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Abstract

Let M be a big o-minimal structure and G a type-definable group
in M™. We show that G is a type-definable subset of a definable
manifold in M™ that induces on G a group topology. If M is an
o-minimal expansion of a real closed field, then G with this group
topology is even definably isomorphic to a type-definable group in
some MF* with the topology induced by M*. Part of this result holds
for the wider class of so-called invariant groups: each invariant group
G in M™ has a unique topology making it a topological group and
inducing the same topology on a large invariant subset of the group
as M™.

1 Introduction

Throughout k, m,n range over N = {0,1,2,...}. Let M be a (one-sorted)
structure. Recall that a definable group in M™ is a definable set G C M™"
with a group operation G x G — G whose graph is a definable subset of
M3". Likewise, if M is big!, then a type-definable group in M™ is a type-
definable set G C M™ with a group operation G x G — G whose graph is a
type-definable subset of M3".

Let M be an o-minimal structure and X a set. A definable atlas of
dimension k on X (tacitly: with respect to M) is a finite set A = {h; : i € I}
of bijections h; : X; — h;(X;) between subsets X; of X and definable open
subsets h;(X;) of M* such that X = J,.; X, each h;(X; N X;) is a definable
open subset of h;(X;), and each transition map h;; : h;(X;NX;) — h;(X;NX;)
given by h;; = h;oh; ! is definable and continuous (hence a homeomorphism).

'Here “big” means “s-saturated and strongly x-homogeneous for a certain infinite
cardinal £,” and in this context “small” means “of cardinality < x”.



Given such an atlas A, the A-topology is the unique topology on X that
makes each X; an open subset of X and each h; a homeomorphism. Two
definable atlases of dimension k on X are said to be equivalent if their union
is also a definable atlas of dimension k£ on X; this notion of equivalence is
an equivalence relation on the set of definable atlases of dimension k£ on X.
A definable manifold of dimension k (tacitly: with respect to M) is a set YV’
equipped with an equivalence class of definable atlases of dimension k£ on Y
(and each member of this equivalence class is called an atlas of the manifold).
Each definable manifold is given the A-topology where A is an atlas of the
manifold; this topology does not depend on the choice of A. A definable
manifold of dimension k in M™ is a definable manifold of dimension k with
definable underlying set Y C M™ and with an atlas of the manifold whose
maps are all definable, that is, their graphs are definable subsets of M"+*.
(Note that then every atlas of the manifold has this definability property.)

Suppose now that M is an o-minimal structure and G is a definable group
in M™ of dimension k. Then by [5] there is a unique definable manifold of
dimension k in M™ with underlying set G such that the manifold topology
makes G into a topological group. (In the case that M is an o-minimal
expansion of a real closed field, this manifold is definably homeomorphic to
a definable subset of some M™. This follows from the proof of Lemma 10.4
in [1] and Theorem 1.8, Ch. 10 in [3].)

We prove here analogous results for type-definable groups in big o-minimal
structures. In particular, if G is a type-definable group in M", where M is a
big o-minimal expansion of a real closed field, then there is a unique topology
on G making it a topological group with a type-definable homeomorphism
onto a subspace of some M¥*. In contrast to the w-stable case, not every
type-definable group in such an M™ is definable: consider for example the
additive group of infinitesimals in a big real closed field.

Part of the above is true for the much wider class of invariant groups. A
precise definition of this class in terms of invariant sets is in the next section.
For example, let M be a big real closed field. Then the set Z C M as well as
the convex hull of Z in M are invariant sets in M; as additive subgroups of
M they are even invariant groups in M; these two sets are not type-definable
in M. In fact, they are what is called \/-definable in [4]. An example of
an invariant group in a big real closed field M which is neither type- nor
\/-definable in M is the cartesian product of Z (as an additive subgroup of
M) with the additive group of the infinitesimals. We assign to each invariant
set a dimension and prove that each invariant group in M"™ has a unique
topology making it a topological group and inducing on some large invariant
subset U of GG the same topology as M™.



Notation. From now on M is a big o-minimal structure, and A and A’ de-
note small subsets of M (serving as sets of parameters). Fora = (ay,...,a,) €
M™ b = (by,...,b,) € M™ we let aA = Aa := AU {ay,...,a,}, and
ab = (ag, ..., Am,b1,...,b,) € M™™ We denote by Aut(M|A) the group
of automorphisms of M that fix A point-wise. By a box in M"™ we mean a
cartesian product (ay,b1) X -+ X (ap, b,) € M™ where a;,b; € M, a; < b;, for
1=1,...,n. Welet f: X — Y denote a partial function from the set X into
the set Y, that is, a function f : X' — Y with X’ C X. For a partial function
foM™ — M" we let T(f) C M™™ denote the graph of f. If X C M™
then 0X := cl(X) — X denotes the frontier of X in M", and int(X) denotes
the interior of X in M™. Unless specified otherwise we use multiplicative
notation for groups; in particular, the identity of a group is denoted by 1.

