Es sei \mathbf{G} eine über \mathbb{Q} definierte halbeinfache algebraische Gruppe, τ ein ebenfalls über \mathbb{Q} definieter Automorphismus endlicher Ordnung auf \mathbf{G} und Γ eine τ -stabile torsionsfreie arithmetische Untergruppe von $\mathbf{G}(\mathbb{Q})$. Der symmetrische Raum der maximal kompakten Untergruppen von $G:=\mathbf{G}(\mathbb{R})$ sei mit X bezeichnet. Dann operiert G (von rechts) durch Konjugation auf X und der Quotient X/Γ ist definiert. Eine endlichdimensionale komplexe Darstellung (E,ρ) von G liefert ein lokales Koeffizientensystem \mathfrak{E} auf X/Γ und damit (de Rham-) Kohomologiegruppen $H^*(X/\Gamma;\mathfrak{E})$. Auf letzteren wirkt τ durch lineare Automorphismen τ^n und die Lefschatzzahl $L(\tau,X/\Gamma,\mathfrak{E}):=\sum_{n\geq 0}(-1)^n\mathrm{tr}\,(\tau^n\restriction H^n(X/\Gamma;\mathfrak{E}))$ ist definiert. Um diese Lefschetzzahl zu berechnen, untersucht man zunächst die Fixpunktmenge $(X/\Gamma)^\tau$ von X/Γ unter der Aktion von τ . Sie lässt sich disjunkt zerlegen in Komponenten $F(\gamma)$, die durch die nichtabelsche Galoiskohomologie $H^1(\langle \tau \rangle, \Gamma)$ indiziert werden: $(X/\Gamma)^\tau = \coprod_{[\gamma] \in H^1(\langle \tau \rangle, \Gamma)} F(\gamma)$. Auf den Fasern von $\mathfrak E$ über $F(\gamma)$ induziert τ einen linearen Automorphismus τ_γ und es gilt die Lefschetzsche Fixpunktformel

$$L(\tau,X/\Gamma,\mathfrak{E}) = \sum_{[\gamma] \in H^1(\langle \tau \rangle,\Gamma)} \chi(F(\gamma)) \mathrm{tr}\, (\tau_\gamma \restriction E).$$

Dabei bezeichnet $\chi(F(\gamma))$ die Euler-Poincaré-Charakteristik von $F(\gamma)$. Ziel des Vortrags ist es, die auftretenden Begriffe zu erklären und zumindest heuristische Argumente für die Richtigkeit der Lefschetzschen Fixpunktformel zu geben.