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Abstract

We calculate the universal Euler characteristic and universal di-
mension function on semilinear and semibounded sets and obtain some
criteria for definable equivalence of semilinear and semibounded sets
in terms of these invariants.

1 Introduction

In [9], [3], [4] the notions of weak and strong Euler characteristic and of
abstract dimension are defined. These are functions assigning values in a
ring (the Grothendieck ring in the case of the universal Euler characteristic),
a semiring respectively, to definable sets in a given first order structure.

There are general ways how to construct the Grothendieck ring and the
dimension semiring of a first order structure M from D̃ef(M), the family of
all M -definable sets up to definable equivalence (see [9], [3], [4]). We say
that two M -definable sets are definably equivalent if there is an M -definable
bijection between them. More generally: if N is an expansion of M then
two M -definable sets are said to be N -definably equivalent if there is an N -
definable bijetion between them. Definability means always definability with
parameters.

If M is an o-minimal expansion of a real closed field, then the usual
definitions of Euler characteristic and dimension on o-minimal structures (see
[1]) give already the universal Euler characteristic and universal dimension
in the sense of [9], [3], [4], and, as proved in [1], two M -definable sets are

∗This paper contains the results of the author’s master thesis, which was written under
the supervision of Jan Kraj́iček, and defended at the Department of Logic, Faculty of
Philosophy and Arts, Charles University in Prague in 2003.
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definably equivalent iff they have the same Euler characteristic and dimension
(as defined in [1]).

We denote by R = (R,<,+, ·) a real closed field (hence the R-definable
sets are exactly the semialgebraic sets), by S = (R,<,+, {λr : r ∈ R}), where
λr denotes left scalar multiplication by r, the reduct of R in which exactly the
semilinear sets are definable, and by B = (R,<,+, {λr : r ∈ R},B), where
B is a predicate for a bounded R-definable set which is not S-definable, the
reduct of R in which the definable sets are exactly the semibounded sets. By
[6], [8], B is the unique structure which lies properly between R and S. (As
above, we do not make a notational distinction between a structure and its
underlying set, as it should always be clear from the context which of the
two options applies.)

In the case of S and B, the standard definitions of Euler characteristic
and dimension on o-minimal structures do not give the universal variants. To
understand D̃ef(S), we introduce the notion of a basic cell (every basic cell is
a cell in the standard sense, but not vice versa), prove a basic cell decomposi-
tion theorem for S, and obtain a criterion for definable equivalence in terms
of basic cells: two semilinear sets are definably equivalent iff there are par-
titions of these sets into the same numbers of “same” basic cells. Two basic
cells are called the same if there is an affine bijection between them. From
this we obtain the Grothendieck ring and the universal dimension semiring
of S, and the fact that two semilinear sets are definably equivalent iff they
have the same universal Euler characteristic and universal dimension. More-
over, if M is an o-minimal expansion of a real closed field then two bounded
semilinear sets are M -definably equivalent iff there is a semilinear bijection
between them. Due to the results in [7], [2], and the Structure Theorem in
particular (it is proved in [7] for the reals, [2] proves a general version), semi-
bounded sets can be partitioned into sets that play the same role as basic
cells in the semilinear case. We use this fact and our results on semilinear
sets to prove that there is no semibounded bijection between two semilinear
sets that are not already semilinearly equivalent. This statement is related
to Shiota’s Hauptvermutung Theorem in [11]. As a corollary we obtain the
Grothendieck ring and the universal dimension on B.

Schanuel [9] defines Euler characteristic and the dimension function in the
abstract context of distributive categories. He mentions several examples,
and the categories of bounded and unbounded semilinear sets in particular,
and he states how the two functions should look in these examples. No proofs
are given in [9].
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2 Preliminaries

We briefly recall some basic facts and notions concerning o-minimal struc-
tures, as a general reference see [1].

A linearly ordered first order structure M is called o-minimal if the only
definable sets in M1 are finite unions of points and intervals. Let M be an
o-minimal structure, X a definable subset of Mk, and let f, g : Mk → M
be functions such that f(x) < g(x) for all x ∈ X, and f |X is definable and
continuous or constantly equal to −∞, and g|X is definable and continuous
or constantly equal to∞. Then (f, g)X := {(x, r) : x ∈ X, f(x) < r < g(x)}.
For any definable function f : Mk → M l, Γ(f |X) denotes the graph of f
restricted to X.

Definition 2.1. Let (i1, . . . , ik) be a sequence of 0 and 1 of length k ≥ 1. An
(i1, . . . , ik)-cell is a definable subset of Mk obtained by induction as follows:

1. A (0)-cell is a singleton, and a (1)-cell is an open interval with endpoints
in M ∪ {±∞}.
2. Suppose (i1, . . . , ik)-cells are already defined. Then an (i1, . . . , ik, 0)-cell is
a set of the form Γ(f |B0), where B0 is an (i1, . . . , ik)-cell and f : Mk → M
is a function that is definable and continuous on B0. An (i1, . . . , ik, 1)-cell is
a set of the form (f, g)B0 where B0 is an (i1, . . . , ik)-cell.

Theorem 2.2. (Cell Decomposition Theorem) If X ⊆ Mn is definable then
there is a partition of X into finitely many M-definable cells. Moreover,
if f : X → M , is a definable function then there is a partition of X into
finitely many M-definable cells such that the restriction of f to each of them
is continuous.

Definition 2.3. 1. An affine function on Rm is a function f : Rm → R of
the form

f(x1, . . . , xm) = λ1x1 + · · ·+ λmxm + λ0,

for some fixed λi ∈ R, i = 0, . . . ,m.

2. A basic semilinear set in Rm is a set defined by formulas of the form

f1(x) = · · · = fp(x) = 0, g1(x) > 0, . . . , gq(x) > 0,

where x = (x1, . . . , xm) ∈ Rm and fi, gj, for i = 1, . . . , p, q = 1, . . . , q, are
affine functions on Rm.

