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Abstract

Let M be a big o-minimal structure and G a type-definable group
in Mn. We show that G is a type-definable subset of a definable
manifold in Mn that induces on G a group topology. If M is an
o-minimal expansion of a real closed field, then G with this group
topology is even definably isomorphic to a type-definable group in
some Mk with the topology induced by Mk. Part of this result holds
for the wider class of so-called invariant groups: each invariant group
G in Mn has a unique topology making it a topological group and
inducing the same topology on a large invariant subset of the group
as Mn.

1 Introduction

Throughout k, m, n range over N = {0, 1, 2, . . . }. Let M be a (one-sorted)
structure. Recall that a definable group in Mn is a definable set G ⊆ Mn

with a group operation G × G → G whose graph is a definable subset of
M3n. Likewise, if M is big1, then a type-definable group in Mn is a type-
definable set G ⊆ Mn with a group operation G×G → G whose graph is a
type-definable subset of M3n.

Let M be an o-minimal structure and X a set. A definable atlas of
dimension k on X (tacitly: with respect to M) is a finite set A = {hi : i ∈ I}
of bijections hi : Xi → hi(Xi) between subsets Xi of X and definable open
subsets hi(Xi) of Mk such that X =

⋃
i∈I Xi, each hi(Xi ∩Xj) is a definable

open subset of hi(Xi), and each transition map hij : hi(Xi∩Xj) → hj(Xj∩Xi)
given by hij = hj◦h−1

i is definable and continuous (hence a homeomorphism).

1Here “big” means “κ-saturated and strongly κ-homogeneous for a certain infinite
cardinal κ,” and in this context “small” means “of cardinality < κ”.
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Given such an atlas A, the A-topology is the unique topology on X that
makes each Xi an open subset of X and each hi a homeomorphism. Two
definable atlases of dimension k on X are said to be equivalent if their union
is also a definable atlas of dimension k on X; this notion of equivalence is
an equivalence relation on the set of definable atlases of dimension k on X.
A definable manifold of dimension k (tacitly: with respect to M) is a set Y
equipped with an equivalence class of definable atlases of dimension k on Y
(and each member of this equivalence class is called an atlas of the manifold).
Each definable manifold is given the A-topology where A is an atlas of the
manifold; this topology does not depend on the choice of A. A definable
manifold of dimension k in Mn is a definable manifold of dimension k with
definable underlying set Y ⊆ Mn and with an atlas of the manifold whose
maps are all definable, that is, their graphs are definable subsets of Mn+k.
(Note that then every atlas of the manifold has this definability property.)

Suppose now that M is an o-minimal structure and G is a definable group
in Mn of dimension k. Then by [5] there is a unique definable manifold of
dimension k in Mn with underlying set G such that the manifold topology
makes G into a topological group. (In the case that M is an o-minimal
expansion of a real closed field, this manifold is definably homeomorphic to
a definable subset of some Mm. This follows from the proof of Lemma 10.4
in [1] and Theorem 1.8, Ch. 10 in [3].)

We prove here analogous results for type-definable groups in big o-minimal
structures. In particular, if G is a type-definable group in Mn, where M is a
big o-minimal expansion of a real closed field, then there is a unique topology
on G making it a topological group with a type-definable homeomorphism
onto a subspace of some Mk. In contrast to the ω-stable case, not every
type-definable group in such an Mn is definable: consider for example the
additive group of infinitesimals in a big real closed field.

Part of the above is true for the much wider class of invariant groups. A
precise definition of this class in terms of invariant sets is in the next section.
For example, let M be a big real closed field. Then the set Z ⊆ M as well as
the convex hull of Z in M are invariant sets in M ; as additive subgroups of
M they are even invariant groups in M ; these two sets are not type-definable
in M . In fact, they are what is called

∨
-definable in [4]. An example of

an invariant group in a big real closed field M which is neither type- nor∨
-definable in M is the cartesian product of Z (as an additive subgroup of

M) with the additive group of the infinitesimals. We assign to each invariant
set a dimension and prove that each invariant group in Mn has a unique
topology making it a topological group and inducing on some large invariant
subset U of G the same topology as Mn.

2



Notation. From now on M is a big o-minimal structure, and A and A′ de-
note small subsets of M (serving as sets of parameters). For a = (a1, . . . , am) ∈
Mm, b = (b1, . . . , bn) ∈ Mn we let aA = Aa := A ∪ {a1, . . . , am}, and
âb := (a1, . . . , am, b1, . . . , bn) ∈ Mm+n. We denote by Aut(M |A) the group
of automorphisms of M that fix A point-wise. By a box in Mn we mean a
cartesian product (a1, b1)× · · · × (an, bn) ⊆ Mn where ai, bi ∈ M , ai < bi, for
i = 1, . . . , n. We let f : X ⇀ Y denote a partial function from the set X into
the set Y , that is, a function f : X ′ → Y with X ′ ⊆ X. For a partial function
f : Mm ⇀ Mn we let Γ(f) ⊆ Mm+n denote the graph of f . If X ⊆ Mn

then ∂X := cl(X)−X denotes the frontier of X in Mn, and int(X) denotes
the interior of X in Mn. Unless specified otherwise we use multiplicative
notation for groups; in particular, the identity of a group is denoted by 1.

2 Invariant sets and invariant groups

Definition 2.1. An A-set in Mn is a set X ⊆ Mn such that σ(X) = X for
every σ ∈ Aut(M |A). Likewise, an A-group in Mn is an A-set G ⊆ Mn with
a group operation G × G → G whose graph is an A-set in M3n. If X is an
A-set in Mn for some (unspecified) A, then we call X an invariant set in
Mn. Likewise, an invariant group in Mn is just an A-group in Mn for some
unspecified A.

