O-minimal fields with standard part map

Jana Marikova
Dept. of Math. and Stat., McMaster University
marikova@math.mcmaster.ca

January 15, 2009

Abstract

Let R be an o-minimal field and V' a proper convex subring with
residue field k and standard part (residue) map st: V' — k. Let kiuq
be the expansion of k by the standard parts of the definable relations
in R. We investigate the definable sets in kijnq and conditions on
(R, V) which imply o-minimality of ki,q. We also show that if R is
w-saturated and V is the convex hull of Q in R, then the sets definable
in kinq are exactly the standard parts of the sets definable in (R, V).

1 Introduction

Throughout R is an o-minimal field, that is, an o-minimal expansion of a real
closed field, and V' is a proper convex subring with maximal ideal m, ordered
residue field k = V/m, and standard part (residue) map st: V' — k. This
map induces a map st: V" — k" and for X C R™ we put st X :=st(XNV").
By k;.q we denote the ordered field k expanded by the relations st X with
X € Def*(R), n = 1,2,.... Unless indicated otherwise, by “definable” we
mean “definable with parameters in the structure R”.
The most important case of a convex subring of R is the convex hull

O:={xcR: |z|<qfor some ¢ Q”"}

of Qin R. If V = O, then the ordered field k is archimedean and we identify

k with its image in the ordered field R of real numbers via the unique ordered



field embedding of k into R. In particular, if R is w-saturated and V = O,
then k = R.

We consider the following questions:
(1) Under what conditions on (R, V) is Kiyq o-minimal?

(2) How complicated are the definable relations of ki,q in terms of the basic
relations st X with definable X C R"?

Here is a brief history of these problems. In 1983, Cherlin and Dickmann
[4] proved quantifier elimination for real closed fields with a proper convex
subring. In 1995 van den Dries and Lewenberg [8] identified the notion
of T-convex subring of an o-minimal field as a suitable analogue of convex
subring of a real closed field (here T is the theory of the given o-minimal
field). A convex subring V' of R is said to be Th(R)-convex if f(V) C V for
every continuous (-definable function f: R — R. The situation when V is a
Th(R)-convex subring of R is well-understood; see [8] and [6]. In particular,
k;,q is o-minimal in that case.

The structure kj,q is not always o-minimal, as the example on page 17
shows. A theorem by Baisalov and Poizat [1] implies that ki,q is always
weakly o-minimal. Hrushovski, Peterzil and Pillay observe in [11] that if R
is sufficiently saturated and V = O, then it follows from [1] that kj,q is o-
minimal, because then k = R and for expansions of the ordered field R weak
o-minimality is the same as o-minimality. However, [11] gives no information
about question (2) in that situation, which includes cases where O is not
Th(R)-convex; we say more about this in the remark on page 4.

Good cell decomposition. In [14] we answered (2) for the situation in [11]
by means of good cell decomposition, which also gives the o-minimality of R;,q
without using [1]. In the present paper we obtain good cell decomposition
(and thus o-minimality of kj,q) under more general first-order assumptions
on the pair (R, V). More precisely, suppose (R, V) | %; where ¥; is defined
below. Theorem 2.21 says that then the subsets of k" definable in k;,q are
the finite unions of differences st X \ stY, where X,Y C R™ are definable.
It follows that k;,q is o-minimal. Theorem 2.21 is proved in the same way
as the corresponding theorem in [14], except that uses of saturation in [14]
are replaced by uses of ¥;. Also the proof of Lemma 4.1. in [14] does not
generalize to our setting, and this is replaced here by a more elementary
proof of Lemma 2.4 below.



The following conditions on (R, V') are related to good cell decomposition.
To state these, let [ := {z € R: |z| <1}, and for X C R'"™ and r € R, put

X(r):={xeR": (rjz) € X}.

We let m”" := {x € m: = > r} for r € m. We define the conditions Z, ¥,
Y4, 2, and C on pairs (R, V) as follows:

(Z) if X,Y C I™ are definable, then there is a definable Z C I" such that
st X N sty = stZ;

(%) if X C '™ is definable and X (r) C X(s) for all r,s € I with r < s,
then there is ¢y € m>? such that st X (¢y) = st X (¢) for all € € m>;

(
)
(3q) if X C I is definable and X (r) 2 X (s) for all r,s € I with r < s,
then there is ¢y € m>? such that st X (ey) = st X (¢) for all € € m”>;

(X) if X C I'*™ is definable, then there is ¢g € m”? such that st X(ey) =
st X (e) for all e € m>;

(C) the kj,g-definable closed subsets of k™ are exactly the sets st X with
definable X C R™.

One should add here “for all n and X,Y” as initial clause to Z, and likewise
with the other conditions. In Section 3 we prove that for all (R, V),

a) T 3
b) i = kKkinq is o-minimal;
c) Y = C.

We do not know whether the converse of b) holds. In a subsequent paper
with van den Dries [9] we shall prove the converse of ¢), and also ¥; = C,
yielding > <= 3.

Our definition of Z is not of first-order nature, but by a) it is equivalent
to first-order conditions. Similarly C will turn out to be equivalent to first
order conditions by c) and its converse in [9].

