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Abstract

In [1], Ealy and Mafikové proved the following: Let R be an o-
minimal field in a language £, let V' be a convex subring, and let
(Ro, Vo) be an elementary substructure of (R,V). Then (R,V) is
model-complete in the language Lr, U{V '} relative to quantifier elimi-
nation in R and provided that the residue field of (R, V') with structure
induced by R is o-minimal.

Here we show that “is model-complete” above can be replaced
by “eliminates quantifiers”. Consequently, Th(R, V) is universally
axiomatisable and has definable Skolem functions.

1 Introduction

We use the same set-up as in [1]: We let R be an o-minimal field (i.e. an
o-minimal expansion of a real closed field), and V' a convex subring of R with
corresponding residue field k. We assume (unless indicated otherwise) that
the structure on k induced from R is o-minimal. By [1], the structure on k
induced from R is the same as the structure induced from (R, V).

We let (Ro, Vp) be an elementary substructure of (R, V'), and we consider
(R,V) in the language Lg, U {V'}, where L is the language of R. (Thus,
Lr, U{V} is the language £ expanded by a predicate for the convex subring
V' and constants for all elements of Ry.) We further assume that £ is such
that Th(R) eliminates quantifiers in £, and that £ and Th(R) have been



expanded by definitions as follows: for each L-formula ¢(z1,...,z,,y) such
that
Th(R) V... Vo, Ny o(x1,..., 20, 7)

we add a new function symbol f to £ and the axiom

O(x1, ., f(21, .., 20))

to the theory Th(R). Then Th(R) has a universal axiomatization and any
substructure of a model of Th(R) is an elementary substructure. (NB the
requirement that £ contains function symbols for definable Skolem functions
in R is not part of the set-up in [1]).

We shall denote the theory of (R,V) (in the language Lr, U V') by T,
and we will use the following results proved in [1]. In the first theorem,
o-minimality of k is not needed, and (R, V) is considered as a structure in
the language £ U {V} (i.e. there is no need to expand by constants for all
elements of an elementary substructure). For a € R = R, we denote by R(a)
the (elementary) substructure of R generated by a over R.

Theorem 1.1 Let R be an elementary extension of R, let a € R, and let
W C R(a) be such that (R,V) C (R{a),W). Then (R,V) = (R{a), W) iff
there are no R-definable functions f and g such that f(a) € V and g(a) >V
and V < f(a),g(a) < R7V.

Theorem 1.2 T s model complete.

2 Substructures of models of T

We let p be the type © > V and x < r for all » > V. By p|gr, we denote the

restriction of p to Ry. By p|gr, we denote the realization of p|g, in R.

Lemma 2.1 There is no Ry-definable decreasing function f such that f(a;o) =
PlRy-

PROOF: A decreasing function with the above property would have to have

a fixed point x € p|g,, so x € Ry.
0



Note that the above lemma holds for any elementary substructure of (R, V')
in place of (R, Vp).

Lemma 2.2 Leta € R, and let V, =V N Ry(a). Then
(Ro, Vo) = (Rofa),Va) = (R, V).

Proor: We have (R, Vo) C (Ro{a),V,) C (R,V). By Theorem 1.1, if
(Ro(a), V,) fails to be an elementary extension of (R, Vp), then there are Ry-
definable functions f, g such that f(a) € V,, g(a) > V,,and V5 < f(a), g(a) <
R;Y. Weset h = go f'and b = f(a). Then b € V,, h(b) > V,, and
Vo < b,h(b) < Ry Yo By monotonicity, h is continuous and strictly monotone
on an Ro—deﬁna/b\le interval with left endpoint in V5 and right endpoint in
R;Y. Since h(p|r,) = plr,, h cannot be decreasing by Lemma 2.1. So h is
increasing. Since V, = VN Ry(a), we have b € V and h(b) > V. So (R, V)
dr € V h(x) > V. Hence (Ry,Vp) = Iz € Vi h(xz) > Vi — but this yields a
contradiction with h being increasing. It follows that (Ro, Vo) =< (Ro(a), Va).
In particular, Th(Ry(a),V,) = T, so (Ry{a),V,) = (R,V) by Theorem 1.2.
0

Using induction and the fact that the union of an elmentary chain is an ele-
mentary extension, the above lemma implies that any substructure of (R, V)
is an elementary substructure of (R, V):

Lemma 2.3 Let (R',V') C(R,V). Then (R',V') 2 (R,V).
Corollary 2.4 T is universally ariomatizable.

Recall that a for a model complete theory, quantifier elimination is equivalent
to TV having the amalgamation property. By the above corollary, TV = T,
and so we have the following.

Theorem 2.5 T admits QF.

Corollary 2.6 T has definable Skolem functions.

n [2], Laskowski and Shaw claim that the expansion of an o-minimal field by a valua-
tional cut has definable Skolem functions, but their proof is wrong. So, to my knowledge,
this corollary is new.



PRrROOF: T eliminates quantifiers and has a universal axiomatization. 0

Corollary 2.7 If f: R — R is (R,V)-definable, then there are R-definable
functions fi,..., fx: R — R such that for each a € R f(a) = f;(a) for some
ied{l,... . k}.

Proor: This follows from 7" having definable Skolem functions and a uni-
versal axiomatisation. L]
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