Note that A-sets in Mn are unions of realizations of types over A in Mn,
thus unions of intersections of A-definable cells in Mn. Also note that the
A-sets in Mn form a boolean algebra of subsets of Mn, that if X and Y are
A-sets in Mm and Mn, then X×Y is an A-set in Mm+n, and that the image
of an A-set in Mn+1 under the projection map

(x1, . . . , xn+1) 7→ (x1, . . . , xn) : Mn+1 → Mn

is an A-set in Mn. Also, every subset of Mn that is type-definable over A is
an A-set, every type-definable group in Mn over A is an A-group, and every
A-set is an A′-set when A ⊆ A′.

For an invariant set X ⊆ Mn we define its dimension dim X ∈ {0, . . . , n}∪
{−∞} just as for definable sets in [3]: if X contains a cell of dimension d
but no cell of dimension d + 1, then dim X := d; also dim ∅ = −∞.

This dimension is related to the rank function of the pregeometry of
M in the same way as for definable sets. To explain this, recall that for
x = (x1, . . . , xn) ∈ Mn, rk(x|A) is the cardinality of a maximal subset of
{x1, . . . , xn} that is algebraically independent over A. We shall consider
tp(x|A) as the collection of all A-definable sets X ⊆ Mn such that x ∈ X.

3



Let t̂p(x|A) denote the set of realizations of tp(x|A) in Mn, that is, the
intersection of all sets X ∈ tp(x|A); equivalently, t̂p(x|A) is the orbit of x
under the action of Aut(M |A) on Mn.

The connection between rank and dimension is based on the following:

Lemma 2.2. If x ∈ Mn and rk(x|A) = d, then there is a cell C in Mn of
dimension d, a box B in Mn, and a set X ∈ tp

(
x|A)

such that

x ∈ C ⊆ B ∩X ⊆ t̂p(x|A).

Proof. By induction on n. The case n = 0 is trivial. Assume the lemma holds
for a certain n. Let (x1, . . . , xn, xn+1) ∈ Mn+1 and rk((x1, . . . , xn)|A) = d.
The inductive assumption gives a cell C in Mn of dimension d, a box B in
Mn and a set X ∈ tp

(
(x1, . . . , xn)|A)

such that

(x1, . . . , xn) ∈ C ⊆ B ∩X ⊆ t̂p
(
(x1, . . . , xn)|A)

.

Case 1. xn+1 ∈ dcl(A ∪ {x1, . . . , xn}). Then rk((x1, . . . , xn, xn+1)|A) = d.
Take an A-definable partial function f : Mn ⇀ M with (x1, . . . , xn) in its
domain such that f(x1, . . . , xn) = xn+1. By cell decomposition we can assume
that domain(f) is a cell, and that f is continuous, in particular,

C ⊆ t̂p
(
(x1, . . . , xn)|A) ⊆ domain(f).

Take d, e ∈ M with d < xn+1 < e, and put

C ′ := {(y, f(y)) : y ∈ C}, B′ := B × (d, e), X ′ := (X ×M) ∩ Γ(f).

Then (x1, . . . , xn, xn+1) ∈ C ′ ⊆ B′ ∩X ′ ⊆ t̂p
(
(x1, . . . , xn, xn+1)|A

)
.

Case 2. xn+1 /∈ dcl(A ∪ {x1, . . . , xn}). Then rk((x1, . . . , xn, xn+1)|A) =
d + 1. For each A-definable continuous function f : Y → M with Y ∈
tp

(
(x1, . . . , xn)|A)

and f(x1, . . . , xn) < xn+1 we take d(f) ∈ M with d(f) <
xn+1 and a box B(f) in Mn such that (x1, . . . , xn) ∈ B(f) and f(y1, . . . , yn) <
d(f) for all (y1, . . . , yn) ∈ Y ∩ B. Likewise, for each A-definable continuous
function g : Y → M with Y ∈ tp

(
(x1, . . . , xn)|A)

and g(x1, . . . , xn) > xn+1

we take e(g) ∈ M with e(g) > xn+1 and a box B(g) in Mn such that
(x1, . . . , xn) ∈ B(g) and g(y1, . . . , yn) > e(g) for all (y1, . . . , yn) ∈ Y ∩ B.
Next we take a box B1 in Mn that is contained in B as well as in B(f) and
B(g) for all f and g as above; we also take d, e ∈ M such that d(f) < d <
xn+1 < e < e(g) for all f and g as above. (This is possible by saturation.)
Let C1 be a cell in Mn of dimension d such that (x1, . . . , xn) ∈ C1 ⊆ B1 ∩C.
Put

B′ := B1 × (d, e), X ′ := X ×M, C ′ := C1 × (d, e).

Then (x1, . . . , xn, xn+1) ∈ C ′ ⊆ B′ ∩X ′ ⊆ t̂p
(
(x1, . . . , xn, xn+1)|A

)
.
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Corollary 2.3. Let X ⊆ Mn be a nonempty A-set. Then

dim X = max {rk(x|A) : x ∈ X}.

Proof. From the lemma above it is clear that dim X ≥ rk(x|A) for each
x ∈ X. For the reverse inequality, take a projection map p : Mn → Md with
d = dim X such that pX contains a box B in Md. It is easy to see that B
contains a point of rank d over A, and thus X contains a point of rank ≥ d
over A.

Definition 2.4. Let X ⊆ Mn be an A-set. A generic of X over A is an
element x ∈ X such that rk(x|A) = dim X.

Lemma 2.5. Let X be an A-set in Mn. Then

1. for each k the A-set {x ∈ Mn : rk(x|A) ≤ k} is closed in Mn;

2. the set of generics of X over A is open in X;

3. if x is a generic of X over A, then t̂p(x|A) is open in X.

