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Abstract. This is a survey of results on long time behavior and attractors
for Hamiltonian nonlinear partial differential equations, considering the global

attraction to stationary states, stationary orbits, and solitons, the adiabatic

effective dynamics of the solitons, and the asymptotic stability of the solitary
manifolds. The corresponding numerical results and relations to quantum pos-

tulates are considered.
This theory differs significantly from the theory of attractors of dissipative

systems where the attraction to stationary states is due to an energy dissipa-

tion caused by a friction. For the Hamilton equations the friction and energy
dissipation are absent, and the attraction is caused by radiation which brings

the energy irrevocably to infinity.
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1. Introduction. Our aim in this paper is to survey the results on long time
behavior and attractors for nonlinear Hamilton partial differential equations that
appeared since 1990.

Theory of attractors for nonlinear PDEs originated from the seminal paper of
Landau [1] published in 1944, where he suggested the first mathematical interpreta-
tion of turbulence as the growth of the dimension of attractors of the Navier–Stokes
equations when the Reynolds number increases.

The starting point for the corresponding mathematical theory was provided in
1951 by Hopf who established for the first time the existence of global solutions to
the 3D Navier–Stokes equations [18]. He introduced the ‘method of compactness’
which is a nonlinear version of the Faedo-Galerkin approximations. This method
relies on a priori estimates and Sobolev embedding theorems. It has strongly influ-
enced the development of the theory of nonlinear PDEs, see [20].

The modern development of the theory of attractors for general dissipative sys-
tems, i.e. systems with friction (the Navier–Stokes equations, nonlinear parabolic
equations, reaction-diffusion equations, wave equations with friction, etc.), as orig-
inated in the 1975–1985’s in the works of Foias, Hale, Henry, Temam, and others
[2, 3, 4], was developed further in the works of Vishik, Babin, Chepyzhov, and oth-
ers [5, 6]. A typical result of this theory in the absence of external excitation is
the global convergence to a steady state: for any finite energy solution, there is a
convergence

ψ(x, t)→ S(x), t→ +∞ (1.1)

in a region Ω ⊂ Rn where S(x) is a steady-state solution with appropriate boundary
conditions, and this convergence holds as a rule in the L2(Ω)-metric. In particular,
the relaxation to an equilibrium regime in chemical reactions is followed by the
energy dissipation.

The development of a similar theory for the Hamiltonian PDEs seemed unmo-
tivated and impossible in view of energy conservation and time reversal for these
equations. However, as it turned out, such a theory is possible and its shape was
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suggested by a novel mathematical interpretation of the fundamental postulates of
quantum theory:

I. Transitions between quantum stationary orbits (Bohr 1913, [7]).

II. The wave-particle duality (de Broglie 1924).

Namely, postulate I can be interpreted as a global attraction of all quantum trajec-
tories to an attractor formed by stationary orbits, and II, as similar global attraction
to solitons [8].

The investigations of the 1990–2014’s showed that such long time asymptotics of
solutions are in fact typical for a number of nonlinear Hamiltonian PDEs. These
results are presented in this article. This theory differs significantly from the theory
of attractors of dissipative systems where the attraction to stationary states is due to
an energy dissipation caused by a friction. For the Hamilton equations the friction
and energy dissipation are absent, and the attraction is caused by radiation which
brings the energy irrevocably to infinity.

The modern development of the theory of nonlinear Hamilton equations dates
back to Jörgens [19], who has established the existence of global solutions for non-
linear wave equations of the form

ψ̈(x, t) = ∆ψ(x, t) + F (ψ(x, t)), x ∈ Rn, (1.2)

developing the Hopf method of compactness. The subsequent studies were well
reflected by J.-L. Lions in [20].

