff for every R-definable func-
tion f : [0, 1] → [0, 1] there is ε0 ∈ m≥0 so that πf(ε0) = πf(ε) for all
ε ∈ m≥ε0.

We also refer to the conditions on the right-hand side of the above equivalence
as Σ(1). These conditions have higher-dimensional analogues: For X ⊆
Rm+n and a ∈ Rm let

X(a) = {x ∈ Rn : (a, x) ∈ X}.
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We say that (R, V ) |= Σ(n) if whenever X ⊆ R1+n is R-definable, then there
is ε0 ∈ m≥0 so that πX(ε0) = πX(ε) for all ε ∈ m≥ε0 . For the theorem below
see [18] (Theorem 1.2) and [11] (Theorem 1.2).

Theorem 1.2 The following conditions are equivalent.

a) (R, V ) |= Σ(1)

b) (R, V ) |= Σ(n) for all n.

c) For every closed Y ⊆ kn definable in kR there is X ⊆ Rn definable in R
such that πX = Y .

(Note that there is no ambiguity when writing Σ(1), since the two versions
are equivalent.)

Remark 1.3 Note that the condtion in part c) of the above Theorem implies
that for every closed Y ⊆ kn which is ∅-definable in kR0 there is an R0-
definable X ⊆ Rn such that πX = Y . To see this, let Y ⊆ kn be closed
and ∅-definable in kR0. By part c) of Theorem 1.2, (R0, V0) |= Y = π0X,
where π0 is residue map of (R0, V0) and X is an R0-definable set. Since
(R0, V0) � (R, V ), we have (R, V ) |= Y = πX.

Here is the main result of this paper (see Corollary 5.5):

Theorem 1.4 Let (R0, V0) be an elementary substructure of (R, V ), and let
the language LR0 consist of a language for R in which R has elimination of
quantifiers, together with a predicate for V , and constants for all elements of
R0. Then (R, V ) is model complete in the language LR0 provided that kR is
o-minimal.

The proof makes (somewhat surprisingly) use of abstractly model theoretic
notions such as Morley sequences and dividing. An essential ingredient is the
notion of separation as introduced by Baisalov and Poizat in [2]:

Definition 1.5 Let a ∈ Rm, b ∈ Rn, and let p be a complete one-type in R
over A ⊆ R. Then a and b are said to be separated in p if either

dclR(a/A)∩p(R) < dclR(b/A)∩p(R) or dclR(b/A)∩p(R) < dclR(a/A)∩p(R).

We say that a and b are A-separated if they are separated in all one-types in
R over A.
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Baisalov and Poizat use separation to show that the structure R expanded
by all traces (i.e. all sets of the form X ∩ Rn, where X is definable in some
|R|+-saturated elementary extension of R) has elimination of quantifiers. In
particular, they prove the following (extracted from Theorem 3.6 in [2]):

Theorem 1.6 Consider the structure (R, R) in which the o-minimal lan-
guage of R is expanded by a predicate for R. Let φ(x, y, z) be a formula in
the language of R (possibly with parameters from R) with x = (x1, . . . , xn), y
a singleton, and z = (z1, . . . , zm). Let a ∈ Rm. Then the quantifier ∃y ∈ R
in

∃y ∈ R(φ(x, y, a) ∩Rn+1)

is eliminated by (
∃y(φ(x, y, a1) ∧ φ(x, y, a2))

)
∩Rn,

whenever a1, a2 ∈ Rm have the same (o-minimal) type over R as a, and a1

and a2 are R-separated.

The structure (R, V ) can be viewed as the o-minimal field R expanded by
the trace of a set [−t, t] ⊆ R, where V < t and t < R>V . But whereas in [2]
the authors use saturation of R to obtain the existence of separated tuples,
we prove the existence of separated tuples in Morley sequences in o-minimal
invariant one-types. This is done in Section 2. The proof consists essentially
of showing that dividing in a Morley sequence in an invariant one-type in an
o-minimal theory is symmetric.

In Section 3, we use the Tarski-Vaught criterion and separation to in-
vestigate elementary extensions of (R, V ) (without assuming o-minimality
of kR). We let t ∈ R be such that V < t < R>V and we let R〈t〉 be
the (elementary) substructure of R generated by t over R. We show that if
(R, V ) ⊆ (R〈t〉, W ), then the only obstacle to (R〈t〉, W ) being an elementary
extension of (R, V ) is the existence of R-definable functions f , g such that
V < f(t), g(t) < R>V and f(t) ∈ W and g(t) > W (Theorem 3.3).

In Section 4, we do assume that kR is o-minimal. Using separation and
results from [17], we show that the sets definable in kR are the same as the
sets definable in k(R,V ). This implies, together with a result by Hasson and
Onshuus in [14], that the residue field is stably embedded in (R, V ) (see
Corollary 4.11 and the preceding definitions for precise statements).

To prove Theorem 1.4, we assume that kR is o-minimal, and we let (R′, V ′)
be a superstructure of (R, V ) such that (R, V ) ≡ (R′, V ′). We consider
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(R, V ) as a structure in LR0 , a language in which R eliminates quantifiers
and which contains constants for all elements of R0, where (R0, V0) is an
elementary subtructure of (R, V ). Proving that (R, V ) is an elementary
substructure of (R′, V ′) then basically consists of showing that there are no
R-definable functions f and g as in Theorem 3.3, obstructing (R, V ) from
being an elementary substructure of (R′, V ′) (see Lemma 5.2).

Notation and conventions. We denote the language of R by L0 and
we assume that R has elimination of quantifiers in L0. (Note that this can
always be achieved by extending a language of R by definitions.) We form L
by adding to L0 a unary predicate, V , which we will interpret as the convex
subring V of R. When we consider the L-structure on R, we refer to the
structure as (R, V ) and when we refer to its reduct to L0, we refer to the
structure simply as R. For any o-minimal field R′ with convex subring V ′

and corresponding residue field k′ we denote by k′S the expansion of k′ by
the residues of all S-definable sets, where S is a reduct of (R′, V ′).

All parameter sets and all models (monster models excepted) are assumed
to be small subsets of an appropriate monster model. By k, l, m, n we denote
non-negative integers.