In Section 3 we also show that (R, V') satisfies ¥ if any of the following holds:
(i) cofinality(m) > 2l¥;

(ii) V is T-convex, where T := Th(R);
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(iii) R is w-saturated and V = O.

Traces. Call aset X C R" a trace if X =Y N R" for some definable n-ary
relation Y in some elementary extension of R, where we allow parameters
from that elementary extension to define Y. In Section 4 we assume that R
is w-saturated and V = O, and under these assumptions we characterize the
definable sets in R;,q in terms of traces. As a corollary we obtain that if R
is w-saturated and V' = O, then

Def"(Rina) = {stX : X € Def"(R,0)}.

We do not know if the analogue of this corollary holds under the more general
first-order assumption 3. We do know that if V' is Th(R)-convex, then, for
all n,

Def"(kina) = {st X : X € Def"(R,V)}.

Remark. In 1996 van den Dries [5] asked the following question: Let L be a
language extending the language of ordered rings, and let T'(L, R) be the set
of all sentences true in all L-expansions of the real field. Call R pseudo-real
if R =T(L,R). Is every o-minimal field pseudo-real?

If R has an archimedean model, then R is pseudo-real, but the converse
fails. Consider for example a proper elementary extension of the real field
and extend its language by a name for an element A > R. Then the theory
of R in the extended language does not have an archimedean model but R
is of course pseudo-real as a structure for this extended language.

In 2006 Lipshitz and Robinson [12] considered the ordered Hahn field
R((t?)) with operations given by overconvergent power series, and they proved
its o-minimality. In 2007 Hrushovski and Peterzil [10] showed that this
Lipshitz-Robinson field is not pseudo-real. It is easy to see that if R is a
model of the theory T of the Lipshitz-Robinson field, then O C R is not
T-convex.

Preliminaries. We assume familiarity with o-minimal structures and their
basic properties; see for example [7]. Throughout we let m,n range over
the set N = {0,1,2,...} of natural numbers. Given a one-sorted structure
M = (M;---) we let Def" (M) be the boolean algebra of definable subsets
of M™. Let K be an ordered field. For x € K we put |z| := max{z, —x}, for
a=(ay,...,a,) € K™ we put

la| == max{|a;| : i=1,...,n} ifn>0, |a|:=0ifn=0,
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and for a,b € K™ we put d(a,b) := |a—b|. A box in K™ is a cartesian product
of open intervals

(a1—57a1+5)><--->< (an_éaan+5)7

where a = (a1,...,a,) € K" and 6 € K>° A V-box in R™ is a box in R" as
above where ¢ € V™* and 6 € V™. So if B C R" is a V-box, then B C V"
and st B contains a box in k".

An interval is always a nonempty open interval (a,b) in R, or in R, or
in k, as specified. We already defined I := {x € R : |z| < 1} and more
generally, for each ordered field K we put I[(K) := {x € K : |z| < 1}. For
a € R™ and definable nonempty X C R" we set

d(a,X) :=inf{d(a,z) : = € X},

and likewise for a € k™ and definable nonempty X C k" when kj,q is o-
minimal. A set X C R” is said to be V-bounded if there is a € V>° such
that |z| < aforall x € X. (For V = O this is the same as strongly bounded.)
The hull of X C k™ is the set X" :=st71(X) C V™.

Given sets X, Y and S C X x Y we put

S(z) ={yeY: (z,y) € S}

If X is a subset of an ambient set M that is understood from the context,
then
Xe:={reM: z¢&X}.

We often use the following projection maps for m < n:
p:?n:Rn_)Rma (xla-'-7$n)H(x17"'7xm)
k" — k™, (X1, ..y p) = (X1, T)-

Given amap f: X — Y we let

If:={(z,y) e XxY: f(z) =y}
denote its graph.

ACKNOWLEDGMENTS. This paper contains some of the results in the au-
thor’s PhD thesis. The author would like to thank her advisor Lou van den
Dries for advice.



2 Good cell decomposition

2.1 General facts on standard part sets

Recall that R is an o-minimal field and V is a proper convex subring of R.
We begin with some results requiring no extra assumption on (R, V). A very
useful fact of this kind is the V-box Lemma (Corollary 2.5).

Lemma 2.1. If X C R" is definable, then st X is closed.

Proof. Let X C R™ be definable and assume towards a contradiction that
we have an a € cl(st X) \ st X. Take ¢’ € R™ such that sta’ = a. Then,
by o-minimality of R, d(a’, X) exists in R and d(a’, X) > m. So there is a
neighborhood U C k" of a with U Nst X = (), a contradiction. O]

Let St,, be the collection of all sets st X with definable X C R". Note
that if XY € St,, then X UY € St,; if X € St,, and Y € St,, then
X xY € St,,1n. The next lemma is almost obvious. To state it we use the
projection maps 7 = 7t ™" — k™ and p = p7tn: R — R™

Lemma 2.2. Let X € St,,1,,. Then
(1) if X is bounded, then w(X) € St,,;

(2) if X = st X' where the set X' C R™™ is definable in R and satisfies
X' np Y (V™) C V™ then w(X) € Sty,.

