THE ABLOWITZ-LADIK HIERARCHY REVISITED
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ABSTRACT. We provide a detailed recursive construction of the Ablowitz—
Ladik (AL) hierarchy and its zero-curvature formalism. The two-coefficient
AL hierarchy under investigation can be considered a complexified version
of the discrete nonlinear Schrodinger equation and its hierarchy of nonlinear
evolution equations.

Specifically, we discuss in detail the stationary Ablowitz—Ladik formalism in
connection with the underlying hyperelliptic curve and the stationary Baker—
Akhiezer function and separately the corresponding time-dependent Ablowitz—
Ladik formalism.

1. INTRODUCTION

The prime example of an integrable nonlinear differential-difference system to
be discussed in this paper is the Ablowitz—Ladik system,

—iay — (1 —aB)(a” +a™) +2a =0,

i+ (1= ap)(B” + %) —28=0
with a = a(n,t), 8 = B(n,t), (n,t) € Z x R. Here we used the notation f*(n) =
f(n£1), n € Z, for complex-valued sequences f = {f(n)}nez. The system (1.1)
arose in the mid-seventies when Ablowitz and Ladik, in a series of papers [3]-[6]
(see also [I], [2, Sect. 3.2.2], [7, Ch. 3], [I7]), used inverse scattering methods to
analyze certain integrable differential-difference systems. In particular, Ablowitz
and Ladik [4] (see also [7, Ch. 3]) showed that in the focusing case, where § = —@,

and in the defocusing case, where 5 = @, (1.1) yields the discrete analog of the
nonlinear Schrodinger equation

—iay — (1+]a)*)(a” +at) +2a =0. (1.2)

We will refer to as the Ablowitz—Ladik system. The principal theme of this
paper will be to derive a detailed recursive construction of the Ablowitz—Ladik hier-
archy, a completely integrable sequence of systems of nonlinear evolution equations
on the lattice Z whose first nonlinear member is the Ablowitz—Ladik system .
In addition, we discuss the zero-curvature formalism for the Ablowitz—Ladik (AL)
hierarchy in detail.

Since the original discovery of Ablowitz and Ladik in the mid-seventies, there has
been great interest in the area of integrable differential-difference equations. Two

(1.1)
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principal directions of research are responsible for this development: Originally,
the development was driven by the theory of completely integrable systems and
its applications to fields such as nonlinear optics, and more recently, it gained
additional momentum due to its intimate connections with the theory of orthogonal
polynomials. In this paper we will not discuss the connection with orthogonal
polynomials (see, however, the introduction of [31]) and instead refer to the recent
references [13], [20], [37], [38], [42], [43], [44], [47], [48], [49], and the literature cited
therein.

The first systematic discussion of the Ablowitz—Ladik (AL) hierarchy appears to
be due to Schilling [45] (cf. also [51], [55], [58]); infinitely many conservation laws
are derived, for instance, by Ding, Sun, and Xu [2I]; the bi-Hamiltonian structure
of the AL hierarchy is considered by Ercolani and Lozano [23]; connections between
the AL hierarchy and the motion of a piecewise linear curve have been established
by Doliwa and Santini [22]; Backlund and Darboux transformations were studied by
Geng [26] and Vekslerchik [56]; the Hirota bilinear formalism, AL 7-functions, etc.,
were considered by Vekslerchik [55]. The initial value problem for half-infinite AL
systems was discussed by Common [I9], for an application of the inverse scattering
method to we refer to Vekslerchik and Konotop [57]. This just scratches the
surface of these developments and the interested reader will find much more material
in the references cited in these papers and the ones discussed below. Algebro-
geometric (and periodic) solutions of the AL system have briefly been studied
by Ahmad and Chowdhury [8], [9], Bogolyubov, Prikarpatskii, and Samoilenko [14],
Bogolyubov and Prikarpatskii [I5], Chow, Conte, and Xu [I§], Geng, Dai, and Cao
[27], and Vaninsky [53].

In an effort to analyze models describing oscillations in nonlinear dispersive
wave systems, Miller, Ercolani, Krichever, and Levermore [40] (see also [39]) gave a
detailed analysis of algebro-geometric solutions of the AL system . Introducing

[z « _(z=1—ap” a—a "zt
vo=(5 5) ve=i(PR LT ) e
with z € C\ {0} a spectral parameter, the authors in [40] relied on the fact that
the Ablowitz—Ladik system (1.1]) is equivalent to the zero-curvature equations

U +UV -VTU =0. (1.4)

Miller, Ercolani, Krichever, and Levermore [40] then derived the theta function
representations of «, 3 satisfying the AL system (L.I). Vekslerchik [54] also studied
finite-genus solutions for the AL hierarchy by establishing connections with Fay’s
identity for theta functions. Recently, a detailed study of algebro-geometric solu-
tions for the entire AL hierarchy has been provided in [31]. The latter reference
also contains an extensive discussion of the connection between the Ablowitz—Ladik
system and orthogonal polynomials on the unit circle. The algebro-geometric
initial value problem for the Ablowitz—Ladik hierarchy with complex-valued initial
data, that is, the construction of « and [ by starting from a set of initial data
(nonspecial divisors) of full measure, will be presented in [32]. The Hamiltonian
and Lax formalisms for the AL hierarchy will be revisited in [33].

In addition to these recent developments on the AL system and the AL hierarchy,
we offer a variety of results in this paper apparently not covered before. These
include:
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e An effective recursive construction of the AL hierarchy using Laurent polyno-
mials.

e The detailed connection between the AL hierarchy and a “complexified” version
of transfer matrices first introduced by Baxter [11], [12].

e A detailed treatment of the stationary and time-dependent Ablowitz—Ladik
formalism.

The structure of this paper is as follows: In Section [2] we describe our zero-
curvature formalism for the Ablowitz—Ladik (AL) hierarchy. Extending a recursive
polynomial approach discussed in great detail in [29] in the continuous case and
n [16], [30, Ch. 4], [52, Chs. 6, 12] in the discrete context to the case of Laurent
polynomials with respect to the spectral parameter, we derive the AL hierarchy
of systems of nonlinear evolution equations whose first nonlinear member is the
Ablowitz—Ladik system . Section (3| is devoted to a detailed study of the sta-
tionary AL hierarchy. We employ the recursive Laurent polynomial formalism of
Section [2] to describe nonnegative divisors of degree p on a hyperelliptic curve K,
of genus p associated with the pth system in the stationary AL hierarchy. The cor-
responding time-dependent results for the AL hierarchy are presented in detail in
Section[d] Finally, Appendix[A]is of a technical nature and summarizes expansions
of various key quantities related to the Laurent polynomial recursion formalism as
the spectral parameter tends to zero or to infinity.

2. THE ABLOWITZ-LADIK HIERARCHY, RECURSION RELATIONS,
ZERO-CURVATURE PAIRS, AND HYPERELLIPTIC CURVES

In this section we provide the construction of the Ablowitz—Ladik hierarchy em-
ploying a polynomial recursion formalism and derive the associated sequence of
Ablowitz—Ladik zero-curvature pairs. Moreover, we discuss the hyperelliptic curve
underlying the stationary Ablowitz—Ladik hierarchy.

We denote by C? the set of complex-valued sequences indexed by Z.

Throughout this section we suppose the following hypothesis.

Hypothesis 2.1. In the stationary case we assume that o, B satisfy
a,B€CE  a(n)B(n) ¢ {0,1}, n€Z. (2.1)
In the time-dependent case we assume that o, B satisfy
al-,t),B(-,t)eCE teR, an,-),B(n,-)ecC R), neZ,
a(n,t)B(n,t) ¢ {0,1}, (n,t) € Z x R.

Actually, up to Remark our analysis will be time-independent and hence
only the lattice variations of o and § will matter.

We denote by S* the shift operators acting on complex-valued sequences f =
{f(n)}nez € C% according to

(2.2)

(Sf)(n) = f(n+1), nez. (2.3)
Moreover, we will frequently use the notation
fE=5%f, fech (2.4)

To construct the Ablowitz—Ladik hierarchy we will try to generalize (1.3)) by
considering the 2 x 2 matrix

U(z) = (ZB ff) , z€C, (2.5)
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and making the ansatz

G, (z) —F; (z
Vg(z) =1 <H:_((Z)) —KZ_((Z))> y P= (p,,er) € N(2)7 (26)

where Gp7 Ky, Fp7 and H), are chosen as Laurent polynomlalsﬂ suggested by the
appearance of z~" in the matrix V in )

— P+
— —¢ L
= Z Z 9p—t—+t Z 2 Gpy—tots

p_
FB(’Z) Z'Z fP_—€—+Zpr+ 0,4+
=1 =0
j 2. P+ (2'7)
= Z e hy g+ Z Zehp+—l,+a
=1 =0

p- P+
—L b4
OED DR R P
(=1 £=0

Without loss of generality we will only look at the time-independent case and add
time later on. Then the stationary zero-curvature equation,

0=UV, -V, U, (2.8)
is equivalent to the following relationships between the Laurent polynomials
2(G; —Gp)+z2B8F,+aH, F,—z2F —a(G,+ K
UV, -V iU =i (3, v) - e TR TR (G 2)7 ,

respectively, to
2(G, = Gp) +2BF, + aH, =0, (
zéFp_ +aH, — Kp + K;_ =0, (2.11
—F2+2F£—|—a(G£+K£):0, (
2B(G, + Kp) —zH, + H, = 0. (

Lemma 2.2. Suppose the Laurent polynomials defined in (2.7)) satisfy the zero-
curvature equation (2.8), then

f0,+ =0, ho’, =0, Jo,+ = ga,ia kO,:I: = ka,i7 (214)
k@,:tfkg_,i:gé,iige_,iv EZO&"'ap:I:*lv gp+,+7g;+7+:kp+, k;;+7
(2.15)

Proof Comparing coefficients at the highest order of z in and the lowest in

0) immediately yields fo 4+ = O ho,— = 0. Then go,+ = gg 4, ko,— = ko _ are
necessarlly lattice constants by (2-10), (2.11)). Since det(U(z)) # 0 for z € (C \ {0}

by 2.1)), (2.8) yields tr(V,") = tr(UVpU ') = tr(V}) and hence
G, -Gy =K, K, (2.16)

n this paper, a sum is interpreted as zero whenever the upper limit in the sum is strictly less
than its lower limit.
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implying (2.15)). Taking ¢ = 0 in (2.15)) then yields go,— = g5 _ and ko + =k, . O
In particular, this lemma shows that we can choose

ko =904, 0<l<py—1, kyp, 4+=09p, + (2.17)

without loss of generality (since this can always be achieved by adding a Lau-
rent polynomial times the identity to V},, which does not affect the zero-curvature
equation). Hence the ansatz (2.7) can be refined as follows (it is more conve-

nient in the following to re-label h,, + = h, 1 and k,, = g,_ _, and hence,
9p_,— = gp+,+)a
p— py—1
= Z fpi_g,_ziz + Z fp+_1_g7+ze, (218)
=1 £=0
= P+
z) = ngf—&—z_e + ng+—€,+zea (2.19)
pt
Hy(z)= > hy 12"+ th e+2, (2.20)
=0
Ky(z) = Gy(z) since g, - = gp, +- (2.21)

In particular, (2.21) renders V}, in (2.6) traceless in the stationary context. We
emphasize, however, that equation (2.21)) ceases to be valid in the time-dependent
context: In the latter case (2.21]) needs to be replaced by

- P+
Z) = ngf—ﬁ,—zil + ng+—é,+ze = Gg(z) +9p_ ,— — Gp,+- (2-22)
Plugging the refined ansatz (2.18)—(2.21]) into the zero-curvature equation (2.8))

and comparing coefficients then yields the following result.

Lemma 2.3. Suppose that U and Vb satisfy the zero-curvature equation ([2.8)).