Proof. Let x = (x1, . . . , xn) ∈ cl({y ∈ X : rk(y|A) ≤ k}), with rk(x|A) =
d. After a suitable permutation of coordinates x1, . . . , xd are independent
over A, and f(x1, . . . , xd) = (xd+1, . . . , xn) where f : Md ⇀ Mn−d is an
A-definable map with (x1, . . . , xd) ∈ domain(f). Lemma 2.2 gives a d-
dimensional cell C in Md such that

(x1, . . . , xd) ∈ C ⊆ t̂p
(
(x1, . . . , xd)|A

) ⊆ domain(f).

Note: C is open in Md. There are y = (y1, . . . , yn) ∈ Mn arbitrarily close to x
with rk(y|A) ≤ k, so there are y with with rk(y|A) ≤ k and (y1, . . . , yd) ∈ C,
hence (y1, . . . , yd) ∈ t̂p

(
(x1, . . . , xd)|A

)
, so rk((y1, . . . , yd)|A) = d, so k ≥ d.

This proves item 1. Item 2 is an immediate consequence.

To obtain item 3, let x = (x1, . . . , xn) be a generic of X over A, say
rk(x|A) = dim X = d. After a suitable permutation of coordinates, x1, . . . , xd

are independent over A and we have the situation described in the proof of
item 1; below we use the notation of that proof. Then

t̂p(x|A) = {(u, f(u)) : u ∈ t̂p
(
(x1, . . . , xd)|A

)}.

Moreover, if y = (y1, . . . , yn) ∈ X is sufficiently close to x, then (y1, . . . , yd) ∈
C and g(y1, . . . , yd) = (yd+1, . . . , yn) where g : Md ⇀ Mn−d is an A-definable
map with (y1, . . . , yd) ∈ domain(g) (and thus (x1, . . . , xd) ∈ domain(g)).
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Consider any A-definable map g : Md ⇀ Mn−d with (x1, . . . , xd) ∈
domain(g). We claim that either f(u) 6= g(u) for all u ∈ t̂p

(
(x1, . . . , xd)|A

)
,

or f(u) = g(u) for all u ∈ t̂p
(
(x1, . . . , xd)|A

)
. This claim follows by not-

ing that if f(u) = g(u) for some u ∈ t̂p
(
(x1, . . . , xd)|A

)
, then the action of

Aut(M |A) yields f(u) = g(u) for all u ∈ t̂p
(
(x1, . . . , xd)|A

)
. By the continu-

ity of the maps f and g on the open cell C and saturation there are boxes
B1 in Md and B2 in Mn−d such that

(x1, . . . , xd) ∈ B1 ⊆ C, (xd+1, . . . , xn) ∈ B2,

and g(u) /∈ B2 for all u ∈ B1 and all maps g as above for which there exists
a u ∈ t̂p

(
(x1, . . . , xd)|A

)
with g(u) 6= f(u). We conclude that if y ∈ X and

y ∈ B1 ×B2, then y ∈ t̂p(x|A).

Recall that for a ∈ Mm, b ∈ Mn we have

rk(âb|A) = rk(a|bA) + rk(b|A).

Corollary 2.6. If X and Y are A-sets in Mm and Mn, then dim(X ×Y ) =
dim(X) + dim(Y ).

Corollary 2.7. Let X ⊆ Mn be an A-set, and G ⊆ Mn an A-group.

1. If a ∈ Mm and b ∈ Mn are interdefinable over A, then rk(a|A) =
rk(b|A).

2. Let X ⊆ Mn be an A-set. If a is a generic of X over A and b is a
generic of X over aA, then a is a generic of X over bA.

3. If b ∈ G and a is a generic of G over bA, then a · b is a generic of G
over bA.

4. If b ∈ G then there are b1, b2 ∈ G such that b1, b2 are generics of G
over bA and b = b1 · b2.

Lemma 2.8. Let f : Mn ⇀ Mk be a partial map whose graph is an A-set in
Mn+k. Then f is continuous at each generic of domain(f) over A.

Proof. We can assume k = 1. By the definition of dimension we have
dim(Γ(f)) ≤ dim(domain(f)). Let x be a generic of domain(f) over A.
By the inequality above, (x, f(x)) is a generic of Γ(f) over A, so this in-
equality is actually an equality. In particular, rk((x, f(x))|A) = rk(x|A), so
f(x) ∈ dcl(Ax). This gives an A-definable function g : X → M such that
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x ∈ X ⊆ Mn and g(x) = f(x). By cell decomposition we can assume that g
is continuous. For each σ ∈ Aut(M |A) we have

g(σx) = σ(gx) = σ(fx) = f(σx),

so f and g agree on t̂p(x|A), which is open in X by item 3 of Lemma 2.5.

Definition 2.9. Let X, Y be invariant sets in Mn. We say that Y is large
in X if dim (X − Y ) < dim X.

We show that on every invariant group G in Mn there is a unique topology
making it a topological group and inducing the same topology on a large
invariant subset of G as Mn.

In the rest of this section, G ⊆ Mn is an invariant group of dimension d.
For simplicity we assume it is an A-group for A = ∅. (This assumption is no
loss of generality: if A 6= ∅ we just expand M by names for the elements of
A.)

Lemma 2.10. Let φ : (x, y, z) 7→ xy−1z : G3 → G and let g be a generic of
G. Then φ is continuous at (g, g, g).

Proof. Let c be a generic of G over g. Consider the following maps

φ1 : (x, y, z) 7→ (cx, y−1, z) : G3 → G3,
φ2 : (x, y, z) 7→ (xy, z) : G3 → G2,
φ3 : (x, y) 7→ (c−1, xy) : G2 → G2,
φ4 : (x, y) 7→ xy : G2 → G.