2 Invariant sets and invariant groups

Definition 2.1. An A-set in M" is a set X C M"™ such that o(X) = X for
every o € Aut(M|A). Likewise, an A-group in M" is an A-set G C M"™ with
a group operation G x G — G whose graph is an A-set in M>*. If X is an
A-set in M™ for some (unspecified) A, then we call X an invariant set in
M™. Likewise, an invariant group in M™ is just an A-group in M"™ for some
unspecified A.

Note that A-sets in M™ are unions of realizations of types over A in M",
thus unions of intersections of A-definable cells in M"™. Also note that the
A-sets in M™ form a boolean algebra of subsets of M", that if X and Y are
A-sets in M™ and M™, then X xY is an A-set in M™" and that the image
of an A-set in M™"! under the projection map

(1, Tpy1) = (21, .., @)« ML — M

is an A-set in M™. Also, every subset of M" that is type-definable over A is
an A-set, every type-definable group in M™ over A is an A-group, and every
A-set is an A’-set when A C A’.

For an invariant set X C M™ we define its dimension dim X € {0,...,n}U
{—o0} just as for definable sets in [3]: if X contains a cell of dimension d
but no cell of dimension d + 1, then dim X := d; also dim () = —oo0.

This dimension is related to the rank function of the pregeometry of
M in the same way as for definable sets. To explain this, recall that for
x = (x1,...,2,) € M", rk(z|A) is the cardinality of a maximal subset of
{z1,...,x,} that is algebraically independent over A. We shall consider
tp(z|A) as the collection of all A-definable sets X C M"™ such that x € X.



Let tp(z|A) denote the set of realizations of tp(z|A) in M", that is, the
intersection of all sets X € tp(z|A); equivalently, tp(z|A) is the orbit of x
under the action of Aut(M|A) on M".

The connection between rank and dimension is based on the following:

Lemma 2.2. If x € M™ and rk(x|A) = d, then there is a cell C' in M™ of
dimension d, a box B in M"™, and a set X € tp(x|A) such that

ze€CCBNX C tp(z]A).

Proof. By induction on n. The case n = 0 is trivial. Assume the lemma holds
for a certain n. Let (z1,...,%n, Tpp1) € M and tk((z1,...,2,)|A4) = d.
The inductive assumption gives a cell C'in M™ of dimension d, a box B in
M™ and a set X € tp((z1,...,2,)|A) such that

(Il,...,l’n) EC’QBQXQG)((M;;%@MA)

Case 1. z,41 € dl(AU{z1,...,2,}). Then rk((xy,...,2n, Tni1)]A) = d.
Take an A-definable partial function f : M™ — M with (z4,...,z,) in its
domain such that f(xy,...,x,) = ,41. By cell decomposition we can assume
that domain(f) is a cell, and that f is continuous, in particular,

C C t/f)((xl, ..., 2n)|A) C domain(f).
Take d,e € M with d < z,,1 < e, and put
C'={(y,fly) :yeC}, B :=Bx(de), X :=(XxMnNT(f).

Then (z1,...,2,,2,41) €EC' C B NX' C t/f)((:vl, . ,xn,xn+1)|A).

Case 2. z,41 ¢ dcl(AU {zy,...,2,}). Then rk((z1,..., T, 20e1)|A) =
d + 1. For each A-definable continuous function f : ¥ — M with YV €
tp((z1,...,2,)|A) and f(21,...,2,) < Tpp1 we take d(f) € M with d(f) <
Zp11 and a box B(f) in M™ such that (xq,...,z,) € B(f) and f(y1,...,yn) <
d(f) for all (y1,...,y,) € Y N B. Likewise, for each A-definable continuous
function g : Y — M with Y € tp((z1,...,2,)|A4) and g(z1,...,2,) > Tppa
we take e(g) € M with e(g) > z,11 and a box B(g) in M" such that
(x1,...,2,) € B(g) and g(y1,...,yn) > e(g) for all (yi,...,y,) € Y N B.
Next we take a box By in M™ that is contained in B as well as in B(f) and
B(g) for all f and g as above; we also take d,e € M such that d(f) < d <
Tni1 < e < e(g) for all f and g as above. (This is possible by saturation.)
Let C be a cell in M™ of dimension d such that (z1,...,z,) € C; C BiNC.
Put
B := By x (d,e), X' :=XxM, C :=0C;x(de).

Then (z1,...,2p,2p41) €C'C B NX' C t/f)((:vl, . ,a:n,a:n+1)|A). O
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Corollary 2.3. Let X C M"™ be a nonempty A-set. Then
dim X = max {rk(z|A) : z € X}.

Proof. From the lemma above it is clear that dim X > rk(z|A) for each
x € X. For the reverse inequality, take a projection map p : M™ — M9 with
d = dim X such that pX contains a box B in M¢9. It is easy to see that B

contains a point of rank d over A, and thus X contains a point of rank > d
over A. O

Definition 2.4. Let X C M"™ be an A-set. A generic of X over A is an
element v € X such that rk(z|A) = dim X.

