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Abstract

We introduce a non real-valued measure on the definable sets con-
tained in the finite part of a cartesian power of an o-minimal field
R. The measure takes values in an ordered semiring, the Dedekind
completion of a quotient of R. We show that every measurable sub-
set of Rn with non-empty interior has positive measure, and that the
measure is preserved by definable C1-diffeomorphisms with Jacobian
determinant equal to ±1.

1 Introduction

Let R be an o-minimal field, i.e. an o-minimal expansion of a real closed field.
In [6], Hrushovski, Peterzil and Pillay ask, roughly, the following question:
Let B[n] be the lattice of all bounded R-definable subsets of Rn. Define
an equivalence relation ∼ on B[n] as follows: X ∼ Y if modulo a set of
dimension < n we have φ(X) = Y for some definable C1-diffeomorphism φ
with absolute value of the determinant of the Jacobian of φ at x equal to 1 for
all x ∈ X. Suppose X ∈ B[n] is of dimension n. Is there a finitely additive
map µ : B[n] → R≥0 ∪ {∞} which is ∼-invariant and such that µX ∈ R>0?

Note that for cardinality reasons it is impossible to find a real-valued
measure that would assign a real non-zero value to every bounded definable
set with non-empty interior in some big o-minimal field.

We remark that the answer to the question posed in [6] is yes if R is
pseudo-real1 in the sense of van den Dries ([2]): If there is an o-minimal field

1Let L be an expansion of the language of ordered rings, and let T (L) be the collection
of all L-sentences true in all L-expansions of the reals. A structure is called pseudo-real if
it is a model of T (L).
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S (in the language L) for which the answer to the question posed in [6] is no,
then we can find definable bounded sets X, Y ⊆ Sn and a positive integer
m so that X 6∼ ∅ and (m + 1)X∪̇Y ∼ mX, where (m + 1)X is the disjoint
union of m + 1 copies of X (see [6], Proposition 5.5, p. 576). But this fact is
expressible by a parameter-free first-order sentence in L, and this sentence is
false in all L-expansions of the reals, hence our structure is not pseudo-real.

While the framework of o-minimality was developed with a view towards
structures on the reals (see Shiota [10] and van den Dries [3]), it is well-known
that not all o-minimal structures are pseudo-real. More concretely, Lipshitz
and Robinson show in [7] that the field of Puiseux series

⋃
n R((t

1
n )) in t over

R expanded by functions given by overconvergent power-series (henceforth
the L-R field) is o-minimal, and Hrushovski and Peterzil show in [5] that the
L-R field is not pseudo-real.

Let V be the convex hull of Q in R. Then V is a convex subring of R,
hence a valuation ring. Let π : V → k be the corresponding residue/standard
part map. The corresponding residue field k is the ordered real field R if R
is at least ω-saturated. In [1], Berarducci and Otero define a measure on
the lattice SB[n] of all strongly bounded definable subsets of Rn, i.e. the
definable subsets of V n. Assuming that R is at least ω-saturated, one way to
define the Berarducci-Otero measure is to assign to X ∈ SB[n] the Lebesgue
measure of πX. It was shown in [8] that the Berarducci-Otero measure is
∼-invariant, which yields a partial answer to the question posed in [6]: The
answer is yes whenever the set X ∈ B[n] in question is contained in V n, and
πX has non-empty interior. However, the Berarducci-Otero measure assigns
zero to every set whose standard part has empty interior.

In this paper we drop the requirement of the measure being real-valued.
We define a map µ : SB[n] → Ṽ , where Ṽ is an ordered semiring, such that
for all X, Y ∈ SB[n], µ(X∪̇Y ) = µX + µY , and µX > 0 iff the interior of

X is nonempty (see Theorem 5.9). The underlying set of Ṽ is constructed
as the Dedekind completion of a quotient of V ≥0. Taking a quotient of V ≥0

serves the purpose of identifying lower and upper measures. Having a defi-
nition in terms of both lower and upper measure yields Lemmas 5.2 and 5.3
- both crucial in proving invariance under a change of variables formula. On
the non-negative part of the maximal ideal of V , the equivalence relation
under consideration is, in general, strictly coarser than the one induced by
the standard valuation (see Example 4.5 to see why this is necessary). Con-
sequently, even though we could extend the equivalence relation on V ≥0 to
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an equivalence relation on R≥0 while maintaining an ordered semiring struc-
ture, the semiring operations would not be compatible with the operations
on R≥0 anymore. This forces us to restrict the measurable sets to SB[n] (see
the last bullet point of Remark 3.9).

For measurable sets whose standard part has non-empty interior our mea-
sure agrees with the Berarducci-Otero measure. In fact, the minimal ring
that embeds the maximal cancelative quotient of Ṽ is R. On the collection
of strongly bounded definable sets whose standard part has empty interior, µ
resembles a dimension function: There, we have µ(X∪̇Y ) = max{µX, µY },
and if µX < µY , then X can be isomorphically embedded (in the sense of [6])
into finitely many copies of Y (this follows from Lemmas 5.2 and 5.3). We
do not know if the strict inequality above can be replaced by a nonstrict one.
Corollary 5.7 shows that µ has the analogue of the ∼-invariance property
defined in [6] (see Definition 5.1 for a precise statement).

In the case when the value group of the standard valuation of R embeds
into the ordered additive group R (this case includes the L-R field), we can
modify the definition of µ to obtain a finitely additive measure on all of
B[n]. This measure takes values in the Dedekind completion of the value
group of the standard valuation. It agrees with µ for sets X ∈ SB[n] so
that int(πX) = ∅, but assigns the same value to all sets X ∈ SB[n] with
int(πX) 6= ∅ (see Theorem 6.6).

We thank Michel Coste and Marcus Tressl for their advice. The first au-
thor whishes to thank the second author for his hospitality during a visit to
Nagoya, Japan. We thank the anonymous referee for suggestions improving
the exposition of this paper.

2 Notation and conventions

The letters k, l, m, n denote non-negative integers.
Let M be a structure. Then M-definable (or simply definable, if M is clear

from the context) means definable in the language of M , with parameters
from M . We denote by Defn(M) the collection of all M -definable subsets of
Mn.

We fix V to be the convex hull of Q in R. Then V is a convex subring
of R, hence a valuation ring, with residue (standard part) map π : V → k,
maximal ideal m, and (ordered) residue field k. For X ⊆ Rn we set πX =
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π(X ∩ V n). We denote by v the corresponding valuation R → Γ ∪ {∞},
where Γ = R×/(V \m) is the (divisible ordered abelian) value group.

Let M be an o-minimal structure. For k < n we denote by pn
k the projec-

tion map Mn → Mk given by x 7→ (x1, . . . , xk). If Y ⊆ Mn is definable and
non-empty and x ∈ Mn, then

d(x, Y ) := inf{d(x, y) : y ∈ Y },

where d(x, y) is the euclidean distance between x and y. For X, Y ⊆ Mn we
write X ⊆0 Y if dim (X \ Y ) < n, and X =0 Y if X ⊆0 Y and Y ⊆0 X. If
f : X → M , where X ⊆ Mn, is a function, then

Γf := {(x, y) : x ∈ X and f(x) = y}

is the graph of f .
For X ⊆ R we set X≥r := {x ∈ X : x ≥ r}. The sets X≤r, X<r, and

X>r are defined similarly. If Y is another subset of R, then X>Y is the set

{x ∈ X : x > y for all y ∈ Y }.

The set X<Y is defined similarly.
A box in Rn is a set of the form [a1, b1]× · · · × [an, bn], where ai < bi and

ai, bi ∈ R>0.
If X ⊆ Mn, then cl(X) denotes the closure of X and int(X) denotes the

interior of X with respect to the interval topology on M .