Lemma 2.3. If X C R s definable, then st X is a finite union of intervals
and points in k.

Proof. This is immediate from the o-minimality of R. O]

Recall the definition of a V-box from page 5. Below p is the projection map
R™1 — R" given by p(z1,...,Tn41) = (T1,...,Tn).

Lemma 2.4.

(A,)) If D C V™ s a V-box, and f: Y — R, where Y C V™, is definable
and continuous with f(Y) C V, then there is a V-box B C D with
BNTf=0.

(Bn) If D C V" is a V-boz, and C is a decomposition of D, then there is
C € C such that C' contains a V -boz.



Proof. 1t is clear that (B;) holds. We first show that (B,,) implies (4,). Let
f:Y — V be definable and continuous, with Y C V" and let

D= (abbl) X X (an+l>bn+l) - Vn+1
be a V-box. Take p,q € V such that a,,1 < p < q < b,41 and

q = D,P = Gng1,bnpr — g >m,
and pick 0 > m with 6 < min{p — ap41, 552, byt — q}. Define

X(p):={zep,'DNY: f(z) €(p—0,p+9)}
X(q)={zep™'DNY: f(x)e(qg—05q+90)},

and note that X(p) N X(¢) = 0. Take a decomposition C of R™ such that
C partitions the sets p"™' D, X (p), and X(q). By (B,), there is C' € C such
that C C p"™'D and C contains a V-box P. Then P X (p — d,p + 4) or
P x (q—9,q+ 9) yields the desired V-box B.

Next, we show that (A,) and (B,) imply (B,11). Let D C V™! be a
V-box and let C be a decomposition of D. Then p"*!C is a decomposition of
p"™ D and by (B,) we can take C' € C such that p"*'C' contains a V-box P.
Let C4,...,C} be the cells in C such that p"™C = pt™C; for i = 1,... k.
After restricting the functions p"™'C' — R used to define C, ..., C} to P we
see that it is enough to prove the following:

Let fi,..., fm: P — V be definable and continuous and let p,q € V be
such that p < ¢ and |¢ — p| > m. Then there is a V-box B C P X (p, q) with
BNTf; =0 for all j.

For m = 1 this statement follows from (A,,), and for m > 1 it follows by
a straightforward induction on m using again (4,,). O

Corollary 2.5. (V-Box Lemma) Let X C R" be definable and let D C k"
be a box such that D C st X. Then X contains a V-box B with st B C D.

Proof. We may assume that X C V" and that cl(D) C st X. Pick a V-
box D' C R™ such that st D’ = cl(D), and take a decomposition C of R"
which partitions both D’ and X. By Lemma 2.4, we can take C' € C such
that C C D’ and C contains a V-box B. It is clear that BN X # 0,
otherwise D would contain a box whose intersection with st X is empty. So
BCCCX. 0



Corollary 2.6. If X C R" is definable, then st(X) N st(X€¢) has empty
interior in k".
By [1], kina is weakly o-minimal. MacPherson, Marker and Steinhorn

define in [13] a notion of dimension for weakly o-minimal structures:

Definition 2.7. Let M be a weakly o-minimal structure, and let X C M™ be
definable in M. If X # 0, then dim,,(X) is the largest integer k € {0,...,n}
for which there is a projection map

p: M"™ — M*, (@1, 20) = (Ta)s - - - TA))s

where 1 < A(1) < -+ < AM(k) < n, such that int(pX) # 0. We set dim,,(0) =
—00.

Note that if M is o-minimal, then the above notion of dimension agrees
with the usual dimension for o-minimal structures.

Corollary 2.8. dim,, (st X) < dim (X) for V-bounded X € Def"(R).

2.2 Good cells

We define good cells in analogy with [14], and we state some results needed
in the proof of good cell decomposition. We omit proofs that are as in [14].

Definition 2.9. Given functions f: X — R with X C R", and g: C — k
with C' C k", we say that f induces g if f is definable (so X is definable),
Ch C X, f|C" is continuous, f(C") CV and T'g=st(L'f) N (C x k).

Lemma 2.10. Let C' C k" and suppose g: C — k is induced by the function
f: X — R with X C R". Then g is continuous.

Proof. Assume towards a contradiction that g is not continuous at ¢ € C'. Let
r € k™% be such that for every neighborhood B C k™ of ¢ thereis b€ BNC
with |g(¢) — g(b)| > r. Pick ¢ € R™ with st ¢ = ¢ and define

Y ={reX: \f(c’)—f(x)|2%,}a

where 7’ € R”? is such that str’ = r. Then d(c,Y) exists in R. If d(c/,Y)
is infinitesimal then, since Y is closed, there is y € Y such that sty = st ¢/,
a contradiction with f inducing a function. Hence d(c/,Y) > m, but this
yields a neighborhood B C k" of ¢ such that g(BNC) C (g(c) —r, g(c) + 1),
a contradiction. O



For C C k" we let G(C') be the set of all g: C' — k that are induced by some
definable f: X — R with X C R™.

Lemma 2.11. Let 1 < j(1) < --- < j(m) < n and define 7: " — k™ by

(1, n) = (Tj1)s - Tj(m))-
Let C C k"™ and suppose g € G(nC'). Then gow|c € G(C).