First results on the long time asymptotics of solutions to nonlinear Hamitlonian
PDEs were obtained by Segal [21, 22] and Morawetz and Strauss [23, 24, 25]. In
these papers the local energy decay is proved for solutions to equations (1.2) with
defocusing type nonlinearities F (ψ) = −m2ψ − κ|ψ|pψ, where m2 ≥ 0, κ > 0, and
p > 1. Namely, for sufficiently smooth and small initial states, one has∫

|x|<R
[|ψ̇(x, t)|2 + |∇ψ(x, t)|2 + |ψ(x, t)|2]dx→ 0, t→ ±∞ (1.3)

for any finite R > 0. Moreover, the corresponding nonlinear wave and the scattering
operators are constructed. In the works of Strauss [26, 27], the completeness of
scattering is established for small solutions to more general equations.

The existence of soliton solutions ψ(x − vt)eiωt for a broad class of nonlinear
wave equations (1.2) was extensively studied in the 1960–1980’s. The most general
results were obtained by Strauss, Berestycki and P.-L. Lions [28, 29, 30]. More-
over, Esteban, Georgiev and Séré have constructed the solitons for the nonlinear
relativistically-invariant Maxwell–Dirac equations (A.6). The orbital stability of
the solitons has been studied by Grillakis, Shatah, Strauss and others [34, 35].

For convenience, the characteristic properties of all finite energy solutions to
an equation will be referred to as global, in order to distinguish them from the
corresponding local properties for solutions with initial data sufficiently close to the
attractor.

All the above-mentioned results [21]–[27] on the local energy decay (1.3) mean
that the corresponding local attractor of small initial states consists of the zero point
only. First results on the global attractors for nonlinear Hamiltonian PDEs were
obtained by the author in the 1991–1995’s for 1D models [37, 38, 39], and were later
extended to nD equations. The main difficulty here is due to the absence of energy
dissipation for the Hamilton equations. For example, the attraction to a (proper)
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attractor is impossible for any finite-dimensional Hamilton system because of the
energy conservation. The problem is attacked by analyzing the energy radiation to
infinity, which plays the role of dissipation. The progress relies on a novel applica-
tion of subtle methods of harmonic analysis: the Wiener Tauberian theorem, the
Titchmarsh convolution theorem, theory of quasi-measures, the Paley-Wiener es-
timates, the eigenfunction expansions for nonselfadjoint Hamilton operators based
on M.G. Krein theory of J-selfadjoint operators, and others.

The results obtained so far indicate a certain dependence of long-teme asymp-
totics of solutions on the symmetry group of the equation: for example, it may
be the trivial group G = {e}, or the unitary group G = U(1), or the group of
translations G = Rn. Namely, the corresponding results suggest that for ‘generic’
autonomous equations with a Lie symmetry group G, any finite energy solution
admits the asymptotics

ψ(x, t) ∼ eg±tψ±(x), t→ ±∞. (1.4)

Here, eg±t is a representation of the one-parameter subgroup of the symmetry group
G which corresponds to the generators g± from the corresponding Lie algebra,
while ψ±(x) are some ‘scattering states’ depending on the considered trajectory
ψ(x, t), with each pair (g±, ψ±) being a solution to the corresponding nonlinear
eigenfunction problem.

For the trivial symmetry group G = {e}, the conjecture (1.4) means the global
attraction to the corresponding steady states

ψ(x, t)→ S±(x), t→ ±∞ (1.5)

(see Fig. 1). Here S±(x) are some stationary states depending on the considered
trajectory ψ(x, t), and the convergence holds in local seminorms of type L2(|x| < R)
for any R > 0. The convergence (1.5) in global norms (i.e., corresponding to R =∞)
cannot hold due to the energy conservation.

In particular, the asymptotics (1.5) can be easily demonstrated for the d’Alembert
equation, see (2.1)– (2.4). In this example the convergence (1.5) in global norms
obviously fails due to presence of travelling waves f(x± t).

Similarly, for the unitary symmetry groupG = U(1), the asymptotics (1.4) means
the global attraction to ‘stationary orbits’

ψ(x, t) ∼ ψ±(x)e−iω±t, t→ ±∞ (1.6)

in the same local seminorms (see Fig. 2). These asymptotics were inspired by
Bohr’s postulate on transitions between quantum stationary states (see Appendix
for details).