Then the coefficients {fe+}e=o0,...po—1, {90+ }e=0,.. . pss and {het}e=o,..pi—1 of
Fy, Gp, Hp, and Kp in (2.18)~(2.21) satisfy the following relations

9o+ = 3C04, Jo+=—coqpat, hoit=co4fb, (2.23)

Get14+ — Gpp1 4 = hy +Bfer, 0<L<pp—1, (2.24)
fooie = for —algerr+ +9014), 0<L<py -2, (2.25)

hovit =hy o +B(get1,+ + 9041 1), 0 €< pp =2, (2.26)

and

90,— = 3¢0,—  fo— =co-, ho_ =—co_fB*, (2.27)

Ge+1,— — 9oy, =hg +Bf,_, 0<L<p_—1, (2.28)
Jey1,- = fZ_ +a(get1,- + 9044, -), 0<L<p_ -2, (2.29)

h2+1 _=he— = B(ges1,- + g;+1,—)7 0<l<p_ -2 (2.30)

Here ¢y 4 € C are given constants. In addition, (2.8) reads
0=UV, - Vp+U
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0 —a(gp, ++ 9, )

= _ oot = hp | (2.31)
Z(ﬁ(gp+,+ +gp_,*) 0
—hp_—1—+h, 1)

Given Lemma we now introduce the sequences {fr.+ }eeng, {ge.+ teen,, and
{he + }een, recursively by

Jo+ = 5C0.+, Jor = —coqa’, hot =coqfb, (2.32)
Je+14 — 9pp1,+ = &hy  +Bfey, £ €Ny, (2.33)
foyr 4 = for —algerr+ + 9041 4), €N, (2.34)
hevr 4 =hy +B(ges1,+ +9p14), £ € No, (2.35)
and

9o, = 5¢0,—, fo- =co—a, ho_ =—co_ 7, (2.36)
Ge41,— — Gpyq,— =hg -+ Bf, _, LN, (2.37)
f€+1,— = fz_,, + Oé(gé-i-l,— + 9@11’7)’ £ € Ny, (2-38)
hoyy - =he— —B(ges1,- + 9,1, ), £ €N (2.39)

For later use we also introduce
J-1,2=h-1+=0. (2.40)

Remark 2.4. The sequences {fr + }eeny, {9e.+}eeny, and {he 4 }een, can be com-
puted recursively as follows: Assume that f; 1, g, 4+, and hy  are known. Equation
is a first-order difference equation in ge41,4 that can be solved directly and
yields a local lattice function that is determined up to a new constant denoted by

cet1,4+ € C. Relations (2.34) and (2.35)) then determine fr41 4+ and hgyq 4, etc. The
sequences { fo.— }eeny, {9¢,— Feeny, and {he —}een, are determined similarly.

Upon setting

y=1-ap, (2.41)
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one explicitly obtains

Jo+ = Co,+(—04+)7

fig =cor (=7 +(@)B) + ey (—a),

go,+ = %Co,+,

g1+ = co(—aB) + ze14,

g2+ =co+((@"B)? =7t B —qatB7) +c1 o (—aTB) + 3ea.4,

h0,+ = COH—B?
hit = co4 (V8™ —atB?) + 148,
(2.42)
fO,— = Co,- @,
fi = o (10" — a28%) 41,
g0,— = %CO,—a

gi,— =co—(—aBt) +ia1

92— = co—((aBt)> =yt Bt —ya ™ BT) + e (—aBT) + Lo,
ho,— = co,—(—=B"),

hi_ = CO,,( — Ayttt + a(ﬁ+)2) +e1 (=BT, ete

Here {c/ 4 }een denote summation constants which naturally arise when solving the

difference equations for g, 1 in (2.33), (2.37).

In particular, by (2.31)), the stationary zero-curvature relation (2.8)), 0 = U Vp —
V,FU, is equivalent to

_a(ngr,-‘r + gp_,,—) + fp+—1,+ - p__—17— =0, (243)

/8(gp_+,+ +9p_ )+ h;+—1,+ —hp_—1,-=0. (2.44)

Thus, varying p+ € Ny, equations (2.43) and (2.44]) give rise to the stationary
Ablowitz—Ladik (AL) hierarchy which we introduce as follows

s-AL,(a, B) = <_O‘(g?’+v+ + 9 )t o4 — fp1,> B
plQ, By s+ 9p =) Fhy 1 —hp 1

p=(p—,p+) € NG.

i

(2.45)

Explicitly (recalling v =1 — of8 and taking p_ = p for simplicity),

FALoole ( o8 > .
(o~ +coraT) —capa)
ALy (e _( 00+5 +co,- 1) +canp =0,
—(co 4™y T+ co,—a”"y" — a(corat BT+ co—a BT)
s-AL —B(co,—(a™)? +co(a™)?))
eale Y(co,— BTty + o487y = Bleorat B +co—a pT)
—a(co4 (B7)* + co,—(61)%))
+ ( v(e-a” Feppat) — ¢ 2)‘1) =0, etc, (2.46)

(e, 48”7 + e —5+) +c2,2)8
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represent the first few equations of the stationary Ablowitz—Ladik hierarchy. Here
we introduced

¢p = (ep— +p,+)/2, p+ € No. (2.47)

By definition, the set of solutions of (2.45)), with py ranging in Ny and ¢¢+ € C,
£ € Ny, represents the class of algebro-geometric Ablowitz—Ladik solutions.

In the special case p = (1,1), co.+ = 1, and ¢(; 1) = —2, one obtains the station-
ary version of the Ablowitz—Ladik system (|1.1))
—y(a” +at) + 2a)
_ =0. 2.48
(v(ﬁ +5) 28 (2.48)

Subsequently, it will also be useful to work with the corresponding homogeneous
coefficients fo +, Go,+, and he 1, defined by the vanishing of all summation constants

cp,+ for k=1,...,¢, and choosing ¢y + =1,
for=—-a", fo—=a, frr= fetleos=1,¢;1=04=1,..e, LEN, (2.49)
Got =%, G+ =0gotleos=1,c;4=0j=1,..c, (EN, (2.50)
hot =B, ho—=-B% het=hotleoo1,e;1=0je1,..c, LEN. (2.51)

By induction one infers that

¢ ¢ ¢
fox = contfoz, gox= cookzies, hex=Y crpihps. (2.52)

In a slight abuse of notation we will occasionally stress the dependence of fy +, go +,
and hl,:l: on «, B by Writing fl,:l:(a7 6)7 gl,:l:(a, 6)7 and hZ,i(aa ﬂ)

Remark 2.5. Using the nonlinear recursion relations f recorded in The-
orem one infers inductively that all homogeneous elements fo +, g¢ 4+, and iLgvi,
¢ € Ny, are polynomials in «, 8, and some of their shifts. (Alternatively, one can
prove directly by induction that the nonlinear recursion relations f are
equivalent to that in 7 with all summation constants put equal to zero,
Co+ = 0,7 € N.)

Remark 2.6. As an efficient tool to later distinguish between nonhomogeneous and
homogeneous quantities fo +, ge+, he+, and fo 4+, Go+, he+, respectively, we now
introduce the notion of degree as follows. Denote

STy, r>0,
=808 f={f(n)}lnez €C? SV = {Es—i—’" T, €L (283)
and define
deg (a(r)) =r, deg (ﬂ(T)) =-r, rez. (2.54)

This then results in
deg (fé:)r) =l+1+7r deg ( }r_)) =—{+r, deg (gg’i) =3/,
deg (ﬁﬂr) ={0—7r, deg (ﬁyl) =—0—-1-r, £eNy, rez,

using induction in the linear recursion relations (2.32))—(2.39)).

(2.55)
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In accordance with our notation introduced in (2.49)—(2.51)), the corresponding
homogeneous stationary Ablowitz—Ladik equations are defined by

s-ALy(a, 8) = s-ALy(a, B)| p=(p—.ps) ENG.  (2.56)

co,£=1,ce,+=0,£=1,....,p1’

We also note the following useful result.

Lemma 2.7. The coefficients f; 1+, go+, and he+ satisfy the relations

9o+ — 9pp = he +Bfr,, €€N,

N B (2.57)
gt,— — gy =ah, _+Bfe—, LN
Moreover, we record the following symmetries,
foe(@,f) = hez(B.a), ges(a,f)=ger(B,0), LeNo. — (2.58)

Proof. The relations (2.57)) are derived as follows:

ahpir+ +Bfq . =ah,  +aB(ge1,+ + 901 ) + B+ — B+ + 9041 )
ahZ+ + ﬂf€,+ =9ge41,+ — g;+17+7 (259)

and

ahy g 4 Bfeyi,— = ahy— —aB(gesr,— + 950, ) + Bfi_ +aB(ger— + 950 )
=ahy—+Bf_ =941+ 951 (2.60)

The statement follows by showing that il&q:(ﬁ, a) and gy +(8, o) satisfy the
same recursion relations as those of fgi(a, B) and §¢ +(a, ), respectively. That
the recursion constants are the same, follows from the observation that the corre-
sponding coeflicients have the proper degree. O
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Next we turn to the Laurent polynomials Fj,, G, Hp, and K, defined in (12.18)—
and . Explicitly, one obtains
Fo,00 =0,
Fa) =co,—oz ' +co4(—
Fla) = co,_ozz_2 + (007_(704_ — a26+) + (317_oz)z_1
+eoq(—Ta™ +(@h)?B) + ey (—at) +eo (-
G (0,0) = 5C0,+
Gaay =3¢,z '+ (—a"B)+ 3e14 + Seorz,
G(2,2) = 3C0,— 272 4 (co,—(—aB™) + %clﬁ,)z_l
+co4((@tB)? =yt B —1a"B7) + e (—atB) + ey
+ (co+ (—a*B) + 3e14) 2 + o427, (2.61)
H0) =0, '
Hyqy = co,—(—B%) + co,+8z,
Hooy =co—(—BT)z " +co— (=BT +a(B1)?) + 1, (—87)
+ (co+(v8~ —aB%) + c1,48) 2 + co 4827,
K0,0) = 5¢0,—
Koy =3co—z" +co—(—aBt)+ 3e1- + 2co42,
K2 = 2co-272 + (co,—(—aB) + 31, )27
+co((@Bh)? —ytaft™ —qa BY) + e (—aBT) + e
+ (co+(—atB) + 2er 4 )z + Lep 27, ete.

The corresponding homogeneous quantities are defined by (¢ € Np)

a™)

b

at)z,

l
Foz(2)=0, Fp_(2)=) fok—2" Fii(z ng 1k 42,

0 (2.62)
R R -1 R 0
HO;;:(Z) = O, He _(Z) = Z hg_l_k _z 5 Hg7+(z) Z hg k4%
k=0 k=1
~ 1~ R A
Ko (2)=5, Ki(2)=) Gon-2"=Gr(2)+3ge—,
k=0

¢
Ko(2) =0, Kpy(2) =Y drr+2"=GCoi(2) = gus-

Similarly, with Fy, +, G¢, 4+, He, +, and K¢ denoting the polynomial parts
of Fy, Gy, Hy, and Ky, respectively, and Fy_ _, Gy_ _, H,_ _, and K, _ denoting
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the Laurent parts of Fy, Gy, Hy, and K, £ = (¢_, {4 ) € Ny, such that
Fy(z) =Fo_ —(2) + Foy 1(2),  Gu(z) =G —(2) + Gey 1(2),

2.63
Hy(z) = He_ —(2) + Hp, +(2), K(2) =Ko —(2)+ Ko, 4(2), (2.63)
one finds that
l4 £
Fo v+ = Z Coy—t+Fr+, Hp+= Z Coy—k in +,
k=1 k=1
= Z co. kG-, Go 4= ZCzJﬁkﬁGk,Jm (2.64)
k=0
0 0
K, = Zce,fk,ka,ﬂ Ko, 4+ = Zce+7k,+Kk,+~
k=0 k=1
In addition, one immediately obtains the following relations from (2.58):
Lemma 2.8. Let ¢ € Ny. Then,
Fyi(o,B,2,n) = Hoz(B, 0,27 n), (2.65)
Hy i (o, B,2,m) = Frz (8, 0,27 m), (2.66)
Gox(o,B,2,n) = Goz(B,a, 27, n), (2.67)
I?l,:l:( ﬂ,Z n) = Af (Baa z ,’Il) (268)

Returning to the stationary Ablowitz—Ladik hierarchy, we will frequently as-
sume in the following that «, 8 satisfy the pth stationary Ablowitz—Ladik system
s-AL,(a, 8) = 0, supposing a particular choice of summation constants ce.+ € C,
£=0,...,p+, p+ € Ny, has been made.

Remark 2.9. (i) The particular choice co 4 = cp,— =1 in yields the station-
ary Ablowitz-Ladik equation. Scaling co + with the same constant then amounts
to scaling V), with this constant which drops out in the stationary zero-curvature
equation .

(79) Different ratios between ¢y 4+ and c¢o,— will lead to different stationary hierar-
chies. In particular, the choice ¢y =2, ¢co- =~ =¢cp_ 1 =0, ¢p__ # 0,
yields the stationary Baxter—Szegd hierarchy considered in detail in [28]. However,
in this case some parts from the recursion relation for the negative coefficients still
remain. In fact, reduces to gp_7_ — g_ _ = ah,,__l —y hp_—1—- =0 and
thus requires g, . to be a constant in and . Moreover, f, —1.— =0
in in this case.

(¢i7) Finally, by Lemma the choice coy = -+ =¢p, 1.4+ =0, ¢p, + # 0,
co,— = 2 again yields the Baxter—Szegd hierarchy, but with a and /5 interchanged.