3. A semilinear set in Rm is a finite union of basic semilinear sets in Rm.
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For the rest of the paper we let R = (R,<,+, ·) be a real closed field and
S = (R,<,+, {λr}r∈R), where λr : R → R : x 7→ r · x denotes left scalar
multiplication by r, a reduct of R. Recall that the S-definable sets are exactly
the semilinear sets. We shall make use of the following lemma (see [1], p.27,
7.6):

Lemma 2.4. Each definable function in S is piecewise affine. More precisely:
given an S-definable function f : X → R, X ⊆ Rm, there is a partition of X
into basic semilinear sets Xi, i = 1, . . . , k, such that f |Xi is the restriction
of an affine function on Rm to Xi.

3 Euler Characteristic, Grothendieck Rings

and Abstract Dimension

Unless specified otherwise, M stands for an arbitrary first order structure.
We denote by Def∞(M) the family of all definable sets in all Mn, n ∈ N. If
X, Y ∈ Def∞(M), then X ∼ Y stands for X, Y being definably equivalent.
The set of all M -definable sets up to definable equivalence is denoted by
D̃ef(M), and, for X ∈ Def∞(M), [X] is the equivalence class of X in D̃ef(M).

We regard D̃ef(M) also as a structure in the language (+, ·, 0, 1) by defining:

• 0 := [∅];

• 1 := [{a}], where a ∈M ;

• [X] + [Y ] := [X ′∪̇Y ′], where X ′ ∈ [X], Y ′ ∈ [Y ];

• [X] · [Y ] := [X × Y ];

for [X], [Y ] ∈ D̃ef(M). Note that D̃ef(M) is a semiring (in [9] also called rig

- a ”ring without negatives”). Formally: (D̃ef(M),+, 0) and (D̃ef(M), ·, 1)
are commutative monoids related by a · 0 = 0 and by distributivity.

We recall some notions and facts from [9], [3] and [4].

Definition 3.1. A (weak) Euler characteristic on M with values in a com-
mutative ring with unity K is a function

χ : Def∞(M)→ K,

such that
χ = χ′ ◦ [ ],

where [ ] : Def∞(M) → D̃ef(M) : A 7→ [A] is the quotient map, and χ′ :

D̃ef(M)→ K is a (+, ·, 0, 1)-homomorphism.
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A strong Euler characteristic on M is a weak Euler characteristic on M
satisfying the fiber condition: if f : X → Y is a definable function, and there
is c ∈ K such that for all y ∈ Y , χ(f−1{y}) = c, then χ(X) = c · χ(Y ).

The fact that the values of χ are in K is sometimes denoted by χ/K.

Definition 3.2. The Grothendieck ring K0(M) of M is the ring obtained by

the following construction. We define an equivalence relation ∼e on D̃ef(M):

[A] ∼e [B] if there is [C] ∈ D̃ef(M) such that [A] + [C] = [B] + [C]. Let

M ′ = D̃ef(M)/ ∼e be the quotient semiring, then (M ′,+, 0) is a cancella-
tive monoid. The Grothendieck ring K0(M) is the unique minimal ring that
embeds M ′. The Euler characteristic χ0/K0(M) is called the universal Euler
characteristic.

The following theorem from [3] follows immediately from the definition of
K0(M). We recall that the onto-pigeonhole principle (ontoPHP) holds in a
structure M if there is no definable bijection between a definable set and the
same set without one element.

Theorem 3.3. K0(M) is nontrivial (i.e. 0 6= 1) iff M satisfies ontoPHP. If
χ : Def∞(M) → K is an Euler characteristic on M , then χ factors through
χ0.

Definition 3.4. An abstract dimension function on M is a semiring homo-
morphism d : D̃ef(M)→ D, where D is a semiring satisfying d(1+1) = d(1).

Remark. We may regard the semiring D in the definition above as an upper
semi-lattice 〈D, e,≤,∨, 0,⊕〉, where + on D̃ef(M) becomes ∨, · becomes ⊕,
0 becomes e, and 1 maps to 0.

Definition 3.5. The universal (abstract) dimension on M is the map

dimuniv ◦[ ] : Def∞(M)→ D(M),

where [ ] : Def∞(M) → D̃ef(M) : X 7→ [X] is the quotient map and dimuniv

is the universal map from D̃ef(M) to the semiring D(M), the quotient of

D̃ef(M) by the minimal congruence enforced by 1 + 1 = 1.

The semiring D(M) is constructed as follows. We define a congruence ∼d on

D̃ef(M) by [X] ∼d [Y ] if [X] ≤ [Y ] and [Y ] ≤ [X], where [X] ≤ [Y ] if there

is [Z] ∈ D̃ef(M) and n ∈ N such that

[X] + [Z] = [Y ] + · · ·+ [Y ]︸ ︷︷ ︸
n times

.
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Then D(M) is the quotient of D̃ef(M) by ∼d.
Note that D(M) is always nontrivial in the sense that [{a}] � [∅], and that
every abstract dimension function on M factors through dimuniv.

Example 3.6. 1. If M is a finite structure, then D(M) has cardinality 2.
The two dimensions are e (for the empty set) and 0 (for nonempty finite
sets).

2. Let Z be the ring of integers. Then Z-definable sets have three possible
dimensions corresponding to the empty set, finite sets and infinite sets.

In [1] Euler characteristic and dimension on definable sets in arbitrary o-
minimal structures are defined, based on the standard geometric intuition.
In particular, the Euler characteristic assumes always integers as values and
dimensions are natural numbers. In the case of an o-minimal expansion of
a real closed field, these definitions give already the universal Euler charac-
teristic and the universal dimension in the sense of the abstract definitions
from this section.

Definition 3.7. Let M be an o-minimal structure. If C is a (i1, . . . , ik)-cell
then its dimension is the natural number

dimC :=
k∑
j=1

ij.

The dimension of a nonempty set X ∈ Def∞(M) is defined to be

dimX := max{dimC : X contains a cell C}.

To the empty set we assign the dimension −∞.

Definition 3.8. Let M be an o-minimal structure. If C is a cell of dimension
d then its Euler characteristic is

E(C) := (−1)dimC .

To each X ∈ Def∞(M) we assign the Euler characteristic

E(X) :=
∑
C∈P

E(C),

where P is a finite partition of X into cells.

In [1] the following fact is proved:
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Theorem 3.9. Let M be an o-minimal expansion of a real closed field, and
let X, Y ∈ Def∞(M). Then X ∼ Y iff dimX = dimY and E(X) = E(Y ).