Our results confirm such asymptotics for generic U(1)-invariant nonlinear equa-
tions of type (3.1) and (3.13)–(3.15). More precisely, we have proved the global
attraction to the manifold of the stationary orbits, though the attraction to the
concrete stationary orbits, with fixed ω±, is still open problem.

Let us emphasize that we conjecture the asymptotics (1.6) for generic U(1)-
invariant equations. This means that the long time behavior may be quite differ-
ent for U(1)-invariant equations of ‘positive codimension’. In particular, for linear
Schrödinger equation

iψ̇(x, t) = −∆ψ(x, t) + V (x)ψ(x, t), x ∈ Rn (1.7)
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the asymptotics (1.6) generally fail. Namely, any finite energy solution admits the
spectral representation

ψ(x, t) =
∑

Ckψk(x)e−iωkt +

∫ ∞
0

C(ω)ψ(ω, x)e−iωtdω, (1.8)

where ψk and ψ(ω, ·) are the corresponding eigenfunctions of the discrete and con-
tinuous spectrum, respectively. The last integral is a dispersion wave which decays
to zero in local seminorms L2(|x| < R) for any R > 0 (under appropriate conditions
on the potential V (x)). Respectively, the attractor is the linear span of the eigen-
functions ψk. However, the long-time asymptotics does not reduce to a single term
like (1.6), so the linear case is degenerate in this sense. Let us note that our results
for equations (3.1) and (3.13)–(3.15) are established for strictly nonlinear case: see
the condition (3.11) below, which eliminates linear equations.

Finally, for the symmetry group of translations G = Rn, the asymptotics (1.4)
means the global attraction to solitons (traveling wave solutions)

ψ(x, t) ∼ ψ±(x− v±t), t→ ±∞, (1.9)

for generic translation-invariant equation. In this case we conjecture that the the
convergence holds in the local seminorms in the comoving frame, i.e., in L2(|x −
v±t| < R) for any R > 0. In particular, ψ(x, t) = f(x− t)+g(x+ t) for any solution
to the d’Alembert equation (2.1).

For more sophisticated symmetry groups G = U(N), the asymptotics (1.4) means
the attraction to N -frequency trajectories, which can be quasi-periodic. The sym-
metry groups SU(2), SU(3) and others were suggested in 1961 by Gell-Mann and
Ne’eman for the strong interaction of baryons [13, 14]. The suggestion relies on
the discovered parallelism between empirical data for the baryons, and the ‘Dynkin
scheme’ of Lie algebra su(3) with 8 generators (the famous ‘eightfold way’). This
theory resulted in the scheme of quarks and in the development of the quantum
chromodynamics [15, 16], and in the prediction of a new baryon with prescribed
values of its mass and decay products. This particle, the Ω−-hyperon, was promptly
discovered experimentally [17].

This empirical correspondence between the Lie algebra generators and elemen-
tary particles presumably gives an evidence in favor of the general conjecture (1.4)
for equations with the Lie symmetry groups.

Let us note that our conjecture (1.4) specifies the concept of ‘localized solu-
tion/coherent structures’ from ‘Grande Conjecture’ and ‘Petite Conjecture’ of Sof-
fer [55, p.460] in the context of G-invariant equations. The Grande Conjecture is
proved in [46] for 1D wave equation coupled to a nonlinear oscillator (2.5) see The-
orem 2.3. Moreover, a suitable version of the Grande Conjecture is also proved in
[152]–[155] for 3D wave, Klein–Gordon and Maxwell equations coupled to a relativis-
tic particle with sufficiently small charge (4.10); see Remark 4.4. Finally, for any
matrix symmetry group G, (1.4) implies the Petite Conjecture since the localized
solutions eg±tψ±(x) are quasiperiodic then.

Now let us dwell upon the available results on the asymptotics (1.5)–(1.9).