3 The set of values Ṽ

In this section we define the set of values Ṽ of our measure, and we show
that it can be equipped with the structure of an ordered semiring.

First, we define an equivalence relation ∼ on V ≥0.

Definition 3.1 Let x, y ∈ V ≥0. Then x ∼ y if either

• both x and y are in m≥0, and

yq ≤ x ≤ yp for all p, q ∈ Q>0, p < 1, q > 1, or

• both x and y are > m, and πx = πy.
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Note that the ordering ≤ on R induces an ordering ≤ on V ≥0/ ∼. For
x ∈ V ≥0 we denote by [x] the ∼-equivalence class of x.

In the next definition a Dedekind cut in V ≥0/ ∼ is the union of a downward
closed subset of V ≥0/ ∼ without a greatest element with the set V <0/ ∼,
where ∼ is extended to V <0 by setting x ∼ y iff −x ∼ −y, for x, y ∈ V <0.

Definition 3.2 We let Ṽ be the collection of all Dedekind cuts in V ≥0/ ∼.

We define an ordering ≤ and binary operations + and · on Ṽ as follows. Let
X, Y ∈ Ṽ . Then

a) X ≤ Y iff ∀x ∈
⋃

X ∃y ∈
⋃

Y with x ≤ y.

b) X + Y := {x + y : x ∈
⋃

X & y ∈
⋃

Y }/ ∼.

c) X · Y := {x · y : x ∈
⋃

X≥0 & y ∈
⋃

Y ≥0}/ ∼ ∪ V <0/ ∼.

For a ∈ V ≥0 we denote by ã the cut

{[x] : x ∈ V ≥0 and [x] < [a]} ∪ V <0/ ∼ .

Next, we show that + and · are well-defined, and that ∼ is a congruence.
The lemma below is used throughout the paper without explicit reference.

Lemma 3.3 Let x, y ∈ m>0 and suppose v(x) = v(y). Then x ∼ y.

Proof: First note that x ∼ nx for all n: If p ∈ Q>0, p < 1, then

v(xp) = p · v(x) < v(x) = v(nx),

hence nx ≤ xp.
Now assume x < y (the other cases are similar). Since v(x) = v(y), we

have y
x

< n for some n. Hence x < y < nx, and so x ∼ y. �

Remark 3.4 We do not have x ∼ y iff v(x) = v(y) on m>0. To see this
assume that R is ω-saturated, let x ∈ m>0, and let y be any element realizing
the type p(z) consisting of all formulas nx < z < xp, where n = 1, 2, . . . and
p ranges over all positive rationals < 1. Then x ∼ y but v(x) 6= v(y).

Lemma 3.5 Let X, Y ∈ Ṽ . Then X + Y ∈ Ṽ .
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Proof: It is clear that X + Y is downward closed and contains V <0/ ∼.
It is left to show that it does not have a greatest element. Let x ∈

⋃
X and

y ∈
⋃

Y . We may assume x ≤ y.
If y > m, take y′ ∈

⋃
Y so that [y] < [y′]. Then |y − y′| > m, so

(x + y)− (x + y′) > m, hence [x + y] < [x + y′].
So suppose y ∈ m>0. Let y′ ∈

⋃
Y be such that y < yp < y′ for some

p ∈ Q>0 with p < 1. Then

v(x + y) = v(y) > p · v(y) ≥ v(y′) = v(x + y′),

and so [x + y] < [x + y′] because y 6∼ yp.
The case when Y = 0̃ is clear. �

Lemma 3.6 Let x, y ∈ V ≥0. Then x̃ + ỹ = x̃ + y.

Proof: We may assume that x ≤ y. It suffices to show that if x′ ∼ x and
y′ ∼ y, then x′ + y′ ∼ x + y, and if z ∼ x + y, then there are x′ ∼ x and
y′ ∼ y so that z = x′ + y′. The cases when y = 0 and when y > m are clear.

So suppose y ∈ m>0. If x′ ∼ x and y′ ∼ y, then v(x′ + y′) = v(y′) and
v(x + y) = v(y), so

x′ + y′ ∼ y′ ∼ y ∼ x + y.

If z ∼ x + y, then, since v(x + y) = v(y), we have z ∼ y, and so x′ = x and
y′ = z − x work. �

Lemma 3.7 Let X, Y ∈ Ṽ . Then X · Y ∈ Ṽ .

Proof: It is clear that X ·Y is a downward closed subset of V/ ∼ containing
V <0/ ∼. It is left to show that X · Y does not have a greatest element. The
case when there is x ∈ (

⋃
X)>m and y ∈ (

⋃
Y )>m is clear, as is the case

when X = 0̃ or Y = 0̃.
So suppose x ∈

⋃
X and y ∈

⋃
Y and assume x ≤ y. If x ∈ m>0 and

y > m, then [xy] < [x′y] for any x′ ∈
⋃

X with [x] < [x′]. If x ∈ m>0

and y ∈ m>0, then we can find p ∈ Q>0, p < 1 so that x < xp < x′ and
y < yp < y′ for some x′ ∈

⋃
X and y′ ∈

⋃
Y . Then xy < xpyp < x′y′, hence

[xy] < [x′y′]. �

Lemma 3.8 Let x, y ∈ V ≥0. Then x̃ · ỹ = x̃y.
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Proof: We may assume that x ≤ y. It suffices to show that if x′ ∼ x and
y′ ∼ y, then x′y′ ∼ xy, and if z ∼ xy, then there are x′ ∼ x and y′ ∼ y so
that z ∼ x′y′. It is easy to check that the lemma holds if x, y > m or if x = 0.

So suppose x ∈ m>0, and let x′ ∼ x and y′ ∼ y. If y > m, then v(x′y′) =
v(x′) and v(xy) = v(x), hence x′y′ ∼ x′ ∼ x ∼ xy. If y ∈ m, then x′y′ ∼ xy
is immediate from the definition of ∼.

Now let z ∼ xy and assume xy < z. It suffices to prove that x ∼ z
y

(as

then z = z
y
· y ∈

⋃
X · Y ). Assume towards a contradiction that this is not

the case. Then, as x < z
y
, we would have xp < z

y
for a positive rational p < 1.

Moreover, since xy ∼ z, we have z ≤ xqyq for all positive rationals q < 1.
Thus yxp < xqyq for all q < 1, q ∈ Q>0. Then xp−q < yq−1 for all q < 1,
q ∈ Q>0. For q = p+1

2
< 1 we obtain x

p
2
− 1

2 < y
p
2
− 1

2 , where p
2
− 1

2
< 0 (as

p < 1), a contradiction with x ≤ y.
The case when z ∼ xy and z < xy is handled similarly and left to the

reader. �

From now on we shall assume that R is ω-saturated, in order to have k = R.
This is no loss of generality: By Theorem 3.3 in [4], for any elementary
extension R′ of R, the structure (R′, V ′), where V ′ is the convex hull of Q in
R′, is an elementary extension of (R, V ).

Remark 3.9 • It is now easy to check that (Ṽ ,≤, +, ·, 0̃, 1̃) is an ordered
semiring.

• The Dedekind completion of V >m/ ∼ is R>0. We shall thus feel free

to identify this part of Ṽ with R>0. For a ∈ R>0 we shall sometimes
write ã to indicate that a is viewed as an element of Ṽ . Since R is
ω-saturated, for any a ∈ R>0, ã = r̃ for some r ∈ V >m.

• Let X, Y ∈ Ṽ .

i) If X ∈ R>0 and Y 6∈ R>0, then X + Y = X.

ii) If X 6∈ R>0 and Y 6∈ R>0, then X + Y = max{X, Y }.