Corollary 3.10. If M is an o-minimal expansion of a real closed field, then
dim from Definition 3.7 is the universal dimension on M , and E from Defi-
nition 3.8 is the universal Euler characteristic on M .

Proof. If C1, C2 ∈ Def∞(M) are cells, such that dimC1 = dimC2, then
C1 ≤ C2 and C2 ≤ C1 by Theorem 3.9. So let X, Y ∈ Def∞(M) with
dimX = dimY = d. We partitionX, Y into cells, and let X ′, Y ′ respectively,
be exactly the union of the set of cells of dimension d in the given partition
of X, Y respectively, into cells. Then X ′ ≤ Y ′ and Y ′ ≤ X ′, and obviously
X −X ′ ≤ Y ′ and Y − Y ′ ≤ X ′, so X ≤ Y and Y ≤ X.

To see that E is universal, let X, Y ∈ Def∞(M) with E(X) = E(Y ). Take
C ∈ Def∞(M), disjoint from X, Y , such that max{dimX, dimY } ≤ dimC.
Then dim (X ∪ C) = dim (Y ∪ C) and E(X∪C) = E(Y ∪C). From Theorem
3.9 it follows that X ∪ C ∼ Y ∪ C.

4 Cell Decomposition for S

We introduce here a slightly more restricted notion of cell for S than in
Definition 2.1, which we call basic cell, and we prove that every S-definable
set can be partitioned into a finite number of basic cells. We classify basic
cells not only with regard to their geometric dimension but also with respect
to what we call the number of infinite directions. For instance, there is no
definable bijection between a bounded and an unbounded interval in S, even
though they are both (1)-cells by Definition 2.1. Every basic cell is a cell as
defined in 2.1 but not conversely. Roughly speaking, we take as basic cells
only cells that are bounded by a minimal number of affine functions. For
example the bounded two-dimensional cells will be triangles but not squares.
The reason for this is that even though there is a definable bijection between
a triangle and a square in the semilinear case, this bijection is not affine.

We use a notation of the form 〈a0, . . . , ad−e; ~u1, . . . , ~ue〉 for basic cells.
There are points as well as vectors involved in this notation and we make
this distinction for two reasons: firstly, a point indicates a vertex of a basic
cell, whereas a vector indicates an infinite direction. Secondly, applying an
affine function f(x1, . . . , xm) = λ1x1 + · · · + λmxm + λ0 to a point means
something different than applying it to a vector:
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f(a) = λ1(a)1 + · · ·+ λm(a)m + λ0

f(~u) = λ1(~u)1 + · · ·+ λm(~u)m,

since f(~u) = f(u1)−f(u0), where u0, u1 are points for which ~u = u1−u0. By
(a)i we denote the ith coordinate of the point a, and (~u)i denotes (u1)i−(u0)i.

Definition 4.1. A (d, e)-basic cell, where d, e are positive integers with e ≤ d,
is an S-definable set defined by induction as follows:

1. A (0, 0)-basic cell is a singleton {a0}, a0 ∈ R; we denote it by 〈a0; 〉. A
(1, 0)-basic cell is a bounded interval (a0, a1) with endpoints in R, denoted
by 〈a0, a1; 〉. A (1, 1)-basic cell is any of the intervals (−∞, a0), (a0,+∞),
where a0 ∈ R, and it is denoted by 〈a0; ~u1〉, where ~u1 = u1 − a0, u1 ∈ R and
u1 < a0, a0 < u1 respectively.

2. Let B0 = 〈a0, . . . , ad−e; ~u1, . . . , ~ue〉 ⊆ Rn be a (d, e)-basic cell.

2.1 Then B = Γ(f |B0) ⊆ Rn+1, where f is an affine function on Rn, is also
a (d, e)-basic cell; B is denoted by

〈(a0, f(a0)), . . . , (ad−e, f(ad−e)); (~u1, f(~u1)), . . . , (~ue, f(~ue))〉,

where f(~ui) = f(u)− f(a0) for ~ui = u− a0.

2.2 Let f, g be affine functions on Rn, and let

Γ(f |B0) = 〈b0, . . . , bd−e;~v1, . . . , ~ve〉,
Γ(g|B0) = 〈c0, . . . , cd−e; ~w1, . . . , ~we〉.

2.2.1 Then B = (f, g)B0 is a (d+ 1, e)-basic cell if the set of points

M = {b0, . . . , bd−e, b0 + ~v1, . . . , b0 + ~ve, r}

is affine independent for exactly one

r ∈ {c0, . . . , cd−e, b0 + ~w1, . . . , b0 + ~we}

and this r is of the form ci for some i = 0, . . . , d − e; we shall write B =
〈b0, . . . , bd−e, ci;~v1, . . . , ~ve〉.
2.2.2 (f, g)B0 is a (d + 1, e + 1)-basic cell if M is affine independent for
exactly one r ∈ {c0, . . . , cd−e, b0 + ~w1, . . . , b0 + ~we} and this r is of the form
b0+ ~wj for some j = 1, . . . , e, or exactly one of the functions f, g is constantly
−∞, +∞ respectively; B is denoted by 〈b0, . . . , bd−e;~v1, . . . , ~ve, ~s〉, where ~s is
either ~wj or the vector (b0, f(b0)− 1)− (b0, f(b0)), (b0, f(b0) + 1)− (b0, f(b0))
respectively.
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We write shortly (d, e)-cell instead of (d, e)-basic cell. Here are some examples
of basic cells in R2: the triangle 〈(0, 0), (1, 0), (1, 1); 〉 is a (2, 0)-basic cell (note
however that not every triangle is a basic cell), the open first quadrant is a
(2, 2)-basic cell and the set {(x1, x2) : 2 < x1 < 3 & x2 > 0} is a (2, 1)-basic
cell.

If B0 = 〈a0, . . . , ad−e; ~u1, . . . , ~ue〉 is a (d, e)-cell, then the set of points
{a0, . . . , ad−e, a0 + ~u1, . . . , a0 + ~ue} is affine independent, and dimB = d. We
call a0, . . . , ad−e the vertices of B, and e the number of infinite directions of
B, shortened nid(B).