By Lemma 2.8, φ1 is continuous at (g, g, g), φ2 is continuous at (cg, g−1, g),
φ3 is continuous at (c, g) and φ4 is continuous at (c−1, cg). Hence

φ = φ4 ◦ φ3 ◦ φ2 ◦ φ1

is continuous at (g, g, g).

We now pick some generic g of G, and use Lemma 2.2 to choose a box D
in Mn and a ∅-definable set Y ⊆ Mn such that g ∈ D ∩ Y ⊆ t̂p(g) and
dim Y = rk(g). Take a definable set X ⊆ Mk (for some k) and a definable
set B ⊆ X ×D such that {B(x) : x ∈ X} is the set of all boxes in Mn that
are contained in D and contain g as an element. So for each x ∈ X the set
V (x) := B(x) ∩ Y is definable and contained in G. By item 3 of Lemma
2.5, the collection {V (x) : x ∈ X} is a basis of open neighborhoods of g in
G for the topology on G induced by Mn. Let U ⊆ X ×Mn be the set such
that U(x) = g−1V (x) for each x ∈ X. To show that {U(x) : x ∈ X} is
a neighborhood basis of 1 for a group topology on G we use the following
well-known fact (see [2]).
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Fact 2.11. Let H be a group and U a collection of subsets of H such that

(a) 1 ∈ U for all U ∈ U ;

(b) for all U1, U2 ∈ U there is U3 ∈ U with U3 ⊆ U1 ∩ U2;

(c) for all U ∈ U there is V ∈ U such that V −1 ⊆ U ;

(d) for all U ∈ U there is V ∈ U such that V 2 ⊆ U ;

(e) for all U ∈ U and a ∈ H there is V ∈ U such that aV a−1 ⊆ U .

Then there is a unique topology on H that makes H a topological group and
has U as a neighborhood basis of 1.

Lemma 2.12. The collection U := {U(x) : x ∈ X} satisfies the conditions
(a)–(e) above for H = G.

Proof. It is clear that conditions (a) and (b) are satisfied. To obtain (c) it
is enough to show that for every x ∈ X there is y ∈ X such that U(y) ⊆
U(x) ∩ U(x)−1. Given any x, y ∈ X, we have: U(y) ⊆ U(x) ∩ U(x)−1 iff
V (y) ⊆ V (x)∩ gV (x)−1g. By Lemma 2.10, there is for each x ∈ X an y ∈ X
such that V (y) ⊆ gV (x)−1g. Thus (c) holds.

For (d) it suffices to show that for all x ∈ X there is y ∈ X such that
U(y)2 ⊆ U(x). Given x, y ∈ X we have:

U(y)2 ⊆ U(x) ⇐⇒ (g−1V (y))2 ⊆ g−1V (x) ⇐⇒ V (y)g−1V (y) ⊆ V (x).

By Lemma 2.10 there is for each x ∈ X a y ∈ X with V (y)g−1V (y) ⊆ V (x).
To obtain (e) we show that for all x ∈ X and a ∈ G there is y ∈ X such

that aU(y)a−1 ⊆ U(x). This amounts to showing that for all x ∈ X and
a ∈ G, there is y ∈ X such that gag−1V (y)a−1 ⊆ V (x). Let a ∈ G; it suffices
to show that then the map φ : u 7→ gag−1ua−1 : G → G is continuous at g.
To obtain this continuity, let b be a generic of G over {a, g} and c a generic
of G over {a, b, g} and consider the following maps:

φ1 : u 7→ (bgag−1, u) : G → G2,
φ2 : (u, v) 7→ (uv, a−1c) : G2 → G2,
φ3 : (u, v) 7→ (b−1, uv) : G2 → G2,
φ4 : (u, v) 7→ (uv, c−1) : G2 → G2,
φ5 : (u, v) 7→ uv : G2 → G.

By Lemma 2.8, φ1 is continuous at g, φ2 is continuous at (bgag−1, g), φ3 is
continuous at (bga, a−1c), φ4 is continuous at (b−1, bgc), and φ5 is continuous
at (gc, c−1). Hence

φ = φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1

is continuous at g.
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The following is a well-known fact about topological groups (see [2]):

Fact 2.13. Let E, F be topological groups and f : E → F a group homo-
morphism. If f is continuous at some point of E, then f is continuous.

From now on t denotes the group topology on G for which U is a neigh-
borhood basis of 1. Unless prefixed by t, topological terminology like “open”,
“neighborhood”, “continuous”, ... refers to the topology induced on G by
Mn. We denote by Ω the set of all generics of G. Note that Ω is a large
invariant subset of G which is open in G.

Theorem 2.14. The set Ω is t-open and t induces on Ω the same topology as
Mn. For any a ∈ Ω, the set t̂p(a) is t-open, and t induces the same topology
on t̂p(a) as Mn. The t-topology is the only group topology on G for which
some generic of G has the same neighborhoods as the topology on G induced
by Mn. In particular, the t-topology is the only group topology on G that
induces the same topology on a large invariant subset of G as Mn.

Proof. We call an element a ∈ Ω good if {t-neighborhoods of a in G} =
{neighborhoods of a in G}. Note that g is good, since {V (x) : x ∈ X} is
both a neighborhood basis of g for the topology t and a neighborhood basis
of g for the topology on G induced by Mn.

Suppose a ∈ Ω is good and b is a generic of G over a. Then we claim
that b is good. To see this, note that a is generic over ba−1, so the map
x 7→ ba−1x : G → G is continuous at a, and maps a to b; likewise, its inverse
y 7→ ab−1y : G → G is continuous at b. These two maps are also t-continuous,
so the claim follows.