• We could extend Definition 3.1 to all of R≥0 by setting x ∼ y iff
x−1 ∼ y−1 for x, y ∈ R>V , and the set of all Dedekind cuts in R≥0/ ∼
could be made into an ordered semiring similarly as in Definition 3.2.
However, ∼ is not a congruence with respect to · when considered as
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an equivalence relation on R≥0. To see this, consider the product of ε

and 1
ε

for ε ∈ m>0. We have ε̃ · 1
ε

= 1̃, but (nε) ∼ ε, hence n ∈
⋃

ε̃ · 1̃
ε

for
all n = 1, 2, . . . . This would force us to assign to the box [0, ε]× [0, 1

ε
]

measure > ñ for all n. In general, this problem cannot be fixed by
identifying all of R̃ ∩ R>0: Let a, b ∈ m>0, a < b, be such that a ∼ b

but v(a) 6= v(b). Then there is c ∈ R>V with c̃ < ã · 1̃
b

= 1̃.

The special case when v(a) = v(b) iff a ∼ b for all a, b ∈ m≥0 will be
dealt with in the last section of this paper.

4 Measuring definable subsets of [0, 1]n

In this section, we define the lower and upper measures of definable sets
contained in [0, 1]n, and we show that they conincide. This yields a measure
on the definable subsets of [0, 1]n which is then extended to a measure on the
definable subsets of V n in Section 5.

We shall consider the structure R0, which has as underlying set R, and
whose basic relations are the sets πX, where X ∈ Defn R for some n. As
a weakly o-minimal structure on the reals, R0 is necessarily o-minimal. We
shall use the facts below; the first one is Proposition 5.1, p. 188, in [8], the
second one is extracted from the proof of Lemma 2.15, p. 124, in [9], and
the third is Corollary 2.5, p. 120 in [9].

Fact 4.1 Let X ∈ Defn(R0). Then there is Y ∈ Defn(R) so that πY =
cl(X).

Fact 4.2 Let X, Y ∈ Defn(R) be non-empty. Then there is ε ∈ m>0 so that
π(X ∩ Y ε) = πX ∩ πY , where Y ε = {x ∈ Rn : d(x, Y ) ≤ ε}.

Fact 4.3 Let X ∈ Defn(R), and suppose int(πX) 6= ∅. Then there is a box
B ⊆ X with int(πB) 6= ∅.

Definition 4.4 1. Let X ⊆ [0, 1]n be an (i1, . . . , in)-cell. We define the
lower measure µ and upper measure µ of X by induction on n.

(a) If X is a (0)-cell, then µX = µX = 0. If X = (a, b) where a < b,
then

µX = µX = b̃− a ∈ Ṽ .

8



(b) Suppose µX and µX have been defined for (i1, . . . , in)-cells. If X
is an (i1, . . . , in+1)-cell so that ij = 0 for some j ∈ {1, . . . , n + 1},
then µX = µX = 0. If X = (f, g) is an (i1, . . . , in+1)-cell so that
ij = 1 for all j ∈ {1, . . . , n + 1}, then set h = g − f and define
µX to be the supremum of

k∑
i=1

z̃i−1 · µ(h−1[zi−1, zi])

as k →∞ and z0, . . . , zk range over all elements of [0, 1]R with

0 = z0 < · · · < zk = 1.

The upper measure µX is defined to be the infimum of

k∑
i=1

z̃i · µ(h−1[zi−1, zi])

as k →∞ and z0, . . . , zk range over all elements of [0, 1]R with

0 = z0 < · · · < zk = 1.

2. Let X ⊆ [0, 1]n be definable, and let D be a decomposition of Rn into
cells that partitions X. Suppose X = D1 ∪ D2 ∪ · · · ∪ Dk, where all
Di ∈ D. Then µDX =

∑k
i=1 µDi and µDX =

∑k
i=1 µDi.

We shall also refer to the sum

k∑
i=1

z̃i−1 · µ(h−1[zi−1, zi])

in the definition above as the lower sum of f corresponding to the partition
{z0, . . . , zk}, and to the sum

k∑
i=1

z̃i · µ(h−1[zi−1, zi])

as the upper sum of f corresponding to the partition {z0, . . . , zk}.
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Example 4.5 In general, there is no hope of proving that the lower and
upper measures of definable subsets of [0, 1]n coincide if we replace the def-
inition of ∼ on m≥0 by x ∼ y iff v(x) = v(y). To see this, consider the
function f : [ε2, ε] → [0, 1] given by f(x) = ε2

x
, where ε ∈ m>0. Let δ ∈ m>0

be such that
v(εp) < v(δ) < v(ε2),

for all p ∈ Q<2. It is easy to see that then µ(0, f) = ε̃2, but there is no finite
partition of [0, 1] so that the corresponding upper sum U of f would be such

that U ≤ δ̃.

Until Theorem 4.8 has been proven, we shall write µC and µC for the lower
and upper measures of a cell C ⊆ [0, 1]n computed as in part 1 of Definition
4.4 (this is in contrast to µDC and µDC which are computed as in part 2.).

Lemma 4.6 Let X ⊆ [0, 1]n be definable with int(πX) = ∅, and let D be a
decomposition of Rn into cells that partitions X. Then there is no x ∈

⋃
µDX

with x > m.

Proof: The proof is by induction on n. The case n = 1 is clear, so
suppose the lemma holds for 1, . . . , n, and let X ⊆ [0, 1]n+1. Suppose X =
D1∪· · ·∪Dm, where Di ∈ D. Assume towards a contradiction that x ∈

⋃
µX

is so that x > m. Then there is i ∈ {1, . . . ,m} such that
⋃

µDi contains
some x > m. Then int(Di) 6= ∅, so suppose Di = (f, g) and set h = g − f .
There are

0 = y0 < y1 < · · · < yk = 1

so that
⋃ ∑k−1

i=0 ỹi · µh−1[yi, yi+1] contains an element > m, hence

ỹi · µh−1[yi, yi+1] = ã

for some a ∈ V >m and i ∈ {0, . . . , k − 1}. It follows that yi > m, and there
is x ∈

⋃
µh−1[yi, 1] with x > m. But then, by the inductive assumption,

int(πh−1[yi, yi+1]) 6= ∅, hence

int(π
(
h−1[yi, yi+1]× [0, yi]

)
) 6= ∅,

a contradiction. �
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Lemma 4.7 If X = (f, g) ⊆ [0, 1]n is an open cell with int(πX) = ∅, then
for each a ∈ V ≥0 with ã < µX there is y ∈ [0, 1] so that

ã < ỹ · µh−1[y, 1],

where h = g − f .

Proof: Immediate from Lemma 4.6 and ii) in the third bullet point of
Remark 3.9. �

Theorem 4.8 Let X ⊆ [0, 1]n be definable. Then

µEX = µFX = µFX = µEX,

for all decompositions E and F of Rn into cells that partition X.

We shall refer to the common value of the upper and lower measures of X
as the measure of X and denote it by µX.

Proof: We may as well assume int(X) 6= ∅. The proof is by induction on
n. The case when n = 1 holds by Lemma 3.6, so assume inductively that the
theorem holds for 1, . . . , n, and let X ⊆ [0, 1]n+1.

Case 1. Suppose int(πX) = ∅.

Claim 1. Let X = (f, g) be an open cell. Then µX = µX.