Lemma 4.2. Let B = 〈a0, . . . , ad−e; ~u1, . . . , ~ue〉 be a basic cell, B ⊆ Rn.
Then

B = {
d−e∑
i=0

tiai +
e∑
j=1

t′j~uj :
d−e∑
i=0

ti = 1, ti, t
′
j > 0, ti, t

′
j ∈ R}.

Proof. First note that if the lemma holds for a (d, e)-cell B0 ⊆ Rn, then it
also holds for a (d, e)-cell of the form Γ(f |B0) ⊆ Rn+1: let

B0 = 〈a0, . . . , ad−e; ~u1, . . . , ~ue〉,

let f(x) = λ1x1 + · · · + λnxn + λ0 be an affine function on Rn, and sup-
pose that x = (x1, . . . , xn) ∈ B0 iff x =

∑d−e
i=0 tiai +

∑e
j=1 t

′
j~uj for some ti,

t′j > 0 with
∑d−e

i=0 ti = 1. Then xn+1 = λ1x1 + · · · + λnxn + λ0 iff xn+1 =∑d−e
i=0 tif(ai) +

∑e
j=1 t

′
jf(~uj). Hence (x1, . . . , xn+1) ∈ B iff (x1, . . . , xn+1) =∑d−e

i=0 ti(ai, f(ai)) +
∑e

j=1 t
′
j(~uj, f(~uj)), for some ti, t

′
j > 0 with

∑d−e
i=0 ti = 1.

We proceed by induction on d, e:

1. For (0, 0)- , (1, 0)- , and (1, 1)-cells the lemma clearly holds.

2.1. We assume that the lemma holds for (d,d)-cells, and want to derive
it for (d + 1, d + 1)-cells. Let B0 = 〈a0; ~u1, . . . , ~ud〉 be a (d, d)-cell, and let
B = (f, g)B0 be a (d + 1, d + 1)-cell. The cases when f is −∞ or g is +∞,
are easy to check and left to the reader. So let Γ(f |B0) = 〈b0;~v1, . . . , ~vd〉,
Γ(g|B0) = 〈b0; ~w1, . . . , ~wd〉, and let for exactly one l ∈ {1, . . . , d} the set

{b0, b0 + ~w1, . . . , b0 + ~wd, b0 + ~vl}

be affine independent. To see that

{t(b0 +
∑d

j=1 t
′
j~vj) + (1− t)(b0 +

∑d
j=1 t

′
j ~wj) : t′j > 0, 0 < t < 1}

⊆ {b0 +
∑d

j=1 sj ~wj + s~vl : sj, s > 0}
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use
x = t(b0 +

∑d
j=1 t

′
j~vj) + (1− t)(b0 +

∑d
j=1 t

′
j ~wj)

= b0 +
∑l−1

j=1 t
′
j ~wj +

∑d
j=l+1 t

′
j ~wj + ttl~vl + (1− t)t′l ~wl.

We put sj := t′j for j ∈ {1, . . . , l− 1, l+ 1, . . . , d}, sl := (1− t)t′l and s := tt′l.
Clearly, s > 0, sj > 0 for all j = 1, . . . , d.

For the other inclusion let x = b0 +
∑d

j=1 sj ~wj + s~vl, for sj, s > 0 and
j = 1, . . . , d. Put t′j := sj for j ∈ {1, . . . , l − 1, l + 1, . . . , d}, (1 − t)t′l := sl,
and tt′l := s. From t = s

sl+s
it follows that 0 < t < 1.

2.2. It is now obvious how to derive from the assumption that the lemma
holds for (d, e)-cells, that it also holds for (d+ 1, e)-cells.

Remark. As the convex hull of a set {a0, . . . , ak} ⊆ Rn is the set of all
points

∑k
i=0 tiai with

∑k
i=0 ti = 1, ti ≥ 0, it is now easy to see that a basic

cell 〈a0, . . . , ad−e; ~u1, . . . , ~ue〉 is the union of the interiors of the convex hulls
of the sets {a0, . . . , ad−e, a0 + t~u1, . . . , a0 + t~ue} for t→∞, t > 0.

In the following definition “cell” is used in the sense of Definition 2.1.

Definition 4.3. (Decomposition of a Cell)

1. Every partition of a cell B ⊆ R into finitely many cells is a decomposition
of B.

2. Let m ≥ 1. A decomposition of a cell B ⊆ Rm+1 is a partition D of B
into finitely many cells such that π{D} = {π(P );P ∈ D} is a decomposition
of π(B) ⊆ Rm, where π : Rm+1 → Rm is the projection onto the first m
coordinates.

Lemma 4.4. For each S-definable cell B there is a decomposition of B into
basic cells.

Proof. Let B, B0 be cells definable in S such that B = (f, g)B0 , or B =
Γ(f |B0). By Lemma 2.4 and by Theorem 2.2, we may assume that f , g are
affine functions, or constantly −∞, ∞ respectively. Also note that if D is
a decomposition of B0 into basic cells, then D′ = {Γ(f |Bi);Bi ∈ D} is a
decomposition of B = Γ(f |B0) into basic cells. The proof of the lemma is by
induction on the dimension of B.

I. For dimB = 0 and dimB = 1 the lemma holds trivially.
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II. Suppose the lemma holds for cells of dimension less or equal to d. Let
B0 = 〈a0, . . . , ad−e; ~u1, . . . , ~ue〉 ⊆ Rn and let B = (f, g)B0 . If f is constantly
−∞ and g is an affine function, or if g is constantly +∞ and f is an affine
function, then B itself is a basic cell. If f is −∞ and g is +∞, then we can
decompose B into the basic cells (f, o)B0 , B0, (o, g)B0 , where o : Rn → R
denotes the function constantly 0.

So let B = (f, g)B0 with

Γ(f |B0) = 〈b0, . . . , bd−e;~v1, . . . , ~ve〉,
Γ(g|B0) = 〈c0, . . . , cd−e; ~w1, . . . , ~we〉.

We may assume that bp 6= cp iff p ∈ {0, . . . , r}, where −1 ≤ r ≤ (d − e),
and that {~v1, . . . , ~ve, ~wq} is linearly independent iff q ∈ {1, . . . , s}, where
0 ≤ s ≤ e.