Next we claim: all elements of Ω are good. To see this, let h ∈ Ω and
take a generic b of G over {g, h}. Then b is a generic of G over g, so b is good
by the previous claim. Also, h is a generic of G over b, so h is good, again
by the previous claim.

It follows from the second claim that each point of Ω has a t-neighborhood
entirely contained in Ω, namely Ω itself. Thus Ω is t-open. It also follows
that each point of Ω has the same t-neighborhoods in Ω as neighborhoods in
Ω. Thus t induces the same topology on Ω as Mn.

If a ∈ Ω, then t̂p(a) is an open subset of Ω by part 3 of Lemma 2.5, so
the assertion about t̂p(a) follows.

Let t′ be a group topology on G and let h be a generic of G such that
{t′-neighborhoods of h in G} = {neighborhoods of h in G}. The map

x 7→ x : (G, t) → (G, t′),
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as well as its inverse, is continuous at h. Since it is also a group isomorphism,
it follows that it is a homeomorphism, so t = t′.

If a group topology on G induces the same topology on a large invariant
subset of G as Mn, then some generic of G has the same neighborhoods in
this group topology as in the topology on G induced by Mn. So t is the
unique group topology having this property.

We also refer to the t-topology as “the group topology of G”.

Lemma 2.15. Let E, F be invariant groups in Mm and Mn, and let f :
E → F be a group homomorphism whose graph is an invariant set in Mm+n.
Then f is continuous with respect to the group topologies of E and F .

Proof. By Fact 2.13, it is enough to show that there is a ∈ E such that f is
continuous at a. But this is an immediate consequence of Lemma 2.8.

Lemma 2.16. If H is an invariant subgroup of G, then the group topology
of G induces on H the group topology of H.

Proof. Immediate by Theorem 2.14.

Recall the following facts about topological groups (see [2]):

Fact 2.17. A subgroup of a topological group is open iff it has an interior
point. Every open subgroup of a topological group is closed.

Fact 2.18. A topological group is Hausdorff iff the set {1} is closed in it.

Lemma 2.19. Let H be an invariant subgroup of G. Then H is t-closed.

Proof. For simplicity we assume that H is an A-group for A = ∅. We denote
by clt(H) the topological closure of H with respect to the group topology t
of G. Note that clt(H) is an invariant subgroup of G and that dim(clt(H)) =
dim(H). Then by item 3 of Lemma 2.5 and Theorem 2.14, H has t-interior
in clt(H). So by Fact 2.17, H is closed in G.

Corollary 2.20. G is a Hausdorff topological group.

In [4], a
∨

-definable group over A in Mn is a group whose underlying set is
a union

⋃
i∈I Xi of sets Xi ⊆ Mn that are definable over A, such that for all

i, j ∈ I there is k ∈ I with Xi ∪ Xj ⊆ Xk, and the restriction of the group
operation to Xi × Xj is definable over A as a function into Mn. Note that
every

∨
-definable group in Mn is an invariant group in Mn.

Corollary 2.21. If H is a type-definable group in Mn then it has a
∨

-
definable subgroup K with dim K = dim H.

10



Proof. First note that there is a definable map f : M2n ⇀ Mn such that
Γ(f)∩H3 is the graph of the group operation. Let U(x) be as in the definition
of the group topology in the discussion preceding Fact 2.11. Then U(x) is a
definable neighborhood of 1 with dim U(x) = dim H. Let K be the subgroup
of H generated by U(x). Then K is a

∨
-definable subgroup of H of same

dimension as K.

Corollary 2.21 does not hold for invariant groups in general, i.e. there are
invariant groups which do not contain a

∨
-definable subgroup of same di-

mension, as the following example shows.
Let {λn} be a strictly increasing sequence in Q ∩ (0, 1) converging to 1

in Q. We define a permutation τ of {λn : n ∈ N} by τ(λ2k) = λ2k+1 and
τ(λ2k+1) = λ2k, where k = 0, 1, 2, . . . . Let M be a (big) o-minimal expansion
of a divisible ordered abelian group, so M is in particular a vector space over
Q. We let τ induce a permutation τ∗ of M2 as follows. Let x = (x1, x2) ∈ M2;
if x2 6= λnx1 for all n, put τ∗(x) = x; if x2 = λnx1, put τ∗(x) = (x1, τ(λn)x1).
We define a ∅-group H in M2 as follows: H has M2 as underlying set, and
its group operation ⊕ is defined by

τ∗(x⊕ y) := τ∗(x) + τ∗(y).

Note that τ∗ is an invariant isomorphism (with inverse τ∗) from the invariant
group H onto the additive group of the vector space M2. Hence H with
its t-topology is homeomorphic to M2 with its usual topology via τ∗. We
shall prove that H does not contain a

∨
-definable subgroup of the same

dimension as H. Towards a contradiction, let K be a
∨

-definable subgroup
of H of dimension 2. Since K is of dimension 2, it contains an interior point,
so by Fact 2.17, K is open, and hence K contains a t-neighborhood of 0. Thus
K contains a set τ−1

∗ (V ) = τ∗(V ) with V a definable neighborhood of 0 in
M2. Note that τ∗(V ) is also a neighborhood of 0 in M2 in the usual topology
(though not necessarily a definable one). Take A and a family (Xi)i∈I of
A-definable sets contained in K such that K =

⋃
i∈I Xi, and for all i, j ∈ I

there is k ∈ I with Xi ∪Xj ⊆ Xk, and the group operation ⊕ restricted to
Xi ×Xj is A-definable. We arrange easily that dim Xi = 2 for all i.