Proof of Claim 1. We set h = g − f , and we define

A := sup
y∈[0,1]

{ỹ · µ(h−1[y, 1])} ∈ Ṽ ,

where the expression µh−1[y, 1] makes sense by the inductive assumption.
We shall say that property ∗ holds for h if there is x ∈ m>0 such that

ỹ · µ(h−1[y, 1]) < x̃

for all y ∈ [0, 1], and there is y ∈ [0, 1] and q ∈ Q>1 so that

x̃q < ỹ · µ(h−1[y, 1]).

We distinguish two cases.
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1. First, assume that property ∗ holds for h.

Let x ∈ m>0 witness that ∗ holds for h. We set

S := {q ∈ Q>1 : ∃y ∈ [0, 1] x̃q < ỹ · µh−1[y, 1]}.

Then S is a nonempty subset of R that is bounded below, hence the
infimum of S exists in R. We set c := inf S.

Subclaim: Let q1, q2 ∈ Q>0 be so that q1 < c < q2. Then

x̃q2 < µ(0, h) ≤ µ(0, h) < x̃q1 .

Proof of subclaim: We first show that x̃q2 < µ(0, h). By the
definition of c, we can find q ∈ S so that c < q < q2, and we let
y ∈ [0, 1] satisfy

x̃q < ỹ · µh−1[y, 1].

Then
x̃q2 < ỹ · µh−1[y, 1] ≤ µ(0, h).

To prove µ(0, h) < xq1 , let q3 ∈ Q>0 and a positive integer l be such that
q1 + 2q3 < c and q1 + q3 < lq3. Then the upper sum of h corresponding
to the partition {0, xlq3 , x(l−1)q3 . . . , xq3 , 1} of [0, 1] is

µh−1[xq3 , 1] +
l−1∑
i=1

x̃iq3µh−1[x(i+1)q3 , xiq3 ] + x̃lq3µh−1[0, xlq3 ].

Now µh−1[xq3 , 1] < x̃q1+q3 , because else µh−1[xq3 , 1] ≥ x̃q1+q3 would
imply x̃q3 · µh−1[xq3 , 1] ≥ x̃q1+2q3 , a contradiction with x̃c < x̃q1+2q3 .

For i = 1, . . . , l − 1, we have

x̃iq3µh−1[x(i+1)q3 , xiq3 ] < x̃q1+q3 ,

because else
x̃iq3µh−1[x(i+1)q3 , xiq3 ] ≥ x̃q1+q3

would imply
x̃(i+1)q3µh−1[x(i+1)q3 , xiq3 ] ≥ x̃q1+2q3 ,

again a contradiction with x̃c < x̃q1+2q3 .
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Also,
x̃lq3µh−1[0, xlq3 ] ≤ x̃lq3 < x̃q1+q3 .

So the upper sum of h corresponding to {0, xlq3 , x(l−1)q3 . . . , xq3 , 1} is
smaller than (l + 1) · x̃q1+q3 = x̃q1+q3 < x̃q1 . � (SUBCLAIM)

It now follows that µ(0, h) = µ(0, h): If not, then we can find y, z ∈ V >0

so that xq2 < y < z < xq1 for all q1, q2 ∈ Q>0 with q1 < c < q2, and
y 6∼ z. Hence y < zq for some q ∈ Q>1. Then

xq2 < y < zq < xqq1

for all q1, q2 ∈ Q>0 with q1 < c < q2. But picking q1 so that qq1 > c
yields a contradiction with x̃q2 < y for all q2 ∈ Q>c.

2. Suppose ∗ does not hold for h.

In this case, if x ∈ m>0, then either A < x̃p for all p ∈ Q>0, or x̃p < A,
for all p ∈ Q>0. We shall show that µ(0, h) ≤ A ≤ µ(0, h).

To prove that A ≤ µ(0, h), let a ∈ V >0 be such that ã < A. Then we
can find y ∈ [0, 1] so that ã < ỹ · µh−1[y, 1] ≤ µ(0, h).

To see that µ(0, h) ≤ A, let y ∈ V >0 be such that A < ỹ.

First, suppose m < y < 1. Then µh−1[y
2
, 1] <

(̃
y
2

)
, because else

(̃y

2

)
· µh−1[

y

2
, 1] ≥

(̃y

2

)2

> A,

would yield a contradiction with the definition of A. So

µ(0, h) ≤ µh−1[
y

2
, 1] +

ỹ

2
· µh−1[0,

y

2
] <

(̃y

2

)
+

(̃y

2

)
= ỹ.

So assume that y ∈ m>0. Then A < ỹ2, because ∗ fails for h. Hence
µh−1[y, 1] < ỹ, else ỹ · µh−1[y, 1] ≥ ỹ2 > A, a contradiction. So

µ(0, h) ≤ µh−1[y, 1] + ỹ · µh−1[0, y] < ỹ + ỹ = ỹ.

It follows that µ(0, h) = µ(0, h) = µ(0, h).

This finishes the proof of Claim 1.
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Claim 2. Let X = (f, g) be an open cell, and let D be a decomposition of
Rn+1 into cells that partitions X. Then µX = µDX.

Proof of Claim 2. Let D1, . . . , Dk ∈ D be open with X =0 D1 ∪ · · · ∪Dk. To
see that µX ≤

∑k
i=1 µDi, let a ∈ V ≥0 be so that ã < µX. By Lemma 4.6,

a ∈ m≥0. We need to show that ã <
∑k

i=1 µDi. By Lemma 4.7, we can find
y ∈ [0, 1] such that ã < ỹ · µh−1[y, 1], where h = g − f .

• If there is no x ∈
⋃

µh−1[y, 1] with x > m, then, using the inductive
assumption, we can find D ∈ {D1, . . . , Dk} so that

µh−1[y, 1] = µ(h−1[y, 1] ∩ pn+1
n D).

Let {E1, . . . , Em} be the subset of {D1, . . . , Dk} consisting of all Di’s
with pn+1

n Di = pn+1
n D. For each i ∈ {1, . . . ,m}, let Ei = (fi, gi), set

hi = gi − fi, and define

Fi := {x ∈ h−1[y, 1] ∩ pn+1
n D : hi(x) ≥ hj(x) for j = 1, . . . ,m}.

Then h−1[y, 1]∩pn+1
n D =

⋃m
i=1 Fi, and hence we can take j ∈ {1, . . . ,m}

so that
µFj = µ(h−1[y, 1] ∩ pn+1

n D).

We claim that ã < µEj. This is because if y ∈ m>0, then ỹ ≤ h̃j(x)
for each x ∈ Fj. And if y > m, then ỹ · µh−1[y, 1] = µh−1[y, 1] and
(gj − fj)(x) > m for each x ∈ Fj.

• Now suppose there is x ∈
⋃

µh−1[y, 1] with x > m. Let D ∈ {D1, . . . , Dk}
be such that

⋃
µ(h−1[y, 1] ∩ pn+1

n D) contains some x > m. Then

ỹ · µh−1[y, 1] = ỹ · µ(h−1[y, 1] ∩ pn+1
n D) = ỹ.

Define {E1, . . . , Em} and the sets Fi for D as in the previous case.
Then for some i ∈ {1, . . . ,m}, there is x ∈

⋃
µFi so that x > m.

Hence µEi > ã.

To see that
∑k

i=1 µDi ≤ µX, let a ∈ V ≥0 be such that ã <
∑k

i=1 Di. By

Lemma 4.6, a ∈ m≥0. Then
∑k

i=1 µDi = µDj for some j ∈ {1, . . . , k}. Let
Dj = (fj, gj) and set hj = gj − fj. Then there is y ∈ [0, 1] with

ỹ · µ(h−1
j [y, 1]) > ã,
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and
ỹ · µ

(
h−1

j [y, 1]
)
≤ ỹ · h−1[y, 1] ≤ µX.