I. Global attraction to stationary states (1.5) was first established by the
author in [37]–[41] for the one-dimensional wave equation coupled to nonlinear os-
cillators (equations (2.5), (2.26)) and for equations with general space-localized
nonlinearities (equation (2.27)).
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These results were extended by the author in collaboration with Spohn and Kunze
in [42, 43] to the three-dimensional wave equation coupled to a particle (2.32)–(2.33)
under the Wiener condition (2.40) on the charge density of the particle, and to the
similar Maxwell–Lorentz equations (2.52) (see the survey [45]).

In [46]–[48], the asymptotic completeness of scattering for nonlinear wave equa-
tion (2.5) was proved in collaboration with Merzon.

These results rely on a detailed study of energy radiation to infinity. In [37]–[39]
and [46]–[48] we justify this radiation by the ‘reduced equation’ (2.18), containing
radiation friction and incoming waves, and in [42, 43], by a novel integral represen-
tation for the radiated energy as the convolution (2.50) and the application of the
Wiener Tauberian theorem.

II. Local attraction to stationary orbits (1.6) (i.e., for initial states close
to the set of stationary orbits) was first established by Soffer and Weinstein, Tsai
and Yau, and others for nonlinear Schrödinger, wave and Klein–Gordon equations
with external potentials under various types of spectral assumptions on the lin-
earized dynamics [49]–[93]. However, no examples of nonlinear equations with the
desired spectral properties were constructed. Concrete examples have been con-
structed by the author together with Buslaev, Kopylova and Stuart in [56, 57] for
one-dimensional Schrödinger equations coupled to nonlinear oscillators.

The main difficulty of the problem is that the soliton dynamics is unstable along
the solitary manifold, since the distance between solitons with arbitrarily close
velocities increases indefinitely in time. However, the dynamics can be stable in the
transversal symplectic-orthogonal directions to this manifold.

Global attraction to stationary orbits (1.6) was obtained for the first time
by the author in [131] for the one-dimensional Klein–Gordon equation coupled to
a U(1)-invariant oscillator (equation (3.1)). The proofs rely on a novel analysis
of the energy radiation with the application of quasi-measures and the Titchmarsh
convolution theorem (Section 3). These results and methods were further developed
by the author in collaboration with A. A. Komech [132, 133], and were extended
in [134, 135] to a finite number of U(1)-invariant oscillators (equation (3.13)), and
in [136, 137] to the n-dimensional Klein–Gordon and Dirac equations coupled to
U(1)-invariant oscillators via a nonlocal interaction (equations (3.14) and (3.15)).

Recently, the global attraction to stationary orbits was established for discrete in
space and time nonlinear Hamilton equations [139]. The proofs required a refined
version of the Titchmarsh convolution theorem for distributions on the circle [140].

The main ideas of the proofs [131]–[139] rely on the radiation mechanism caused
by dispersion radiation and nonlinear inflation of spectrum (Section 3.8).

III. Attraction to solitons was first discovered in 1965 by Zabusky and Kruskal
in numerical simulations of the Korteweg–de Vries equation (KdV). Subsequently,
global asymptotics of the type

ψ(x, t) ∼
∑

ψk±(x− vk±t) + w±(x, t), t→ ±∞, (1.10)

were proved for finite energy solutions to integrable Hamilton translation-invariant
equations (KdV and others) by Ablowitz, Segur, Eckhaus, van Harten, and others
(see [149]). Here, each soliton ψk±(x− vk±t) is a trajectory of the translation group
G = R, while w±(x, t) are some dispersion waves, and the asymptotics hold in a
global norm like L2(R).
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Schrödinger equation. First results on the local attraction to solitons for
non-integrable equations were established by Buslaev and Perelman for one-
dimensional nonlinear translation-invariant Schrödinger equations in [58, 59]: the
strategy relies on symplectic projection onto the solitary manifold in the Hilbert
phase space (see Section 6.2). The key role of the symplectic structure is explained
by the conservation of the symplectic form by the Hamilton dynamics. This strategy
was completely justified in [60], thereby extending quite far the Lyapunov stability
theory. The extension of this strategy to the multidimensional translation-invariant
Schrödinger equation was done by Cuccagna [63]. In [64], these results were ex-
tended for the first time to the case when the eigenvalues are away from the con-
tinuous spectrum.