Definition 2.12. Let i = (iy,...,i,) be a sequence of zeros and ones. Good
1-cells are subsets of k"™ obtained by recursion on n as follows:

(i) Forn =0 and i the empty sequence, the set k° is the only good i-cell,
and for n =1, a good (0)-cell is a singleton {a} with a € k; a good
(1)-cell is an interval in k.

(ii) Let n > 0 and assume inductively that good i-cells are subsets of k™. A
good (i,0)-cell is a set Th C k™™ where h € G(C) and C' C k" is a good
i-cell. A good (i,1)-cell is either a set C x k, or a set (—oo, f) C k"t
or a set (g,h) C k™, or a set (f,+00) C k", where f,g,h € G(C),
g < h, and C is a good i-cell.

One verifies easily that a good i-cell is open in k™ iff i1 = --- =14, = 1, and
that if iy = --- = 4,, = 1, then every good i-cell is homeomorphic to k". A
good cell in k™ is a good i-cell for some sequence i = (iy,...,1,) of zeros and
ones.

Lemma 2.13. Let C C k" be a good (iy,...,i,)-cell, and let k € {1,...,n}
be such that i, = 0. Let m: k" — k™" be given by

(21, ) = (T4, ooy T 1, Thi 1y -+ 5 Ty
Then 7(C) C k""" is a good cell, ©|C: C — 7(C) is a homeomorphism, and

if E C w(C) is a good cell, so is its inverse image 7' (E) N C.

2.3 More on good cells

Recall the conditions Z and ¥} on pairs (R, V') from page 3. We prove here
that (R, V) =T iff (R,V) = ;. This yields that if (R,V) = %, then good

cells in k™ are differences of standard parts of definable subsets of R™.



It is not difficult to show that if (R, V') = Z, then for all n and all definable
X,Y C R" there is a definable Z C R"™ such that st(X) Nst(Y) = st Z: Set
J(k) == (-1,1) € k and J := (—1,1) € R. We shall use the definable

homeomorphism

R — J": ( ) o (e )
Tn ' — () (Y, ..., —),
' V1+ a3 V1422

and we also let 7, denote the homeomorphism

T Tn
To: K" — J(B)": (x1...,2,) — ey )
One easily checks that 7: R — J induces 71: k — J(k), and that for X €
Def"(R),
Ta(st X) = st(r, X) N J(k)" and 7, (st(X) N J(k)") = st(r, (X)),

n

where 7,1: J* — R" and 7,': J(k)" — k" are the inverse functions of
Tp: R — J" and of 7,,: K" — J(k)" respectively.

Suppose (R, V) satisfies Z. Then for all n and all XY € Def"(R) there
is Z € Def"(R) such that st(X) Nst(Y) = st(Z). To see this, let X,Y €
Def"(R). Then 7,(X), 7,(Y) C J", so we can take Z € Def"(R) such that

st(ra(X)) N st(7,(Y)) = st Z.

We claim that
st(X) Nst(Y) =st(r,  (ZNnJ)).

To prove this it is enough to show that
T(st(X) Nst(Y)) = 7(st(r, (Z N J"™))). (1)
Now the right-hand side of (1) is equal to
st(ZNJ")NJ(k)" =st(Z) N J(k)",
and we have
To(st(X) Nst(Y)) = st(r,X) Nst(r,Y) N J(k)".

In view of st(7,,(X)) Nst(7,(Y)) = st Z this gives (1).

In a similar way the condition ¥; implies its “unrestricted version”, i.e.
the variant obtained by substituting R for /. We shall often use these facts
silently.
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Lemma 2.14. Suppose (R, V) satisfies T. Then (R,V) = X;.

Proof. Let X C I'*" be definable and increasing in the first variable. To-
wards proving that X satisfies the conclusion of ¥; we may assume that X
is closed.

Claim 1. There is ¢ € m=% such that
st(X) N ({0} x I(k)™) = st(X N ([0, €] x I™)).

We set Y := {0} x I" and take a definable Z C I"™! with st(X) Nst(Y) =
st(Z). We may assume that Z is closed and nonempty, and we set ¢ :=
sup{d(z,X): z € Z} and ¢ :=sup{d(z,Y) : z € Z}. Then ¢,e5 € m=°,
and we claim that ¢y := €; + €5 works. Clearly,

st(X N ([0, 0] x I™)) Cst(X) N ({0} x I(k)"™).

So let a € st(X) Nst(Y). Then a = stz with z € Z. We have d(z, X) < ¢
and d(z,Y) < €. Since Z is closed and V-bounded, we can take z € X and
y € Y such that d(x,2) < €1, d(y,2) < €. Then d(x,y) < € + €2 = €, and
it follows that

a=stz e st(XN([0,e] xI")).

This proves Claim 1. Let ¢ be as in Claim 1.
Claim 2. st X (€) = st X () for all € € m=,

It is clear that st X () C st X (e) for all € > ¢y. To prove the other inclusion,
let a € st X(€) and take x € X (¢) such that st x = a. Then

(0,a) € st(X)N ({0} x I(k)"),

hence
(0,a) € st(X N ([0,€e] x I™))

by Claim 1. Because X is increasing in the first variable, this implies (0, a) €
st X(Eo) . ]

Lemma 2.15. 3, — 1.