Let M be an ordered structure. We denote by Defn(M) the collection
of all M -definable subsets of Mn and by Defn

∅ (M) the collection of those
definable over the empty set. If φ is a formula in the language of M , then we
denote by φ(M) the realization of φ in the structure M . Similarly, if p is a
type, then p(M) is the realization of p in M . A function f : X → M , where
X ⊆ Mn, is definable if its graph Γf ⊆ Mn+1 is. For 1 ≤ m ≤ n we denote
by pn

m the coordinate projection

Mn → Mm : (x1, . . . , xn) 7→ (x1, . . . , xm).

For X ⊆ M we write a < X to mean a < x for all x ∈ X, and similarly for
a > X. For a, b ∈ Mn we denote by d(a, b) the euclidean distance between a
and b, and if X ⊆ Mn is non-empty and M is o-minimal, then we set

d(a, X) = inf{d(a, x) : x ∈ X}.
If X ∈ Defn(M) and a ∈ Mm, where 1 ≤ m < n, then

Xa := {(x1, . . . , xn−m) : (a, x1, . . . , xn−m) ∈ X}.
Similarly, if f is an M -definable function in n variables, 1 ≤ m < n, and
a ∈ Mm, then fa denotes the function defined by fa(x) = f(a, x) for all
x ∈ Mn−m so that (a, x) ∈ dom(f).
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2 Separation

As noted in the introduction, our valuation ring V can be thought of as
R ∩ [−t, t] where t ∈ R realizes the type over R given by

{x > r|r ∈ V } ∪ {x < r|r > V }.

We wish to understand separated tuples of realizations of tp(t/R).

Remark 2.1 Suppose that M is an o-minimal structure, A ⊆ M , p ∈ S1(A),
a ∈ M and b ∈ Mk. Then it is immediate from Definition 1.5 that if
dcl(a/A) ∩ p(M) 6= ∅ and a is separated from b in p, then a and b are
A-separated. Also, if dclA(b) ∩ p(M) = ∅, then b is automatically separated
in p from every c ∈ Mn.

Being separated is a notion closely related to that of non-dividing, and thus
we will quickly summarize some basic facts about non-dividing. Proofs may
be found in [1] and elsewhere.

Definition 2.2 A formula φ(x, b) divides over a set C if there is a positive
integer k and a sequence (bi)i<ω such that tp(bi/C) = tp(b/C) holds for all
i < ω and {φ(x, bi)|i < ω} is k-inconsistent. A type divides over C if it
contains a formula which divides over C. If tp(a/BC) does not divide over
C, we write a |̂ d

C
B.

We will repeatedly use the following properties of nondividing (see [1] Lemma
5.2 for a proof):

• (monotonicity) If A |̂ d

C
B, A0 ⊆ A and B0 ⊆ B, then A0 |̂ d

C
B0.

• (base monotonicity) Suppose D ⊆ C ⊆ B. If A |̂ d

D
B, then A |̂ d

C
B.

• (transitivity) Suppose D ⊆ C ⊆ B. If B |̂ d

C
A and C |̂ d

D
A, then

B |̂ d

D
A.

Example 2.3 Suppose that a and b are tuples, with f(b) ≡A g(a) ≡A h(b)
and f(b) < g(a) < h(b). The formula φ(x, b) which says “g(x) lies in the in-
terval (f(b), h(b))” witnesses a 6 |̂ d

A
b. To see this, simply choose any element

realizing tp(f(b)/A) which is greater than h(b) and find an automorphism fix-
ing A mapping f(b) to this element. This will map b to some b1 and h(b) to
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h(b1). Repeat this process, at stage k picking an element greater than h(bk−1)
and using it to find a suitable bk. The resulting collection {φ(x, bi)|i < ω} is
inconsistent.

It follows from the above example that if a and b are tuples that are not sep-
arated in some type over A, then tp(a/Ab) divides over A or tp(b/Aa) divides
over A. Furthermore, for singletons a, b being A-separated is equivalent to
a |̂ d

A
b and b |̂ d

A
a.

In fact, one can observe the following:

Lemma 2.4 For a singleton a and an n-tuple b, a is A-separated from b if
and only if a |̂ d

A
b.

Proof: Clearly, a 6 |̂ d

A
b implies a is not A-separated from b. So we suppose

that a and b are not A-separated, and we will show a 6 |̂ d

A
b. A priori this

could happen in two ways: For some p ∈ S1(A),

f(a), g(b), h(a) |= p and f(a) < g(b) < h(a),

where f , h are A-definable one-variable functions and g is an A-definable
n-variable function, or

g(b), f(a), h(b) |= p and g(b) < f(a) < h(b),

where f is an A-definable one-variable function and g, h are A-definable
n-variable functions.

In the second case, it is clear that a 6 |̂ d

A
b, so we may concentrate on the

first case. In this case, note that f ◦ h−1 is an A-definable function mapping
h(a) to f(a). Thus one may assume it is strictly increasing everywhere (since
h(a) and f(a) realize the same type over A, and x 7→ x is a ∅-definable strictly
increasing function mapping the set of realizations of tp(f(a)/A) onto itself).
Thus f(h−1((g(b))) is less than f(a), and also realizes p. Applying f−1 to
f(h−1((g(b))), f(a), and g(b), we see that a 6 |̂ d

A
b. �

The construction that will lead to separated tuples is that of a Morley se-
quence. We recall the following definition and fact (from e.g. [13], Definition
2.2 and subsequent discussion):
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Definition 2.5 Given an A-invariant type p over R, and B ⊇ A, a Morley
sequence in p over B is any sequence t1, t2, . . . constructed as follows: let
t1 |= p|B and having defined t1, . . . , tn, let tn+1 |= p|Bt1...tn.

By a finite Morley sequence we shall mean an initial segment of a Morley
sequence.

Fact 2.6 Let p be an A-invariant type over R, and let (ti)i<ω be a Morley
sequence in p over B ⊇ A. Then (ti)i<ω is indiscernible and independent
(i.e. for each n one has tn+1 |̂ d

B
t1 . . . tn).

Let p be the V -invariant type over R given by

{x > r : ∃v ∈ V (r < v)} ∪ {x < r : r > V }.