Next, taking into account (2.21)), one infers that the expression Ry, defined as
R, =G, — F,H,, (2.69)

is a lattice constant, that is, R, — R, = 0, since taking determinants in the sta-

tionary zero-curvature equation (2.8) immediately yields
v(=(G,)?+F, H, + G} — F,H,)z =0. (2.70)
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Hence, R,(2) only depends on z, and assuming in addition to (2.1)) that

Co,+ € C \ {0}7 b= (p—7p+) € Ng \ {(0’ 0)}’ (271)

one may write R, aﬁ

2 2p+1
C
Ry = (522) TLG-Bu) (Budid ©C\ (O} p=p- +p:~LE N0

m=0
(2.72)
Moreover, (2.69) also implies
2p+1
hm 42%P- Rp(2) = Co " H =cj_, (2.73)
and hence,
2p+1
H B, (2.74)
Co +

Relation (2.69) allows one to 1ntr0duce a hyperelliptic curve IC,, of (arithmetic)
genus p = p_ + py — 1 (possibly with a singular affine part), where

2p+1
Kp: Fplzy) =y° —4cg 32" Rp(z) =y° = [[ (2= Em) =0, p=p_+ps -1

m=0

(2.75)

Remark 2.10. In the special case p_- = p; and ¢py = c¢,—, £ = 0,...,p_, the
symmetries of Lemma also hold for Fy,, Gy, and H) and thus Ry(1/2) = Rp(2)
and hence the numbers FE,,, m = 0,...,2p + 1, come in pairs (Ey,1/E), k =
1,...,p+ 1.

Equations (2.10)—(2.13) and (2.69) permit one to derive nonlinear difference
equations for F, Gp, and H), separately. One obtains

(ot +za)*F, — z(a™)?y ) —2za’yT ((at + za)ZFE + ,af(onr)Q'yF],;)FBJr

+ 22t (yT)? (F+) =4(aa)?(a’ + az)? Ry, (2.76)
(0 + 20)(8 + 26%)(= + o B)(1 + 2aB)G2
+ z(oﬁWGg_ + za'y+G;)(z6+vGB_ + 57+G+)
(@B 4 a2 -4+ 250 42— )Gy Gy

G
—z’y+(22(1—’y)(2—’}/ )+ (a B+ 27 aft)(2 _7))G£GB

= (a8 —2*aBT)’R,, (2.77)
2((BY)*H, — B2y HY)® = 22(8+ 2B8%)2((B7) 2y H, + BT H ) H,
+(B+287) Hy = 42°(B67)* (B + 612)° R, (2.78)

2We use the convention that a product is to be interpreted equal to 1 whenever the upper limit
of the product is strictly less than its lower limit.
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Equations analogous to (2.76)—(2.78) can be used to derive nonlinear recursion
relations for the homogeneous coefficients fg +, e+, and ilg + (i.e., the ones sat-
isfying in the case of vanishing summation conbtantb) as proved in
Theore l in Appendix |Al This then yields a proof that fg +, Ge+, and hz +
are polynomials in «, /3, and some of their shifts (cf. Remark [2.5| . In addition, as
proven in Theorem [A.2) H (2.76) leads to an explicit determination of the summa-

tion constants c1 +,...,¢p, + in (2.45)) in terms of the zeros Ey,..., Fapiq of the
associated Laurent polynomial R, in (2.72). In fact, one can prove (cf. (A.42))
Co+ = Co,ice(Eil), £=0,...,p+, (2.79)
where
co(E*Y) =1,
cx (EF) (2.80)
k . .
.S (2j0)! - - - (2j2p+1)! ol 5w i
do 2o 2202 (2p)? (20 = 1) -+ (2fzpar — 1) ?
Jo+Fjepr1=k
k €N,

are symmetric functions of EX' = (Ef!, .. Eilﬂ) introduced in and (A-6).
Remark 2.11. If o, satisfy one of the stationary Ablowrtszadlk equations in
(2.45) for a particular value of p, s-ALj(a, 3) = 0, then they satisfy infinitely many
such equations of order higher than p for certain choices of summation constants
¢, +. This can be shown as in [29] Remark I1.1.5].

Finally we turn to the time-dependent Ablowitz—Ladik hierarchy. For that pur-
pose the coefficients o and /3 are now considered as functions of both the lattice point
and time. For each system in the hierarchy, that is, for each p, we introduce a defor-
mation (time) parameter ¢, E R in a, B, replacing a( ), B(n) by a(n,t ), B(n,tp).
Moreover, the definitions (2.5] , and (2:18)-([2:20) of U, V,, and F,, Gy, Hy, K,
respectively, still apply; however equatlon now needs to be replaced by -
in the time-dependent context.

Imposing the zero-curvature relation

Uy, +UV, = V,fU =0, peNj, (2.81)
then results in the equations
0=0U, +UV, - VerU
. 2(G, — Gp) + 2BF, + aH,; —iay, + Fp — 2F; — a(Gp + K

o —izp, +2B(G, + Kp) — zH, + H; —2BF,; aH +K, - K,
—ior, — a(gp, 4+ + 9, )

+fp+*1,+ - f;:,—L—
Z(*Zﬂt2+ﬂ(9p_+,+ Jrgp—,—) 0 ’

—hp,—l,— + h;+—1,+)

or equivalently,

0
(2.82)

=1

ar, = i(2F, +a(Gy+ K, ) = Fp), (2.83)
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B, = —i(B(G, + Kp) — Hy+2""H, ), (2.84)
0=2(G, —Gp) +2BF, +aH,, (2.85)
0=20F, +aH, + K, — K,. (2.86)

Varying p € N2, the collection of evolution equations
ALy(a, ) = (i% ~ pet G )+ ik 17_17‘) -
= _/L/Btg + B(gp+,+ +9p—) —hp_—1,- + hp+71,+
tg € R» p= (p*7p+> € Ng7

then defines the time-dependent Ablowitz—Ladik hierarchy. Explicitly, taking p_ =
p4 for simplicity,

_ _iat(o,o) —C0,00) _
AL(O,O) (aaﬂ) - <_i6t(010) + 0(070)6> - Oa

—ioy, ,, — Y(Co,—a” +co o) — o
ALgy(a,B) = [ "% 7007 e, R )
an(@B) <—25t<1,1> +7(co+B8~ +co,—BT) +ca)B
AL(2,2)(c, B) (2.88)
—iavy o —Y(corat Ty T+ _aTyT —alco BT + o fT)
—B(co,—(a7)? +co+(a™)?))
=Bt T Y(co,— BTyt + o487 = Bleorat B +co—a” fT)
—a(co 4 (B7)* + co,—(61)))
(7(617_01 +enpat) - 6(2,2)a> =0, etc
Y(e1 48~ +c1,-B1) + B T

represent the first few equations of the time-dependent Ablowitz—Ladik hierarchy.
Here we recall the definition of ¢, in (2.47).
The special case p = (1,1), co,x =1, and c(1,1) = —2, that is,

<_iat(1,1) —y(a” + Oc+) + 20‘) -0
_iﬂt(l,l) + V(ﬁ_ + B+) - 25 -

represents the Ablowitz—Ladik system (1.1).
The corresponding homogeneous equations are then defined by

ALy(a ) = ALy, B). 1 oo prpe =0 2= (p—.py) €N (2.90)
By ([2.87), (2.33), and (2.37)), the time derivative of v = 1 — a3 is given by
Y, =V ((Gpsr = 9 4) = (9= — 9, ) (2.91)
(Alternatively, this follows from computing the trace of U, U — V;r —UV,U 1)
For instance, if «, g satisfy AL;(«, 3) = 0, then
Ve, = y(a(co,~ BT + o+ 87) = Bleora™ +co—a7)). (2.92)

Remark 2.12. From (2.10)—(2.13]) and the explicit computations of the coefficients
fex, ge+, and hg 1, one concludes that the zero-curvature equation (2.82) and
hence the Ablowitz—Ladik hierarchy is invariant under the scaling transformation

a— o= {ca(n)}lnez, B Be={B(n)/clnez, c€C\{0}. (2.93)

(2.87)

(2.89)
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Moreover, R, = sz — H,F, and hence {E,n}2P*) are invariant under this trans-

formation. Furthermore, choosing ¢ = €2, one verifies that it is no restriction
to assume ¢, = 0. This also shows that stationary solutions «, can only be

constructed up to a multiplicative constant.

Remark 2.13. (i) The special choices § = @, cg+ = 1 lead to the discrete non-
linear Schrodinger hierarchy. In particular, choosing c(; 1y = —2 yields the discrete
nonlinear Schrédinger equation in its usual form (see, e.g., [7, Ch. 3] and the refer-
ences cited therein),

—iay — (1F |a*)(a™ +a™) +2a =0, (2.94)

as its first nonlinear element. The choice 8 = @ is called the defocusing case, § = —&
represents the focusing case of the discrete nonlinear Schrodinger hierarchy.

(#9) The alternative choice 8 = @, ¢o,+ = Fi, leads to the hierarchy of Schur flows.
In particular, choosing c(1,1) = 0 yields

a— (1 —]a*)(at —a")=0 (2.95)
as the first nonlinear element of this hierarchy (cf. [I0], [24], [25], [36], [41], [50]).

3. THE STATIONARY ABLOWITZ-LADIK FORMALISM

This section is devoted to a detailed study of the stationary Ablowitz—Ladik
hierarchy. Our principal tools are derived from combining the polynomial recursion
formalism introduced in Section [2] and a fundamental meromorphic function ¢ on
a hyperelliptic curve K. With the help of ¢ we study the Baker—Akhiezer vector
W, and trace formulas for a and 5.

Unless explicitly stated otherwise, we suppose in this section that

a,BeCEt  an)B(n)¢{0,1}, ncZ, (3.1)
and assume (2.5), 2-6), 23), @.18)-(2-21). 2-32)-(239), [@.40), -45), (2-69).

(2.72), keeping p € Ny fixed.
We recall the hyperelliptic curve

2p+1
Kp: Fp(z,y) = y* —4c 32" Ry(2) = y* = [[ (2 = Bm) =0,
m=0
c 2 2p+1 (3'2)
Ry = (525) LGBl (B2 CC\Oh p=ptps -1,
m=0

as introduced in ([2.75)). Throughout this section we assume the affine part of £,
to be nonsingular, that is, we suppose that

E, #E, form#m', mm =0,1,...,2p+ 1. (3.3)

Kp is compactified by joining two points Pu,, Ps, # Ps_, but for notational
simplicity the compactification is also denoted by IC,,. Points P on IC,\{Pso., , Poc_ }
are represented as pairs P = (z,y), where y(-) is the meromorphic function on IC,
satisfying F,(z,y) = 0. The complex structure on K, is then defined in the usual
manner. Hence, K, becomes a two-sheeted hyperelliptic Riemann surface of genus
p in a standard manner.

We also emphasize that by fixing the curve IC, (i.e., by fixing FEy, ..., Eapt1),
the summation constants ¢i +,...,¢p, + in fpo +, gp, .+, and hy, + (and hence in
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the corresponding stationary s-AL, equations) are uniquely determined as is clear
from , (2.80), which establish the summation constants c¢+ as symmetric
functions of By, ..., EQile.

For notational simplicity we will usually tacitly assume that p € N and hence
p € N2\{(0,0), (0,1),(1,0)}. (The trivial case p = 0 is explicitly treated in Example
) B

We denote by {p;(n)}j=1,..p and {v;(n)};=1,. . p the zeros of (- )P~ F,(-,n) and
(-)P="1H,(-,n), respectively. Thus, we may write

=

Fy(2) = —covatz [ (2 - my), (3.4)
j=1
P
Hy(z) = co 4Bz P H(z —v;), (3.5)
j=1
and we recall that (cf. (2.69))
R, — G = —F,H,. (3.6)

The next step is crucial; it permits us to “lift” the zeros p; and v; from the complex
plane C to the curve K,. From (3.6) one infers that

Rp(2) — Gg(z)2 =0, z€{ljVetjr=1,. p- (3.7)
We now introduce {fi;}j=1,..p C Kp and {0;},;=1,...p, C K, by
fij(n) = (1j(n), (2/co4)pi(R)~Gp(pj(n),n), j=1,....p,n€Z,  (3.8)
and

vj(n) = (vj(n), =(2/co+ v ()P~ Gp(vj(n),n)), j=1,....p,ne€Z  (3.9)

We also introduce the points Py + by

C% 2p+1
Po+ = (0,%(co._ /o)) € Kp, 02" = H Ep. (3.10)
0,+ m=0

We emphasize that Py + and P, are not necessarily on the same sheet of IC,.

Next, we briefly recall our conventions used in connection with divisors on iCp,.
A map, D: K, — Z, is called a divisor on K, if D(P) # 0 for only finitely many
P € K,. The set of divisors on K, is denoted by Div(K,). We shall employ the
following (additive) notation for divisors,

Dgy@ =Dg, +Dq, Dg=Dq, +--++Dq,, (3.11)
Q={Q1,...,Qun} €Sym™K,, Qoeck, mecN,
where for any Q € KCp,

1 for P=0Q,
Dgo: Ky = Ng, P~ Dg(P)= {0 for P e K\ {Q) (3.12)
D 3

and Sym" KC, denotes the nth symmetric product of K,. In particular, Sym™ IC,
can be identified with the set of nonnegative divisors 0 < D € Div(K,,) of degree m.