Lemma 2.5. Let X be an A-set in M™. Then
1. for each k the A-set {x € M" : rk(z|A) < k} is closed in M™;
2. the set of generics of X over A is open in X;

3. if x is a generic of X over A, then t?o(a:|A) is open i X.

Proof. Let x = (x1,...,x,) € cl{y € X : rk(y|A) < k}), with rk(z]|A) =
d. After a suitable permutation of coordinates x1,...,z, are independent
over A, and f(z1,...,24) = (Tay1,...,2n) where f : M4 — M" 4 is an
A-definable map with (z1,...,24) € domain(f). Lemma 2.2 gives a d-
dimensional cell C' in M9 such that

(x1,...,2q) € C C ff)((asl, ..., 24)]A) C domain(f).

Note: C'is open in M<. There are y = (y1,...,y,) € M™ arbitrarily close to =
with rk(y|A) < k, so there are y with with rk(y|A) < k and (y1,...,v4) € C,
hence (y1,...,vya) € tp((z1,...,24)|A), so tk((y1,...,y4)|4) = d, so k > d.
This proves item 1. Item 2 is an immediate consequence.

To obtain item 3, let z = (x1,...,2,) be a generic of X over A, say
rk(z|A) = dim X = d. After a suitable permutation of coordinates, z1, ..., x4
are independent over A and we have the situation described in the proof of
item 1; below we use the notation of that proof. Then

tp(z|A) = {(u, f(u)) : u € tp((z1,...,2a)|A)}.

Moreover, if y = (y1,...,yn) € X is sufficiently close to z, then (y,...,yq4) €
Cand g(y1,...,Ya) = Yar1,---,Yn) where g : M? — M™% is an A-definable
map with (y1,...,yq) € domain(g) (and thus (xy,...,z4) € domain(g)).
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Consider any A-definable map g : M9 — M" ¢ with (z1,...,74) €
domain(g). We claim that either f(u) # g(u) for all u € tAp((xl, . x)]A),
or f(u) = g(u) for all u € t/fo((xl, ..., 2q)|A). This claim follows by not-
ing that if f(u) = g(u) for some u € ff)((xl, . ,:Ud)|A), then the action of
Aut(M|A) yields f(u) = g(u) for all u € {f)((xl, ...,z4)|A). By the continu-
ity of the maps f and g on the open cell C' and saturation there are boxes
By in M4 and By in M™ ¢ such that

(;Cl,...,.Td>€BlgC, (LEdJrl,...,l’n)EBQ,

and g(u) ¢ By for all u € By and all maps g as above for which there exists
au € tp((z1,...,74)|A) with g(u) # f(u). We conclude that if y € X and
y € By X By, then y € tp(z|A). O

Recall that for a € M™, b € M™ we have
rk(ab|A) = rk(a|bA) + rk(b|A).

Corollary 2.6. If X and Y are A-sets in M™ and M", then dim(X xY) =
dim(X) 4+ dim(Y').

Corollary 2.7. Let X C M"™ be an A-set, and G C M"™ an A-group.

1. If a € M™ and b € M™ are interdefinable over A, then rk(a|A) =
rk(b|A).

2. Let X C M"™ be an A-set. If a is a generic of X over A and b is a
generic of X over aA, then a is a generic of X over bA.

3. If b€ G and a is a generic of G over bA, then a -b is a generic of G
over bA.

4. If b € G then there are by, by € G such that by, by are generics of G
over bA and b = by - bs.

Lemma 2.8. Let f : M™ — M* be a partial map whose graph is an A-set in
M"*k. Then f is continuous at each generic of domain(f) over A.

Proof. We can assume k = 1. By the definition of dimension we have
dim(T'(f)) < dim(domain(f)). Let x be a generic of domain(f) over A.
By the inequality above, (z, f(x)) is a generic of T'(f) over A, so this in-
equality is actually an equality. In particular, rk((z, f(x))|A) = rk(z|A), so
f(z) € dcl(Az). This gives an A-definable function g : X — M such that
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x € X C M" and g(x) = f(x). By cell decomposition we can assume that g
is continuous. For each o € Aut(M|A) we have

glox) = o(gz) = o(fx) = f(ox),
so f and g agree on tp(z|A), which is open in X by item 3 of Lemma 2.5. [

Definition 2.9. Let X, Y be invariant sets in M™. We say that 'Y is large
in X if dim (X —Y) < dim X.

We show that on every invariant group G in M™ there is a unique topology
making it a topological group and inducing the same topology on a large
invariant subset of G as M™.

In the rest of this section, G C M™ is an invariant group of dimension d.
For simplicity we assume it is an A-group for A = (). (This assumption is no
loss of generality: if A # () we just expand M by names for the elements of
Al)

Lemma 2.10. Let ¢ : (z,y,2) — xy~
G. Then ¢ is continuous at (g,9,g).