Let t1, . . . , tn realize a finite Morley sequence in p over R. For 1 ≤ k < n
we shall show that t1, . . . , tk is R-separated from tk+1, . . . , tn by proving the
stronger statement that while symmetry of nondividing fails in general, it
does not fail in Morley sequences of singletons:

Theorem 2.7 Let p ∈ S1(R) be A-invariant, and let t1, . . . , tn be a finite
Morley sequence in p over A. Then

t1 . . . tk
d

|̂
A

tk+1 . . . tn and tk+1 . . . tn
d

|̂
A

t1 . . . tk

for all k with 1 ≤ k < n.

Remark 2.8 The proof of Theorem 2.7 does not use the assumption that R
expands a field.

Remark 2.9 It may be that Theorem 2.7 is implicit in work of Chernikov,
Kaplan, and Usvyatsov ([6], [16]). Certainly none of these authors would be
surprised by this result. However, it seems simpler to present a proof here
rather than to attempt to extract a proof from their more general theorems.

Remark 2.10 The assumption in Theorem 2.7 that p is a 1-type is neces-
sary. Let t |= p, where p ∈ S1(R) is the type

{x > r : ∃v ∈ V (r < v)} ∪ {x < r : r ∈ R>V },
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and let s |= q, where q ∈ S1(R) is the type determined by

{x > r : r ∈ R and r < R>V } ∪ {x < r : r ∈ R>V }.

Note that tp(ts/R) is invariant over R. Consider a Morley sequence, t1s1, t2s2, . . . ,
in tp(ts/R) over R. Dividing in this Morley sequence is not symmetric: the
interval (t2, s2) contains (t1, s1), so t1s1 6 |̂ d

R
t2s2, while t2s2 |̂ d

R
t1s1 by Fact

2.6 and induction. We thank Hans Adler for pointing out this example.

Proof of Theorem 2.7: We may assume that A = dcl(A). It follows
that one-types over A are just the order-types over A. Let 1 ≤ k < n. It
is clear from the above properties of Morley sequences and nondividing that
tk+1 . . . tn |̂ d

A
t1 . . . tk. It remains to show that t1 . . . tk |̂ d

A
tk+1 . . . tn, which

in turn will follow from t1 |̂ d

A
t2 . . . tn (and induction).

We shall first consider the case when p|A is a cut . In this case, there
are A−, A+ ⊆ A, both nonempty, and so that A− ∩ A+ = ∅, A− < A+ and
A− ∪ A+ = A, and p is either the type determined by

{x > A−} ∪ {x < R>A−} (1)

(note that because p|A is a cut, A− has no maximal element), or the type
defined as above except with the inequalities reversed and A− replaced by
A+. Either way the proof is identical, so let p be as in (1). Note that this is
the case of central interest to us, for A− = V ∪R<V and A = R. We handle
it by proving the following, a priori stronger, claim.

Claim: Let q be the type determined by {x > R<A+} ∪ {x < A+}. Then
t1 |= q|At2...tn .

Proof of Claim: The claim is clear when n is 1 or 2, so assume inductively
that t1 |= q|At2...tn−1 , where n > 2, and let t = t2 . . . tn−1. For a contradiction,
assume that f is an A-definable function such that f(tn, t) > t1 and f(tn, t) |=
p|A. Let t′1, . . . , t

′
n realize a finite Morley sequence in p over R. Note that

since
tp(t′1 . . . t′n/A) = tp(t1 . . . tn/A),

we also have f(t′n, t
′) > t′1, where t′ = t′2 . . . t′n−1. The function ft′ is strictly

monotone and continuous on some interval (r1, r2), where r1, r2 ∈ dcl(At′)
and r1 < t′n < r2. Now r1 < a for some a ∈ A− because t′n |̂ d

A
t′. Let f−1

t′ be

the inverse function of ft′|(r1,r2). Note that the domain of f−1
t′ contains t′1 (by
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the inductive assumption), and that t′n < f−1
t′ (t1) because t′n |̂ d

A
t′1t

′. So ft′

is strictly decreasing on (r1, r2). Let A− be the convex hull of A− in R. Note
that ft′ maps a cofinal segment of A− to a coinitial segment of R>A−

. But
the cofinality of A− is equal to |A|, and thus, by saturation of R, is strictly
smaller than the coinitiality of R>A−

, a contradiction. � (Claim)

Next, we need to consider the situation when p|A is a non-cut . Then there
are, essentially, three cases (once we have dealt with those it will be clear
how to handle all cases). The type p could be of the form (1) above where
A+ has a least element or is empty, in which case, the proof of the case when
p|A is a cut works. Or p may be of one of the forms below:

{x > a} ∪ {x < R>a}, for a fixed a ∈ A, or of the form (2)

{x > R}. (3)

Consider (2). Here the previous proof works as well, but is in fact simpler.
The step of switching from t1, . . . , tn to t′1, . . . , t

′
n may be skipped, as there is

no need to go to a saturated model to get that the cofinality of the left side
of p is different than the coinitiality of the right side of p.

In an o-minimal field this finishes the proof, since the function x 7→ 1/x
maps the type {x > R} to a type as in (2). In general, though, we have the
following claim.

Claim: Let p be as in (3) and let q be the type over R implied by

{x < r|r ∈ R>A} ∪ {x > a|a ∈ A}.

Then t1 |= q|Atn...t2 .

Proof of Claim: The claim is clear for n = 1 and n = 2. So let n > 2, let
t = t2 . . . tn−1, and assume towards a contradiction that f is an A-definable
function in n− 1 variables such that A < ft(tn) < t1. Furthermore, we may
assume that n is least such that this occurs. We set s = ft(tn). Let f−1

t be
the inverse of ft, after restricting ft to an At-definable interval on which it
is strictly monotone and continuous. Assume that ft (and therefore f−1

t ) is

increasing. Then f−1
t is increasing on an At-definable interval containing s.

As n was chosen to be minimal, the right endpoint of this interval is greater
than t1. So f−1

t (t1) > f−1
t (s) = tn, a contradiction with tn |̂ d

A
t1 . . . tn−1. It
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follows that ft is decreasing, and thus f−1
t is decreasing on an At-definable

interval containing t1. By minimality of n, the left endpoint of this interval
is less than some a ∈ A. So f−1

t (a) > f−1
t (s) = tn, a contradiction. �

(Claim)

�

Corollary 2.11 Let p ∈ S1(R) be the (o-minimal) type

{x > r| ∃v ∈ V (r < v)} ∪ {x < r|r ∈ R>V }.