This finishes the proof of Claim 2.

Claim 3. Let X be a definable set, and let C and D be decompositions of Rn+1

into cells that partition X. Then µCX = µDX.

Proof of Claim 3. Let E be a decomposition of Rn+1 into cells which is a
common refinement of C and D. Then

µDX =
∑

Di⊆X

µDi =
∑

Di⊆X

∑
Eij⊆Di

µEij =
∑

Ck⊆X

∑
Ekl⊆Ck

µEkl =
∑

Ck⊆X

µCk = µCX,

where Di ∈ D, Eij, Ekl ∈ E and Ck ∈ C.
This finishes the proof of Claim 3, and we have thus proven Case 1.

Case 2. int(πX) 6= ∅.
Since πX is definable in the o-minimal structure R0, it is Lebesgue measur-
able, and µPπX = µPπX = ã, where a ∈ R>0 is the Lebesgue measure of

πX, and P is any decomposition of Rn+1 into cells that partitions πX. We
shall thus write µY instead of µPY and µPY if Y is an R0-definable subset
of [0, 1]m ⊆ Rm.

Our aim is to show that µDX = µDX = ã. Since this is clearly satisfied
when X ⊆ [0, 1], we may assume that the inductive assumption holds in this
a priori stronger form.

Claim 1. Suppose X = (f, g) ⊆ [0, 1]n+1 is a cell. Then µX = µX = ã.

Proof of Claim 1. We set h = g− f . By o-minimality of R0, there are contin-
uous R0-definable functions f0, g0, and h0 with

domain(f0) = domain(g0) = domain(h0) =0 πpn+1
n X,

and such that for all x ∈ domain(f0) up to a definable set of dimension < n,

f0(x) = πf(x′), g0(x) = πg(x′) and h0(x) = πh(x′)

for all x′ ∈ pn+1
n X with π(x′) = x.

Let C0 be a decomposition of Rn into cells that partitions the domain of
h0 and is such that whenever C ∈ C0 is open and C ⊆ domain(h0), then h0

is differentiable on C and each ∂h0

∂xi
has constant sign.
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By Fact 4.1, we can find for each C ∈ C0 an R-definable set XC so that
πXC = cl(C). Let D0 be a decomposition of Rn partitioning pn+1

n X and XC

for each C ∈ C0 with C ⊆ domain(h0).

Subclaim: Let D ∈ D0 be such that D ⊆ pn+1
n X. Set XD := (0, h)∩(D×R)

and suppose int(πXD) 6= ∅. Then µXD = µXD = d̃, where d is the Lebesgue
measure of πXD.

Proof of subclaim: We replace for the moment h with h|D, and h0 with

h0|int(πD). We shall show µ(0, h) ≤ d̃ and d̃ ≤ µ(0, h). To prove the first

inequality, let d′ ∈ R be such that d̃ < d̃′. We wish to show that µ(0, h) < d̃′.
Let 0 = a0 < · · · < ak = 1 be real numbers so that

k−1∑
i=0

ãi+1 · µh−1
0 [ai, ai+1] < d̃′.

By Fact 4.2, for each i, we can find εi ∈ m≥0 so that

π
(
Γh ∩ (Rn × [bi − εi, bi+1 + εi])

)
= Γh0 ∩ (Rn × [ai, ai+1])

up to a set Y ⊆ Rn+1 with dim pn+1
n Y < n, and where bi, bi+1 ∈ R are such

that πbi = ai and πbi+1 = ai+1. Inductively,

µh−1[bi − εi, bi+1 + εi] = µπh−1[bi − εi, bi+1 + εi],

hence
µh−1[bi − εi, bi+1 + εi] = µh−1

0 [ai, ai+1].

So ∑k−1
i=0 b̃i+1 · µh−1[bi, bi+1] ≤∑k−1
i=0

˜(bi+1 + εi) · µh−1[bi − εi, bi+1 + εi] =∑k−1
i=0 ãi · µh−1

0 [ai, ai+1] < d̃′.

Next, we need to show that d̃ ≤ µ(0, h). There are two cases to be
considered.

1. Suppose ∂h0

∂xj
= 0 for all j.

Then d̃ = µpn+1
n (0, h0) · h̃0(x) for all x ∈ pn+1

n (0, h0). Let b ∈ V >m be
such that π(b) = h0(x). By Fact 4.2, we can find ε ∈ m≥0 so that

π(Γh ∩ (Rn × [b− ε, b + ε])) = Γh0
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up to a set Y ⊆ Rn+1 such that dim pn+1
n Y < n. Then

d̃ = h̃0(x)·µpn+1
n (0, h0) ≤ (̃b− ε)·µh−1[b−ε, b+ε]+(̃b + ε)·µh−1[b+ε, 1]

by the inductive assumption.

2. Suppose ∂h0

∂xj
6= 0 for some j. Let d′ ∈ V >m be such that d̃′ < d̃. We

wish to show that d̃′ < µ(0, h).

Let
0 = a0 < · · · < ak = 1

be elements of R so that d̃′ <
∑k

i=0 ãi · µh−1
0 [ai, ai+1], and let

0 = b0 < · · · < bk = 1

be elements of R such that πbi = ai for each i. Then, for each i,
µπh−1[bi, bi+1] = µh−1

0 [ai, ai+1]: The inequality

µπh−1[bi, bi+1] ≤ µh−1
0 [ai, ai+1]

is clear by the inductive assumption. To prove the other inequality, let
ε ∈ m>0 be such that

πh−1[bi − ε, bi+1 + ε] =0 h−1
0 [ai, ai+1].

Then

πh−1[bi−ε, bi+1+ε] = πh−1[bi−ε, bi]∪πh−1[bi, bi+1]∪πh−1[bi+1, bi+1+ε],

where the sets on the right-hand side are disjoint apart from a set of
dimension < n. Hence

µh−1
0 [ai, ai+1] =0 µπh−1[bi− ε, bi]+µπh−1[bi, bi+1]+µπh−1[bi+1, bi+1 + ε]

by the inductive assumption. But

µπh−1[bi − ε, bi] = µπh−1[bi+1, bi+1 + ε] = 0,

because µh−1
0 (ai) = µh−1

0 (ai+1) = 0.

It follows that

d̃′ <

k−1∑
i=0

ãi · µh−1
0 [ai, ai+1] =

k−1∑
i=0

b̃i · µh−1[bi, bi+1].
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This proves d̃ < µ(0, h), and hence µXD = µXD = d̃. � (SUBCLAIM)

Now let pn+1
n X =

⋃k
i=1 Di, where each Di ∈ D0. Then each set X ∩ (Di×R)

is a cell, and

X =
(
(D1 ×R) ∩X

)
∪̇ . . . ∪̇

(
(Dk ×R) ∩X

)
.

Let D be a decomposition of Rn+1 into cells such that (Di ×R)∩X ∈ D for
each i ∈ {1, . . . , k}, and let I ⊆ {1, . . . , k} consist of all the i with

int(π((Di ×R) ∩X)) 6= ∅.

By the subclaim, if i ∈ I, then we can find ai ∈ V >m so that πai is the
Lebesgue measure of π

(
(Di ×R) ∩X

)
and

µ
(
(Di ×R) ∩X

)
= µ

(
(Di ×R) ∩X

)
= µ

(
(Di ×R) ∩X

)
= ãi.

For i ∈ {1, . . . , k} \ I, we set ai = 0. Note that
∑k

i=1 πai = πa. To prove

µX = µX = ã, let a′ ∈ R>m be such that ã < ã′. We need to show µX < ã′.
Let for each i ∈ {1, . . . , k},

0 = bi0 < bi1 < · · · < biki
= 1

be a partition of [0, 1] so that the corresponding upper sum of h|Di
has

measure at most ãi + ã′−a
k

. Such a partition exists for i ∈ I by the subclaim,
and for i ∈ {1, . . . , k} \ I by Case 1.