Proof. Suppose (R, V') satisfies ;. Let X, Y C I" be definable and nonempty.
For € € RZY define

Yo={zeR": dz,Y) <€}
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We claim that
Ust(XnY9) =stXnstY,

where e ranges over all positive infinitesimals. If a € st (X NY*), then clearly
a€stX anda estY. If a € st XNstY, then we can take @’ € X and
a” € Y such that sta’ = sta” = a and d(a’,a”) < € for some ¢ € m>°. Hence
aeXnYe

Now by ¥, there is a positive infinitesimal ¢, such that

st (X NY©) ={Jst (X NYe).

]

The proofs of the following two lemmas are similar to the proofs of their
counterparts in [14].

Lemma 2.16. Suppose (R,V) satisfies Z, and let X C R" and f: X — R
be definable, and put

X ={reX: fla) <V}, Xt={zreX: fl)>V}
Then st(X ™) and st(X ™) belong to St,,.

Corollary 2.17. If (R,V) satisfies T, and X C R™ and g: X — R are
definable, then st({x € X : g(x) € m}) € St,,.

Conversely, if the conclusion of this corollary holds for all n and definable
g: X — R with X C R", then (R, V) satisfies Z. To see this, let X,Y C V"
be definable with Y # (). Assume the conclusion of the corollary holds for
the function  — d(z,Y): X — R. Then we have a definable Z C V" such
that st(Z) =st({z € X : d(z,Y) € m}). This gives st(X) Nst(Y) = st(2).

From now on until the end of Section 2 we assume (R,V) = %;.

The following lemma is now proved as in [14].

Lemma 2.18. Every good cell in k™ is of the form X \'Y with X,Y € St,,.
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2.4 Good cell decomposition

We obtain good cell decomposition, namely, if X;,...,X,, C R" are defin-
able, then there is a finite partition of k™ into good cells that partitions
every st(X;). A consequence of this is that the kj,q-definable subsets of k"
are finite unions of differences st(X) \ st(Y'), where X, Y € Def"(R).

Lemma 2.19. Let C C k" be a good i-cell, let X C R™*! be definable and
suppose k € {1,...,n} is such that i, = 0. Define m: K" — k"™ by

() = (X1, ooy Tty Thady - -y Tpg1)-

Then (st(X) N (C x k)) is a difference of sets in St,.

A good decomposition of 1(k)™ is a special kind of partition of I(k)™ into
finitely many good cells. The definition is by recursion on n:
(i) a good decomposition of I(k) is a collection
{(co, 1), (c2,¢3), .- (ens ersn), {eo} {ent, - o et {eeri}}
of intervals and points in k where ¢y < ¢; < -+ < ¢ < cpyq are real

numbers with ¢ = —1 and ¢x1 = 1;

(ii) a good decomposition of I(k)"*! is a finite partition D of I(k)"*! into
good cells such that {z"*'C : C € D} is a good decomposition of
I(k)™.

Theorem 2.20. (Good Cell Decomposition)

(An) Given any definable X, ..., X, C I™, there is a good decomposition of
I(k)"™ partitioning each set st X;.

(Bp) If f: X — I, with X C I"™, is definable, then there is a good decom-
position D of I(k)" such that for every open C € D, either the set
st(Df) N (C x k) is empty, or f induces a function g: C — I1(k).

Using the lemmas above the proof is very similar to that of Theorem 4.3 in
[14].

A good decomposition of k" is a special kind of partition of k™ into finitely
many good cells. The definition is by recursion on n:
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(i) a good decomposition of k' = k is a collection

{(co,c1), (cayc3), .o, (ckycrur), {c1}y o {er}}

of intervals and points in k, where ¢; < --- < ¢ € k and ¢y = —o0,
Ck+1 = OQ;

(ii) a good decomposition of k"' is a finite partition D of k"** into good
cells such that {7"*1C': C' € D} is a good decomposition of k".

Corollary 2.21. If Xy,...,X,, C R" are definable, then there is a good
decomposition of k™ partitioning every st X;.

Theorem 2.22. The ki,q-definable subsets of k" are exactly the sets of the
form st(X) \ st(Y) with X,Y € Def"(R).

As in [14] we obtain that the standard part of a partial derivative of a
definable function is almost everywhere equal to the corresponding partial
derivative of the standard part of the function:

Theorem 2.23. Let f: Y — R with Y C R" be definable with V -bounded
graph. Then there is a good decomposition D of k" that partitions stY such
that if D € D is open and D C stY, then f is continuously differentiable on
an open definable X CY containing D", and f, g—;l, e %, as functions on
X, induce functions g, q1,...,gn: D — k such that g is C' and g; = g—; for
all 7.

3 The conditions C, >, >3 and X

In this section we show that (Ei & Ed) implies C, we prove that various
conditions imply ¥, and we give an example to the effect that kj,q is not
always o-minimal.