KdV and NLW equations. Further, for generalized KdV equation and the
regularized long-wave equation (NLW), the local attraction to the solitons was es-
tablished by Weinstein, Miller and Pego [61, 62]. Martel and Merle have extended
these results to the subcritical gKdV equations [65], and Lindblad and Tao have
done this in the context of 1D nonlinear wave equations [66].

Fields coupled to a particle. The general strategy [58]–[60] was developed
in [67]–[71] for the proof of local attraction to solitons for the system of a classical
particle coupled to the Klein–Gordon, Schrödinger, Dirac, wave and Maxwell fields
(see the survey [72]).

Relativistic equations. For relativistically-invariant equations the first results
on the local attraction to the solitons were obtained by Kopylova and the author in
the context of the nonlinear Ginzburg–Landau equations [73]–[76], and by Boussaid
and Cuccagna, for the nonlinear Dirac equations [79].

Cherenkov radiation. In a series of papers, Egli, Fröhlich, Gang, Sigal, and
Soffer have established the convergence to a soliton with subsonic speed for a tracer
particle with initial supersonic speed in the Schrödinger field. The convergence
is considered as a model of the Cherenkov radiation, see [80] and the references
therein.

N-soliton solutions. The asymptotic stability of N -soliton solutions was stud-
ied for nonlinear Schrödinger equations by Martel, Merle and Tsai [81], Perelman
[82], and Rodnianski, Schlag and Soffer [83, 84]. The existence and uniqueness of
‘pure N -soliton solutions’ (i.e., without a dispersion wave) with any set of velocities
and phases was proved by Martel [85] for the generalized KdV equation.

Multibound state systems. The case of multiple eigenvalues of the linearized
Schrödinger equation was first considered by Tsai and Yau [89]–[93] and further
developed by Cuccagna, Bambusi and others [92, 93].

General Relativity. Harada and Maeda studied the so-called kink instabili-
ties of the self-similar and spherically symmetric solutions to the general relativity
equations [94]. Dafermos and Rodnianski studied the linear stability of slowly ro-
tating Kerr solutions of the Einstein vacuum equations [95]. Tataru examined the
pointwise decay properties of solutions to the wave equation on a class of station-
ary asymptotically flat backgrounds in three space dimensions [96]. Andersson and
Blue studied the Maxwell equation in the exterior of a very slowly rotating Kerr
black hole. The main result is the convergence of each finite energy solution to a
stationary Coulomb potential [97].

Method of concentration compactness. Since 2006 the method of con-
centration compactness and virial estimates were successfully developed by Kenig,
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Krieger, Merlet, Nakanishi, Shlag, and others, for very subtle cases of the energy-
critical focusing nonlinear wave and Schrödinger equations [99]–[106]. One of the
main result is splitting of initial states into three sets with distinct long-time asymp-
totics: those leading to a finite time blow up, to an asymptotically free wave, or to
a sum of ground state and asymptotically free wave. Recently, these methods and
results were extended to the critical wave maps [107]–[109].

Linear dispersion. The key role in all results on long-time asymptotics of
Hamilton nonlinear PDEs is played by the dispersion decay of solutions to the cor-
responding linearized equations. This decay was first established for wave equations
in the scattering theory by Lax, Morawets and Phillips [110]. For the Schrödinger
equation with a potential, the systematic approach to the dispersion decay was
discovered by Agmon, Jensen and Kato [111, 112]. This theory was extended by
many authors to the wave, Klein–Gordon, Dirac equations and to the corresponding
discrete equations, see [113]–[130] and the references therein.