Now let {b0, . . . , bm} be a partition of [0, 1] which is a common refine-
ment of all {bi0 , . . . , biki

} where i = 1, . . . , k. Then the upper sum of h|Di

corresponding to this new partition is again at most ãi + ã′−a
k

. Furthermore,

m∑
i=1

b̃i · µh−1[bi−1, bi] =
m∑

i=1

(
k∑

j=1

b̃i · µ(h−1[bi−1, bi] ∩Dj)) < ã′,

where the first equality follows from the inductive assumption. The inequality
ã ≤ µX is proved similarly. This finishes the proof of Claim 1.

Claim 2. µXE = µEX = ã.
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Proof of Claim 2. Let E1, . . . , Ek ∈ E be open such that X =0

⋃k
i=1 Ei. Since

int(πEi) 6= ∅ for at least one i, we may as well assume (by Lemma 4.6) that

int(πEi) 6= ∅ for each i. Now, by the above, µEi = µEi = b̃i, where πbi is
the Lebesgue measure of πDi. Hence

µX =
k∑

i=1

µDi =
k∑

i=1

µDi = µX.

This finishes the proof of Claim 2, thus the proof of Case 2, and hence the
proof of the theorem. �

5 Measuring definable subsets of V n and in-

variance of µ under isomorphisms

The following definition is from [6]. By Jφ(x) we denote the determinant of
the Jacobian of a diffeomorphism φ at x.

Definition 5.1 Let SB[n] be the lattice of all R-definable subsets of V n, and
let X, Y ∈ SB[n]. An isomorphism φ : X → Y is defined to be a definable
C1-diffeomorphism φ : U → V , where U and V are open definable subsets of
Rn, X ⊆0 U , Y ⊆0 V , |Jφ(x)| = 1 for all x ∈ U ∩X up to a set of dimension
< n, and φ(X) =0 Y .

Let C ⊆ V n be an open cell with C = (fn, gn) and pn
kC = (fk, gk) for

k = 1, . . . , n − 1. Suppose that fi and gi are continuously differentiable for
i = 2, . . . , n. We define a map

τC = (τ1, . . . , τn) : C → τC

by setting τk(x) = xk − fk(x1, . . . , xk−1) for x = (x1, . . . , xn) ∈ C and k =
1, . . . , n. It is routine to check that τ is an isomorphism C → τC.

Lemma 5.2 Let X ⊆ [0, 1]n be definable and such that int(πX) = ∅. Then
for each a ∈ V >0 with ã < µX, there is a cell C ⊆ X and a box B ⊆0 τCC
with µB > ã.

Proof: Let a ∈ V ≥0 be such that ã < µX. Let D be a decomposition of
Rn into cells that partitions X. Suppose X = D1 ∪ · · · ∪ Dm, where each
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Di ∈ D. Since int(πX) = ∅, by Lemma 4.6 we can find D ∈ {D1, . . . , Dm}
so that µD = µX. We shall find a box B ⊆0 τD(D) with µD > ã.

If n = 1, then τD is the required box. So assume the lemma holds for
1, . . . , n, and let X ⊆ [0, 1]n+1. Suppose τDD = (0, h). Then we can find a
partition 0 = y0 < y1 < · · · < yl = 1 of [0, 1] so that

ã <

l∑
i=1

ỹi−1 · µh−1[yi−1, yi],

and
∑l

i=1 ỹi−1 · µh−1[yi−1, yi] = ỹj−1 · µh−1[yj−1, yj] for some j ∈ {1, . . . , l}.
If int(πh−1[yj−1, yj]) = ∅, then h−1[yj−1, yj] contains a cell C of measure

µh−1[yj−1, yj], and

τCC ⊆ τpn+1
n Dh−1[yj−1, yj] ⊆ τpn+1

n Dpn+1
n D = pn+1

n τDD.

Let c ∈ V >0 be such that c̃ < µh−1[yj−1, yj] and ã < ỹj−1 · c̃. By the inductive
assumption, τCC contains a box B0 with c̃ < µB0. Then B0×[0, yj−1] ⊆ τDD
and µ(B0 × [0, yj−1]) > ã.

If int(πh−1[yj−1, yj]) 6= ∅, then h−1[yj−1, yj] contains a cell C such that
int(πC) 6= ∅. Then int(πτCC) 6= ∅ and, by Fact 4.3, τCC contains a box B0

of measure > m. Then B0 × [0, yj−1] is as required. �

Lemma 5.3 Let X ⊆ [0, 1]n be definable with non-empty interior, and let
a ∈ V >0 be such that µX < ã. Then there are open cells C1, . . . , Ck ⊆
[0, 1]n so that X =0 C1∪̇ . . . ∪̇Ck, and for each i ∈ {1, . . . , k} there are boxes
Bi1, . . . , Biki

⊆ [0, 1]n with τCi ⊆
⋃ki

j=1 Bij and
∑k

i=1

∑ki

j=1 µBij < ã.

Proof: First assume that X = (f, g) is a cell and set h = g− f . The proof
is by induction on n. If n = 1, then X = (c, d) for some c, d ∈ V ≥0. Then
τX(f,g) ⊆ [0, d− c] and µ[0, d− c] = µX < ã.

So suppose the lemma holds for 1, . . . , n, and let X ⊆ [0, 1]n+1. Let

0 = y0 < y1 < · · · < yk = 1

be such that
∑k

i=1 ỹi · µh−1[yi−1, yi] < ã.

Case 1. There is no c ∈ m≥0 with µX < c̃.

In this case a > m, and we fix b ∈ V >m so that µX < b̃ < ã. It suffices to
prove the conclusion of the lemma for each

X ′ := X ∩ (h−1[yi−1, yi]× [0, 1])

instead of X and µX ′ + ã−b
k

in place of ã.

20



1. If yi ∈ m≥0, then let D be any decomposition of Rn+1 into cells par-
titioning X ′. For each open D ∈ D with D ⊆ X ′ we have τDD ⊆
[0, 1]n × [0, yi], which is a box of measure ỹi, and l · ỹi < µX ′ + ã−b

k
for

any non-negative integer l.

2. If µh−1[yi−1, yi] < d̃ for some d ∈ m≥0, then we use the inductive
assumption to find open cells C1, . . . , Ck so that

µh−1[yi−1, yi] =0 C1 ∪ · · · ∪ Ck,

and for each i ∈ {1, . . . , k} a family of boxes {Bij : j = 1, . . . , ki}
covering τCi

Ci so that
∑ki

j=1 µBij < d̃. Then the cells X ′ ∩ (Ci × [0, 1])
and the families of boxes

{Bij × [0, yi] : j = 1, . . . , ki},

where i = 1, . . . , k, are as in the conclusion of the lemma.

3. So suppose yi > m, and there is no d ∈ m≥0 with µh−1[yi−1, yi] < d̃.

Then µh−1[yi−1, yi] < b̃
yi

. By the inductive assumption, we can find

open cells C1, . . . , Ck ⊆ [0, 1]n so that

h−1[yi−1, yi] =0 C1 ∪ · · · ∪ Ck,

and for each i ∈ {1, . . . , k} a family of boxes {Bij : j = 1, . . . , ki}
covering τCi

Ci with
k∑

i=1

ki∑
j=1

µBij <
b̃

yi

.

Then the cells X ′ ∩ (Ci × [0, 1]) and the families of boxes

{Bij × [0, yi] : j = 1, . . . , ki},

where i = 1, . . . , k, are as required.