12 G3 — G and let g be a generic of

Proof. Let ¢ be a generic of G over g. Consider the following maps

o1 (r,y,2) — (cx,y™ 1, 2) : G° — G3,
¢2 : (I Y,z ) (l‘y, ) G3 - G27
(,

¢3 ) ( a ) : G2 - G2a
b+ (wy)—2y: G — G,
By Lemma 2.8, ¢; is continuous at (g, ¢, g), ¢ is continuous at (cg, g, g),
¢3 is continuous at (c, g) and ¢, is continuous at (¢7!,cg). Hence
¢ =¢s0¢300300¢
is continuous at (g, g, 9). O

We now pick some generic g of G, and use Lemma 2.2 to choose a box D
in M" and a (-definable set Y € M" such that ¢ € DNY C tp(g) and
dimY = rk(g). Take a definable set X C M* (for some k) and a definable
set B C X x D such that {B(z) : x € X} is the set of all boxes in M" that
are contained in D and contain g as an element. So for each x € X the set
V(z) := B(x) NY is definable and contained in G. By item 3 of Lemma
2.5, the collection {V(x) : x € X} is a basis of open neighborhoods of ¢ in
G for the topology on G induced by M™. Let U C X x M"™ be the set such
that U(z) = g~V (x) for each x € X. To show that {U(z) : x € X} is
a neighborhood basis of 1 for a group topology on G we use the following
well-known fact (see [2]).



Fact 2.11. Let H be a group and U a collection of subsets of H such that
(a) 1 €U forallU e U;

(b) for all Uy, Uy € U there is Us € U with Us C Uy N Uy;
(c) for allU € U there is V € U such that V' C U;
(d) for allU € U there is V € U such that V? C U;

(e) for allU € U and a € H there is V € U such that aVa™' C U.

Then there is a unique topology on H that makes H a topological group and
has U as a neighborhood basis of 1.

Lemma 2.12. The collection U := {U(z) : x € X} satisfies the conditions
(a)-(e) above for H=G.

Proof. 1t is clear that conditions (a) and (b) are satisfied. To obtain (c) it
is enough to show that for every x € X there is y € X such that U(y) C
U(z) N U(z)"'. Given any x,y € X, we have: U(y) C U(z) N U(x) ! iff
V(y) CV(z)NgV(z)~'g. By Lemma 2.10, there is for each z € X an y € X
such that V(y) C gV (x)~'g. Thus (c) holds.

For (d) it suffices to show that for all € X there is y € X such that
U(y)? C U(x). Given x,y € X we have:

Uy CU(x) <= (¢ 'V({©)* C g 'V(z) <= V(g 'V(y) C V().

By Lemma 2.10 there is for each x € X a y € X with V(y)g~'V(y) C V().

To obtain (e) we show that for all x € X and a € G there is y € X such
that aU(y)a~* C U(z). This amounts to showing that for all z € X and
a € G, there is y € X such that gag= 'V (y)a™ C V(z). Let a € G, it suffices
to show that then the map ¢ : u — gag~'ua™' : G — G is continuous at g.
To obtain this continuity, let b be a generic of G over {a, g} and ¢ a generic
of G over {a,b, g} and consider the following maps:

¢ ur— (bgag ' u) : G — G?,

s (u,v) — (uv,a c) : G* — G?,
d3 : (u,0) — (bHw) : G — G2,
b1 (u,0) — (uv,c ) G* — G2,

b5 (u,v) —uv: G* — G.
By Lemma 2.8, ¢ is continuous at g, ¢, is continuous at (bgag™',g), @3 is
continuous at (bga,a™'c), ¢4 is continuous at (b=, bge), and ¢5 is continuous
at (gc,c™t). Hence

¢ = @50 Q40 P30 Py0 Py

is continuous at g. O



The following is a well-known fact about topological groups (see [2]):

Fact 2.13. Let E, F be topological groups and f : E — F a group homo-
morphism. If f is continuous at some point of E, then f is continuous.

From now on t denotes the group topology on G for which U is a neigh-
borhood basis of 1. Unless prefixed by ¢, topological terminology like “open”,
“neighborhood”, “continuous”, ... refers to the topology induced on G by
M™. We denote by €2 the set of all generics of G. Note that 2 is a large
invariant subset of G which is open in G.

Theorem 2.14. The set €2 is t-open and t induces on € the same topology as
M™. For any a € QQ, the set t/f)(a) 1s t-open, and t induces the same topology
on t/f)(a) as M™. The t-topology is the only group topology on G for which
some generic of G has the same neighborhoods as the topology on G induced
by M™. In particular, the t-topology is the only group topology on G that
induces the same topology on a large invariant subset of G as M™.

Proof. We call an element a € § good if {t-neighborhoods of a in G} =
{neighborhoods of a in G}. Note that g is good, since {V(z) : © € X} is
both a neighborhood basis of ¢ for the topology t and a neighborhood basis
of g for the topology on G induced by M™.