If t1, . . . , tn is a finite Morley sequence in p over R and 1 ≤ k < n, then
t1, . . . , tk is R-separated from tk+1, . . . , tn.

3 Elementary extensions

In this section, we assume that p is as in Corollary 2.11 above. For a ∈ R we
denote by R〈a〉 the (elementary) substructure of R generated by a over R.
Below, we abuse notation by writing (R〈a〉, V ′) for the L-structure in which
the predicate for the convex subring is realized by the set V ′.

First we shall give a criterion for (R〈a〉, V ′) to be an elementary extension
of (R, V ) in terms of the possibility of building a Morley sequence in p which
is separated from a. Then we show that this criterion is satisfied for certain
kinds of extensions.

Lemma 3.1 Suppose V 6= R. Let a ∈ R and let (R〈a〉, V ′) be a super-
structure of (R, V ). Suppose there is a global type q, invariant over R and
extending p|R, such that for each n, there is a finite Morley sequence t1, . . . , tn
in q over R〈a〉 (and hence over R) that is R-separated from a and such that
V ′ < t1, . . . , tn < R〈a〉>V ′

. Then (R, V ) � (R〈a〉, V ′).

Proof: By the Tarski-Vaught test, it suffices to show that if (R〈a〉, V ′) |=
φ(h(a)), where h is an R-definable function and φ(y) is an (R, V )-formula,
then (R, V ) |= φ(r) for some r ∈ R.

Claim: Let φ(x) be a formula in the language of (R, V ) with parameters
from R, where x = (x1, . . . , xn). Then there is k and an R-formula Φ(x) with
parameters t1, . . . , tk ∈ R as in the hypotheses of the lemma, and such that

φ(R) = Φ(R) ∩Rn and φ(R〈a〉) = Φ(R) ∩R〈a〉n.
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Proof of Claim:
We proceed by induction on the complexity of φ. First, let φ be open.

Then φ is a finite disjunction of formulas of the form

σ(x) ∧ f1(x) ∈ V ∧ f2(x) ∈ V ∧ · · · ∧ g1(x) > V ∧ g2(x) > V ∧ . . . ,

where σ is an R-formula and f1, . . . , g1, . . . are finitely many R-definable
functions. Then φ(R) and φ(R〈a〉) are the traces of a finite disjunction of
R-formulas

σ(x) ∧ f1(x) < t1 ∧ f2(x) < t1 ∧ · · · ∧ g1(x) > t1 ∧ g2(x) > t1 ∧ . . . ,

where t1 |= q|R〈a〉, with q the global extension of p from the hypothesis of the
lemma, and V ′ < t1 < R〈a〉>V ′

.
Now suppose the claim holds for an (R, V )-formula φ(x). Then it also

holds for ¬φ(x), so it suffices to show that it holds for ∃xnφ(x). We may
assume inductively that

φ(R) = θ(R) ∩Rn and φ(R〈a〉) = θ(R) ∩R〈a〉n,

where θ is an R-formula in the parameters t1, . . . , tj, which satisfy the hy-
potheses of the lemma. By Fact 1.6,

∃xn ∈ R (θ(R) ∩Rn) = (∃xn(θ(R) ∧ θ′(R))) ∩Rn−1,

where θ′ is any instance of θ obtained by replacing t1, . . . , tj by tj+1, . . . , t2j

such that t1, . . . , tj and tj+1, . . . , t2j are R-separated. Similarly,

∃xn ∈ R〈a〉 (θ(R) ∩R〈a〉n) = (∃xn(θ(R) ∧ θ′(R))) ∩R〈a〉n−1,

whenever Θ′ is an instance of Θ obtained by replacing t1, . . . , tj by tj+1, . . . , t2j

such that t1, . . . , tj and tj+1, . . . , t2j are R〈a〉-separated.
We let tj+1, tj+2, . . . , t2j ∈ R be so that t1, . . . , t2j are as in the hypotheses

of the lemma. Then by Corollary 2.11, t1, . . . , tj and tj+1, . . . , t2j are R〈a〉-
separated, and also R-separated. Thus both the set (∃xnφ)(R) and the set
(∃xnφ)(R〈a〉) are traces of ∃xn(Θ(R) ∧Θ′(R)), with Θ′ as above.

� (Claim)

Now suppose (R〈a〉, V ′) |= φ(h(a)), where φ(y) is an (R, V )-formula and h is
an R-definable function. By the above claim, there is an R-formula θ(y) with

12



parameters t1, . . . , tk, such that a and t1, . . . , tk are R-separated and φ(R) =
θ(R)∩R and φ(R〈a〉) = θ(R)∩R〈a〉. Since R is o-minimal, θ(R) is a finite
union of points and intervals. If it is a point, then there is nothing to show,
so we may assume that θ(x) defines an interval (f(t1, . . . , tk), g(t1, . . . , tk)),
where f , g are R-definable functions or f = −∞ or g = +∞. Note that if
f(t1, . . . , tk) ∈ R or f = −∞ and at the same time g(t1, . . . , tk) ∈ R or g =
∞, then there is nothing to show. The case when f is an R-definable function
and f(t1, . . . , tk) 6∈ R and g = ∞ reduces to the case when f(t1, . . . , tk) ∈ R
and g is an R-definable function so that g(t1, . . . , tk) 6∈ R after using the
function x 7→ 1

x
. Similarly for f = −∞ and g an R-definable function so that

g(t1, . . . , tk) 6∈ R. So it suffices to discuss the two cases below.

Case 1. Suppose f, g are R-definable functions and f(t1, . . . , tk) 6∈ R and
g(t1, . . . , tk) 6∈ R. If

f(t1, . . . , tk) < h(a) < g(t1, . . . , tk),

then tp(f(t1, . . . , tk)/R) 6= tp(g(t1, . . . , tk)/R) (as a and t1, . . . , tk are R-
separated), hence there is some r ∈ R with

f(t1, . . . , tk) < r < g(t1, . . . , tk).