Claim Let

S1 = {〈b0, . . . , bp, cp, . . . cd−e; ~w1, . . . , ~we〉 : p ∈ {0, . . . , r} 6= ∅},
S2 = {〈b0, . . . , bd−e;~v1, . . . , ~vq, ~wq, . . . , ~we〉 : q = {1, . . . , s} 6= ∅},

and F1 consists of all basic cells of the form

〈b0, . . . , bp, cp+1, . . . , cd−e; ~w1, . . . , ~we〉,

for p, p+ 1 ∈ {0, . . . , r}, or p = r and s ≥ 1, and F2 consists of all basic cells
of the form

〈b0, . . . , bd−e;~v1, . . . , ~vq, ~wq+1, . . . , ~we〉,
such that q, q + 1 ∈ {1, . . . , s}, or q + 1 = 1 and r ≥ 0. Then D = S1 ∪ S2 ∪
F1 ∪ F2 is a decomposition of B into basic cells.

Clearly, if B ∈ D then B is a basic cell and π(B) = B0. The proof of the claim
is now a corollary of the remark made directly before Definition 4.3 and the
following lemma which is proved in [1], p.122 (it is of course also possible to
generalize the proof of Lemma 4.5 in a completely straightforward way to our
setting). Below we assume that (a0, . . . , ad) is a d-simplex in Rn, ri, si ∈ R,
ri ≤ si for i = 0, . . . , d, and rj < sj for some j, and that bi := (ai, ri),
ci := (ai, si) ∈ Rn+1.

Lemma 4.5. Let L consist of all (d+1)-simplexes (b0, . . . , bi, ci, . . . , cd) with
bi 6= ci, and all faces of these (d+ 1)-simplexes. Then L is a closed complex
and

|L| = {t(t0b0 + · · ·+ tdbd) + (1− t)(t0c0 + . . . tdcd) :
0 ≤ t ≤ 1, ti ≥ 0,

∑
ti = 1}

= convex hull of {b0, . . . , bd, c0, . . . cd}.
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The next corollary follows immediately by Theorem 2.2 and Lemma 4.4.

Corollary 4.6. Every semilinear set can be decomposed into a finite number
of basic cells.

An affine bijection is a bijection f : Rm → Rn such that f = (f1, . . . , fn),
with fi : Rm → R an affine function for every i = 1, . . . , n. We show that
affine bijections map (d, e)-basic cells onto sets that are “almost” (d, e)-basic
cells: they preserve all their characteristic features except their positions in
the ambient space. Images of basic cells under affine bijections are called
(d, e)-sets below.

Definition 4.7. A set X ⊆ Rn is a (d, e)-set if

X = {
d−e∑
i=0

tiai +
e∑
j=1

t′j~uj : ti, t
′
j ∈ R,

d−e∑
i=0

ti = 1, ti, t
′
j > 0},

where ai ∈ Mn, for i = 0, . . . , d − e, ~uj is a vector in Mn, for j = 1, . . . , e,
and the set of points {a0, . . . , ad−e, a0 +~u1, . . . , a0 +~ue} is affine independent.

Lemma 4.8. If X is a (d, e)-set and f is an affine bijection on X, then
f(X) is a (d, e)-set.

Proof. Let X = {
∑d−e

i=0 tiai +
∑e

j=1 t
′
j~uj :

∑d−e
i=0 ti = 1, ti, t

′
j > 0} ⊆ Rm be a

(d, e)-set, and let f : X → f(X) ⊆ Rn be an affine bijection given by

f(x) = Ax+ λ,

where A is an n×m-matrix, and λ is an n× 1 matrix, both with entries in
R. We put bi := Aai + λ for i = 0, . . . , d− e, and ~vj := A~uj for j = 1, . . . , e.

It is easily checked that for x =
∑d−e

i=0 tiai +
∑e

j=1 t
′
j~uj ∈ X,

f(x) =
d−e∑
i=0

tibi +
e∑
j=1

t′j~vj.

Since f is a definable bijection, dimX = dim f(X). Hence the set

{b0, . . . , bd−e, b0 + ~v1, . . . , b0 + ~ve}

is affine independent. So f(X) is a (d, e)-set.
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Definition 4.9. Let M be a (d1, e1)-set and N a (d2, e2)-set. We say that
M , N are equal if d1 = d2 & e1 = e2.

Corollary 4.10. Let X,Y ∈ Def∞(S). Then X ∼ Y iff there are partitions
of X, Y into the same numbers of equal (d, e)-sets.

Proof. It is clear from the proof of Lemma 4.8 how to define a bijection
between two equal (d, e)-sets.

So let f be an S-definable bijection between X and Y . By Lemma 2.4, f
is a finite union of affine bijections defined on basic semilinear sets X1, . . . Xg,
which form a partition of X. We take a decomposition D of X into basic
cells such that D is a refinement of {X1, . . . Xg} and apply Lemma 4.8.

5 The Grothendieck Ring of S

It follows by Corollary 4.10 that S-definable sets are finite unions of points
and sets generated by bounded and unbounded intervals (a, b) = i and
(a,∞) = p, where a, b ∈ R. Note that for any Euler characteristic χ on S with
values in a commutative ring with unity K, χ({a}) = 1 and χ((a, b)) = −1,
since (a, b)∪{b}∪ (b, c) ∼ (a, c). Let us denote χ((a,∞)) ∈ K by x. We may
then think of the χ-values of (d, e)-sets as of monomials, and of definable
sets as polynomials from Z[x]. The question is, under what conditions can
we add a set to two sets not definably equivalent in order to obtain definably
equivalent ones? In other words, when are two non-equivalent sets forced
to have the same Euler characteristic? That is, which polynomials in Z[x]
are forced to equal to 0? Surely x2 = x2 + x + x2, because we can partition
p× p into (sets definably equivalent to) p× p, p, p× p. This partition shows
that x(x + 1) = 0 has to be true in K0(S). It follows that in order to ob-
tain the Grothendieck ring K0(S), we have to factorize Z[x] at least by the
ideal generated by the polynomial x(x + 1). In this section we prove that
Z[x]/(x(x+ 1)) is already K0(S).