Suppose a € €2 is good and b is a generic of G over a. Then we claim
that b is good. To see this, note that a is generic over ba~!, so the map
x+— ba"'z : G — G is continuous at a, and maps a to b; likewise, its inverse
y — ab™'y : G — G is continuous at b. These two maps are also t-continuous,
so the claim follows.

Next we claim: all elements of 2 are good. To see this, let h € Q and
take a generic b of G over {g, h}. Then b is a generic of G over g, so b is good
by the previous claim. Also, h is a generic of G over b, so h is good, again
by the previous claim.

It follows from the second claim that each point of 2 has a t-neighborhood
entirely contained in 2, namely €2 itself. Thus €2 is t-open. It also follows
that each point of € has the same t-neighborhoods in €2 as neighborhoods in
Q. Thus t induces the same topology on €2 as M".

If a € Q, then tp(a) is an open subset of Q by part 3 of Lemma 2.5, so
the assertion about tp(a) follows.

Let ¢’ be a group topology on GG and let h be a generic of G such that
{t'-neighborhoods of h in G} = {neighborhoods of h in G}. The map

r—x: (G, t)— (G t),



as well as its inverse, is continuous at h. Since it is also a group isomorphism,
it follows that it is a homeomorphism, so t = t'.

If a group topology on G induces the same topology on a large invariant
subset of G as M™, then some generic of G has the same neighborhoods in
this group topology as in the topology on G induced by M™. So t is the
unique group topology having this property. O]

We also refer to the t-topology as “the group topology of G”.

Lemma 2.15. Let E, F be invariant groups in M™ and M", and let f :
E — F be a group homomorphism whose graph is an invariant set in M™*",
Then f is continuous with respect to the group topologies of E and F'.

Proof. By Fact 2.13, it is enough to show that there is a € E such that f is
continuous at a. But this is an immediate consequence of Lemma 2.8. O]

Lemma 2.16. If H is an invariant subgroup of G, then the group topology
of G induces on H the group topology of H.

Proof. Immediate by Theorem 2.14. O
Recall the following facts about topological groups (see [2]):

Fact 2.17. A subgroup of a topological group is open iff it has an interior
point. Every open subgroup of a topological group is closed.

Fact 2.18. A topological group is Hausdorff iff the set {1} is closed in it.
Lemma 2.19. Let H be an invariant subgroup of G. Then H is t-closed.

Proof. For simplicity we assume that H is an A-group for A = (). We denote
by cly(H) the topological closure of H with respect to the group topology ¢
of G. Note that cly(H) is an invariant subgroup of G and that dim(cl(H)) =
dim(H). Then by item 3 of Lemma 2.5 and Theorem 2.14, H has t-interior
in cly(H). So by Fact 2.17, H is closed in G. O

Corollary 2.20. G is a Hausdorff topological group.

In [4], a \/-definable group over A in M™ is a group whose underlying set is
a union UiE 1 X; of sets X; € M"™ that are definable over A, such that for all
i,7 € I there is k € I with X; U X, C X}, and the restriction of the group
operation to X; x Xj is definable over A as a function into M". Note that
every \/-definable group in M" is an invariant group in M".

Corollary 2.21. If H is a type-definable group in M™ then it has a \/-
definable subgroup K with dim K = dim H.
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Proof. First note that there is a definable map f : M?* — M" such that
['(f)NH? is the graph of the group operation. Let U(z) be as in the definition
of the group topology in the discussion preceding Fact 2.11. Then U(x) is a
definable neighborhood of 1 with dim U(z) = dim H. Let K be the subgroup
of H generated by U(x). Then K is a \/-definable subgroup of H of same
dimension as K. O

Corollary 2.21 does not hold for invariant groups in general, i.e. there are
invariant groups which do not contain a \/-definable subgroup of same di-
mension, as the following example shows.

Let {\,} be a strictly increasing sequence in @ N (0,1) converging to 1
in Q. We define a permutation 7 of {\, : n € N} by 7(Agx) = Aor+1 and
T(Aok+1) = Aok, where k = 0,1,2,.... Let M be a (big) o-minimal expansion
of a divisible ordered abelian group, so M is in particular a vector space over
Q. We let 7 induce a permutation 7, of M? as follows. Let x = (x1,z2) € M?;
if xo # Ay for all n, put 7.(x) = x; if xo = N2y, put 7(z) = (21, 7(A\n)x1).
We define a (-group H in M? as follows: H has M? as underlying set, and
its group operation @ is defined by

T.(z ©y) = 7(@) + 7(y).