Claim 1. For some i ∈ I the set

{n : there is (x1, x2) ∈ Xi such that x2 = λnx1 and x1 6= 0}

is infinite.
To prove the claim, increase A if necessary, and take a q > 0 in M such

that [−2q, 2q]2 ⊆ τ∗(V ) and q ∈ dclA. By saturation we can take p0 ∈ M
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such that p0 < µq for all rational µ > 1, and p0 > a for all a ∈ dclA satisfying
q ≤ a < µq for all rational µ > 1. Take i ∈ I such that (p0, q) ∈ Xi (this is
possible because [−2q, 2q]2 ⊆ τ∗(V )). Since p0 6∈ dclA and Xi is A-definable,
there are c, d ∈ dclA such that c < p0 < d and for all x1 with c < x1 < d,
(x1, q) ∈ Xi. By the choice of p0 we can take p1 ∈ M and a positive rational
λ < 1 such that p0 < p1 < d and q = λp1. Hence, since {λn} converges to
1, there is p2 ∈ M with p0 < p2 < p1 (and so (p2, q) ∈ Xi) and q = λnp2 for
some n. It follows that there are infinitely many n ∈ N such that there is
x1 ∈ M with q = λnx1 and (x1, q) ∈ Xi.

We now take an i as in the claim.

Claim 2. There is an A-definable S ⊆ Xi such that dim S = 1 and the set

{n : there is (x1, x2) ∈ S such that x2 = λnx1 and x1 6= 0}

is infinite.
To see this, let D be a decomposition of Xi into A-cells. Take a cell C ∈ D

such that the set

{n : there is (x1, x2) ∈ C such that x2 = λnx1 and x1 6= 0}

is infinite. Then either dim C = 1 or dim C = 2. In the first case we can let
S be C. For the second case note that after possibly taking a refinement of
D we may assume that C is bounded and that (0, 0) 6∈ cl(C). Now infinitely
many lines through the origin with slope λn have nonempty intersection with
C, and hence infinitely many such lines have nonempty intersection with ∂C,
which is an A-definable set of dimension 1. After possibly shrinking C we
may assume that cl(C) ⊆ Xi, hence ∂C does the job.

In what follows we fix a set S as in Claim 2.

Claim 3. There is (a, b) ∈ Xi with τ∗(a, b) = (a, b) and whenever x ∈ S is
such that τ∗(x) 6= x then τ∗((a, b)⊕ x) = (a, b)⊕ x.

First let B ⊆ Xi be an A-definable box such that for all x = (x1, x2) ∈ B,
τ∗(x) = x and x2 < x1. Since there are only finitely many n with the set
{(x1, x2) ∈ S : x2 = λnx1 and x1 6= 0} being infinite, after possibly deleting
these infinite sets, we may assume that for all n, the set {(x1, x2) ∈ S : x2 =
λnx1 and x1 6= 0} is finite. By saturation and continuity of + on M2, there
is (a, b) ∈ B such that for all x ∈ S with τ∗(x) 6= x, τ∗((a, b)⊕x) = (a, b)⊕x.

Fixing an element (a, b) ∈ Xi as in Claim 3, it is easy to see that the map
S → M2 : (x1, x2) 7→ (a, b) ⊕ (x1, x2) is not continuous at (x1, x2) for every
(x1, x2) ∈ S with x2 = λnx1 for some n. Definability of ⊕ restricted to
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Xi×Xi implies definability of the above map, which yields, when considering
a suitable projection of S, a contradiction with o-minimality.

The following lemma is essential in the next section.

Lemma 2.22. Let H ⊆ Mn be an A-group, and X ⊆ H an A-set in Mn

that is large in H. If dim H = d and (h0, . . . , hd) ∈ Hd+1 is any generic of
Hd+1 over A, then H = ∪d

i=0hiX.

Proof. Let dim H = d, let (h0, . . . , hd) be a generic of Hd+1 over A, and let
j ∈ {0, . . . , d− 1} be such that

⋃j
i=0 hiX is a proper subset of H. We claim

that then dim (H −⋃j+1
i=0 hiX) < dim (H −⋃j

i=0 hiX).

Let g be a generic of H −⋃j
i=0 hiX over hj+1A

′, where A′ := Ah0 . . . hj.
The claim follows if we can show that g ∈ hj+1X, because then g /∈ H −
(
⋃j+1

i=0 hiX). We have g = hj+1(h
−1
j+1g), so it remains to show that h−1

j+1g is a
generic of H over A.

Let d = dim H = rk(hj+1|A′), and e = dim (H −⋃j
i=0 hiX) = rk(g|hj+1A

′).
We have

rk(ĝhj+1|A′) = rk(g|hj+1A
′) + rk(hj+1|A′) = (1)

= rk(hj+1|gA′) + rk(g|A′). (2)

By (1), rk(ĝhj+1|A′) = d + e. Since rk(g|A′) = rk(g|hj+1A
′) = e, we obtain

from (2) that rk(hj+1|gA′) = d. So hj+1 is a generic of H over gA′, and hence
by point 1 in Corollary 2.7, h−1

j+1 is a generic of H over gA′. Thus by point

3 of Corollary 2.7, h−1
j+1g is a generic of H over A.

3 Type-definable groups

In this section we prove that if M is a big o-minimal expansion of a real
closed field and G is a type-definable group in Mn, then G with its group
topology is definably isomorphic to a type-definable group in some Mk with
the topology induced by Mk. The idea of the proof is to construct a definable
Hausdorff manifold in Mn containing G as a subset whose topology induces
the group topology on G, and then to apply the results from [1] and [3] to
this manifold. (NB: it is easy to construct a definable manifold in M2 of
dimension 1 that is not Hausdorff.)