Global attraction to solitons (1.9) for non-integrable equations was estab-
lished for the first time by the author together with Spohn [150] for a scalar wave
field coupled to a relativistic particle (the system (4.1)) under the Wiener condition
(2.40) on the particle charge density. In [151], this result was extended to a similar
Maxwell–Lorentz system with zero external fields (2.52). The global attraction to
solitons was proved also for a relativistic particle with sufficiently small charge in
3D wave, Klein–Gordon and Maxwell fields [152]–[155].

These results give the first rigorous justification of the radiation damping in
classical electrodynamics suggested by Abraham and Lorentz [159, 160], see the
survey [45].

For relativistically-invariant one-dimensional nonlinear wave equations (1.2) global
soliton asymptotics (1.10) were confirmed by numerical simulations by Vinnichenko
(see [156] and also Section 7). However, the proof in the relativistically-invariant
case remains an open problem.

Adiabatic effective dynamics of solitons means the evolution of states which
are close to a soliton with parameters depending on time (velocity, position, etc.)

ψ(x, t) ∼ ψv(t)(x− q(t)). (1.11)

These asymptotics are typical for approximately translation-invariant systems with
initial states sufficiently close to the solitary manifold. Moreover, in some cases it
turns out possible to find an ‘effective dynamics’ describing the evolution of soliton
parameters.

Such adiabatic effective soliton dynamics was justified for the first time by the
author together with Kunze and Spohn [164] for a relativistic particle coupled to a
scalar wave field and a slowly varying external potential (the system (2.32)–(2.33)).
In [165], this result was extended by Kunze and Spohn to a relativistic particle cou-
pled to the Maxwell field and to small external fields (the system (2.52)). Further,
Fröhlich together with Tsai and Yau obtained similar results for nonlinear Hartree
equations [166], and with Gustafson, Jonsson and Sigal, for nonlinear Schrödinger
equations [167]. Stuart, Demulini and Long have proved similar results for non-
linear Einstein–Dirac, Chern–Simons–Schrödinger and Klein–Gordon–Maxwell sys-
tems [168]–[170]. Recently, Bach, Chen, Faupin, Fröhlich and Sigal proved the
adiabatic effective dynamics for one electron in second-quantized Maxwell field in
the presence of a slowly varying external potential [171].
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Note that the attraction to stationary states (1.5) resembles asymptotics of type
(1.1) for dissipative systems. However, there are a number of significant differences:

I. In the dissipative systems, attraction (1.1) is due to the energy dissipation. This
attraction holds
• only as t→ +∞;
• in bounded and unbounded domains;
• in ‘global’ norms.
Furthermore, the attraction (1.1) holds for all solutions of finite-dimensional dissi-
pative systems.

II. In the Hamilton systems, attraction (1.5) is due to the energy radiation. This
attraction holds
• as t→ ±∞;
• only in unbounded domains;
• only in local seminorms.
However, the attraction (1.5) cannot hold for all solutions of any finite-dimensional
Hamilton system with nonconstant Hamilton functional.

In conclusion it is worth mentioning that the analogue of asymptotics (1.5)–(1.9)
are not yet shown to hold for the fundamental equations of quantum physics (sys-
tems of the Schrödinger, Maxwell, Dirac, Yang–Mills equations and their second-
quantized versions [9]). The perturbation theory is of no avail here, since the con-
vergence (1.5)–(1.9) cannot be uniform on an infinite time interval. These problems
remain open, and their analysis agrees with the Hilbert’s sixth problem on the
‘axiomatization of theoretical physics’, as well as with the spirit of Heisenberg’s
program for nonlinear theory of elementary particles [10, 11].

However, the main motivation for such investigations is to clarify dynamic de-
scription of fundamental quantum phenomena which play the key role throughout
modern physics and technology: the thermal and electrical conductivity of solids,
the laser and synchrotron radiation, the photoelectric effect, the thermionic emis-
sion, the Hall effect, etc. The basic physical principles of these phenomena are
already established, but their dynamic description as inherent properties of funda-
mental equations still remains missing [12].