Note that 7, is an invariant isomorphism (with inverse 7,) from the invariant
group H onto the additive group of the vector space M?. Hence H with
its t-topology is homeomorphic to M? with its usual topology via 7,. We
shall prove that H does not contain a \/-definable subgroup of the same
dimension as H. Towards a contradiction, let K be a \/-definable subgroup
of H of dimension 2. Since K is of dimension 2, it contains an interior point,
so by Fact 2.17, K is open, and hence K contains a t-neighborhood of 0. Thus
K contains a set 7,1(V) = 7,(V) with V a definable neighborhood of 0 in
M?. Note that 7,(V) is also a neighborhood of 0 in M? in the usual topology
(though not necessarily a definable one). Take A and a family (X;);c; of
A-definable sets contained in K such that K = |J,.; X;, and for all 4,5 € [
there is k € I with X; U X; C X}, and the group operation @ restricted to
X; x Xj is A-definable. We arrange easily that dim X; = 2 for all 1.

Claim 1. For some 7 € I the set
{n : there is (z1,x2) € X; such that zo = A\, x; and z; # 0}
is infinite.

To prove the claim, increase A if necessary, and take a ¢ > 0 in M such
that [—2¢,2q]* C 7.(V) and ¢ € dclA. By saturation we can take py € M
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such that pg < ugq for all rational ;1 > 1, and py > a for all a € dclA satisfying
q < a < pq for all rational > 1. Take i € I such that (pg,q) € X; (this is
possible because [—2¢, 2q]* C 7.(V')). Since py & dclA and X; is A-definable,
there are ¢,d € dclA such that ¢ < py < d and for all z; with ¢ < 7 < d,
(x1,q) € X;. By the choice of py we can take p; € M and a positive rational
A < 1 such that py < py < d and g = Ap;. Hence, since {)\,} converges to
1, there is py € M with py < p2 < p1 (and so (p2,q) € X;) and g = \,ps for
some n. It follows that there are infinitely many n € N such that there is
x1 € M with ¢ = \,x1 and (21,¢) € X;.

We now take an ¢ as in the claim.

Claim 2. There is an A-definable S C X, such that dim S = 1 and the set
{n : there is (x1,x2) € S such that x5 = \,z; and z; # 0}

is infinite.
To see this, let D be a decomposition of X; into A-cells. Take a cell C' € D
such that the set

{n : there is (z1,x2) € C such that x5 = \,z7 and z; # 0}

is infinite. Then either dimC' = 1 or dim C' = 2. In the first case we can let
S be C. For the second case note that after possibly taking a refinement of
D we may assume that C' is bounded and that (0,0) € cl(C'). Now infinitely
many lines through the origin with slope \,, have nonempty intersection with
C, and hence infinitely many such lines have nonempty intersection with 9C,
which is an A-definable set of dimension 1. After possibly shrinking C' we
may assume that cl(C') C X;, hence OC' does the job.

In what follows we fix a set S as in Claim 2.

Claim 3. There is (a,b) € X; with 7.(a,b) = (a,b) and whenever z € S is
such that 7.(z) # x then 7.((a,b) & x) = (a,b) & x.

First let B C X; be an A-definable box such that for all z = (x1,22) € B,
T(x) = x and x9 < x;. Since there are only finitely many n with the set
{(z1,22) € S : 9 = \yx1 and z1 # 0} being infinite, after possibly deleting
these infinite sets, we may assume that for all n, the set {(x1,25) € S : x5 =
A7y and @y # 0} is finite. By saturation and continuity of + on M?, there
is (a,b) € B such that for all z € S with 7.(z) # z, 7.((a,b) B z) = (a,b) D x.

Fixing an element (a,b) € X; as in Claim 3, it is easy to see that the map
S — M?: (z1,73) — (a,b) & (x1,22) is not continuous at (1, x,) for every
(x1,22) € S with xo = \,z1 for some n. Definability of @& restricted to
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X; x X; implies definability of the above map, which yields, when considering
a suitable projection of S, a contradiction with o-minimality.

The following lemma is essential in the next section.

Lemma 2.22. Let H C M"™ be an A-group, and X C H an A-set in M"
that is large in H. If dim H = d and (ho,...,hq) € H* is any generic of
HY over A, then H = UL h; X.

Proof. Let dim H = d, let (hy,...,hg) be a generic of H¥* over A, and let
j €10,...,d— 1} be such that ngo h; X is a proper subset of H. We claim
that then dim (H — (J/X, hX) < dim (H — J_, hi X).

Let g be a generic of H — ngo h;X over hj 1A', where A" := Ahg ... h;.
The claim follows if we can show that g € h;;1 X, because then g ¢ H —
(U2, hiX). We have g = hj+1(hj_i1g), so it remains to show that hj_+119 is a
generic of H over A. .

Let d = dim H = rk(h;1|4’), and e = dim (H — | JI_, h;X) = rk(g|h; 11 A").
We have

I‘k(gAthrl’AI) = I'k(glh]+1A/) + I'k(hj+1|A/) = (1)
— k(hynalgA') + rk(g]4). )

By (1), tk(gh;41]|A") = d + e. Since rk(g|A") = rk(g|h;41A’) = e, we obtain
from (2) that rk(h;11|gA’) = d. So hji is a generic of H over gA’, and hence
by point 1 in Corollary 2.7, hjjil is a generic of H over gA’. Thus by point

3 of Corollary 2.7, hj_jl g is a generic of H over A.
O

3 Type-definable groups

In this section we prove that if M is a big o-minimal expansion of a real
closed field and G is a type-definable group in M", then G with its group
topology is definably isomorphic to a type-definable group in some M* with
the topology induced by M*. The idea of the proof is to construct a definable
Hausdorff manifold in M™ containing GG as a subset whose topology induces
the group topology on G, and then to apply the results from [1] and [3] to
this manifold. (NB: it is easy to construct a definable manifold in M? of
dimension 1 that is not Hausdorff.)