Moreover, for a nonzero, meromorphic function f on KCp, the divisor of f is denoted
by (f). Two divisors D, £ € Div(K,) are called equivalent, denoted by D ~ &, if
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and only if D — & = (f) for some f € M(K,) \ {0}. The divisor class [D] of D is
then given by [D] = {€ € Div(K,) | € ~ D}. We recall that

deg((f)) =0, f € M(K,) \ {0}, (3.13)
where the degree deg(D) of D is given by deg(D) = ZPeICp D(P).
Next we introduce the fundamental meromorphic function on &, by

(co+/2)z7Py + Gp(2,n)

¢(P,n) = Fy(zm) (3.14)
—H,(z,n
= - ol ) : (3.15)
(co+/2)z7P-y — Gp(z,n)
P=(z,y) €Ky, n€Z,
with divisor (¢(-,n)) of ¢(-,n) given by
(¢(+,1) =Dp, _o(n) = Dres_j(n)> (3.16)
using and . Here we abbreviated
=i, sfiph 0= {0, D} € SymP (K. (3.17

(The function ¢ is closely related to one of the variants of Weyl-Titchmarsh func-
tions discussed in [34], [35], [46] in the special defocusing case § = @.) Given
¢(-,n), the meromorphic stationary Baker—Akhiezer vector ¥(-,n,ng) on I, is
then defined by

_ wl(Pv n, TLo)
\I’(P,TL, Tlo) - (1/)2(P,7’l,’ﬂ0)>’
H?L/:n0+1 (Z + a(n/)df (Pv nl))a n = no + ]-7
Y1(Pyn,no) = < 1, n = no, (3.18)

10,1 (2 +a@)o (Pn) ™", n<ng—1,
HZ’:n0+1 (Zﬂ(n/)(b_ (P, nl)_l + 1)7 n > ng+ 1,
¢2(P7 n, nO) = ¢(P7 nO) 17 n =no,
1 (2B8(n)e~ (P) 7+ 1)), n<ng—1.
(3.19)

Basic properties of ¢ and ¥ are summarized in the following result.

Lemma 3.1. Suppose that «, 3 satisfy (3.1) and the pth stationary Ablowitz—

Ladik system (2.45). Moreover, assume (3.2) and (3.3) and let P = (z,y) €
Kp \{Ps,,Px_,Poy,Po_}, (n,ng) € Z>. Then ¢ satisfies the Riccati-type equa-
tion

ag(P)op™ (P) — ¢~ (P) + 2¢(P) = 2B, (3.20)
as well as
o Hp(2)
¢(P)o(P) = & Bk (3.21)
L Gyl2)

(3.22)
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B(P) — (P") = o427 IZ((P’) (3.23)
The vector ¥ satisfies
U(z)¥~(P) =Y(P), (3.24)
Vp(2)U™(P) = —(i/2)co, 427 Py ¥~ (P), (3.25)
Yo (P,n,ng) = ¢(P,n)1(P,n,ng), (3.26)
. o Fp(z,n)
Y1(P,n,ng)1 (P*,n,ng) = z Wf(n,no), (3.27)
. o Hy(z,n)
Yo (P,n,ng)e(P*,n,ng) = 2 7F£7(z,n0)r(n’n0)’ (3.28)
U1 (P, n,ng)e(P*,n,ng) + 1 (P*,n,no) e (P, n,ng) (3.29)
o Gp(z,n)
-9 7Fg(z,no)r n,mno),
U1 (P, n,ng)e(P*,n,ng) — 1 (P*,n,no) e (P, n,ng) (3.30)
= —co 42" OTP- %P(n,no),

where we used the abbreviation

HZ’:nngl y(n'), n=mno+ 1,
L(n,no) = {1, n = no, (3.31)

[T y()™ n<ng—1.

Proof. To prove (3.20) one uses the definition (3.14) of ¢ and equations (2.10)),
(2.12), and (2.69) to obtain

aB(P)6™(P) — 6(P) + 20(P) - 28
- % (aGBGB_ + (co+/2)z P ya(Gp + G,) + aRy
plp

- (Gg + (co,+/2)2" "= y)Fp + 2(Gp + (co,+/2)27 P~ y) F, — z,BFBFg)

1
= — (aGp(Gp +G,) + Fp(—aH, — G, —28F;) + sz_Gp) =0. (3.32)
FyFy == 't = = 't £ E=

Equations (3.21)—(3.23) are clear from the definitions of ¢ and y. By definition of
1, (3.26]) holds for n = ng. By induction,

va(Pomino) _ B0~ (Pon) ™ 4105 (Prmmo) _ 2B(n) +0(Pm)

¢1(Pan7n0) eroz(n)ng*(P, TL) ¢;(P7n7n0) Z+O[(TL)¢7(P, ’I’L)7 -
and hence 15 /1 satisfies the Riccati-type equation
P2(P,n,m0) L Y2(Pyn, o)
wl(P,'I'L7’I'L0) 7/11(P,7%n0)

a(n)¢™ (P,n) — zB(n) = 0. (3.34)

This proves (|3.26]).
The definition of 1 implies

"l}l(P’nvnO) = (z + a<n)¢_ (P’ ”)Wf(P’nano)

— ¢~ (Pyn) +
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= 2107 (P,n,ng) + a(n)s (P,n,ng), (3.35)
¢2(Pvn7n0) = (2/3(71)(]5_ (P, 'I”L)_l + 1)¢;(P7n7n0)
= zB(n)y (P,n,no) + 5 (P,n,no), (3.36)

which proves (3.24]). Property (3.25) follows from (3.26) and the definition of ¢.
To prove (3.27)) one can use (2.10]) and (2.12)

P1(P)1(PY) = (2 + a¢™ (P))(z + a¢™ (P7))¢y (P)¢y (P7)
= = (PFy + 206Gy + a2 H 0 (P (P)

P

1 SNV —
= o (Fy —2aFy + 20(Gy + Gy (P)U ()
F —
= zvfd)l (P)vy (P7). (3.37)
Equation ([3.28)) then follows from 1-) and l ). Finally, equation (3.29)) (resp.
(13.30) is proved by combining (3.22)) and (3.26]) (resp. (3.23) and (3.26])) ([l

Combining the Laurent polynomial recursion approach of Section E with
and readily yields trace formulas for f, 4 and h, 4+ in terms of symmetric
functions of the zeros p; and vy of (-)P~F, and (-)P-~'H,, respectively. For
simplicity we just record the simplest cases. -

Lemma 3.2. Suppose that a, B satisfy (3.1)) and the pth stationary Ablowitz-Ladik
system (2.45)). Then,

)
@ .+
— = (-1)P+1i H 15, (3.38)
B+ 1)pt Co.+
i - H vj, (3.39)
P Oé C1
o - 3.40
2 A o
P -
Z L _ax (3.41)
=1 5 Co,+
Proof. We compare coefficients in and ([3.4)
2P=Fy(2) = fo,- + 2P P+ 2fl + 2Pt
P
=copat <(—1)p+1 ITwi+ -+ - z”+p+_1> (3.42)
j=1 =1
and use fo_ = co—a and fi 4 = co4((a™)?8 —yTa™t) — aTer 4 which yields
(3:38) and (3.40). Similarly, one employs hg,— = —co,— 3" and hy 4 = co.4 (V87 —

a+ﬁ2) + Bcy 4 for the remaining formulas (| - ) and ( -

Next we turn to asymptotic properties of ¢ and ¥ in a neighborhood of P,
and Py +.
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Lemma 3.3. Suppose that o, 3 satisfy (3.1)) and the pth stationary Ablowitz-Ladik
system (2.45). Moreover, let P = (z,y) € Ky \ {Ps,, Pso_,Po+,Po,—}, (n,n0) €
Z2. Then ¢ has the asymptotic behavior

BB+ O, P Py, B
o( )430{—(a+)—1<—1+(a )20ttt 4 O(C), P — P, (=1/z
(3.43)
_ [al e+ 0(), PR
(P) = {—5+C — B+ O(CR), P— Py, ( =z (3.44)

The components of the Baker—Akhiezer vector ¥ have the asymptotic behavior

B Cno—n(l-i-O(C)) .P—>.POO+7 _
nmm) S, {Sf& Y T(nng) +0(Q), PP, <7 (349
alnl 1 0(0), P— Py
= { alno) ) =
o) 2, icn WD o)1+ O(Q), PPy, .
_ BT (14 0(Q)), P—Pso., .
¢2(P,n,no) (:0 {—oﬁ(ln)r(n,no)C_l(l + O(C))) P Pooi, C = l/Za (347)
_ a(no) + O(C) P— P0,+7 _
vt o) HO{ BT (o) (14 0(Q), PPy
(3.48)
The divisors (;) of ¥;, j = 1,2, are given by
(¥1(+,n,n0)) = Da(n) — Da(no) + (n —n0)(Pp,_ — Dp, ), (3.49)
(¥2(-,n,n0)) = Do(n) — Dp(ng) + (n = n0)(Pp,_ —DPp,, ) +Dp,_ —Dp,, -
(3.50)

Proof. The existence of the asymptotic expansion of ¢ in terms of the local coordi-
nate ( = 1 / z near POo i, respectively, ¢ = z near Py 1 is clear from the explicit form

of ¢ in and . Insertion of the Laurent polynomials F into and

H, into then yields the explicit expansion coefficients in and -
Alternativeiy, and more efficiently, one can insert each of the followmg asymptotic
expansions

(P) -9 12+ ¢o+ 127" +0(272),
(P *) - Go+ o1z Y+0(z72),
(3.51)
(P) = ¢o+¢12+0( %),
)

o(P* ¢1Z+¢>2Z +0(z%)

into the Riccati-type equation (3.20) and, upon comparing coefficients of powers
of z, which determines the expansion coefficients ¢y in (3.51)), one concludes (|3.43)

and (3.44)).
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Next we compute the divisor of . By (3.18]) it suffices to compute the divisor
of z 4+ a¢p~ (P). First of all we note that

z 4 0(1), P — Py,
at —1
—(p) — L v+0(z7"), P— Ps_, 59
et (P)=9 5 L 06), T Po P, (3:52)
vz + O(2?), P—PB_,

which establishes ([3.45]) and ([3.46]). Moreover, the poles of the function z+a¢~ (P)
in K, \ {Po +, P } coincide with the ones of ¢~ (P), and so it remains to compute
the missing p zeros in K, \ {FPo,+, Px, }. Using (2.12)), (2.21)), (2.69), and y(i,) =

(2/co4+ )1~ Gplpy) (cf. (3.8)) one computes
(co+/2)z7 7~y +G,
By

Fp + a((co4/2)z7 Py — Gg)
Fyp
(co+/2)%27%-y* = G}
— + a—— =
Fy ((co,+/2)2 P~y + Gp)
< oH, )
Fy (co7+/2)z—P—y+G£ P—p; Iy (2)
Hence the sought after zeros are at ji;, j = 1,...,p (with the possibility that a zero

at fi; is cancelled by a pole at ﬂ;)
Finally, the behavior of 1o follows immediately using s = ¢1). (I

In addition to (3.43)), (3.44]) one can use the Riccati-type equation (3.20) to derive

a convergent expansion of ¢ around P, and Py 4+ and recursively determine the
coefficients as in Lemma Since this is not used later in this section, we omit
further details at this point.

Since nonspecial divisors play a fundamental role in the derivation of theta func-
tion representations of algebro-geometric solutions of the AL hierarchy in [31], we
now take a closer look at them.

z+a¢p  (P)=z+«

|

T 1

o(1). (3.53)

Lemma 3.4. Suppose that a, B satisfy (3.1)) and the pth stationary Ablowitz-Ladik
system (2.45)). Moreover, assume (3.2) and (3.3) and let n € Z. Let Dy, ji =

{fa, .5 fip}, and Dy, 0 = {Dy,...,1,}, be the pole and zero divisors of degree p,
respectively, associated with o, 8, and ¢ defined according to (3.8) and (3.9)), that

15 (n) = (13 (n), (2/co, )y ()P~ Gy (n)m)). G = 1.,
73(n) = (v;(n), —(2/ o vs (W)~ Gyl (m),m)), j=1,....p.

(3.54)

Then Dﬁ(n) and Dy are nonspecial for all n € Z.

