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Abstract

In [1], Ealy and Mař́ıková proved the following: Let R be an o-
minimal field in a language L, let V be a convex subring, and let
(R0, V0) be an elementary substructure of (R, V ). Then (R, V ) is
model-complete in the language LR0 ∪{V } relative to quantifier elimi-
nation in R and provided that the residue field of (R, V ) with structure
induced by R is o-minimal.

Here we show that “is model-complete” above can be replaced
by “eliminates quantifiers”. Consequently, Th(R, V ) is universally
axiomatisable and has definable Skolem functions.

1 Introduction

We use the same set-up as in [1]: We let R be an o-minimal field (i.e. an
o-minimal expansion of a real closed field), and V a convex subring of R with
corresponding residue field k. We assume (unless indicated otherwise) that
the structure on k induced from R is o-minimal. By [1], the structure on k
induced from R is the same as the structure induced from (R, V ).

We let (R0, V0) be an elementary substructure of (R, V ), and we consider
(R, V ) in the language LR0 ∪ {V }, where L is the language of R. (Thus,
LR0 ∪{V } is the language L expanded by a predicate for the convex subring
V and constants for all elements of R0.) We further assume that L is such
that Th(R) eliminates quantifiers in L, and that L and Th(R) have been
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expanded by definitions as follows: for each L-formula φ(x1, . . . , xn, y) such
that

Th(R) ` ∀x1 . . . ∀xn ∃!y φ(x1, . . . , xn, y)

we add a new function symbol f to L and the axiom

φ(x1, . . . , xn, f(x1, . . . , xn))

to the theory Th(R). Then Th(R) has a universal axiomatization and any
substructure of a model of Th(R) is an elementary substructure. (NB the
requirement that L contains function symbols for definable Skolem functions
in R is not part of the set-up in [1]).

We shall denote the theory of (R, V ) (in the language LR0 ∪ V ) by T ,
and we will use the following results proved in [1]. In the first theorem,
o-minimality of k is not needed, and (R, V ) is considered as a structure in
the language L ∪ {V } (i.e. there is no need to expand by constants for all
elements of an elementary substructure). For a ∈ R � R, we denote by R〈a〉
the (elementary) substructure of R generated by a over R.

Theorem 1.1 Let R be an elementary extension of R, let a ∈ R, and let
W ⊆ R〈a〉 be such that (R, V ) ⊆ (R〈a〉,W ). Then (R, V ) � (R〈a〉,W ) iff
there are no R-definable functions f and g such that f(a) ∈ V and g(a) > V
and V < f(a), g(a) < R>V .

Theorem 1.2 T is model complete.

2 Substructures of models of T

We let p be the type x > V and x < r for all r > V . By p|R0 we denote the

restriction of p to R0. By p̂|R0 we denote the realization of p|R0 in R.

Lemma 2.1 There is no R0-definable decreasing function f such that f(p̂|R0) =

p̂|R0.

Proof: A decreasing function with the above property would have to have

a fixed point x ∈ p̂|R0 , so x ∈ R0.
�
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Note that the above lemma holds for any elementary substructure of (R, V )
in place of (R0, V0).

Lemma 2.2 Let a ∈ R, and let Va = V ∩R0〈a〉. Then

(R0, V0) � (R0〈a〉, Va) � (R, V ).

Proof: We have (R0, V0) ⊆ (R0〈a〉, Va) ⊆ (R, V ). By Theorem 1.1, if
(R0〈a〉, Va) fails to be an elementary extension of (R0, V0), then there are R0-
definable functions f , g such that f(a) ∈ Va, g(a) > Va, and V0 < f(a), g(a) <
R>V0

0 . We set h = g ◦ f−1 and b = f(a). Then b ∈ Va, h(b) > Va, and
V0 < b, h(b) < R>V0

0 . By monotonicity, h is continuous and strictly monotone
on an R0-definable interval with left endpoint in V0 and right endpoint in

R>V0
0 . Since h(p̂|R0) = p̂|R0 , h cannot be decreasing by Lemma 2.1. So h is

increasing. Since Va = V ∩R0〈a〉, we have b ∈ V and h(b) > V . So (R, V ) |=
∃x ∈ V h(x) > V . Hence (R0, V0) |= ∃x ∈ V0 h(x) > V0 – but this yields a
contradiction with h being increasing. It follows that (R0, V0) � (R0〈a〉, Va).
In particular, Th(R0〈a〉, Va) = T , so (R0〈a〉, Va) � (R, V ) by Theorem 1.2.
�

Using induction and the fact that the union of an elmentary chain is an ele-
mentary extension, the above lemma implies that any substructure of (R, V )
is an elementary substructure of (R, V ):

Lemma 2.3 Let (R′, V ′) ⊆ (R, V ). Then (R′, V ′) � (R, V ).

Corollary 2.4 T is universally axiomatizable.

Recall that a for a model complete theory, quantifier elimination is equivalent
to T ∀ having the amalgamation property. By the above corollary, T ∀ = T ,
and so we have the following.

Theorem 2.5 T admits QE.

Corollary 2.6 T has definable Skolem functions. 1

1In [2], Laskowski and Shaw claim that the expansion of an o-minimal field by a valua-
tional cut has definable Skolem functions, but their proof is wrong. So, to my knowledge,
this corollary is new.
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Proof: T eliminates quantifiers and has a universal axiomatization. �

Corollary 2.7 If f : R → R is (R, V )-definable, then there are R-definable
functions f1, . . . , fk : R→ R such that for each a ∈ R f(a) = fi(a) for some
i ∈ {1, . . . , k}.

Proof: This follows from T having definable Skolem functions and a uni-
versal axiomatisation. �
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