From now on, let G C M™ be a type-definable group, for simplicity over
(), of dimension d. To obtain a manifold having the desired properties we
first construct a definable set V' C M™ such that V' is large in G and gives
rise to a chart of the desired manifold.
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Let I" be the graph of the group operation. An easy saturation argument
shows that there is a (-definable function f : Z2 — M™ such that G C Z C
M", dimG = dimZ = d, and T'(f) N G® = . Moreover, we may assume
(also by saturation) that f has the following properties:

(a) f(f(z,y),2) = f(x, f(y,2)) for x,y,z € Z if both sides are defined.
(b) Forall z € Z, f(x,1) = f(1,2) = .

(c) For every x € Z there is y € Z such that f(x,y) = f(y,z) = 1. (By
(a) and (b), such a y is unique for a given x.)

From now on we shall write xy instead of f(z,y) when z,y € Z, and for
x € Z we let 27! denote the unique y € Z such that 2y = yx = 1.

Let g, {U(z) : x € X} be as in the discussion preceding Fact 2.11. Define
Vo:={z¢€ Z:{zU(x): x € X} is a neighborhood basis of z in Z}

Take A so that X and g are definable over A; then V; is definable over A.
Below we use the set 2 of generics of GG, which is large in G.

Lemma 3.1. The set Q) is contained in Vg, and Vo N G is open in V.

Proof. 1f a € €2, then a is good as defined in the proof of Theorem 2.14,
that is, {aU(z) : # € X} is a neighborhood basis of a in G for the topology
induced on G by M™, and hence a neighborhood basis of a in Z, since ) is
both open in G and in Z.

Given any z € Vo NG, take some x € X, and note that zU(x) N Vj is a
neighborhood of z in V{) contained in Vo N G. Thus Vo NG is open in Z. [

Lemma 3.2. The group topology and the topology on M™ induce the same
topology on Vo NG. In particular, given any a € G, the map x — ax : T —
al', where T'= {z € Vo NG : ax € Vo N G}, is a homeomorphism for the
topologies on T and aT' induced by M™.

Note that the set 7" in the lemma is large in V5 N G.

Proof. The first part of the lemma is immediate from the definition of V4.
The second part follows from the first part. n

According to [3], p. 68, a stratification S of a closed definable set S C M"
is a partition of S into finitely many cells, such that for each cell C' € §,
cl(C)\ C is a union of (necessarily lower-dimensional) cells in S. (Note that
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then each cell in § of dimension dim S is open in S.) It is shown there that
if § € M"™ is closed and definable and T" C S is definable, then there is a
stratification S of S that partitions 7. The proof shows that if S and 7" are
definable over a certain parameter set, then we can take the cells in S to be
definable over the same parameter set.

Below we fix a generic (ay, ...,aq) of G over A. Then by Lemma 2.22,
G C U?:o a;Vy. We shall denote by €24 the set of generics of G over A.

We define the A-set V] as follows: Let S be a stratification of cl(Vp) whose
cells are definable over A such that S partitions Vj, and let V; be the union
of the cells of dimension d in S which are contained in V. Thus 24 C V; and
Vi is open in Vy. Next we put A’ := Aagay . ..aq and introduce A’-definable
subsets Vo, V3, and V' of Vi:

Vo = {zeVy : fori,j=0,...,d, ajx € Z& (a;'a;)r € Z},
Vi == {zeVy : fori,j=0,...,d, if (a; 'a;)x € Vp, then the map
y — (a;'a;)y : Vo — Vj is continuous at z}.

Let V' be the interior of V3 in V.
Lemma 3.3. The set V is open in Vy, and G C U?:o a; V.

Proof. That V is open in Vj is because V} is open in V; and V' is open in V;.
To obtain G C U?:o a;V it is enough to show that V NG is an A-set that is
large in G. It is clear that Vi NG = Vo NG, also VoNG = V3N G by Lemmas
3.1 and 3.2. Since V5 N G is open in Vj, the set V; N G is open in Vi, hence
VsNG=VNG. Thus VNG is an A-set and is large in G. O

Let {C €S:C CVi} ={C;:i€ I} with C; # Cy for i #4'. Then each C;
is a cell of dimension d, open in cl(Vy), and Vi = (J,c; Ci. For every i € I, let
ol be an A-definable homeomorphism of C; onto an open subset of M?, and
let p; be pl restricted to C;NV. Note that V = Uie[ C;NV and that C;NV is
open in Cj, since V' is open in Vj. So for every i € I, p; : C;NV — p;(C;NV)
is an A’-definable homeomorphism of C; NV onto an open subset of M?, and
every x € V is in the domain of some p;.