Case 2. Suppose f(t1, . . . , tk) ∈ R and g is an R-definable function so that
g(t1, . . . , tk) 6∈ R. (A similar argument works for the case when f is an R-
definable function so that f(t1, . . . , tk) 6∈ R and g(t1, . . . , tk) ∈ R.) We may
assume, by translating, that f(t1, . . . , tk) = 0. So it suffices to prove that
there is r ∈ R such that 0 < r < g(t1, . . . , tk). We show this by induction
on k. Note that by the assumption that V 6= R, t1 realizes a cut in R.
So if k = 1, then g(t1) realizes a cut in R, so there has to be r ∈ R so
that 0 < r < g(t1). Now suppose the claim is true for 1, . . . ,m and let
k = m+1. Note that since V is a group, tm+1 realizes a cut in R〈t1, . . . , tm〉:
Suppose not, then there would be some closest β ∈ R〈t1, . . . , tm〉, which by
the choice of tm+1 must be greater than every element of V and less than
every other element of R〈t1, . . . , tm〉>V . But 1

2
β is also greater than every

element of V, a contradiction. Since tm+1 realizes a cut in R〈t1, . . . , tm〉, so
does g(t1, . . . , tm+1). Thus there is some γ ∈ R〈t1, . . . , tm〉 so that 0 < γ <
g(t1, . . . , tm+1). By induction, there is also r ∈ R, with

0 < r < γ < g(t1, . . . , tm+1).

13



�

Lemma 3.2 Let n > 0. Then there is an R-invariant global type q extending
p|R and there is a finite Morley sequence t1, . . . , tn in q over R〈a〉 (and hence
over R) that is R-separated from a and such that t1, . . . , tn lie in the cut
between V ′ and R〈a〉>V ′

in each of the following cases:

a) a |= p|R and V ′ is the convex hull of V in R〈a〉.

b) a |= p|R and V ′ = {x ∈ R : |x| < R>V }.

c) a is such that dclR(a) ∩ p|R = ∅ (hence V ′ is the convex hull of V in
R〈a〉 and V ′ = {x ∈ R〈a〉 : |x| < R>V }).

Proof: We first prove part a). Here we may take q = p. Since a is greater
than V ′, we may choose t1, . . . , tk so that a, t1, . . . , tk are a finite Morley
sequence in p over R while t1, . . . , tk are a finite Morley sequence in p over
R〈a〉. In fact this is accomplished simply by noting that a |= p|R, choosing
t1 |= p|Ra, and, inductively, ti+1 |= p|Rat1...ti .

Under the hypotheses of b), we let q be the global type implied by

{x < r|r ∈ R>V } ∪ {x > r|r ∈ R and r < R>V }.

Then q is invariant over R, and we proceed as in part a), noting that a |= q|R,
choosing t1 |= q|Ra, and, inductively, ti+1 |= q|Rat1...ti .

The proof of part c) is a bit more complicated and uses Lemma 2.41. We
let q = p and we build a finite Morley sequence t̃1, . . . , t̃n in p over R〈a〉. If
a is R-separated from t̃ = (t̃1, . . . , t̃n) then we let t1, . . . , tn equal t̃1, . . . , t̃n.
Otherwise, a 6 |̂ d

R
t̃ and we have

g(t̃), a, h(t̃) |= tp(a/R) and g(t̃) < a < h(t̃),

where g and h are R-definable n-variable functions. In particular, we have
an R-definable function mapping t̃ to the type of a over R.

Now we let m ≤ n be minimal such that

dclR(t̃1, . . . , t̃m) ∩ tp(a/R) 6= ∅
1We thank an anonymous referee for simplifying our original proof.
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and define t̃ to be t̃1, . . . , t̃m−1. Denote an Rt̃-definable function that maps
t̃m to tp(a/R) by ft̃. Let b = f−1

t̃
(a). We have b |= p|Ra (by minimality of m)

and b > t̃m, by definition of t̃m. In fact, b |= p|Rt̃. To see this, note that by

minimality of m, ft̃ maps t̃m (and hence all realizations of p|Rt̃) to tp(a/Rt̃).

Now build a finite Morley sequence t1, . . . , tn in p over Rbt̃. Note that
a and b are interdefinable over t̃, so this is the same as building a Morley
sequence over Rat̃. So t1, . . . , tn is also a Morley sequence in p over R〈a〉
(and also over R). Since t̃, b, t1, . . . , tn form a finite Morley sequence in p
over R, Corollary 2.11 implies that t̃, b is separated from t1, . . . , tn over R.
This is the same as t̃, a being separated from t1, . . . , tn over R, which in turn
is stronger than t1, . . . , tn being separated from a over R.

�

Note that if R〈a〉 is such that the condition in part c) of the previous lemma
is not satisfied, then one may assume (by the Steinitz exchange property of
dcl) that a |= p. We have thus shown the following:

Theorem 3.3 Let a ∈ R, and let V ′ ⊆ R〈a〉 be such that V ′ ∩ R = V .
Then (R〈a〉, V ′) is an elementary extension of (R, V ) unless there are R-
definable one-variable functions f and g such that V < f(a), g(a) < R>V

and f(a) ∈ V ′ and g(a) > V ′.

In [17] (Lemma 3.4, p.127) it is shown that if R is ω-saturated and V is the
convex hull of the rationals in R, then (R, V ) |= Σ(1). Using Theorem 3.3,
we can now drop the saturation assumption on R:

Corollary 3.4 Let V be the convex hull of Q in R. Then (R, V ) |= Σ(1).

Proof: If R = V , then the corollary clearly holds. So suppose R 6= V . Let
R′ be an ω-saturated elementary extension, and let V ′ be the convex hull of
Q in R′. Let a ∈ R′ \ R, let R〈a〉 be the (elementary) substructure of R′

generated by a over R, and let Va be the convex hull of V in R〈a〉. Then
(R〈a〉, Va) is an elementary extension of (R, V ), by Theorem 3.3. Using
induction and the fact that the union of a chain of elementary extensions is
an elementary extension, we obtain (R, V ) � (R′, V ′), and so (R, V ) |= Σ(1).
�
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4 Traces

In this section we assume (R, V ) |= Σ(1), and we let p be as in Corollary 2.11.
Let further t ∈ R be such that t |= p|R. We denote by R〈t〉 the elementary
substructure of R generated by t over R, by U the convex hull of V in R〈t〉,
by mt the maximal ideal of U , and for X ⊆ Rn we denote by X the image
of X ∩ Un under the residue map of (R〈t〉, U). We shall denote the residue
field of (R〈t〉, U) by U . Then V ⊆ U , m ⊆ mt, k (as a set) is contained in U ,
and the residue map of (R〈t〉, U) extends π.