Remark. By the Chinese Remainder Theorem,

Z[x]/(x(x+ 1)) ∼= Z[x]/(x)⊕ Z[x]/(x+ 1) ∼= Z
2,

and Z[x]/(x(x + 1)) ∼= Z
2 via ι : [f(x)] 7→ (f(0), f(−1)). So the Euler

characteristic of a (d, e)-set X as calculated in Z2 is (−1)d−e = ((−1)d, (−1)d)
if e = 0, and (−1)d−exe = (0, (−1)d) if e > 0.

Definition 5.1. Let X ∈ Def∞(S), and let P be a finite partition of X into
(d, e)-sets. We define a function χP : Def∞(S)→ Z

2 as follows.
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1. If X is a (d, e)-set, then

χP (X) = ((−1)d, (−1)d) if e = 0, and
χP (X) = (0, (−1)d) if e > 0.

2. If X ∈ Def∞(S), X 6= ∅, then

χP (X) =
∑
M∈P

χP (M).

For X = ∅ we put χP (X) = (0, 0).

After we show that χP is independet of the given partition P , we shall omit
the index P .

Lemma 5.2. If X ∈ Def∞(S) and P1, P2 are finite partitions of X into
(d, e)-sets, then χP1(X) = χP2(X).

Proof. First, let X be a (d, e)-set. Note that every partition of X into finitely
many (d, e)-sets is obtained by applying the operations from 1. and 2. finitely
many times.

1.“Cutting” X by a (d − 1, 0)-set and obtaining a partition P of X into a
(d,0)-, a (d− 1, 0)-, and a (d, e)-set.

2.“Cutting” X by a (d − 1,m)-set and obtaining a partition P of X into a
(d, l)-, a (d− 1,m)-, and a (d, e)-set, where e, l,m > 0.

In both cases it is easily checked that χ(X) = χP (X).
So let X ∈ Def∞(S), and let P1, P2 be finite partitions of X into (d, e)-

sets. By Lemma 4.4 there is a decomposition D of X into basic cells, and we
may assume that D partitiones every (d, e)-set in P1 ∪ P2. Then

χP1(X) =
∑
N∈P1

∑
B∈D|N

χ(B) = χD(X) =
∑
N∈P2

∑
B∈D|N

χ(B) = χP2(X).

Theorem 5.3. χ/Z2 is the universal Euler characteristic on S.

Proof. By Corollary 4.10, if X, Y ∈ Def∞(S), X ∼ Y , then χ(X) = χ(Y ). It
is immediate from the definition that χ({a}) = 1Z = (0, 1), and χ(X∪̇Y ) =
χ(X)+χ(Y ), for X,Y ∈ Def∞(S). So it is left to see that if X,Y ∈ Def∞(S),
then χ(X × Y ) = χ(X) · χ(Y ). It is enough to check this for (d, e)-sets and
left to the reader. Hence χ is an Euler characteristic on S.

That χ is universal follows now immediately from the considerations made
in the beginning of this section.
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Corollary 5.4. S satisfies ontoPHP .

Note that Corollary 5.4 follows already from the fact that the standard o-
minimal Euler characteristic is nontrivial.

Lemma 5.5. χ/Z2 is a strong Euler characteristic on S.

Proof. Suppose X ⊆ Rm, Y ⊆ Rn and f : X → Y is an S-definable function,
such that for every y ∈ Y , χ(f−1{y}) = c for a fixed c ∈ Z2. After possibly
permuting the coordinates, we may assume that rng(f) ⊆ πn(Γ(f)), where
πn : Rn+m → Rn is the projection onto the first n coordinates. Let D be a
decomposition of Γ(f) into basic cells, and let B ∈ D, B0 = πn(B), so B0 ⊆
rng(f). We let dim(B0) = d1, and we fix a y0 ∈ B0. Then dim(B) = d1 + d2,
where d2 = dim {x : (y0, x) ∈ B}.

1. If nid(B0) > 0, then also nid(B) > 0, and

χ(B) = (0, (−1)d1+d2) = χ(B0) · χ({x : (y0, x) ∈ B}).

2. If nid(B0) = 0 and also nid(B) = 0, then

χ(B) = ((−1)d1+d2 , (−1)d1+d2) = χ(B0) · χ({x : (y0, x) ∈ B}).

If nid(B0) = 0 and nid(B) > 0, then

χ(B) = (0, (−1)d1+d2) = χ(B0) · χ({x : (y0, x) ∈ B}).

In the sums below we assume that D = {Bij : i = 1, . . . k and j = 1, . . . , ei},
Bl = πn(Bij) iff l = i and j ∈ {1, . . . , ei}, and yi ∈ Bi for i = 1, . . . , k.

χ(Γ(f)) =
∑k

i=1

∑ei
j=1 χ(Bij) =

=
∑k

i=1

∑ei
j=1 χ(Bi) · χ({x : (yi, x) ∈ Bij)} =

=
∑k

i=1 χ(Bi) · c = χ(rng(f)) · c.
Now χ(Γ(f)) = χ(dom(f)), because f is piecewise affine. Hence χ(X) =
χ(Y ) · c.

6 Abstract Dimension on S

Recall that by Lemma 4.4 and Corollary 4.10, we may identify the elements of
Def∞(S) with polynomials from N[x, y]. In particular,

∑
i,j aijx

iyj ∈ N[x, y]
corresponds to X ∈ Def∞(S) such that there is a partition P of X into
(d, e)-sets with the number of (i, j)-sets in P being aij.
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Definition 6.1. We define an ordering � on N[x, y] as follows.

1. Let adex
dye, aklx

kyl ∈ N[x, y], with ade, akl 6= 0. Then

adex
dye � aklx

kyl if d ≤ k& e ≤ l.

2. Let f, g ∈ N[x, y], then

f � g if for every m ∈ max f there is m′ ∈ max g with m � m′,

where max f denotes the set of �-maximal monomials of f with omitted
coefficients.

3. If o stands for the zero polynomial, then o � f , for every f ∈ N[x, y].

Observe that for X ∈ Def∞(S), and f1, f2 ∈ N[x, y] two representations of X
corresponding to finite partitions P1, P2 of X into (d, e)-sets, max f = max g
(see e.g. the proof of Lemma 5.2).

Definition 6.2. We let D be the semiring

〈D, 0D, 1D,+D, ·D〉,

where D ⊆ N[x, y] such that f ∈ D iff all coefficients of f are 1 and for every
two distinct monomials xdye, xkyl of f , ¬xdye � xkyl and ¬xkyl � xdye.