Proof. We provide a detailed proof in the case of Dj(ny- By B0, Thm. A.31] (see
also [29, Thm. A.30]), Dp(n) is special if and only if {f1(n),...,fip(n)} contains
at least one pair of the type {/i(n),/i(n)*}. Hence Dy, is certainly nonspecial

as long as the projections p;(n) of fij(n) are mutually distinct, p;(n) # pur(n) for
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j # k. On the other hand, if two or more projections coincide for some ngy € Z, for
instance,

:ujl(no) = ::ujN<n0) =po, NE€ {27"'7])}7 (3'55)
then Gp(po, no) # 0 as long as ug ¢ {Eo, . . ., Eopy1}. This fact immediately follows
from since Fp,(po,no) = 0 but R,(po) # 0 by hypothesis. In particular,

fj,(no), - -+, fjy (no) all meet on the same sheet since

/}‘7;« (no) = (IJ’O? (2/0074")“’87 GP(IU/O’ nO))) r= 1) cey N7 (356)

and hence no special divisor can arise in this manner. Remaining to be studied is
the case where two or more projections collide at a branch point, say at (Ep,,,0)

for some ng € Z. In this case one concludes F),(z,ng) = O((z = Em,)?) and
= 2= Em,

|
o

GP(Emo ) nU)

using again (2.69) and Fp(Em,,no) = Rp(Em,) = 0. Since Gp(-,no) is a Laurent
polynomial, (3.57) implies G, (z, no) i O((z — Em,)). Thus, using (2.69) once

(3.57)

more, one obtains the contradiction,

O((Z - Emo)z) z%?mo Rg(z) (358>
2 2p+1
Co,
- <2E$Z> (== Fimo) ( Eo (o = Bm) +0(z = Em°)>'
m#mg

Consequently, at most one fi;(n) can hit a branch point at a time and again no
special divisor arises. Finally, by our hypotheses on «, 3, fi;(n) stay finite for fixed
n € Z and hence never reach the points P, . (Alternatively, by , fi; never
reaches the point P, . Hence, if some fi; tend to infinity, they all necessarily
converge to Py _.) Again no special divisor can arise in this manner.

The proof for Dy, is analogous (replacing F, by H), and noticing that by ,
¢ has no zeros near Py ), thereby completing the proof. (I

The results of Sections [2] and [3| have been used extensively in [3I] to derive the
class of stationary algebro-geometric solutions of the Ablowitz—Ladik hierarchy and
the associated theta function representations of «, 3, ¢, and W. These theta func-
tion representations also show that ~v(n) ¢ {0,1} for all n € Z, and hence condition
is satisfied for the stationary algebro-geometric AL solutions discussed in this
section, provided the associated divisors Dj,(,,) and Dy, stay away from Py, , Py +
for all n € Z. a

We conclude this section with the trivial case p = 0 excluded thus far.

Example 3.5. Assume p = 0 and coy = co,— = co # 0 (we recall that g,, =
gp_—). Then,

~ ~ 1
Fo,00 = Flo,00 = H0,00 = H0,00 =0, Go,0) = K0,0) = 5¢0;

~ ~ 1 1
G,0) = K,0) = 3 R,0) = ch,
a=B=0, (3.59)

[z 0 72100 1 0
U(o 1)’ V<070>2<0 —1>'
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Introducing
Zn—"0 0
U, (z,n,n0) = 0 , U_(z,m,n9) = 1) ™no € Z, (3.60)
one verifies the equations
UVL =0y, Vo Vs= i%\l};. (3.61)

4. THE TIME-DEPENDENT ABLOWITZ-LADIK FORMALISM

In this section we extend the algebro-geometric analysis of Section [3|to the time-
dependent Ablowitz—Ladik hierarchy.
For most of this section we assume the following hypothesis.

Hypothesis 4.1. (i) Suppose that «, 3 satisfy
af-,t),B8(-,t) €eCE teR, an,-), B(n,-)eCYR), n€Z,
a(n,t)B(n,t) ¢ {0,1}, (n,t) € Z x R.

(#7) Assume that the hyperelliptic curve ICp satisfies and .

The basic problem in the analysis of algebro-geometric solutions of the Ablowitz—
Ladik hierarchy consists of solving the time-dependent rth Ablowitz—Ladik flow
with initial data a stationary solution of the pth system in the hierarchy. More

(4.1)

precisely, given p € N2\ {(0,0)} we consider a solution a(®), 3(9) of the pth station-
ary Ablowitz—Ladik system S—AL]D(a(O)7 B)) = 0, associated with the hyperelliptic
curve K, and a corresponding set of summation constants {cet}o=1..,
Next, let r = (r_,ry) € Ng; we intend to construct a solution «, S of the rth
Ablowitz-Ladik flow AL,(a,8) = 0 with a(ty,) = a®, B(ty,) = B© for some
to,, € R. To emphasize that the summation constants in the definitions of the
stationary and the time-dependent Ablowitz—Ladik equations are independent of
each other, we indicate this by adding a tilde on all the time-dependent quantities.
Hence we shall employ the notation V;, Fy., G, Hy, K,, fs,i, Js,+ 7157i, Cs 45
in order to distinguish them from V), F,, G,, Hp, Ky, fo+, go,+, he,+, co+, in
the following. In addition, we will follow a more elaborate notation inspired by
Hirota’s 7-function approach and indicate the individual rth Ablowitz—Ladik flow
by a separate time variable ¢, € R.

Summing up, we are interested in solutions «, 8 of the time-dependent algebro-
geometric initial value problem

AL, (e, B) = <i0‘tr —Gry 4+ G )+ friy — fr__l,> _

_iﬁtl + 6(§;+7+ + grﬂ—) - hh—l,— + h7-+—1,+
(a7ﬁ)|t:t01£ = (a(O)’/B(O))7

0 _ _
s-AL, (a(0)76(0)) _ —(240() )(9_p+,+ +9p )t fp—14 — f_p,—1,— —0 (4.3
= B (9p+,+ + gp_,—) —hp_—1-+ hp+71,+

for some tg, € R, where o« = a(n, t,), § = B(n,t,) satisfy (4.1) and a fixed curve
K, is associated with the stationary solutions a®, 30 in [@.3). Here,

p=(-p+) ENGA{(0,0)}, r=(r_,74) NG, p=p_+ps—1  (44)

(4.2)
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In terms of the zero-curvature formulation this amounts to solving
Up, (2:t0) + U2, t)Vi(2, t0) — Vi (2,8:)U (2,8,) = 0, (4.5)
U(Z t() T)V (Z t() r) Vp+(2:, to,ﬂ)U(Z, tO,[) =0. (46)

One can show (cf. [32]) that the stationary Ablowitz—Ladik system (4.6]) is actually
satisfied for all times ¢, € R: Thus, we actually impose

Up, (2:t0) + U2, t)Vi(2, tr) — Vi (2,8:)U (2,8,) = 0, (4.7)
Uz, tr)Vp(z, tn) = VM (2,8:)U (2, t,) = 0, (4.8)

=

instead of ( -) and

here (cf. (2.5 .,
z o«
e <zﬁ )

_ _ ~_ (4.9)
z) —F (2 - G (z — z
)) ’i_( )>, m(z):z'(f() ﬁf”),

P T K,

.6)). For further reference, we recall the relevant quantities

18)-(222)):

DO

(
(z

p(2) =G, (%) : Hy(2) —K;(2)
and
p— py—1
S it S i = —osats - [ )
=1 £=0 j=1
P P+
= ng_ -z 4 ng+—z,+ze,
=1 £=0
p——1 D+ P
p(2) = Z hp 102"+ th+_g)+zg = co 4Bz P-T1 H(z - V),
£=0 =1 j=1
T+— 1
Fr(z frf—s,—z_g + fr —1-5,4+2", (4.10)
Z :
Giu(2) = Zgr,-s,-z* + Zgu-s,m
r_—1
g Zhr —-1- 9—2 +Zhr+ 9+Z
K,(z) = Zgh,sy,z—s + ZQH,S,MS =G () +0r =Gy v (4.11)

s=1

for fixed p € N3\ {(0,0)}, r € N3. Here fr+, fo+, o+, Js+» ho+, and hy 4
are defined as in (2.32)—(2.39)) with appropriate sets of summation constants ¢, 4,

¢ € Ny, and ¢ 4, k € Ng. Explicitly, (4.7) and (4.8) are equivalent to (cf. (2.10)—
E13), @-83)--80)),

Qg = z(zﬁz_ + a(él + f(g) — ﬁz), (4.12)
By, = —i(B(Gy + K,) — Hp + 27 H ), (4.13)
=2(G, — G,) + 2BF, + aH, (4.14)
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0=28F +al, +K; — K, (4.15)
0=2(G, —G,) +28F, + aH, (4.16)
0= zﬁF;* +aH, -Gy + G;,i (4.17)
0=—F,+2F, +a(Gy+G,), (4.18)
0=28(Gyp+G,) — zHy + Hy , (4.19)

respectively. In particular, (2.69)) holds in the present ¢,-dependent setting, that is,
2
GB — FpH, = Ry (4.20)
As in the stationary context (3.8)), (3.9) we introduce

fij(n,tr) = (pg(nstr), (2/co+ ) (n, )P~ Gg(uj(n,tﬁ),n, tr)) € Ky,

4.21
j=1,...,p, (n,t,) € Z xR, (4.21)

and

ﬁj (n’ tL) = (Vj (n’ tﬂ)’ _(2/CO,+)Vj (n’ tL)IL Gg(yj (77‘7 tL)? n, tL)) € ICP?

4.22
j=1,....p, (n,t,) € Z xR, (4.22)

and note that the regularity assumptions on o, 8 imply continuity of u; and
v, with respect to ¢, € R (away from collisions of these zeros, u; and vy are of
course C'™).

In analogy to (3.14), (3.15), one defines the following meromorphic function
o(-,m,tr) on ICp,

(CO,+/2)Zip7y + GB(Zv n, tﬂ)

Pn,t,) = 4.23
&(P,n,t,) Foe i 1y) (4.23)
—H,(z,n,t,
= e 1) : (4.24)
(CO,+/2)Z_p7y - G£(27 n, tg)
P =(zy) € Kp, (n,t;) €Z xR,
with divisor (¢(-,n,t,)) of ¢(-,n,t,) given by
(@(-sn.tr)) = Dpy _p(nt) — PPo_p(nit,)- (4.25)
The time-dependent Baker—Akhiezer vector is then defined in terms of ¢ by
_ wl(P7n?n0at£a t07£)
\I/(P, n,no, ti) tO,g) - (wQ (P, n, no, tl, t07£) 3 (426)

t'L’ ~ ~
1 (P, n,no, tr, toy) = €xp <z/ ds(Gﬁ(z,no, s) — Fy(z,mn0,5)p(P,ng, s))>
t0,£

HZ,:MH (z +a(n',t;)¢~ (P, n’,ti)), n>nog+1,
x <1, n = ng, (4.27)

| KA (z+ a(n/ t)o~ (P, n',tz))fl, n<mng—1,

t, B B
Ya(P,n,ng,tr, to,r) = €xp (z/ ds(GL(z,nO, s) — Fr(z,m0, 8)p(P, no, s)))

to,r
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| | KR (2B(n',ty)o~ (P t,) ™ +1), n>no+1,

x ¢(P,no,tr) § 1, n = ng, (4.28)
100, (2B )6~ (Pl t) ™ + 1), n<mg— 1,
P=(zy) € Ky\{Pso,,Po_,Po+, P}, (n,t;) € ZxR.

One observes that

7/}1(P7n7n07t£, Eg) = d}l(Pa n03n07tﬁa {ﬁ)wl(Pv n, nOatﬁv tﬁ)v

- 4.29
P:(Z7y)GKP\{POO+aP<X>77PO,+7PO,—}a (nanOatLat3)6Z2XR2' ( )

The following lemma records basic properties of ¢ and ¥ in analogy to the
stationary case discussed in Lemma 3.1

Lemma 4.2. Assume Hypothesis and suppose that (4.7)), (4.8) hold. In ad-
dition, let P = (z,y) € Kp \ {Px,,Px_}, (n,no,tr,tor) € Z? x R*. Then ¢
satisfies

ag(P)p™ (P) — ¢~ (P) + 29(P) = 20, (4.30)
1, (P) = iF,¢?(P) — i(Gr(2) + Ki(2))p(P) + iH,(2), (4.31)
# Hy(2)
(P)p(P*) = ) (4.32)
X Gp(2)
¢(P) +o(P") =24 Bk (4.33)
P(P) = ¢(P*) = co 27" IZEZ))' (4.34)

Yo (P,n,ng, tr, tor) = ¢(P,yn,t, )01 (P, n,no, tr, tor), (4.35)
U(z)P~(P) =T(P), (4.36)
Vp(2)¥™(P) = —(i/2)co,+ 27 P y¥ ™ (P), (4.37)
Uy, (P) =V (2)¥(P), (4.38)
V1(P,m,ng, tr, to )1 (P, n,no, tr, tor) = z"_""MF(n no,t.), (4.39)
» 14,10, Up, To,r » 15 M0, U To,r Fy(znotos) r)y %
oo Hp(z,m,ty)
Yo (P,n,ng, tr, to.r )2 (P*,n,ng, tr, to,r) = 2" " ————=T'(n,n0,t,), (4.40)

Fp(za no, toi)

wl(Pan,n()»tﬁa to,ﬁ)qu(P*vna nOatﬁa tO,z) + wl(P*anvn(Jvt[a tO,z)d&(P,n,no,tD tO,ﬁ)
Gg(z,mtﬁ)
Fp(zvnmtoi)

wl(Pan,n()»tﬁa to,ﬁ)qu(P*vna nOatﬁa tO,z) - 1/11(P*,7%noat@ toyﬁ)wQ(Pﬂ/LanOatﬁv tO,ﬁ)

—ng— Y
= —cgy2t 0P —2 — _T'(n,ng,t,), 4.42
0,+ Fp(z,no,t07£) ( 0 ,) ( )

=2z o

I'(n,no, t,), (4.41)
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where
HZ’:no+l y(n',tr), n>ng+1,
L(n,no,t;) = { 1, n = n, (4.43)
[Ty t)™t n<ng—1.
In addition, as long as the zeros p1j(no,s) of (-)P~Fp(-,no,s) are all simple and

distinct from zero for s € I,,, Z,, C R an open interval, U(-,n,ng,t,to,) is mero-
morphic on Ky \ {Pso, Pso_, Po.y,Po,} for (n,t,,to,) € Z x T.