For z € V and j,l € {0,...,d}, both (aj_lal):v and a; ' (a;z) are defined,
so they are equal (and in Z), and will accordingly be written as a;lalx.

Lemma 3.4. For i € I, ] = O, ce ,d, let hij . @j(Ci N V) — pz(Oz N V) be
defined by hi;(x) = pi(a;'x). Then {hy:iel, j=0,...,d} is a definable
atlas of dimension d on the set \J, ;a;(C;NV), (i€ 1,j=0,...,d).
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Proof. Let i € I and j € {0,...,d}. By the remark just before this lemma
we have a bijection

x»—>aj_1x ca;(C;NV)—=CNYV,

hence h;; is a definable bijection.
Let also k € T and [ € {0,...,d}. To see that hy;(a;(C;iNV)Na(CiNV))
is open in h;;(a;(C; NV)) = p;(C; N'V), first note that

hij(a;(C;NV)Na(CeNV)) = pifa; ' (a;(C;NV)Nay(CeNV)))
= pl((C’Z N V) N a;lal(Ck N V))

Now pi((C’iﬂV)ﬂaj_lal(C’kﬂV)) is open in p;(C;NV) iff (C’iﬂV)ﬂaj_lal(CkﬂV)
is open in C; NV, Since

(C;nV)Nna'a(CenV)={zeC;nV: o ez e C,NV}
the set on the left is indeed open in C; N'V. The transition map
h’('Lj)(kl) . hij (aj(C'Z- N V) N CL[(Ok N V)) — hkl (CLj(CZ' N V) N CLl(Ck N V))

is given by hgjan(z) = pr(a; 'a;p; (), so hujuy is continuous by the
definition of V3. O

Lemma 3.5. Foralli,k €1, 5,1 €{0,...,d}, x € C;NVNG, y € C,NV NG
with a;x # ayy, there are bozes B; C p;(C;NV) and By, C pp(Cp NV in M?
such that pi(z) € By, pr(y) € By, and hi;'(B;) Nhy' (By) =0 .

Proof. Let i range over I, j over {0,...,d}, and let Y C G. We claim that
Y is open in the group topology iff aj_lY N(C; NV) is open in C; NV for
all 7, 7. Indeed, if Y is open in the group topology, then aj_lY is open in the
group topology, hence aj_lY N(C;NV)is open in C; NV by Lemma 3.2.

For the converse, recall that €24 is the set of generics of G over A, and
note that by Theorem 2.14, Y is open in the group topology iff aj’lY N Qs
is open in 4 for all j. But if aj_lY N(C;NV)is open in C; NV for all 1, j,
then aj_lY NV is open in V for all j, and hence aj_lY N €24 is open in Q4 for
all j, (since 24 C V by the proof of Lemma 3.3), so Y is open in the group
topology. This finishes the proof of the claim about Y.

Since hi; (Y Na;(C;iNV)) = pi(a;'Y N(C;NV)), Y is open in the group
topology iff h;;(Y Na;(C; NV)) is open in p;(C; N'V) for all ¢, 5.

The lemma follows from Corollary 2.20. O]
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We have G' = (1,5 X, where each X is (-definable, and for all A\, u € A
there is v € A such that X, C X, N X,,. By Lemma 3.5, there is o € A such
that for all i,k € I, j,1 € {0,...,d}, x € C; NV NX,, y € C NV N X, with
a;x # apy, there are boxes B; C p;(C; N V) and By C pr(CyNV) in M? such
that p;(x) € B;, pe(y) € By, and hy; (B;) N hy'(By) =0 .

Let W be the interior of VN X, in V.

Lemma 3.6. Fori € I, j € {0,...,d}, let h; be the restriction of hi; to
a;(C;NW). The collection A= {hj;:i €1, j=0,...,d} is a definable atlas
of dimension d on |J; ; a;(C; "W), and A makes |, ; a;(C; NW) a definable
Hausdorff manifold in M™. Moreover, G C |, ; a;(C;NW) and the manifold
topology induces the group topology on G.

Proof. The claim about A follows from Lemmas 3.4 and 3.5 using that W
is open in V. Since WNG is an A-set that is large in G, G C |, ; a;(C;NW).
The group topology and the manifold topology agree on G by an argument
as in the proof of Lemma 3.5. m

If M is an o-minimal expansion of an abelian group, then by [1], every de-
finable Hausdorff manifold in M™ is regular as a topological space. Since the
definable manifold (J; ; a;(C; N W) is a definable space in the sense of [3],
Theorem 1.8. on p.159 of [3] yields:

Theorem 3.7. Let M be an o-minimal expansion of a real closed field. Then
every type-definable group in M™ with its group topology is, for some m,
definably isomorphic to a type-definable group in M™ whose group topology
is induced by M™.2
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