Lemma 4.1 k = U .

Proof: It suffices to show that for every x ∈ U there is x′ ∈ V such
that x − x′ ∈ mt. So let x ∈ U . Then x = f(1

t
) for some R-definable

f : R → R. If f(1
t
) ∈ V , then there is nothing to prove. So suppose f(1

t
) ∈

U \ V . Then there are a ∈ m and b > m so that f is continuous and either
strictly increasing or strictly decreasing on (a, b). Assume that f is strictly
increasing on (a, b) (the other case is similar). Since (R, V ) |= Σ(1), we
can find ε0 ∈ m>0 ∩ (a, b) such that πf(ε0) = πf(ε) for all ε ∈ m>ε0 . If
d = f(1

t
) − f(ε0) > mt, then there would be r ∈ R>m such that r < d, and

the value f(ε0) + r would not be assumed by f on (a, b)R, a contradiction
with the intermediate value property in R. �

In the lemma below, R0〈t〉 is the elementary substructure of R generated by
t over R0. Also note that, in spite of Lemma 4.1, there is no ambiguity when
writing kR0 , since, by Lemmas 3.1 and 3.2, (R, V ) � (R〈t〉, U) and hence

{πX : X ⊆ Rn is R0-definable } = {X : X ⊆ R〈t〉n is R0-definable }.

Lemma 4.2 Defn
∅ kR0 = Defn

∅ kR0〈t〉 for n = 1, 2, . . . .

Proof: It suffices to show that for n = 1, 2, . . . ,

{X : X ⊆ R〈t〉n is R0〈t〉-definable } ⊆ {X : X ⊆ R〈t〉n is R0-definable }.

Let X ⊆ R1+n be R0-definable. Since (R0, V0) |= Σn, we can find ε0 ∈ m>0
0

such that π0Xε0(R0) = π0Xε(R0) for all ε ∈ m>ε0
0 , where π0 is the residue map

of (R0, V0) and m0 is the maximal ideal of V0. By Lemma 3.2, Xε0(R〈t〉) =
Xε(R〈t〉) for all ε ∈ m>ε0

t , and, in particular, X 1
t
(R〈t〉) = Xε0(R〈t〉).

�
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For the rest of this section we let t = t1, t2, · · · ∈ R be a Morley sequence in
p over R, R〈t〉 is the (elementary) substructure of R generated by t over R,
W is the convex hull of V in R〈t〉, and W is the residue field of (R〈t〉, W ).
For X ⊆ R〈t〉n, we let X be the image of X ∩W n under the residue map of
(R〈t〉, W ).

Lemma 4.3 W = k and Defn
∅ kR0 = Defn

∅ kR0〈t〉.

Proof: This follows inductively from Lemma 4.1 and Lemma 4.2. �

Lemma 4.4 Let k̃ be the structure k expanded by predicates for all sets
π(X ∩Rn), where X ⊆ R〈t〉n is R0〈t〉-definable. Then, for n = 1, 2, . . . ,

Defn
∅ (k̃) = {π(X ∩Rn) : X ⊆ R〈t〉n is R0〈t〉-definable }.

Proof: Let X, Y ⊆ R〈t〉n be R0〈t〉-definable. Clearly,

π(X ∩Rn) ∪ π(Y ∩Rn) = π((X ∪ Y ) ∩Rn).

Further,

(π(X ∩Rn))c = π{z ∈ Rn : d(z, x) > m for all x ∈ X ∩Rn}.

Since m = [−1
t
, 1

t
]∩R, Theorem 1.6 yields that the set on the right-hand side

is the residue of the trace of an R0〈t〉-definable set.
Finally, to see that

pn
n−1π(X ∩Rn) = π(Y ∩Rn−1),

for some R0〈t〉-definable Y ⊆ R〈t〉n−1, note that

pn
n−1π(X ∩Rn) = pn

n−1π(X ∩ V n) = πpn
n−1(X ∩ V n).

Furthermore, pn
n−1(X ∩ V n) = pn

n−1((X ∩ [−t, t]n)∩Rn), hence this set is the
trace of an R0〈t〉-definable set by Theorem 1.6.

�

For X, Y ⊆ kn, we denote by int(X) the interior of X in kn, and by X 4 Y
the symmetric difference of X and Y . The proof of Theorem 4.6 uses the
below stated fact which is proved in [17] (Lemma 4.2, p. 129).
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Fact 4.5 Let S1 be a weakly o-minimal structure and S2 an o-minimal struc-
ture on the same underlying ordered set S. Suppose for every n and for every
X1 ∈ Defn(S1) there is X2 ∈ Defn(S2) such that X14X2 has empty interior
in Sn. Then Defn(S1) ⊆ Defn(S2) for all n.

We remark here that the proof of Fact 4.5 shows that if X1 ∈ Defn(S1) and
X2 ∈ Defn(S2) is such that int(X1 4X2) = ∅, then X1 can be defined in the
structure S2 over the same parameters as X2.

Theorem 4.6 Defn
∅ kR0 = Defn

∅ k(R0,V0) for n = 1, 2, . . . .

Proof: Let n ≥ 1. Clearly, Defn
∅ kR0 ⊆ Defn

∅ k(R0,V0). By Lemma 4.2 in
[17], and by Lemma 4.3, to show the other inclusion it suffices to find for
every X ∈ Defn

∅ k(R0,V0) a set Y ∈ Defn
∅ kR0〈t〉 so that int(X 4 Y ) = ∅.

So let X ∈ Defn
∅ k(R0,V0). Then, by Lemma 4.4, we can find Y ⊆ R〈t〉n

which is R0〈t〉-definable and so that X = π(Y ∩Rn). We claim that

int(π(Y ∩Rn)4 Y ) = ∅.

First note that π(Y ∩ Rn) ⊆ Y . So assume towards a contradiction that
B ⊆ Y \ π(Y ∩Rn), where B ⊆ kn is a (closed) box. Then

B ⊆ [π(Y ∩Rn)]c ⊆ π((Y ∩Rn)c) = π(Y c ∩Rn) ⊆ Y c.