Proof. Equations (4.30)), (4.32)-(4.37), and (4.39)-(4.42) are proved as in the sta-

tionary case, see Lemma Thus, we turn to the proof of (4.31) and (4.38]):
Differentiating the Riccati-type equation (4.30)) yields

0= (app™ — ¢~ +2¢ — Zﬁ)tl
=0y, 00" + (™ + 2)dr, + (g — 1)y — 204,
= ((ap™ +2) + (ap — 1)S7 )y, + ipp~ (a(é£+ I?,:) + zﬁ’g - fﬂ)
+izB(Gy + K,) +i(zH, — H]), (4.44)

using (4.12) and (4.13). Next, one employs (3.20) to rewrite

(@07 +2)+ (a0 DS™ = Z(:8467)+ Z(3-9)5. (149

This allows one to calculate the right-hand side of (4.31]) using (4.14)) and (4.15)
((a¢™ +2) + (ap = 1)S™) (Hy + F16” — (Gp + K,)9)
= (a¢™ +2)H, + (ap — DVH; +¢(28+ ¢ )F, + 20~ (B— ¢)F,
— (28+¢7)(Gr + Ky) — 2(B - )(Gy + K,)
= ¢¢~ (F, — 2F; ) + zH, — H; + ¢~ (aH, + 2BF ) + ¢(aH, + zBF,)
2B(G, +K +G, +K,)— 206Gy + K, ) — ¢~ (G + K,)

= 66~ (Fp— 2F,) + zH, — Hy — 28(G; + K,) + (26 — ¢~ — 2B)(G + K, )

= ¢¢~ (Fp — 2F7) + zH, — H; — 28(G, + K,) — agp™ (G, + K, ). (4.46)
Hence,

(%(zﬁ +07) (8= )5 ) (on, il — iFod? + (Gt Kr)d) =0 (447)

Solving the first-order difference equation (4.47) then yields
¢t£(P7 n, tL) - iﬁﬂ(za n, tﬂ)d)(Pa n, tL)Q
+i(Gp(z,n,t,) + Ky (2,0, 8,)) (P, t,) — iHy (2, t,)
[[— BP0/ t,) JA(P, 7 1), n =1,
=C(Pt,)4 1, n=0, (4.48)
1, AP 1)/ B(Po 1), < —1

for some n-independent function C(-,t,) meromorphic on ,, where

A=¢"1(2B+¢7), B=-2(¢")""(B-9). (4.49)
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The asymptotic behavior of ¢(P,n,t,) in (3.43) then yields (for ¢, € R fixed)
B(P) —\—1,-1 -2
= —(1- . 4.
) e, 1= emE) e 06 (150)

Since the left-hand side of is of order O(2"+) as P — Px,, and C is mero-
morphic, insertion of into , taking n > 1 sufficiently large, then yields
a contradiction unless C' = 0. This proves .

Proving is equivalent to showing

U1, = i(Gy — OF )1, (4.51)
Vie, + G, = i(Hy — 9K, )i, (4.52)
using . Equation follows directly from and from ,
Y1y, + o1y, = U1 (iHy + iF,0” — i(Gr + K)o +i(Gr — 6F,)0)
— i(Hy, — oK, )ihr. (4.53)
To prove we start from
(z+ap )y, =0 + ozqﬁt_l
= ¢ i(2F, +a(Gr + K. ) — F) +ai(Hy +F (¢07)? — (G, + K, )¢™)
=ia¢p~ (G, — Gy ) +i(z+adp" )¢ Fy —i¢™ Fy +iaH,

=i(z+a¢") (G, — ¢F, — (G; — " F,)), (4.54)
where we used and to rewrite
iaH, — i~ F, = i2(G, — Gy ) — agdp™ Fy, — 20 F,. (4.55)
Abbreviating
ty _ _
U(Pa nOatﬂ) = Z/ dS(GL(ZanOaS) _FL(Z7n07S)¢(P7n07S))’ (456)
0

one computes for n > ng + 1,

n

bric= (o) TT o)

=0, +exp(o) Y. (z+ag ) () [] (z+ae )0

n/=ngo+1 n’l’:l

n

wn(on+i 3 (G- o)) - (G- Bt - 1))
n’=ng+1
= i(Gr = Fr9)r. (4.57)
The case n < ng is handled analogously establishing (4.51).
That ¥(-,n,ng,t, to,) is meromorphic on K\ {Pso, Po 4 } if Fg( -, ng, t,) has
only simple zeros distinct from zero is a consequence of (4.27)), (4.28]), and of
_iﬁi(zan0a3)¢(P7n07s) = 85 In (FP(Z,TL07S)) +O(1)7 (458)

P‘)ﬂ]‘ (no,s) -

using (4:21)), ([4.25)), and ([£.59). (Equation (4.59) in Lemma [£.3]follows from (4.31)),
(4.33), and (4.34) which have already been proven.) O
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Next we consider the ¢,-dependence of F},, Gp, and H,.

Lemma 4.3. Assume Hypothesz's and suppose that (4.7), (4.8]) hold. In addi-
tion, let (z,n,t,) € C x Z x R. Then,

Fpi, = —2iG,F, +i(G, + K,) F, (4.59)
Gy, = iF,H, —iH,F,, (4.60)
Hyy, = 2iGypH, — i(Gy + K,)H,. (4.61)
In particular, f are equivalent to
Vo, = [Vis V. (4.62)
Proof. To prove one first differentiates equation
¢1, (P) — ¢, (P*) = —c07+z*PfyF£2FBt£. (4.63)

The time derivative of ¢ given in and yield
61, (P) = 6, (P") = i(Hy + Foo(P)* — (G + K,)6(P))
—i(H, + F,9(P*)* = (G, + K,)6(P7))
iF(¢(P) + 6(P*))(¢(P) — 6(P*))
—i(Gy+ Kp) (6(P) = 6(P"))
= ico 2 P FryGpFy? —ico 2P (Gp + Kp)yF, ', (4.64)

and hence B B B
Fy, = —=2iGF, +i(Gr + K,) Fp. (4.65)
Similarly, starting from
b1, (P) + ¢4, (P*) = 2F£2(FQG£¢£ — Fp1,Gp) (4.66)
yields and
0= Ry, =2GpGpt, — Fpr, Hy — FyHp s, (4.67)
proves (4.61)). O

Next we turn to the Dubrovin equations for the time variation of the zeros p; of
(- )P~ F, and v; of (-)P~~"H, governed by the AL, flow.

Lemma 4.4. Assume Hypothesis and suppose that , hold on Z. x I,,
with Z,, C R an open interval. In addition, assume that the zeros yuj, 7 =1,...,p,
of ()P~ F,(-) remain distinct and nonzero on ZxZL,. Then {fi;}j=1, . p, defined in
, satisfies the following first-order system of differential equations on Z x 1L,

:U’j,tL = 7iﬁ£(lu’j)y(ﬂj)(a+)il H(IU’J - /u'k)ilv j = 13 By 2 (468)

with
fi(n,-) € C*(I,,Kp), j=1,...,p, n€Z. (4.69)
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For the zeros vj, j =1,...,p, of (- )p—’lHB( -), identical statements hold with i,
and I, replaced by v; and T, etc. (with T, C R an open interval). In particular,

{Dj}j=1,.p, defined in (4.22), satisfies the first-order system on Z x I,,,

p
vie, = il () y(0)Br)) Ty — )™, G=1,...p, (470
=
with
vi(n,-) € C°(L,,Kp), j=1,....,p, n€Z. (4.71)

Proof. It suffices to consider (4.68)) for 1. . Using the product representation for

F)p in (4.10) and employing (4.21)) and (4.59)), one computes

p
Fg,tﬂ(ﬂj) = <60,+04+Mj H )Hg,tr ZiGg(Mj) (1)
k=1 4.72
k#j ( 7 )
- _ico,+M;p7y<ﬂ])FL(Mj)7 ,] = 17 R 2

proving (4.68)). The case of - ) for v, is of course analogous using the product
representation for H,, in and employing (#.22)) and - (]

When attempting to solve the Dubrovin systems and , they must
be augmented with appropriate divisors Dp(ny,,) € Sym” Ky, to, € Z,, and
Dy (no o) € Sym? Iy, tor € T, as initial conditions.

Since the stationary trace formulas for f,+ and hy+ in terms of symmetric
functions of the zeros p; and vy, of ()P~ F, and ()P~ "'H, in Lemma extend
line by line to the corresponding time-dependent setting, we next record their tp-
dependent analogs without proof. For simplicity we again confine ourselves to the
simplest cases only.

Lemma 4.5. Assume Hypothesz's and suppose that (4.7), (4.8) hold. Then,

sl am
5[; _ (_1)p+1207i H v, (4.74)
zp: :a+g_7+02:_2): (4.75)
j=1 ’
iyj =atB— 'y% - Z;f (4.76)

Next, we turn to the asymptotic expansions of ¢ and ¥ in a neighborhood of
Py, and Py +.

Lemma 4.6. Assume Hypothesis and suppose that (4.7)), (4.8) hold. Moreover,
let P = (z,y) € Ky \ {Poc,s Poo_, Po4,FPo,—}, (n,n0,tr,t0,) € 72 x R%. Then ¢
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has the asymptotic behavior

_ BB+ O, P—>Pe,, .
o (=0 {—(oﬁ)lﬁl + (aN)2attyt +0(), P — Ps_, ¢=1/z
(4.77)
 JaTt—a2am ¢+ 0(¢P), PPy,
o(P) = {_ﬁ+< — BHHATC2 4 O(¢3), PP, ==z (4.78)

The component 1 of the Baker—Akhiezer vector ¥ has the asymptotic behavior

i A L,
wl (P, n,no, t£7 to,ﬁ) CiO exp ( + §(t£ - tO,ﬁ) sgo CT-%—*SHFC ) (1 + O(C))

¢roTm, P— P,
at n,t,
X F(n,no,tﬁ)w P_>P (:1/2’,
X exp (z fttoi ds(§”,+(no, s) — gr_,—(no, s)))7 N
(4.79)

)

1/J1(P,n7n07t£7 tO,z) CjO exXp ( 5 tO T ZCT —s,— ) 1+0(())

a(n,ty)
a(no,to.r)’ P — P0,+7

X I'(n,ng, t,) "o =z

.ty ~ ~ P— PO,—v
xexp (i 2, ds (G (10,5) = Gr_~(n0,5)) ),
(4.80)

Proof. Since by the definition of ¢ in the time parameter ¢, can be viewed as
an additional but fixed parameter, the asymptotic behavior of ¢ remains the same
as in Lemma Similarly, also the asymptotic behav10r of wl(P n no,tr,t
derived in an 1dentlcal fashion to that in Lemma This proves (| and | -
for ¢y, = tr, that is,

"1+ 0(Q)), P Py,
V1(Pyn,no, by, tr) = ot (n,t,) ' ¢=1/z,
¢—0 F(n,no,tz)m—l—()(o, P— P,
(4.81)
a(n,ty) o) PP
¢1(P7n7n07t7‘7tr) = Q(no,tﬁ) + (<)7 O,JF’ C —
T 7 =0 [T(n,no, t)" (1 +0Q)), P— B, —,
(4.82)

It remains to investigate

tr ~ ~
¥1(P,ng, o, tr,tor) = €xXp (z/ - dt(Gy(z,mo,t)—Fy(2,m0,t)p(P, no,t))>. (4.83)

to,r

The asymptotic expansion of the integrand is derived using Theorem[A.2] Focusing
on the homogeneous coefficients first, one computes as P — Py, ,

L Gyt ry
Gs,—‘r - Fs,+¢ = Gs,—i— - Fs,+ = F
P
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~ ~ 2,p- G 2,p— F,\ ~
G R (2 ) (2 )
Co+ Y Co+ Y

1 g 3;
= ares g PEFTIE L0, PP, (=1/z (4.84)
¢—=0 2 0,4+
Since
T+

*CH ;)Cu s+Fs++O(C) 7CHOZCT+ s+Gs++O(C) (4.85)
one infers from (4.77))

~ - 1 <

G, — Fp¢ o3 ; ery—s4C T+ 0(C), P— Pw,, (=1/z (4.86)

Insertion of (4.86) into (4.83)) then proves (4.79) as P — Py, .