3.1 Closed and definably connected sets

The conditions >4 and C on pairs (R, V) are stated on page 3. Note that
if (R,V) satisfies C, then kj,q is o-minimal by Lemma 2.3. For (R, V) to
satisfy C it suffices that for each n the closed kj,q-definable subsets of (k)"
are exactly the sets st X with definable X C [". (This follows by means of
the homeomorphisms 7,,.)
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Proposition 3.1. Suppose (R,V) = %; and (R,V) = X4q. Then (R,V)
satisfies C. (In particular, ¥ = C.)

Proof. The result will follow from Corollary 2.21 once we show that the
closure of a good cell in k™ is of the form st X for some definable X C R".
Let € range over all positive infinitesimals, and let C' C k™ be a good cell.

Claim. There is 19 € R”™ and a definable X C (0,79) x R" such that

O<r<r <ro= X(r'") CX(r); st(nX(e)):C'.

This claim follows by the same argument as the corresponding claim in the
proof of Proposition 5.1 in [14]. Let X C (0,r5) x R™ be as in the Claim.
Then, since (R, V) | X4, we can take ¢ € m”° such that st X (¢) = cl(C). O

For Z C V™ we let Z" := st (st(Z)).

Proposition 3.2. Suppose (R,V') satisfies C, and let X C V™ be definable
and definably connected in R. Then st X is definably connected.

Proof. Assume to the contrary that st X is not definably connected. Then
st X = stY;UstY; for some definable, nonempty Y;,Y> € R". We may
assume that Y7, Y5 are closed. Let

q:=1inf{d(y,stYs): y €stYi}.
Since st Y;, st Vs are closed and bounded, ¢ € k”°. Define
Xy:={zxeR": d(z,Y1) < %} and Xy :={z € R": d(z,Y3) < %}

Then X, X, are closed and disjoint, and Y* C X;, Y C X,. Since X" =
YPUY), we have X = (X N X;) U (X N Xy), where X N Xy, X N X, are
nonempty, disjoint, and closed in X, a contradiction with X being definably
connected. O

3.2 Conditions implying X

In the next lemma we use the following convention. Let C' C R"™ be an
(i1,...,1n)-cell of dimension k. Let

A{l..ont—{1,...,n}
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be such that
I<A1)<---<Ak)<n

and iyq) = - = iy = 1. We define

Co:={ac€ RF . there is x € C such that oy =m&... &ryp) = ap}.

Then Cj is the homeomorphic image of C' under a coordinate projection
p: R* — R"i. For a definable C'-function f: C — R we let f: Cy — R be
defined by f(p(z)) = f(x) where z € C. We denote by %(a}, where a € C

and j € {1,...,k}, the j-th partial derivative of f at p(a).
Lemma 3.3. Suppose cofinality(m) > 2/¥I. Then (R, V) satisfies ¥.

Proof. Let X € Def'™™(R). By cell decomposition we may assume that X

is an (iy,...,4,41)-cell satisfying for every k = 1,...,n + 1 the following: If
Pt X = (f,g), then all %, % have constant sign on p} ™1 X. If pi ™' X =T'f,

then all % have constant sign on pZﬂX .

Now there are 2/¥l many distinct subsets of k™. Let f: m>° — P(k"),
where P (k") is the power set of k", be given by e +— st X(e). Assume
to the contrary that for every ¢, € m>? we can find ¢, € m>“ such that
st X (e1) # st X (€2). Then the above assumption on X yields a cofinal subset
of m such that f is injective on this subset, a contradiction.

O

Note that, together with 5.3 and 6.4 in [6], this lemma implies that if V'
is a T-convex subring of R, then (R, V) = X.

Lemma 3.4. Let R be w-saturated. Then (R, O) = X.

Proof. Let X C R'™ be defined over a € R*. Since R is w-saturated, we can
take € € m such that € > § for every ¢ € dcl(a) with § < Q”°. Then for every
¢ € m” tp(€'|a) = tp(ela), and, in particular, st X (¢') = st X (¢). Otherwise
we could find z € st X (¢') A st X(¢) and a box B = (p1,q1) X -+ X (Pn, qn) C
R"™ with p;,q; € Q such that x € B and either cl(B) Nst X(e) = 0 or
c(B)Nst X(¢) = 0. Then B' = (p1,q1) X -+ X (pn,qn) € R"™ is such that
B'NX(e)=0and B'NX(¢) # 0, or vice versa, a contradiction. O

We saw in Section 2 that if (R, V') = X, then kj,q is o-minimal. However,
the following example shows that k;,q is not always o-minimal.
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Example. Let Rq, be the real exponential field and let R be a proper
elementary extension. Take A € R such that A > R, and let V be the
smallest convex subring of R containing A, i.e.

Vi={y: |y| < A" for some n},

and let k be the corresponding residue field. We define log: R — R to be
the inverse function of exp: R — R”°. Then log(V>?) = V and it induces
an increasing and injective function k>° — k, which, for simplicity, we shall
also denote by log. Now the set {st(\)" : n € N} is cofinal in k”°, hence
{logst(\)™ : n € N} is cofinal in logk™". So the set log k”° is definable in
Eing, but, because logst(A\)™ = nlogst(), it is not cofinal in &~°, nor does it
have a supremum. It follows that k;j,q cannot be o-minimal, nor does (R, V)
satisfy 3J;.