From now on, let G ⊆ Mn be a type-definable group, for simplicity over
∅, of dimension d. To obtain a manifold having the desired properties we
first construct a definable set V ⊆ Mn such that V is large in G and gives
rise to a chart of the desired manifold.

13



Let Γ be the graph of the group operation. An easy saturation argument
shows that there is a ∅-definable function f : Z2 → Mn such that G ⊆ Z ⊆
Mn, dim G = dim Z = d, and Γ(f) ∩ G3 = Γ. Moreover, we may assume
(also by saturation) that f has the following properties:

(a) f(f(x, y), z) = f(x, f(y, z)) for x, y, z ∈ Z if both sides are defined.

(b) For all x ∈ Z, f(x, 1) = f(1, x) = x.

(c) For every x ∈ Z there is y ∈ Z such that f(x, y) = f(y, x) = 1. (By
(a) and (b), such a y is unique for a given x.)

From now on we shall write xy instead of f(x, y) when x, y ∈ Z, and for
x ∈ Z we let x−1 denote the unique y ∈ Z such that xy = yx = 1.

Let g, {U(x) : x ∈ X} be as in the discussion preceding Fact 2.11. Define

V0 := {z ∈ Z : {zU(x) : x ∈ X} is a neighborhood basis of z in Z}

Take A so that X and g are definable over A; then V0 is definable over A.
Below we use the set Ω of generics of G, which is large in G.

Lemma 3.1. The set Ω is contained in V0, and V0 ∩G is open in V0.

Proof. If a ∈ Ω, then a is good as defined in the proof of Theorem 2.14,
that is, {aU(x) : x ∈ X} is a neighborhood basis of a in G for the topology
induced on G by Mn, and hence a neighborhood basis of a in Z, since Ω is
both open in G and in Z.

Given any z ∈ V0 ∩ G, take some x ∈ X, and note that zU(x) ∩ V0 is a
neighborhood of z in V0 contained in V0 ∩G. Thus V0 ∩G is open in Z.

Lemma 3.2. The group topology and the topology on Mn induce the same
topology on V0 ∩G. In particular, given any a ∈ G, the map x 7→ ax : T →
aT , where T = {x ∈ V0 ∩ G : ax ∈ V0 ∩ G}, is a homeomorphism for the
topologies on T and aT induced by Mn.

Note that the set T in the lemma is large in V0 ∩G.

Proof. The first part of the lemma is immediate from the definition of V0.
The second part follows from the first part.

According to [3], p. 68, a stratification S of a closed definable set S ⊆ Mn

is a partition of S into finitely many cells, such that for each cell C ∈ S,
cl(C) \C is a union of (necessarily lower-dimensional) cells in S. (Note that
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then each cell in S of dimension dim S is open in S.) It is shown there that
if S ⊆ Mn is closed and definable and T ⊆ S is definable, then there is a
stratification S of S that partitions T . The proof shows that if S and T are
definable over a certain parameter set, then we can take the cells in S to be
definable over the same parameter set.

Below we fix a generic (a0, . . . , ad) of Gd+1 over A. Then by Lemma 2.22,
G ⊆ ⋃d

j=0 ajV0. We shall denote by ΩA the set of generics of G over A.
We define the A-set V1 as follows: Let S be a stratification of cl(V0) whose

cells are definable over A such that S partitions V0, and let V1 be the union
of the cells of dimension d in S which are contained in V0. Thus ΩA ⊆ V1 and
V1 is open in V0. Next we put A′ := Aa0a1 . . . ad and introduce A′-definable
subsets V2, V3, and V of V1:

V2 := {x ∈ V1 : for i, j = 0, . . . , d, aix ∈ Z & (a−1
i aj)x ∈ Z},

V3 := {x ∈ V2 : for i, j = 0, . . . , d, if (a−1
i aj)x ∈ V0, then the map

y 7→ (a−1
i aj)y : V2 ⇀ V0 is continuous at x}.

Let V be the interior of V3 in V1.

Lemma 3.3. The set V is open in V0, and G ⊆ ⋃d
i=0 aiV .

Proof. That V is open in V0 is because V1 is open in V0 and V is open in V1.
To obtain G ⊆ ⋃d

i=0 aiV it is enough to show that V ∩G is an A-set that is
large in G. It is clear that V1∩G = V2∩G; also V2∩G = V3∩G by Lemmas
3.1 and 3.2. Since V0 ∩ G is open in V0, the set V1 ∩ G is open in V1, hence
V3 ∩G = V ∩G. Thus V ∩G is an A-set and is large in G.

Let {C ∈ S : C ⊆ V1} = {Ci : i ∈ I} with Ci 6= Ci′ for i 6= i′. Then each Ci

is a cell of dimension d, open in cl(V0), and V1 =
⋃

i∈I Ci. For every i ∈ I, let
ρ′i be an A-definable homeomorphism of Ci onto an open subset of Md, and
let ρi be ρ′i restricted to Ci∩V . Note that V =

⋃
i∈I Ci∩V and that Ci∩V is

open in Ci, since V is open in V0. So for every i ∈ I, ρi : Ci∩V → ρi(Ci∩V )
is an A′-definable homeomorphism of Ci∩V onto an open subset of Md, and
every x ∈ V is in the domain of some ρi.

For x ∈ V and j, l ∈ {0, . . . , d}, both (a−1
j al)x and a−1

j (alx) are defined,

so they are equal (and in Z), and will accordingly be written as a−1
j alx.