As P — P,,_, we need one additional term in the asymptotic expansion of IED
that is, we will use

7C—>OZCT+ S+FS++§CT —s—fs 1—C+O(C) (487)
This then yields
Go—Fro = - Zcr+ (= @) oo = fr ) T 0(0). (488)
Invoking (2 and (4.2 . one concludes that
f~7‘_71,7 - f~r+,+ - Zat +a (gT+,+ - gT-y*) (489)
and hence
~ ] +
GL - T¢) C:>0 Zcmr s, +C - —= 4+ gr+, grf,— + O(C) (490)

Insertion of (4.90) into (| - ) then proves (4.79)) as P — Py _

Using Theorem [A.2] again, one obtains in the same manner as P — Py +,

2 s » Jo—+ 35 -
Go-—Fo ¢ = +- C Goo + 2T 2F 4 0(0). (4.91)
¢—0 0,—
Since
,H)Zcr coiBoot foy1 4 10, P PRos, (=2 (492)
N*C: C,;,S’,Gs’ +gr+’++0(<)7 P— Py, (=2 (493)
s=0
(4.91)-([1.93) yield
~ 1
_ Yo,— 5
F’r‘ - :t T_—8,— T r_ ro— r_ s
Cr=Frp = +3 Zc b =S (s fr )40

(4.94)
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where we again used (4.78)), (2.52), and (4.2). As P — Py _, one thus obtains
-~ 1= _ o 5
CoFed CjO 2 ;cr*fs’*g "+t —Gro— PP, (=2 (4.95)

Insertion of (4.95)) into (4.83)) then proves (4.80) as P — Py _.

As P — Py 1, one obtains

GL - Fﬂb CjO ;;érs,c_s + gr+,+ - grf,f - é(fmrflﬁr - frf,f) + O(<)7
1 — oy
cjo 3 2 Cr_—s—C °— TE +0(), P—PFP+, (=2, (4.96)
using f._ _ = fri_L_ +a(Gr_,— — gy ) (cf. (2:38)) and ({.2). Insertion of
into then proves as P — Py 4. (Il

Next, we note that Lemma on nonspecial divisors in the stationary context
extends to the present time-dependent situation without a change. Indeed, since
t, € R just plays the role of a parameter, the proof of Lemma extends line by
line and is hence omitted.

Lemma 4.7. Assume Hypothesis and suppose that (4.7)), (4.8) hold. Moreover,
let (n,t,) € Z x R. Denote by Dy, jr = {ji1,...,fip} and Dy, 0 = {in,...,0p}, the
pole and zero divisors of degree p, respectively, associated with o, (8, and ¢ defined

according to (4.21) and (4.22)), that is,

fj (TL, tﬂ) = (Mj (n’ tﬂ)’ (2/00,+>/~Lj (n, tL)IL Gg(ﬂj (TL, t£)> n, tL))a j=11...,p
(4.97)

vi(n,t,) = (vi(n, ty), —(2/co+)v;(n, tp )P~ G£<Vj(n, t.),n,t)), j=1,...,p.
(4.98)

Then Djn,t,) and Dy(n,1,) are nonspecial for all (n,t,) € Z x R.

Finally, we note that
I'(n,ng,t,) = I'(n,no, to,r)

tr
cexp (i [ sl 009 = e 008) = e 0.8) 4~ (10,9) )
to,r
(4.99)
which follows from (2.91)), (3.31)), and from

T(n,nosty)e, = > A0it)n [[ 70t (4.100)
j=no+1 k=no+1
ey
= i(§r+,+(n7 tz) - gr+,+(n07 tﬁ) - ?]7“7,7 (TL, tz) + ng,f(nm t[))r(nv no, tz)
after integration with respect to ;.

The results of Sections have been used extensively in [31] to derive the class
of time-dependent algebro-geometric solutions of the Ablowitz—Ladik hierarchy and
the associated theta function representations of o, 3, ¢, and ¥. These theta func-
tion representations also show that v(n,t,) ¢ {0,1} for all (n,t,) € ZxR, and hence
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condition is satisfied for the time-dependent algebro-geometric AL solutions
discussed in thls section, provided the associated divisors D, ¢,) and Dp(y, 4, stay

away from Py, P+ for all (n,t,) € Z x R.

a(n,ty

APPENDIX A. ASYMPTOTIC SPECTRAL PARAMETER EXPANSIONS AND
NONLINEAR RECURSION RELATIONS

In this appendix we consider asymptotic spectral parameter expansions of F},/y,
Gp/y, and Hp/y in a neighborhood of P, and Py 1, the resulting recursion re-
lations for the homogeneous coeflicients fz, ge, and ;Lg, their connection with the
nonhomogeneous coefficients f;, g¢, and he, and the connection between ¢, 4+ and
Cg(Eﬂ). We will employ the notation

E*' = (Ey',... E3L,). (A1)
We start with the following elementary results (consequences of the binomial
expansion) assuming 1 € C such that |n| < min{|Eo|™',...,|Eoyps1|" }:
opt1 -1/2
( IT (- Em)) = a(En, (A.2)
m=0 k=0
where
co(E) =1,
k .
2 2
e(E)= > @jo)t - Rfopr1)! o B keN. (A.3)

2k (4.1 12
o5 2o 22802 ()
Jjo+-+jepr1=k

The first few coefficients explicitly read

2:0+ 1 2p+1 2p+1

G(E)=1, &1(E Z E,., é2(E Z En,Enm, + < Z etc.

ml,mg =0
m1<mz

(A.4)
Similarly,
2pt1 1/2 -
T -E = E)n* A
H (1 mn) = ch(f)fi , ( '5)
m=0 k=0
where
co(E) =1,
k . . 1 J2p+1
27 ... (2 IEJ . pl2r+
cr(E) = Z (20)! ( ]2p+1) 2p+1 keN. (A.6)

do 2o 2202 (2 ) (20 — 1) (22p+1 — 1)’

Jot+i2p+1=k
The first few coefficients explicitly are given by

2p+ 1 2p+1 2p+ 1

colE)=1, ¢(E) = —= Z Ep, co(E Z Ep, Ep, — Z ete.

mhmz =0
mi<mg

(A7)
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Multiplying (A.2) and (A.5) and comparing coefficients of 7* one finds

k
Zékfé(E)CZ(E) =0k0, k€ Np. (A.8)
=0

Next, we turn to asymptotic expansions of various quantities in the case of
the Ablowitz-Ladik hierarchy assuming a,3 € CZ%, a(n)B(n) ¢ {0,1}, n € Z.
Consider a fundamental system of solutions U (z, -) = (¢1,+(2, ), ¥2.4(2, -)) " of
U(z)W5(z) = U4(2) for z € C (or in some subdomain of C), with U given by (2.5),
such that

det(V_(2), ¥ (z)) #0. (A.9)
Introducing
_ ’(/)Q,i(za n)
d1(z,m) = 7¢1,t(z,n)’ z€C, neN, (A.10)
then ¢ satisfy the Riccati-type equation
ap+¢y — o1 + 20+ = 23, (A.11)
and one introduces in addition,
2
= — A2
= (A.12)
o4 + o
=T = A3
9= (A.13)
204 0—
=Tt Al4
oo (A1
Using the Riccati-type equation and its consequences,
a(¢prdy —¢-¢7) = (7 —¢7) + 2(d4 —9-) =0, (A.15)
(0L +9-9¢7) — (¢ + &) + 2(d+ + ¢—) = 225, (A.16)
one derives the identities
2(g7 —g) +208f+abh” =0, (A.17)
Zf" +ah—g+g” =0, (A.18)
—f+2" +alg+g7)=0, (A.19)
zB(g” +9)—zb+bh” =0, (A.20)
)

g>—fh=1. (A.21

Moreover, (A.17)—(A.20) and (A.21)) also permit one to derive nonlinear difference
equations for f, g, and h separately, and one obtains

((0F + 20)%f — 2(a™)247)* = 220277 (0 + 20)%f + 2(a™) )
+ 220 (y)2(17)? = 4(aa™) (ot 4 az)?, (A.22)
(@ +za)(B+ 28%) (2 + a™B)(1 + 2a8™)g?
+z2(a"yg” + 2an g ) (28T vgT + ByTeT)
— (@™ B+ 22aft)2 -7 +22(1—-1")(2-7))o 0
- (221 =72 -7 + (" B+ 22ap)(2-1))at e
= (a*pB - 22ap™)?, (A.23)
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_ 2 _
2((BF) 0™ = B2T)" = 22(8 +287)2((B%)* b~ + 52" 0)b
+(B4287)'0* =422(B61)2 (B + B 2)%. (A.24)
For the precise connection between §, g, h and the Green’s function of the Lax
difference expression underlying the AL hierarchy, we refer to [30, App. C], [33].

Next, we assume the existence of the following asymptotic expansions of f, g,
and b near 1/z = 0 and z = 0. More precisely, near 1/z = 0 we assume that

= 7Zf2+z 7’ g = 7292—%2 )

ZGCR ZECR (A 25)
IR S
z€Cpr £=0

for z in some cone Cr with apex at z = 0 and some opening angle in (0, 27],
exterior to a disk centered at z = 0 of sufficiently large radius R > 0, for some set
of coefficients ¢+, g¢ +, and by 4, £ € Ng. Similarly, near z = 0 we assume that

R o l
z = - L,—~< gz = - ge, -z,
f o ;f <>H€g0 Z
e “eCr (A.26)
z = —ZF}&,ZE—H,
|z|—0 —o
zeC, -

for z in some cone C, with apex at z = 0 and some opening angle in (0, 27],
interior to a disk centered at z = 0 of sufficiently small radius r > 0, for some set
of coefficients f, —, g¢,—, and by, _, £ € Ny. Then one can prove the following result.

Theorem A.1. Assume o, 8 € CZ, a(n)B(n) ¢ {0,1}, n € Z, and the existence of

the asymptotic expansions (A.25) and (A.26). Then f, g, and b have the following
asymptotic expansions as |z| — oo, z € CRg, respectively, |z| — 0, z € C,,

— _ngJrz “tog(z) = —Zgwrz ;

| I—éoo | |—éoo
zeCRr . zeCpRr (A27)
IS WA
zeCpr £=0
and

— - _ o L
Do ;fe - 9(2) Tl ;ge,—z ;
ZGC zeC\r (A28)
= — h _ s
| |_>0 Z f, Z
zeCy

where fgd:, Je,+, and ilg,j: are the homogeneous versions of the coefficients fo +,
9o+, and he + defined in (2.49)—(2.51)). In particular, fo+, e+, and he+ can be
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computed from the following nonlinear recursion relationzﬂ
for==a*, fiy=(")B—qtatt,
for = —(@T)382 + 4(a)2B™ + 7 ((a++)2ﬁ+ —ytrattt 4 20tattB),

-4
+f£+—2( 42 +fem4,++06 meJrfe m,+

=0
-3

Z — 200 foem-s 4 + (@) g V)
0
-2
+ ) (@O e (@) (@) s
m=0

-2 ’7+fl m— 2+)

- 2ax fm,+(*30104+f€—m—2,+ + 2(a+)27f€_—m—27+ + 20‘27+fe+—m—2,+))
-1

m=0

- 207 Z fm,-i-( - QO‘O‘JrfE—m—l,-i- + (O‘+)27f(__m_17+ + 0427+f2—_m_17+)>a
>3, (A.29)
fo,— =a, fl,— =ya~ —a?BT,
fo=a®(BT)? —4Ta?BT —y((@7)?B—v"a " +2aaB"),

{—4

-1
o 1 o o o ~
O‘(a+)4f€,— = 75 (a4mz_:ofm,—f€—m—4,— + (04+)4mz::1fm,—fl—m,—
-3
—Wwa (= 200" from-s,— + (@) g+ Vs )
£—2
+ IDN A A
m:O

+ (@) 2y fo (@)Y o = 20275 )
— 200" fru_(=3aa™ fy_m_o_ +2(at) 2y iy 202 fE L, )
0