Case 2. There is c ∈ m>0 with µX < c̃.

In this case we may assume that a ∈ m>0. We fix b ∈ m>0 with

µX < b̃ < ã.

It suffices to prove the conclusion of the lemma for each set

X ′ := X ∩ (h−1[yi−1, yi]× [0, 1])

in place of X.

21



1. Suppose yi ∈ m≥0 and µh−1[yi−1, yi] < c̃, where c ∈ m≥0.

If ỹi < ã, then we find open cells C1, . . . , Ck so that

h−1[yi−1, yi] =0 C1 ∪ · · · ∪ Ck,

and for each i a family of boxes {Bij : j = 1, . . . , ki} covering τCi
Ci

such that
∑k

i=1

∑ki

j=1 µBij < c̃. Then the cells X ′ ∩ (Ci × [0, 1]) and
the families of boxes {Bij × [0, yi] : j = 1, . . . , ki} are as required.

If ã ≤ ỹi, then b̃ < ỹi, hence z = b
yi
∈ m>0. Note that µh−1[yi−1, yi] < z̃.

We proceed exactly as above, except that we require

k∑
i=1

ki∑
j=1

µBij < z̃.

2. It is obvious how to handle the case when yi > m.

3. Suppose yi ∈ m≥0, and there is no c ∈ m>0 so that µh−1[yi−1, yi] < c̃.

Then ỹi < ã: If ã ≤ ỹi, then b̃ < ỹi, hence b̃ < ỹi

m
n < ỹi for some m

n
∈

Q>1. But y
m−n

n
i ∈ m>0 and ỹi·ỹi

m−n
n = ỹi

m
n , a contradiction with ỹi·ε̃ < b̃

for all ε ∈ m>0.

It is now obvious how to handle this case as well.

We established the lemma for X ⊆ [0, 1]n a cell. Now suppose that X ⊆
[0, 1]n is a definable set. LetD be a decomposition of Rn into cells partitioning
X, and let X =0 D1 ∪ · · · ∪Dm, where each Di ∈ D is open.

The case when a ∈ m≥0 follows immediately from Case 2 above. So
suppose there is no c ∈ m>0 so that µX < c̃. Let b ∈ V >0 be such that
µX < b̃ < ã. By Case 1, each τDi can be covered by finitely many boxes

Bij of total measure < µDi + ã−b
m

. Then the sum of the measures of all the
boxes is < ã. �

Theorem 5.4 Let X, Y ⊆ [0, 1]n be definable and isomorphic. Then µX =
µY .

Proof: Let φ be an isomorphism X → Y . It suffices to show that µX ≤
µY , since φ−1 is an isomorphism Y → X. If int(πX) 6= ∅, then the theorem
is obvious from the proof of Theorem 6.5, p. 194 in [8].
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So suppose int(πX) = ∅. Assume towards a contradiction that µY < µX,
and let a ∈ m>0 be such that µY < ã < µX. By Lemma 5.3, we can find
open cells C1, . . . , Ck ⊆ [0, 1]n so that

Y =0 C1∪̇C2∪̇ . . . ∪̇Ck,

φ is defined on each Ci, and so that for each i, we can find a family of boxes
{Bij : j = 1, . . . , ki} with τCi

Ci ⊆0

⋃ki

j=1 Bij and
∑k

i=1

∑ki

j=1 µBij < ã. Then

X =0 φ−1C1∪̇ . . . ∪̇φ−1Ck.

We set C := Cl, where l ∈ {1, . . . , k} is such that µX = µφ−1(Cl), and
we replace X by φ−1(C) and φ by φ|φ−1C . Then τC ◦ φ is an isomorphism
X → τCC. Let D be a decomposition of Rn into cells partitioning each

X ∩ φ−1(τ−1
C (Bij ∩ τCC)).

Then
X =0 D1∪̇ . . . ∪̇Dm,

where each Di is an open cell from D. Let D := Dl for l ∈ {1, . . . ,m} so
that µX = µDl, and let B := Bij so that τC ◦ φ(D) ⊆ Bij. By Lemma 5.2,
we can find a box P ⊆ τD(D) with µP > ã. Then

τP P = [0, ε1]× [0, ε2]× · · · × [0, εn],

where each εi ∈ V >0 and µP = Πn
i=1ε̃i. Let θ : [0, 1]n → Rn be given by

θ(x) = (ε1x1, . . . , εnxn). Then θ([0, 1]n) = τP P .
We define another map θ̂ : τBB → Rn by θ̂(x) = (δ1x1, . . . , δnxn), where

δ1, . . . , δn ∈ R>0 are chosen in such a way that det(θ̂) = 1
det θ

, and θ̂(τBB) ⊆
V n (this is possible since µB < µP ). Then πθ̂(τBB) has empty interior.
However, the map

θ̂ ◦ τB ◦ τC ◦ φ ◦ τ−1
D ◦ τ−1

P ◦ θ

is an isomorphism [0, 1]n → θ̂(τBB), a contradiction with the theorem being
true in the case when int(πX) 6= ∅. �

Definition 5.5 For a definable set X ⊆ V n we set

µX :=
1̃

det A
· µ(TX),
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where
T : Rn → Rn : x 7→ Ax + b

is an affine map with affine transformation matrix A = (aij) such that aij =
λ ∈ V >m whenever i = j, and aij = 0 whenever i 6= j, b ∈ V n, and AX ⊆
[0, 1]n.

The next Lemma shows that µX is well-defined on SB[n].

Lemma 5.6 Let X ⊆ V n be definable, and let

T : Rn → Rn : x 7→ Ax + b and T ′ : Rn → Rn : x 7→ A′x + b′

be affine transformations for X as in Definition 5.5. Then

1̃

det A
· µ(TX) =

1̃

det A′ · µ(T ′X).

Proof: Note that int(πX) = ∅ iff int(π(TX)) = ∅, and the lemma holds
whenever int(πX) 6= ∅, since it holds in R0. So we may assume int(πX) = ∅,
in which case

1̃

det A
· µTX = µTX and

1̃

det A′ · µT ′X = µT ′X,

so it suffices to show that µ(TX) = µ(T ′X). We set Y := TX and S :=
T ′ ◦ T−1. Then Y, SY ⊆ [0, 1]n, and S is an affine transformation with
diagonal affine transformation matrix so that each entry on the diagonal is
a fixed λ ∈ V >m.

To see that µY ≤ µSY , let a ∈ m>0 be such that ã < µY . We can find a
cell C ⊆ Y and a box B ⊆ τCC with ã < µB. But then SC ⊆ SY is a also
a cell, and SB ⊆ τSCSC is a box such that ã < µSB.

The inequality µSY ≤ µY follows by a similar argument when considering
S−1 : SY → Y instead of S. �

Corollary 5.7 Let X, Y ⊆ V n be definable and let φ : X → Y be an isomor-
phism. Then µX = µY .

Proof: Since µ is invariant under translations, we may assume that X, Y ⊆
[0, m]n. Let θ : Rn → Rn be given by θ(x) = ( 1

m
x1, . . . ,

1
m

xn). Then

θ|Y ◦ φ ◦ θ−1|θX : θX → θY

is an isomorphism between subsets of [0, 1]n, hence by Theorem 5.4, µθX =
µθY , and so µX = µY by the definition of µ. �
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Lemma 5.8 Let X ⊆ [0, 1]m and Y ⊆ [0, 1]n be definable. Then µ(X×Y ) =
µY · µX.

Proof: If int(X) = ∅ or int(Y ) = ∅, then the lemma holds trivially, so
assume that int(X) and int(Y ) are nonempty.