Lemma 3.4. For i ∈ I, j = 0, . . . , d, let hij : aj(Ci ∩ V ) → ρi(Ci ∩ V ) be
defined by hij(x) = ρi(a

−1
j x). Then {hij : i ∈ I, j = 0, . . . , d} is a definable

atlas of dimension d on the set
⋃

i,j aj(Ci ∩ V ), (i ∈ I, j = 0, . . . , d).
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Proof. Let i ∈ I and j ∈ {0, . . . , d}. By the remark just before this lemma
we have a bijection

x 7→ a−1
j x : aj(Ci ∩ V ) → Ci ∩ V,

hence hij is a definable bijection.
Let also k ∈ I and l ∈ {0, . . . , d}. To see that hij

(
aj(Ci∩V )∩al(Ck∩V )

)
is open in hij

(
aj(Ci ∩ V )

)
= ρi(Ci ∩ V ), first note that

hij

(
aj(Ci ∩ V ) ∩ al(Ck ∩ V )

)
= ρi

(
a−1

j

(
aj(Ci ∩ V ) ∩ al(Ck ∩ V )

))
= ρi

(
(Ci ∩ V ) ∩ a−1

j al(Ck ∩ V )
)
.

Now ρi

(
(Ci∩V )∩a−1

j al(Ck∩V )
)

is open in ρi(Ci∩V ) iff (Ci∩V )∩a−1
j al(Ck∩V )

is open in Ci ∩ V . Since

(Ci ∩ V ) ∩ a−1
j al(Ck ∩ V ) = {x ∈ Ci ∩ V : a−1

l ajx ∈ Ck ∩ V }

the set on the left is indeed open in Ci ∩ V . The transition map

h(ij)(kl) : hij

(
aj(Ci ∩ V ) ∩ al(Ck ∩ V )

) → hkl

(
aj(Ci ∩ V ) ∩ al(Ck ∩ V )

)

is given by h(ij)(kl)(x) = ρk

(
a−1

l ajρ
−1
i (x)

)
, so h(ij)(kl) is continuous by the

definition of V3.

Lemma 3.5. For all i, k ∈ I, j, l ∈ {0, . . . , d}, x ∈ Ci∩V ∩G, y ∈ Ck∩V ∩G
with ajx 6= aly, there are boxes Bi ⊆ ρi(Ci ∩ V ) and Bk ⊆ ρk(Ck ∩ V ) in Md

such that ρi(x) ∈ Bi, ρk(y) ∈ Bk, and h−1
ij (Bi) ∩ h−1

kl (Bk) = ∅ .

Proof. Let i range over I, j over {0, . . . , d}, and let Y ⊆ G. We claim that
Y is open in the group topology iff a−1

j Y ∩ (Ci ∩ V ) is open in Ci ∩ V for

all i, j. Indeed, if Y is open in the group topology, then a−1
j Y is open in the

group topology, hence a−1
j Y ∩ (Ci ∩ V ) is open in Ci ∩ V by Lemma 3.2.

For the converse, recall that ΩA is the set of generics of G over A, and
note that by Theorem 2.14, Y is open in the group topology iff a−1

j Y ∩ ΩA

is open in ΩA for all j. But if a−1
j Y ∩ (Ci ∩ V ) is open in Ci ∩ V for all i, j,

then a−1
j Y ∩ V is open in V for all j, and hence a−1

j Y ∩ΩA is open in ΩA for
all j, (since ΩA ⊆ V by the proof of Lemma 3.3), so Y is open in the group
topology. This finishes the proof of the claim about Y .

Since hij

(
Y ∩ aj(Ci ∩ V )

)
= ρi

(
a−1

j Y ∩ (Ci ∩ V )
)
, Y is open in the group

topology iff hij(Y ∩ aj(Ci ∩ V )) is open in ρi(Ci ∩ V ) for all i, j.
The lemma follows from Corollary 2.20.
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We have G =
⋂

λ∈Λ Xλ, where each Xλ is ∅-definable, and for all λ, µ ∈ Λ
there is ν ∈ Λ such that Xν ⊆ Xλ ∩Xµ. By Lemma 3.5, there is α ∈ Λ such
that for all i, k ∈ I, j, l ∈ {0, . . . , d}, x ∈ Ci ∩ V ∩Xα, y ∈ Ck ∩ V ∩Xα with
ajx 6= aly, there are boxes Bi ⊆ ρi(Ci ∩ V ) and Bk ⊆ ρk(Ck ∩ V ) in Md such
that ρi(x) ∈ Bi, ρk(y) ∈ Bk, and h−1

ij (Bi) ∩ h−1
kl (Bk) = ∅ .

Let W be the interior of V ∩Xα in V .

Lemma 3.6. For i ∈ I, j ∈ {0, . . . , d}, let h′ij be the restriction of hij to
aj(Ci∩W ). The collection A = {h′ij : i ∈ I, j = 0, . . . , d} is a definable atlas
of dimension d on

⋃
i,j aj(Ci ∩W ), and A makes

⋃
i,j aj(Ci ∩W ) a definable

Hausdorff manifold in Mn. Moreover, G ⊆ ⋃
i,j aj(Ci∩W ) and the manifold

topology induces the group topology on G.

Proof. The claim about A follows from Lemmas 3.4 and 3.5 using that W
is open in V . Since W ∩G is an A-set that is large in G, G ⊆ ⋃

i,j aj(Ci∩W ).
The group topology and the manifold topology agree on G by an argument
as in the proof of Lemma 3.5.

If M is an o-minimal expansion of an abelian group, then by [1], every de-
finable Hausdorff manifold in Mn is regular as a topological space. Since the
definable manifold

⋃
i,j aj(Ci ∩ W ) is a definable space in the sense of [3],

Theorem 1.8. on p.159 of [3] yields:

Theorem 3.7. Let M be an o-minimal expansion of a real closed field. Then
every type-definable group in Mn with its group topology is, for some m,
definably isomorphic to a type-definable group in Mm whose group topology
is induced by Mm.2
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