4 Traces

Recall from the Introduction that a set X C R*"is a trace if X = Y N R"
for some n-ary relation Y defined in some elementary extension of R using
parameters from that extension. Note that every X € Def"(R) is a trace,
and that if X, Y C R™ are traces, then so are X UY, X NY and X¢. An
example of a trace is V' C R: take an element A in an elementary extension
of R such that V< A < R>Y. Then V = (—\,\) N R where the interval
(—A, A\) is taken in the extension.

We let R* be the expansion of R by all traces X C R", for all n. By the
main result of [1] every subset of R" definable in R* is a trace. It follows
that every subset of R" definable in (R, V') is a trace.

Lemma 4.1. Let k™ be the expansion of the ordered field k by the sets
st(X) C k" for all traces X C R™ and all n. Then, for all n,

Def" (k™) = {st(X) : X C R" is a trace }.
Proof. We first show that for every n, the collection
Cn = {st(X): X C R"is a trace }
is a boolean algebra on k". It is clear that

st(X7) Ust(Xs) = st(X; U Xs)
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for all traces X1, Xo C R™. To see that C, is closed under complements, let
X C R"™ be a trace, and note that

(st X)) =st{y € R" : d(y,x) > m for every x € X}.

Since m is a trace, the set {y € R" : d(y,z) > m for all z € X} is definable
in R*, hence, by [1], it is itself a trace. We conclude that the sets st(X),
where X C R" is a trace, are the elements of a boolean algebra on k".

Now let X C R" be a trace, and let 0 < m < n. We may assume that
X C V™ (since V is a trace). Then 7 (st(X)) = st(p (X)), and by [1],
Pl (X) is a trace. O

It follows from Lemma 4.1 that k* is weakly o-minimal.

Lemma 4.2. Let Sy be a weakly o-minimal structure and Sy an o-minimal
structure on the same underlying ordered set S. Suppose for every n and for
every X, € Def™(S)) there is Xo € Def™(Ss) such that Xy A Xy has empty
interior in S™. Then Def™(S1) C Def"(S,), for all n.

Proof. We proceed by induction on n. Let n = 1. If X C § is a finite
union of convex sets, and Y C S is a finite union of points and intervals,
then either X AY is finite, or X A'Y has nonempty interior. It follows that
Def'(S;) C Def'(S,) and, in particular, S; is o-minimal.

So assume Def*(S;) C Def*(S,) holds for k = 1,...,n. Since S; and S,
are o-minimal, it suffices to show that every S;-cell in S™*! is definable in S,.
It is even enough to prove this for Si-cells I'g; here g: C' — S is a continuous
and Si-definable function on an Si-cell C' C S™. Let I'g be such an S;-cell.

First, suppose C' is an open cell. By the inductive assumption C' €
Def"(S;) and we can take X € Def""'(S,) with X C C x S such that
(—o0,g9) A X does not contain a box. Let p: S™™' — S™ be given by
p(xy, .. 1) = (T1,..,2,). For XY C S" we say that X < Y if
for all @ € S" and (a,z) € X, (a,y) € Y we have z < y. Now take an
Sy-decomposition D of S™*! which partitions X, and let C},...,C} be the
open cells in pD with C; C pX. We claim that I'(¢|C;) € Def"*(S,) for
every 1.

So let i € {1,...,k}, and let Dy,...,D; be the open cells in D with
D; C X and pD; = C; for all j. If D; = (f;,9;) and D; NT(g|C;) # 0
for some j € {1,...,l}, then there is x € C; with g(z) < g;j(x). Then, by
continuity of g and g;, we obtain a box B C X \ (—o0, g), a contradiction.
So D; NI'g =0, and, in particular, D; < I'(¢|C;) for every j.
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Let d € {1,...,l} be such that D; < Dg = (fq,9q) for all j # d. If g4 <
g|C; on a subset of C; with nonempty interior, then, again by continuity of
g and g4, we find a box B C (—o0, g) with ['(gq|pB) < B. Since B intersects
X in only at most finitely many cells of the form I'h, where h: C; — S
is continuous, we can find a box B’ C (—o00,g) \ X, a contradiction. So
ga = g|C; outside a subset of C; with empty interior, hence g4 = ¢|C; by
continuity of g and g4.

We have shown that I'(g|C;) is Sa-definable for all i = 1,..., k. It is easy
to check that then

k
Iy = cl((JT(9lC:)) N (C; x 9),

=1

hence I'g € Def"™(S5).
So let I'g € Def™™(S,) be an (i, ..., i, 0)-cell with 4, = 0 where 1 <
k <n, and let

q: S™ = S™ (2, 1) o (TL e Ty Thg s - Tgl)-
By the inductive assumption, ¢(I'g) € Def™(S;). We define I'g in S as

{(z,y): v € Cand (x1,..., 2051, Ts1,---,Tn,y) € q(Tg)}.