In Sections 2–4 we review the results on global attraction to a finite-dimensional
attractor consisting of stationary states, stationary orbits and solitons. In Section 5,
we state the results on the adiabatic effective dynamics of solitons, and in Section 6,
the results on the asymptotic stability of solitary waves. Section 7 is concerned with
numerical simulation of soliton asymptotics for relativistically-invariant nonlinear
wave equations. In Appendix A we discuss the relation of global attractors to
quantum postulates.

2. Global attraction to stationary states. Here we describe the results on
asymptotics (1.5) with a nonsingleton attractor, which were obtained in the 1991–
1999’s for the Hamilton nonlinear PDEs. First results of this type were obtained for
one-dimensional wave equations coupled to nonlinear oscillators [37]–[41], and were
later extended to the three-dimensional wave equation and Maxwell’s equations
coupled to relativistic particle [42, 43].
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The global attraction (1.5) can be easily demonstrated on the trivial (but in-
structive) example of the d’Alembert equation:

ψ̈(x, t) = ψ′′(x, t), ψ(x, 0) = ψ0(x), ψ̇(x, 0) = π0(x), x ∈ R. (2.1)

Let us assume that ψ′0(x) ∈ L2(R) and π0(x) ∈ L2(R), and moreover,

ψ0(x) −−−−−→
x→±∞

C±,

∫ ∞
−∞
|π0(x)|dx <∞. (2.2)

Then the d’Alembert formula gives

ψ(x, t) −−−−→
t→±∞

S±(x) =
C+ + C−

2
± 1

2

∫ ∞
−∞

π0(y)dy (2.3)

where the convergence holds uniformly on each finite interval |x| < R. Moreover,

ψ̇(x, t) =
ψ′0(x+ t)− ψ′0(x− t)

2
+
π0(x+ t) + π0(x− t)

2
−−−−→
t→±∞

0, (2.4)

where the convergence holds in L2(−R,R) for each R > 0. Thus, the attractor is
the set of (ψ(x), π(x)) = (C, 0) where C is any constant. Let us note that the limits
(2.3) generally are different for positive and negative times.

2.1. Lamb system: a string coupled to nonlinear oscillators. In [37, 38],
asymptotics (1.5) was obtained for the wave equation coupled to nonlinear oscillator

ψ̈(x, t) = ψ′′(x, t) + δ(x)F (ψ(0, t)), x ∈ R. (2.5)

All the derivatives here and below are understood in the sense of distributions.
Solutions can be scalars-valued or vector-valued, ψ ∈ RN . Physically, this is a string
in RN+1, coupled to an oscillator at x = 0 acting on the string with force F (ψ(0, t))
orthogonal to the string. For linear function F (ψ) = −kψ, such a system was first
considered by H. Lamb [36].

Definition 2.1. E denotes the Hilbert phase space of functions (ψ(x), π(x)) with
finite norm

‖(ψ, π)‖E = ‖ψ′‖+ |ψ(0)|+ ‖π‖, (2.6)

where ‖ · ‖ stands for the norm in L2 := L2(R).

We assume that the nonlinear force F (ψ) is a potential field; i.e., for a real
function U(ψ)

F (ψ) = −∇U(ψ), ψ ∈ RN ; U(ψ) ∈ C2(RN ). (2.7)

Then equation (2.5) is equivalent to the Hamilton system

ψ̇(t) = DπH(ψ(t), π(t)), π̇(t) = −DψH(ψ(t), π(t)), (2.8)

(where ψ(t) := ψ(·, t) and π(t) := π(·, t)) with the conserved Hamilton functional

H(ψ, π) =
1

2

∫
[|π(x)|2 + |ψ′(x)|2] dx+ U(ψ(0)), (ψ, π) ∈ E . (2.9)

This functional is defined and is Gâteaux-differentiable on the Hilbert phase space
E . We will assume that