=2(a*)? Y fn (= 200" fromor -+ (@) + a%*ﬁml,))’

m=0
0>3,  (A.30)
I
90,4+ = 57 g1+ = —Oé+ﬁ,
2.4 = (@"B)* =T a™T B —qat BT,
{—4 0—
(O‘/B+)2g€,+ = - (( 62 Z gm +gi m—4,+ + Ol /B+ Z +g€—m,+
m=0

m=1

3SWe recall, a sum is interpreted as zero whenever the upper limit in the sum is strictly less
than its lower limit.
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£—3
+ a8 (VG 98 + Gt (L aB) (L + @ BTG4

m=0
— O+ B NI s (2 DY G s 1)

+ > (@ BN GGy +OBOT) G G oy

m=0
+ gm+ (@B + ™ B2BT + aB(L+ atBT))gr—m—2+
—2(a" (1 +aB) BTGy oy TaB0+at B )G, 5 )))

-1
+apt Z (s 91+ Gm (L aB) 1+ 0BT )gem1,+

m=0

(Y+ BT )Gy gy (=24 v)v*ﬁZ_m_H))), ¢>3, (A31)
. 1 .
do- =5 G1-= —af™,

(af™)? —ytapt —ya= BT,
-4 -1

( ) 629€ - = (042(,8+)2 Z gm,—gf—m—4,— + (04+)262 Z gm,—gf—m,—

m=0 m=1

-3
+aBt S (W im0 s T G- (L aB) (L + at B ) G s

m=0
— (Y BNG s (24T, s )

+ 2 (@B i moa - + BTV G s

m=0
+ Gm— (@t BT +a?a™ BB + aB(l +atB1)?)grom—2 -
—2(a*(1+aB)B G o - + B+ BT G, 5 )

/-1
+at B (G0t~ A+ Gm— (L + aB) A+t BTG -

m=0

(V+a" B NGy, + (24 7)7*@?%_1,_)))7 0>3, (A.32)

iLO,+ = 67 iLl,+ = ’YB_ - Oé+52,
hoy = (a)?B% — +Oé++ﬂ2 —(a(B7)? =BT+ 2a+575),
—4 _
B0 e =5 (4 Z et hem s + (57! z A
Zm3++62 +h’€m3+)

-3
—2ﬂ22f3m,+ — 288 hym-s4 + (B7)y
0

l\)

-
+ (B (v )h+ h?m 2,+

3
Il
o
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(/B+) ’Yhm+((,8+) ,Yhé m— 2+_262 +h[ m— 2+)
— 288 hun 4 (=388 he—m—2,4 + 20872 Vh gy + 2827 TR s L))

—1
2(5+)2Zﬁm,+ —286%hym1.4 + (B7)% - 1++52 +he m— 1+)>

l>3, (A.33)
ho,— = =BT, hi_=—y"BTT +a(p")?
jLQ’_ :*042(5+)3+’707(5+)2 (a+(6++)2— ++5++++2a6+6++),
—4

BB e, = ;(m 4th,,h£ m-— 47+B4Zh S P

=3 R

=208 ) hn,— (= 288 hemmes,— + (BY) by s+ BT B, )
m=0

~

2
+ ) (B )R s

m=0

+(ﬁ+)27ﬁ ((5+) ’Yhe m—2,— _252 +h£ m— 2—)
— 2B o, — ( 388" ho—m—2— +2(87)2vhy o+ 282 TRE L, )

1
=28 3 o (=288 s - B s+ PR ) ).
m=0
(>3 (A34)

Proof. We first consider the expansio near 1/z = 0 and the nonlinear
recursion relations (A.29)), (A.31), and (A.33]) in detail. Inserting expansion (A.25
for § into (|A.22)), the expansion (A.25) for g into (A.23), and the expansion (A.25
for b into (A.24)), then yields the nonlinear recursion relations (A.29)), (A.31)), and
, but with f@7+, Je,+, and Bg7+ replaced by fg7+, g¢,4, and 647_5_, respectively.
From the leading asymptotic behavior one finds that %0,—4— =—a', §o+ = %, and
bo,+ = 5.

Eext, inserting the expansions for f, g, and b into 7, and

coparing powers of z7¢ as |z| — oo, z 6 CR, one infers that fo y, g¢+, and by 4
satisfy the linear recursion relations - Here we have used (| - The
coefficients fo 4+, 80,4, and bo + are consistent with - ) for ¢+ = 1. Hence one
concludes that

fer=fotr 8o+ =001, beg=hey, (€N, (A.35)

for certain values of the summation constants ¢, ;. To conclude that actually,
ﬁ,_k = fg,+, 00+ = Ju.4» 6@7+ = fl@7+, ¢ € Ny, and hence all ¢/ 4, £ € N, vanish,
we now rely on the notion of degree as introduced in Remark [2.6] To this end we
recall that

deg (ff,—‘r) ={+ ]-7 dEg (gf,—‘r) = ga deg (}All,—i-) = ev le NO, (A36)
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(cf. (2.55)). Similarly, the nonlinear recursion relations (A.29)), (A.31)), and (A.33)

yield inductively that
deg (fg7+) =/(+1, deg (@g’Jr) =/, deg (6¢,+) =/{, (€N (A.37)

Hence one concludes

for=fors G0+ =3004s bet=hey, €N (A.38)

The proof of the corresponding asymptotic expansion (A.28|) and the nonlinear

recursion relations (A.30)), (A.32), and (A.34) follows precisely the same strategy
and is hence omitted. 0

Given this general result on asymptotic expansions, we now specialize to the
algebro-geometric case at hand. We recall our conventions y(P) = F((7P~! +
O(¢™P)) for P near Py, (where ( =1/z) and y(P) = £((co,—/co,+) + O(()) for P
near Py + (where ( = 2).

Theorem A.2. Assume (3.1), s—ALg(a,B) = 0, and suppose P = (z,y) € K, \
{Pocy s Poc_}. Then zP-Fy, [y, 2P~ Gp/y, and 2P~ Hp [y have the following convergent
expansions as P — P, respectively, P — Py +,

- By2) JFEE ferlH PPy, (=1/7 (A.39)
c,+ Y iz;i[)ff,7<€7 P_>P0,ia C:Za

ZP;GE(Z) _ :FZ;.;O giﬂrgea P — POOj:’ C = 1/27 (A 40)
Co,+ Yy + Z;.;O 95,74{7 P— PO,:|:7 C =z,

- (o) [F5E0hea’, P Pe.,  (=1/z (A.41)
c,+ Y iz;i() h57*<€+13 P — PO,:I:) (=2, .

where ( = 1/z (resp ¢ = z) is the local coordinate near Py, (resp., Py +) and
fg +, Jo,+, and h[ + are the homogeneous verszon’ of the coefficients fo+, ge.+,
and he + as introduced in - Moreover, one infers for the E,,-dependent
summation constants cg +, E = O -y Dty W0 Fy, GB’ and H, that

Co,+ = Co,£Cp (Eil), l= 07 ey Dt (A.42)

In addition, one has the following relations between the homogeneous and nonho-
MOGeNneous Tecursion coejﬁcients:

féi—coich k(B frw, £=0,...,ps, (A.43)
k=0

géi—coizcl R(E)ghe, £=0,...,ps, (A.44)

héi—coizcé W(EF s, £=0,....ps. (A.45)
k=0

4Strict1y speaking, the coefficients fgi, Je,+, and fLLi in (A.39)—(A.41) no longer have a well-
defined degree and hence represent a slight abuse of notation since we assumed that s-ALB(oz7 B8) =

0. At any rate, they are explicitly given by (A.49)—(A.51).
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Furthermore, one has

Co¢f4i—ZCe R(E™) fras £=0,...,pr—1, (A.46)
k=0
Cot fpo b = Z Cpe i (E=Y) fox + Co(ET )

¢
co,+00,+ = Z eook(E* ) gre, £=0,....py —1, (A.47)

0. +£9ps .+ = Z épifk(ﬂil)gk,ﬂ: + éo(ﬂil)gh,;,
k=0

¢
co,+he+ = Z @é—k(ﬁil)hk,i, =0,...,p+ — 1, (A.48)
k=0
. pr—1
C():thpid:— Z Cpifk(E )hki"‘CO(E )h’pq: 1,F
k=0

For general ¢ (not restricted to £ < py) one haﬁ

Zk; OCZ k( )fki7 ezoa"'api_la
coafoe =14 SVt e (BF) fux (A.49)
pr—1 > py,
+ 2k (ppyvo Corh— (B fros
Zi Oéé k( il)gk7i) ézoa"'api_6i7
A P:l: 5j:
= E* A.50
Co,£00,+ Py —k(E™") gr, i:t 0> pe— 6y 41, ( )
+Zk (p e)vo Corn—p(E )gk,ﬂFa
Zi o Co—k(E j[l)hki, £=0,...,p+ — 1,
coshes =4 St eo g (BF ) hys (A.51)
pr—1 > py
+20L (p—0)vo Cltk— :v( )
Here we used the convention
07 )
5y = {1 * (A.52)
Proof. Identifying
U, (z, ) with U(P, -,0) and ¥_(z, -) with ¥(P*, -,0), (A.53)

recalling that W(¥(P, -,0), ¥(P*, -,0)) = —co 42" " P~yFp(z,0)"'T(n,ng) (cf.
(3.30), and similarly, identifying

¢4(z, ) with ¢(P, -) and ¢_(z, -) with ¢(P*, -), (A.54)

5m vV n = max{m,n}.
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a comparison of (A.10)—(A.14) and the results of Lemmas [3.1] and [3.3] shows that
we may also identify

2F,

2G, 2H,
f with $ , g with F———=— and § with T (A.55)
0

0,+2 Py Co+2" Py Co+2 Py

the sign depending on whether P tends to P, or to Py +. In particular, (A.17)-

(A24) then correspond to (2.10)—(2.13), (2.69), (2.76)—(2.78), respectively. Since
2P=Fp/y, 2P~ Gp/y, and 2P~ Hp [y clearly have asymptotic (in fact, even convergent)

expansions as |z| — oo and as |z| — 0, the results of T heorem A1 apply Thus, as
P — P, , one obtains the following expansions using and ([2.18))—(2.20):

2P- Pé(z) 1 0o ) .y py—1 -
cot Y qu:FcO’Jr(I;)C’C( )(Zf —,-C + Z Fro—1-04C )

= ¢ 41

C:O$;fz,+g . (A.56)
2P- Gp(2) 1 ( o k) ( p- P
- — = _— é E . p++f+ _ p+—€>
Co+ Y CHO:FCO,JF ’; k(E)C Z:lgp, ¢,—C ;g}” e

— P

=0 ¥de,+c ’ (A.57)
2 Hy(z)

p_—1
(ch )( Z hp —1-— E—Cp++p+zhp+ €+C +_g>
= ¢Zm’+gf. (A.58)
£=0

This implies (A.39)—(A.41)) as P — Py .
Similarly, as P — Py 4+, (A.2) and (2.18)—(2.20), and (2.74)) imply

2P= Fp(2)

" BGE) 1 (5L ey
o+ Y <30i00,<20k(E )<>

py+—1
(preC“ ‘+ Z Joi—1- z+Cp*+€)

{=1

o+ Y <0 Co+

= iz fo._C", (A.59)

- Gpy(2) 1 o= . 1 k - ) . +0
el 7y o i(zck(E )¢ ) <ng_—e,—fp+ + ng—fﬂrcm )
=1 £=0

= £ g0, (A.60)
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p_—1
(Z hp_—1—0,-CP*7 £+Zh+ z+Cp++Z>
¢
o Zh _¢H (A.61)

Thus, (A.39)-(A.41) hold as P — Py +.

Next, comparing powers of C in the second and third term of { -) formula

(A.46) follows (and hence as well). Formulas ( and (|A.48) follow by
using (A.57) and (A.58)), respectlvely.
To prove (A.43) one uses (A.8) and finds

4 4

o+ Z ctom (B frns = Z co—m( Z bk (B frox = fox.  (A62)
k=

m=0 m=0

The proofs of (A.44]) and (A.45) and those of (A.50) and (A.51) are analogous. O

Finally, we also mention the follovvlng system of recursion relations for the ho-
mogeneous coefficients fg +, Ge,+, and hg +.

Lemma A.3. The homogeneous coefficients fg,i, Je,+, and ﬁgi are uniquely de-

fined by the following recursion relations:

. 1 A .
o+ =3 for =—at, hot =5,

l

Gt = > fiokahis =Y G-k Ges (A.63)
k=0 h=1

S = for — @i+ + 900 1),

hivi+ = h + BGi+1,+ + 950 4)s

and
R 1 2 7 +
o~ =5 Jo-=a, ho-==8",
1 l
IT—— szofl_krhk’_ - ;§l+l—k,—gk,—a (A.64)

fion—=fi_ + (G- +d51),
hl_+1 _ =l = BGi1,- + Gy )

Proof. One verifies that the coeflicients defined via these recursion relations sat-

isfy (2.32)—(2.35) (respectively, (2.36)—(2.39)). Since they are homogeneous of the

required degree this completes the proof. O
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