So B ⊆ Y ∩ Y c. But by Lemma 4.3, and by Corollary 3.6 in [17], applied to
the structure (R〈t〉, W ),

int(Y ∩ Y c) = ∅,
a contradiction. �

Definition 4.7 Let M be a saturated structure and X a subset of M eq de-
finable over C. Then we say that X is stably embedded if every definable
subset of Xn is definable with parameters from X together with C.

If M is not saturated, one has to show in addition that parameters from X
can be chosen in a uniform fashion.

Definition 4.8 We say that a structure (X, . . . ) is stably embedded in M ,
if X is a ∅-definable subset of M eq, the relations and functions that comprise
(X, . . . ) are ∅-definable in M eq, X is stably embedded as a set, and each subset
of Xn which is ∅-definable in M eq is ∅-definable in the structure (X, . . . ).
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Note that if (X, . . . ) is stably embedded in M , then each subset of Xn which
is definable in M eq, is definable in (X, . . . ). For if Y ⊆ Xn is definable in
M eq, then, since X is stably embedded, Y is defined by a formula φ(a, y),
where a ∈ Xm and φ(x, y) is a formula in the language of M eq over ∅. Hence
we can find a formula θ(x, y) in the language of (X, . . . ) over ∅ so that θ and
φ define the same subset of km+n, and so X = θa(k).

In [14] the following fact is proved (Corollary 2.3, p.74).

Fact 4.9 Let N be a structure with uniform finiteness, and let S be a sort in
N eq such that the N -induced structure on S is o-minimal. Then S is stably
embedded in N .

Theorem 4.6 and Fact 4.9 yield the following corollary.

Corollary 4.10 The set k is stably embedded in (R, V ).

Corollary 4.11 The structure kR0 is stably embedded in (R, V ) when (R, V )
is viewed as an LR0-structure.

Proof: The underlying set and the basic relations of kR0 are definable
over R0 in (R, V )eq. By Corollary 4.10, the underlying set of kR0 is stably
embedded in (R, V ), hence also stably embedded in (R, V ) when viewed as
an LR0-structure. So let X ⊆ kn be R0-definable in (R, V )eq. It is left to
show that X is ∅-definable in the structure kR0 . We have X = πY , where Y
is definable over R0 in (R, V ). So X ∈ Defn

∅ (kR0), by Theorem 4.6.
�

5 A model completeness result

In this section, just as in the previous one, we assume that (R, V ) satisfies
Σ(1) (i.e. we assume that k(R,V ) is o-minimal). Let (k, . . . ) be an expansion
by definitions of the residue field sort so that

(1) (k, . . . ) is model complete,

(2) (k, . . . ) is stably embedded (as a structure) in (R, V ),

(3) (k, . . . ) has the property that for each closed X ⊆ kn which is ∅-definable
in (k, . . . ), there is Y ⊆ Rn, definable in L0 over ∅, with πY = X.
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Note that Σ(1) implies that for any X as in (3) there is an L0-definable Y
such that πY = X. However this Y need not be definable over ∅.

Under these assumptions, we will show that (R, V ) is model complete, and
then we will note that conditions (1)-(3) are satisfied whenever the language
of (R, V ) includes constants for all elements of R0 (recall that (R0, V0) is an
elementary substructure of (R, V )).

Let (R′, V ′) |= Th(R, V ) so that (R, V ) ⊆ (R′, V ′). We denote the maxi-
mal ideal of V ′ by m′, the residue map of (R′, V ′) by π′, and the corresponding
residue field by k′. Then V = V ′∩R, m ⊆ m′, π′ extends π, and hence k ⊆ k′.

Lemma 5.1 (k, . . . ) � (k′, . . . )

Proof: Note that (k, . . . ) ≡ (k′, . . . ), since (k, . . . ) is, by condition (2),
stably embedded as a structure in (R, V ) and (R, V ) ≡ (R′, V ′). So, by
condition (1), it suffices to show that (k, . . . ) is a substructure of (k′, . . . ).
By o-minimality of (k, . . . ), every definable set is a boolean combination of
closed definable sets. So let X ⊆ kn be closed and definable in (k, . . . ) over ∅;
we will be done once we have shown that X(kn) = X(k′n)∩kn. By condition
(3), we can find Y , an L0-definable set over ∅, such that πY (R) = X(R) and
π′Y (R′) = X(R′).

Since π′ is an extension of π, it is clear that πY (R) ⊆ π′Y (R′) ∩ kn.
Assume towards a contradiction that a ∈ (π′Y (R′) ∩ kn) \ πY (R). Since
πY (R) is closed in kn, d = d(a, πY (R)) ∈ k>0. Let b ∈ Rn be such that
π(b) = a and let r ∈ R>m be such that πr < d

2
. Let B be the open ball

centered at b and of radius r. Then π′−1(a) ⊆ B(R′), and B(R)∩ Y (R) = ∅.
Then B(R′) ∩ Y (R′) = ∅ (since as L0-structures, R � R′), a contradiction
with a ∈ π′Y (R′). �

Lemma 5.2 Let f : Rk+1 → R be L0-definable over ∅. Suppose r ∈ Rk and
fr(m) ⊆ m. Then fr(m

′) ⊆ m′.

Proof: It suffices to show that there is a ∈ m and b ∈ R>m so that
fr|[a,b](m

′) ⊆ m′. So we may assume that fr is defined, continuous, and
strictly increasing on some interval [a, b] with a ∈ m and b ∈ R>m, and that
πΓfr is the graph of a, necessarily continuous, function. (The case when fr

is strictly decreasing can be reduced to the increasing case after replacing fr

by −fr; if fr is constant, then there is nothing to show.) We may further
assume that Γfr ⊆ [0, 1]2.
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By condition (2), we can find a set θ ⊆ km+2 which is ∅-definable in
(k, . . . ), and d ∈ km, so that πΓfr = θd. Note that we may assume that for
all z ∈ pm+2

m θ, θz is the graph of a continuous function on [0, α(z)], where
α : pm+2

m θ → (0, 1] is continuous and ∅-definable in (k, . . . ). We may further
assume that pm+2

m θ is an open subset of km and that d is not contained in a
∅-definable set of dimension < m.