The operations +D, ·D are defined for f, g ∈ D by

f +D g =
∑

max (f + g),
f ·D g =

∑
max (f · g),

where the symbol
∑

max f means that we sum up the �-maximal elements
of f . We put 0D := o, the zero-polynomial, and 1D := 1.

Definition 6.3. Let [X] ∈ D̃ef(S), and let f ∈ N[x, y] correspond to X. We

define a semiring homomorphism DIM : D̃ef(S)→ D by

DIM([X]) :=
∑

max f.

Note that by Corollary 4.10 and by the remark directly preceding Definition
6.2, DIM is well-defined. Clearly, DIM is indeed a semiring homomorphism.

Lemma 6.4. DIM ◦ [ ] is the universal dimension on S.
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Proof. It is immediate from the definition of DIM that for [X] ∈ D̃ef(S),
DIM([X]) = DIM([X]) + DIM([X]). That DIM ◦ [ ] is universal follows from
the fact that a (d, e)-set can be S-definably embedded into a (k, l)-set iff
k ≥ d and l ≥ e.

Theorem 6.5. Let X, Y ∈ Def∞(S). Then

X ∼ Y iff χ(X) = χ(Y ) & DIM([X]) = DIM([Y ]).

Proof. The left to right direction follows by Corrolary 4.10.
For the other implication, let X, Y ∈ Def∞(S) be such that χ(X) = χ(Y )

and DIM([X]) = DIM([Y ]). Note that every (d, e)-set X with d, e > 0 can
be partitioned into a (d, e)-set, a (d− 1, e− 1)-set and a (d, e− 1)-set, that if
d = e > 1 then X can be partitioned into two (d, d)-sets and a (d− 1, d− 1)-
set, and that if 0 < e < d, then X can be partitioned into two (d, e)-sets and
a (d− 1, e)-set. 1

Let P1, P2 respectively, be finite partitions of X, Y respectively, into
(d, e)-sets. We may write informally

X = a00+
a10x+ a11xy+
a20x

2 + a21x
2y + a22x

2y2+
. . .

and
Y = b00+

b10x+ b11xy+
b20x

2 + b21x
2y + b22x

2y2+
. . . ,

where ade denotes the number of (d, e)-sets in P1 and bde denotes the number
of (d, e)-sets in P2. To prove the theorem, it is enough to construct partitions
P ′1, P

′
2 of X, Y into (d, e)-sets such that ade = bde for all d, e.

So let (k, l) be such that there is a �-maximal (k, l)-set in P1, P2. Note
that using the partitions given in the beginning of the proof, we may assume

1More concretely: we let B = 〈a0, . . . , ad−e; ~u1, . . . , ~ue〉. If d, e > 0,
then B = 〈a0, a1, . . . , ad−e, a0 + ~u1; ~u2, . . . , ~ue〉 ∪ 〈a1, . . . , ad−e, a0 + ~u1; ~u2, . . . , ~ue〉
∪〈a1, . . . , ad−e, a0 + ~u1; ~u1, . . . , ~ue〉, if d = e > 1, then B = 〈a0; ~u1 + ~u2, ~u2, . . . , ~ud〉 ∪
〈a0; ~u1, ~u1 + ~u2, ~u3, . . . , ~ud〉 ∪ 〈a0; ~u1 + ~u2, ~u3, . . . , ~ud〉, and finally if 0 < e <
d, then B = 〈a0+a1

2 , a1, . . . , ad−e; ~u1, . . . , ~ue〉 ∪ 〈a0,
a0+a1

2 , a3, . . . , ad−e; ~u1, . . . , ~ue〉 ∪
〈a0+a1

2 , a3, . . . , ad−e; ~u1, . . . , ~ue〉.
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that ade, bde 6= 0 for all (d, e) � (k, l). If akl > bkl (the case akl < bkl is
treated similarly), then clearly (k, l) 6= (0, 0) and (k, l) 6= (1, 1). If k = l then
replace bkk by (bkk + 1), and b(k−1)(k−1) by (b(k−1)(k−1) + 1) (this corresponds
to a partition of a (k, k)-set into two (k, k)-sets and a (k − 1, k − 1)-set). If
0 < l < k then replace bkl by (bkl + 1) and b(k−1)l by (b(k−1)l + 1) (which
corresponds to a partition of a (k, l)-set into two (k, l)-sets and a (k − 1, l)-
set). Repeat this procedure as long as akl > bkl, once akl = bkl, compare
ak(l−1), bk(l−1) and do the same, once ak0 = bk0, compare a(k−1)l, b(k−1)l and
proceed as above.

Since χ(X), χ(Y ) remain the same independently of the partitions of X
and Y into (d, e)-sets, eventually we obtain a00 = b00. After applying the
above procedure to all �-maximal (d, e)-sets in P1, P2, we obtain the desired
partitions P ′1, P ′2.

Corollary 6.6. Let M be an o-minimal expansion of a real closed field and
let X, Y be two bounded semilinear sets. If X, Y are definably equivalent in
M , then X, Y are already S-definably equivalent.

Proof. Two bounded semilinear sets have the same universal Euler charac-
teristic iff they have the same o-minimal Euler characteristic, and they have
the same universal abstract dimension iff they have the same o-minimal di-
mension.

7 Semibounded Sets

As shown in [6] (for the reals), [8] (generally) there is exactly one o-minimal
structure properly between S and R, namely

B = (R,+, <, {λr : r ∈ R},B),

where B is a bounded semialgebraic set that is not semilinear (standardly, B
is taken to be the graph of multiplication in R restricted to [0, 1]2). Note that
then all bounded R-definable sets are B-definable. We call the B-definable
sets semibounded.

From our results on semilinear sets and from the Structure Theorem from
[2], [7] (in [7] the author is working over the reals, in [2] a general version of
the Structure Theorem is proved) we shall derive that K0(B) = K0(S). We
use here a more restricted definition of semibounded set than in [2], so we
begin by stating the definitions and results from [2], [7] explicitly in the form
we need them.
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Definition 7.1. 1. Let X ⊆ Rn be a B-definable set. We call X almost
linear if there are nonzero vectors ~v1, . . . , ~vk in Rn, k ≥ 0, and a bounded
B-definable cell C ⊆ Rn such that

X = {c+
k∑
j=1

tj~vj : c ∈ C, tj > 0}.