]

The main result of this section is Theorem 4.4, where we assume that R
is w-saturated and V' = . This assumption is essential in that Theorem:
Suppose ki,q is o-minimal but k is not isomorphic to R. Then k has a
nonempty bounded convex subset X without a least upper bound in k, so
X is not definable in kj,q. However, X" C R is a trace, and so X = stY for
some trace set Y C R"™.

In the rest of this section we assume that R is w-saturated and
V = 0. In particular, k = R.

Lemma 4.3. Let Y C R" be a trace. Then there is a definable Z C R" such
that st(Y') A st(Z) has empty interior in R™.

Proof. Take an elementary extension R’ of R with a definable set Y’ C R™
such that Y =Y’ N R™. Then Y’ is defined in R’ by a formula ¢(a,y) where
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a € R and ¢(z,y) is a formula in the language of R, x = (x1,...,2m),y
(Y1, -..,Yn). By w-saturation of R we can take b € R™ such that tp(b|())
tp(ald). Let Z C R™ be defined in R by ¢(b,y). Then Y N O™ C |, Z¢

€
where € ranges over all positive infinitesimals and

Z={yeR": dly,Z) < e€}.

Otherwise there would be y € (Y N O") such that d(y, Z) > m, so for some
O-box P C R", we would have PNY # () and PN Z = ), a contradiction
with tp(b]0) = tp(al0).

It follows that st(Y) C st(Z). We claim that int(st(Y) A st(Z)) = 0.
Otherwise, we can take a box B C R" such that B C st(Z) \ st(Y'), so the
V-box lemma yields an O-box P C Z such that PNY = (), contradicting
tp(b]0) = tp(ald). O

Theorem 4.4. For all n,

Def™"(Ring) = {st(X) : X C R" is a trace}.
Proof. By Lemma 4.1,

{st(X): X C R"is a trace} = Def"(R"),

for all n, and it is clear that Def"(R;,q) € Def"(R*). So let X C R™ be a
trace. By Lemma 4.3, we can take Y € Def"(R) such that int(st(X)AstY)
(), hence, by Lemma 4.2, Def™(R*) C Def™(Rinq).

oo

Corollary 4.5. Def"(Ri,q) = {st(X) : X € Def®(R, O)}, for all n.

Proof. 1t is clear that {st(X) : X € Def"(R, O)} C Def"(R*), so by Theorem
4.4, {st(X): X € Def"(R,O)} C Def"(Rjnq). To see that

Def"(Rina) C {st(X): X € Def"(R, 0)},

recall that the R;,q-definable subsets of R™ are finite unions of sets st Y \ st Z,
where Y, Z € Def"(R), and observe that

stY\stZ =st{z €Y : d(z,Z) > m},

and that m is definable in the structure (R, O). O
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5 Open problems

1. We proved that ¥; implies o-minimality of ki,q. Is the converse true?

2. We showed that if cofinality(m) > 2/¥| then (R,V) = . Conversely,
if (R,V) | 3, is there an elementary extension of (R,V’) satisfying this
inequality?

3. Does an analogue of Corollary 4.5 hold under more general conditions, for
example (R, V) = X7

4. Let R be an w-saturated elementary extension of the Lipshitz-Robinson
structure. Are the definable sets of R;,q just the semialgebraic sets?

5. The following question was posed by Lou van den Dries and Jonathan
Kirby:

(%) Let R be w-saturated and V' = O; is Rj,q elementarily equivalent to a
definable reduct of R?

To state this question precisely we assign to each X € Def"(R;,q) an n-ary
relation symbol Px, we let Lij,q be the language L = {<,0,1,—,+,-} of
ordered rings augmented by these new relation symbols Px, and we construe
Rinq as a structure for the language Li,q in the obvious way, by interpreting
each Px as X. The formal statement of question (x) is as follows: does there
exist an Liyq-structure R’ such that

(i) L-reduct of R" = L-reduct of R,
(ii) each n-ary symbol Px is interpreted in R’ as a set X’ € Def"(R),
(iil) Riypq = R'?
A positive solution might be hard to come by. To explain this, let Ley, be the
language of ordered rings augmented by a unary function symbol exp, and

consider the Ley,-theory Ty, of the ordered exponential field Rey,. Peterzil
pointed out that by an argument as in Berarducci and Servi [3] we have:

Proposition 5.1. Suppose (%) has a positive answer. Then Ty, is decidable.

Proof. By [3] we have a recursive set 3, of Leyp-sentences such that Toy, = o
for all 0 € ¥, and all Leg-models of Y, are o-minimal. We can of course
assume that >, includes the usual axioms for real closed fields, as well as an
axiom expressing that exp is a C'-function with exp(0) = 1 and exp’ = exp.
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Claim. ¥, axiomatizes the (complete) theory Toyp.

To prove this claim, let R be an w-saturated model of ;. Then the ex-
ponential function expy of R induces the standard exponential function on
R. Since we assume that (*) has a positive answer for R, this gives a defin-
able function e: R — R such that Rey, = (R, e) (with the last R denoting
its underlying ordered field). But this function e must be the exponential
function expy by a uniqueness result for solutions of differential equations in
o-minimal fields; see Otero, Peterzil and Pillay [15]. Thus Rey, = R. O
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