Since (R′, V ′) ≡ (R, V ), it follows that π′(Γfr(R
′)) is also defined by θd′ ,

for some d′ ∈ k′m. Since by Lemma 5.1 we have (k, . . . ) � (k′, . . . ), one
has (k, . . . ) ≡d (k′, . . . ). Thus if d = d′, then we are done. Furthermore, if
d = π(r), then the elementary equivalence of (R, V ) and (R′, V ′) will imply
that d′ = π′(r) = π(r), and hence d = d′. So our aim is to find an L0-
definable over ∅ function g so that fr(m

′) ⊆ (m′) if and only if ge(m
′) ⊆ m′,

and π(Γge) = (πΓg)πe for some e ∈ π−1(d).
Using cell decomposition, we replace θ with a (1, . . . , 1, 0)-cell θ = ΓH

contained in km × [0, 1]2 so that θz is the graph of a function (0, β(z)) → k,
where β : pm+2

m θ → (0, 1] is continuous and ∅-definable in (k, . . . ), d ∈ pm+2
m θ,

and πΓfr = cl(θd) (where the domain of fr was possibly shrunk to an interval
[a, b] subject to a ∈ m and b > m). Note that θ can be taken to be ∅-definable
in (k, . . . ).

Claim: cl(θ)d = cl(θd)

Proof of Claim: It is clear that cl(θd) ⊆ (cl(θ))d. Note that the other
inclusion would follow if H could be definably and continuously extended to
a function on cl(pm+2

m+1θ). So let B ⊆ pm+2
m θ be the set of all parameters z so

that
cl(θ) ∩ ({z} × {x} × k)

is not a singleton for some x ∈ p2
1cl(θ)z. Now dim B < m, so it cannot

happen that d ∈ cl(B), else d would be contained in a set of dimension < m
definable in (k, . . . ) over ∅. � (Claim)

We now extend cl(θ) to a set E ⊆ km × [0, 1]2 such that

pm+2
m+1E = pm+2

m cl(θ)× [0, 1]

by setting

E = cl(θ) ∪ {(z, x, 0) : (z, x) ∈
(
pm+2

m cl(θ)× [0, 1]
)
\ pm+2

m+1cl(θ)}.
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It is easy to see that

(cl(E))d ∩ ([0, βd)× k) = cl(θ)d ∩ ([0, βd)× k).

By condition (3), we may choose X to be L0-definable over ∅ and such that
πX = cl(E). We may assume that X is closed. Our goal now is to find an
X ′, also L0-definable over ∅, so that π(X ′

e) = cl(E)d for some e ∈ π−1(d).
For any z ∈ pm+2

m X and x ∈ [0, 1] let

D(z, x) = inf{d((z, x, y), X) : y ∈ [0, 1]}.

Then D takes values in m≥0. Hence

sup{D(z, x) : z ∈ pm+2
m X and x ∈ [0, 1]} = δ ∈ m≥0.

We set
X2δ = {x ∈ Rm+2 : d(x, X) ≤ 2δ}.

By definable choice we can find a function g, L0-definable over ∅, so that
dom(g) = pm+2

m+1X
2δ and Γg ⊆ X2δ. Now pick a ∈ R with 0 < πa < αd. Then

for any e in π−1(d) ∩ pm+2
m (X2δ) and any x ∈ [0, a], one has |fr(x)− ge(x)| ∈

m≥0. (This is because πX2δ = πX = cl(E), and cl(E) ∩
(
[0, β) × k

)
, where

[0, β) = {(z, x) : z ∈ pm+2
m cl(θ) and 0 ≤ x < β(z)}, is the graph of a

function.) Hence |fr(x) − ge(x)| ∈ m′≥0 for any x in the realization of [0, a]
in R′. Thus fr(m

′) ⊆ m′ if and only if ge(m
′) ⊆ m′. And we have that

π(Γge) ∩ [0, πa]× [0, 1] = cl(θ)π(e) ∩ [0, πa]× [0, 1],

which, as noted above, finishes the proof.
�

Corollary 5.3 Let a ∈ R′ \R, let R〈a〉 be the elementary substructure of R′

generated by a over R, and let Va = V ′ ∩R〈a〉. Then Va is either the convex
hull of V in R〈a〉, or Va = {b ∈ R〈a〉 : b < r for all r ∈ R>V }.

Proof: We may assume that either a |= p|R or dclR(a) ∩ p|R(R) = ∅. In
the second case the corollary clearly holds. So suppose a |= p|R, and let
q ∈ S1(R) be such that x > r ∈ q whenever r ∈ m and x < r ∈ q whenever
r ∈ R>m. Assume towards a contradiction that 1

a
∈ m′ and g( 1

a
) > m′ for

some R-definable function g (the case when 1
a

> m′ and g( 1
a
) ∈ m′ is similar).

Let b ∈ m and c ∈ R>m be such that g is strictly monotone and continuous
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on [b, c]. Since g(q(R)) = q(R), g is increasing on [b, c]. (This is because
idR : x 7→ x is another increasing function, L0-definable over ∅, mapping
q(R) onto q(R)). It follows that g(m) ⊆ m, hence g(m′) ⊆ m′ by Lemma 5.2,
a contradiction.

�

Theorem 5.4 (R, V ) is model complete, i.e. any embedding between models
of Th(R, V ) is an elementary embedding.

Proof: Suppose Th(R′, V ′) = Th(R, V ) and (R, V ) ⊆ (R′, V ′). Then by
Corollary 5.3 and Theorem 3.3, (R′, V ′) is a union of elementary extensions
of (R, V ), hence (R′, V ′) is an elementary extension of (R, V ).

�

Now we shall consider when conditions (1) - (3) occur (and hence we no
longer assume they hold). Instead we assume that (R, V ) |= Σ(1) and we
shall regard (R, V ) as an LR0-structure, i.e. a structure in the expansion of L
by constants for all elements of an elementary substructure (R0, V0). Recall
that we refer to the residue field expanded by predicates for the residues of
all R0-definable sets as kR0 .

By Theorem 2.22, p.126, in [17], the residue field of (R0, V0) expanded by
predicates for the residues of all R0-definable sets has elimination of quanti-
fiers. It follows that kR0 and k′R0

have elimination of quantifiers. By Corollary
4.11, kR0 is stably embedded in (R, V ). Thus we have confirmed conditions
(1) and (2). Finally, by Remark 1.3, we have condition (3).

Corollary 5.5 If (R, V ) |= Σ(1), then (R, V ) is model complete as an LR0-
structure.
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