Note that in the case when µX, µY ∈ R>0, the lemma holds, since then
µX and µY are just the Lebesgue measures of πX and πY respectively. So
suppose µX 6∈ R>0 or µY 6∈ R>0 (and hence µ(X × Y ) 6∈ R>0).

Let C be a decomposition of Rm+n into cells that partitions X × Y . To
see that µ(X × Y ) ≤ µX · µY , let C ∈ C be such that C ⊆ X × Y and
µC = µ(X × Y ). Let further a ∈ V >0 be so that ã < µ(X × Y ). By
Lemma 5.2, we can find a box B ⊆ τCC with ã < µB. Then B = pB × qB,
where p : Rm+n → Rm denotes the projection onto the first m coordinates
and q : Rm+n → Rn is the projection onto the last n coordinates. By Lemma
3.8, µB = µpB · µqB. Now τ−1

pC pB ⊆ X and µτ−1
pC pB = µpB, since τ−1

pC |pB is

an isomorphism pB → τ−1
pC (pB). Hence µpB ≤ µX. We now define a map

τ̂ on qB. Suppose pm+n
m+kC = (fk, gk) for 1 ≤ k ≤ n. Fix c ∈ C, and let

f̂k = fk(p
m+n
m+k−1c). Set τ̂ := (τ1, . . . , τn), where τk(x) = xk + f̂k for x ∈ qB.

Then τ̂ qB ⊆ Y and, since τ̂ is an isomorphism, µqB = µτ̂qB, so µqB ≤ µY .
It follows that ã < µX · µY , hence µ(X × Y ) ≤ µX · µY .

To see that µX · µY ≤ µ(X × Y ), let a ∈ V >0 be such that ã < µX · µY .

Then we can find b, c ∈ V >0 with ã ≤ b̃ · c̃ and b̃ < µX and c̃ < µY . First,
suppose µX 6∈ R>0 and µY 6∈ R>0. Then we can find cells C ⊆ X and D ⊆ Y
such that µC = µX and µD = µY . By Lemma 5.2, there are boxes B ⊆ τCC
and P ⊆ τDD so that b̃ < µB and c̃ < µP . Note that C × D ⊆ X × Y is
a cell. We have P × Q ⊆ τC×D(C × D), and hence ã < µ(X × Y ) because
τC×D is an isomorphism.

Finally, suppose that µX 6∈ R>0 and µY ∈ R>0 (the case when µX ∈ R>0

and µY 6∈ R>0 is similar). Proceed as in the previous case, but let D ⊆ Y be
any cell so that int(πD) 6= ∅, and let P ⊆ τDD be a box so that int(πP ) 6= ∅.
�

We now have the following theorem:

Theorem 5.9 For each n, there is a map µn : SB[n] → Ṽ such that for
all X, Y ∈ SB[n], µn(X∪̇Y ) = µnX + µnY , and µnX > 0 iff int(X) 6= ∅.
Furthermore, if X ∈ SB[m] and Y ∈ SB[n], then µm+n(X×Y ) = µmX ·µnY ,
and µnY = µnφ(Y ) whenever φ is an isomorphism Y → φ(Y ).
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Proof: For a given n, let µn : SB[n] → Ṽ be as in Definition 5.5. Finite
additivity of µn follows from Theorem 4.8. It follows from Lemma 5.2 and
Theorem 5.4 that for X ∈ SB[n], µn(X) > 0 implies int(X) 6= ∅. The
reverse implication is immediate from the definition of µn. For X ∈ SB[m]
and Y ∈ SB[n], µm+n(X×Y ) = µmX ·µnY is implied by Lemma 5.8. Finally,
invariance under isomorphisms is Corollary 5.7.

�

6 A special case

In this section, we assume that R is such that for all x, y ∈ m≥0, x ∼ y iff
v(x) = v(y). Note that this condition is equivalent to Γ being archimedean,
and hence to Γ being embeddable into the ordered additive group of R. We
shall modify the definition of µ to obtain a finitely additive measure ν on
all of B[n], which takes values in the Dedekind completion of Γ, and is such
that νX > 0 iff int(X) 6= ∅. The price we pay for extending the collection
of measurable sets to B[n], is that we need to identify all sets of “finite,
non-infinitesimal size”. For example, νX = νY whenever X, Y ∈ SB[n] are
such that πX and πY have non-empty interior.

Note that the results of this section apply in particular when the underly-
ing set of R is the field of Puiseux series

⋃
n R((t

1
n )) in t over R. The results

of this section thus apply to the L-R field (see [7], and Introduction).

Definition 6.1 Let x, y ∈ R≥0. Then x ≈ y iff v(x) = v(y).

We define Dedekind cuts in R≥0/ ≈ analogously to Dedekind cuts in V ≥0/ ∼
(see the paragraph above Definition 3.2), and we let R̃ be the collection of

all Dedekind cuts in R≥0/ ≈. We define ≤ and + and · on R̃ as in Definition

3.2, with R̃ in place of Ṽ .
The proof of the next lemma is straight-forward and left to the reader.

Lemma 6.2 The operations + and · are well-defined and make R̃ into an
ordered semiring.

For x ∈ V ≥0 we shall abuse notation by identifying the element x̃ ∈ Ṽ with
its image in R̃ under the (+, ·, 0, 1)-homomorphism induced by the map

V ≥0/ ∼ → R≥0/ ≈: [x]∼ 7→ [x]≈.
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Lemma 6.3 For all x, y ∈ R≥0, x̃ + ỹ = x̃ + y and x̃ · ỹ = x̃ · y.

Proof: Straight-forward and left to the reader. �

Definition 6.4 For X ∈ B[n] we set

νX :=
1̃

det A
· µ(TX),

where
T : Rn → Rn : x 7→ Ax + b

is an affine map with a diagonal affine transformation matrix A = (aij) such
that aii = λ ∈ (0, 1] for i = 1, . . . , n, b ∈ Rn, and TX ⊆ [0, 1]n.

The next Lemma shows that νX is well-defined.

Lemma 6.5 Let X ∈ B[n] be definable, and let

T : Rn → Rn : x 7→ Ax + b and T ′ : Rn → Rn : x 7→ A′x + b′

be affine transformations for X as in Definition 6.4. Then

1̃

det A
· µ(TX) =

1̃

det A′ · µ(T ′X).

Proof: We set Y = TX and

S = T ′ ◦ T−1 : [0, 1]n → [0, 1]n.

Then S is an affine map with diagonal transformation matrix (aij), where

aii = α ∈ R>0 for i = 1, . . . , n. It suffices to show that µY = 1̃
αn · µSY . This

is clearly satisfied if int(πY ) 6= ∅, since then α̃ = 1̃. It also holds in the case
when Y is a box. So if µY < 1̃, then the lemma is implied by Lemma 5.2
and Lemma 5.3. �

It is now clear that we have an analog of Theorem 5.9 (where an isomorphism
between sets in B[n] is defined as in Definition 5.1 after replacing SB[n] by
B[n]):

Theorem 6.6 Suppose Γ is archimedean. Then, for each n, there is a map
µn : B[n] → R̃ such that for all X, Y ∈ B[n], µn(X∪̇Y ) = µnX + µnY , and
µnX > 0 iff int(X) 6= ∅. Furthermore, if X ∈ B[m] and Y ∈ B[n], then

µm+n(X × Y ) = µmX · µnY,

and µnY = µnφ(Y ) whenever φ is an isomorphism Y → φ(Y ).
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[8] J.Mař́ıková, The structure on the real field generated by the standard part
map on an o-minimal expansion of a real closed field, Israel J. Math. 171
(2009), 175-195.
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