An almost linear set X is in normal form if for each x ∈ X there are unique
t1, . . . , tk > 0 and a unique c ∈ C such that x = c+

∑k
j=1 tj~vj (in particular

the set {~v1, . . . , ~vk} is linearly independent).

2. Let X ⊆ Rn be almost linear in normal form and let f : X → R be a
continuous map. We say that f is almost linear with respect to X if there
is a map f̂ : X̂ → R, where X̂ = {c +

∑k
j=1 tj~vj : c ∈ C, tj ≥ 0}, such that

f̂ extends f , f̂ |C is a bounded function and, for some scalars m1, . . . ,mk,

f̂(c+
k∑
j=1

tj~vj) = f̂(c) +
k∑
j=1

tjmj,

for all c ∈ C and all tj ≥ 0, j = 1, . . . , k.

Note that the function f̂ in the definition above is unique, that if X is
almost linear in normal form and f is linear with respect to X, then Γ(f |X)
is almost linear in normal form, and that dimX = dimC + k (where dim is
the standard o-minimal dimension).

Theorem 7.2. (Structure Theorem) Let X ⊆ Rn be B-definable. Then

1. X can be partitioned into finitely many almost linear sets in normal form.

2. if X is the graph of a B-definable function f : Y → R for some Y ⊆ Rn−1,
then Y can be partitioned into finitely many almost linear sets with respect
to f .

Note that it is implicit in the Structure Theorem that there is no B-definable
bijection between a bounded and an unbounded interval.

Lemma 7.3. Every semibounded set is B-equivalent to a semilinear set.

Proof. Due to the Structure Theorem it suffices to show that every almost
linear set in normal form is B-equivalent to a semilinear set. We claim that
the almost linear set in normal form

X = {c+
e∑
j=1

t′j~vj : c ∈ C , t′j > 0}
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is B-equivalvalent to a (d, e)-set of the form

Y = {
d−e∑
i=0

tiai +
e∑
j=1

t′j~uj :
d−e∑
i=0

ti = 1 , ti, t
′
j > 0},

where d = dimC + e. Since all the bounded semialgebraic sets are B-
definable, all the bounded semibounded cells of same dimension are B-
definably equivalent by Theorem 3.9. Let f be a semibounded bijection
between {

∑d−e
i=0 tiai :

∑d−e
i=0 ti = 1, ti > 0} and C. We define a bijection

f ′ : Y → X by

f ′(
d−e∑
i=0

tiai +
e∑
j=1

t′j~uj) = f(
d−e∑
i=0

tiai) +
e∑
j=1

t′jf
′(~uj),

where f ′(~uj) = ~vj, for all j = 1, . . . , e.

Definition 7.4. Let X = {c +
∑e

j=1 tj~vj : c ∈ C1 , tj > 0} and let Y =

{c +
∑l

j=1 tj ~wj : c ∈ C2 , tj > 0} be almost linear sets in normal form. We
say that X, Y are equal if dimC1 = dimC2 and e = l.

Lemma 7.5. Let X, Y ∈ Def∞(B). Then X ∼B Y iff there are partitions
of X, Y into the same numbers of equal almost linear sets in normal form.

Proof. The right to left implication follows by the proof of Lemma 7.3 and
by Corollary 4.10.

For the other implication, let f be a B-definable bijection between X
and Y . We may assume that X, Y ⊆ Rn and that f is given by the tuple
of functions (f1, . . . , fn), where fi : Rn → R, i = 1, . . . , n. By the Structure
Theorem, there is a finite partition P of X into almost linear sets in normal
form, such that fi|M is almost linear with respect to M , for each M ∈ P
and for every i = 1, . . . , n. Let M = {c +

∑e
j=1 tj~uj : c ∈ C, tj > 0}. Then

for every x ∈M ,

f1(x) = f̂1(c) +
∑e

j=1 tjm1j

...

fn(x) = f̂n(c) +
∑e

j=1 tjmnj,

where mij are scalars, i = 1, . . . , n. Clearly, f̂(C) is a cell of dimension
dimC, and f(X) is an almost linear set in normal form.
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By Lemma 7.5, K0(B) is a quotient of Z2. We shall show that there are
no semilinear sets, that are semiboundedly but not semilinearly equivalent,
hence that K0(B) = Z2.

Theorem 7.6. If X, Y ∈ Def∞(S) and X ∼B Y , then X ∼S Y .

Proof. By Theorem 6.5, it is enough to show that χ(X) = χ(Y ) (as defined
in 5.1) and DIM(X) = DIM(Y ). Since semibounded bijections preserve the
standard o-minimal dimension and the number of infinite directions, there
has to be DIM(X) = DIM(Y ).

Assume χ(X) 6= χ(Y ) for χ as defined in 5.1. The polynomials χ(X),
χ(Y ) are equal in K0(B). Take any partitions P1, P2 of X, Y into (d, e)-sets,
we have χP1(X) 6= χP2(Y ) in K0(S). There have to be refinements P ′1, P ′2 of
P1, P2 that partition X, Y into almost linear sets in normal form such that
P ′1, P ′2 contain the same numbers of equal almost linear sets in normal form.
So χP ′1(X) = χP ′2(Y ) also in K0(S) (when calculating we regard a (d, e)-
almost linear set in normal form as a (d, e)-set) but this is a contradiction
with the fact that any such P ′1, P ′2 preserve the χ-values.

Corollary 6.6 and Theorem 7.6 are related to the Hauptvermutung Theorem
of Shiota [11]. He proves that two semilinear sets are semilinearly equivalent
assuming that they are equivalent in an X-system (which is a geometric
category that corresponds - when restricted to bounded sets - to o-minimal
expansions of the real field), but also assuming that they are compact. For
the relation between o-minimal structures and X-systems see [10].

Corollary 7.7. K0(B) = K0(S).

Corollary 7.8. The dimension semiring D(B) is isomorphic to D(S).

Remark. The universal Euler characteristic on B is a strong Euler charac-
teristic on B. The same proof as in the semilinear case goes through.
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