U(ψ) −−−−−→
|ψ|→∞

∞. (2.10)
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In this case it is easy to prove that the finite energy solution Y (t) = (ψ(t), π(t)) ∈
C(R, E) exists and is unique for any initial state Y (0) ∈ E . Moreover, the solution
is bounded:

sup
x,t∈R

|ψ(x, t)| <∞. (2.11)

We denote Z := {z ∈ RN : F (z) = 0}. Obviously, every stationary solution of
equation (2.5) is a constant function ψz(x) = z ∈ RN , where z ∈ Z. Therefore, the
manifold S of all stationary states is a subset of E ,

S := {Sz = (ψz, 0) : z ∈ Z}. (2.12)

If the set Z is discrete in RN , then S is also discrete in E . For example, in the
case N = 1 we can consider the Ginzburg–Landau potential U = (ψ2 − 1)2/4, and
respectively, F (ψ) = −ψ3 + ψ. Here the set Z = {0,±1} is discrete, and there are
three stationary states ψ(x) ≡ 0,±1.

Let us introduce the following seminorms for (ψ, π) ∈ E :

‖(ψ, π)‖ER = ‖ψ′‖R + |ψ(0)|+ ‖π‖R, R > 0, (2.13)

where ‖ · ‖R stands for the norm in L2
R := L2([−R,R]). We also introduce the

following metric on the space E :

dist[Y1, Y2] =

∞∑
1

2−R
‖Y1 − Y2‖ER

1 + ‖Y1 − Y2‖ER
, Y1, Y2 ∈ E . (2.14)

The main result of [37, 38] is the following theorem, which is illustrated with Fig. 1.

Theorem 2.2. i) Assume that conditions (2.7) and (2.10) hold. Then

Y (t) −−−−→
t→±∞

S, (2.15)

in the metric (2.14) for any finite energy solution Y (t) = (ψ(t), π(t)). This means
that

dist[Y (t),S] := inf
S∈S

dist[Y (t), S] −−−−→
t→±∞

0. (2.16)

ii) Assume, in addition, that Z is a discrete subset of RN . Then

Y (t) −−−−→
t→±∞

S± ∈ S, (2.17)

where the convergence holds in the metric (2.14).

Sketch of the proof. It suffices to consider only the case t → ∞. The solution
admits the d’Alembert representations for x > 0 and x < 0, which imply the
‘reduced equation’ for y(t) := ψ(0, t):

2ẏ(t) = F (y(t)) + 2ẇin(t), t > 0. (2.18)

Here win(t) is the sum of incoming waves, for which

∫ ∞
0

|ẇin(t)|2dt < ∞. This

equation provides the ‘integral of dissipation’

2

∫ t

0

|ẏ(s)|2ds+ U(y(t)) = U(y(0)) + 2

∫ t

0

ẇin(t) · ẏ(s) ds, t > 0, (2.19)

which implies that

∫ ∞
0

|ẏ(t)|2dt < ∞ according to (2.10). Hence, (2.11) implies

that
y(t)→ Z, ẏ(t)→ 0, t→∞. (2.20)
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Figure 1. Convergence to stationary states

This convergence implies (2.15), since ψ(x, t) ∼ y(t − |x|) for large t and bounded
|x|.

Note that the attractions (2.15) and (2.17) in the global norm of E is impossible
due to outgoing d’Alembert’s waves y(t − |x|), representing a solution for large t,
which carry energy to infinity. In particular, the energy of the limiting stationary
state may be smaller that the conserved energy of the solution, since the energy
of the outgoing waves is irretrievably lost at infinity. Indeed, the energy is the
Hamilton functional (2.9), where the integral vanishes for the limit state, and only
the energy of the oscillator U(ψ(0)) persists. Therefore, the energy of the limit is
usually smaller than the energy of the solution. This limit jump is similar to the
well-known property of the weak convergence in the Hilbert space.

The discreteness of the set Z is essential: asymptotics (2.17) can break down if
F (z) = 0 on [z−, z+], where z− < z+. For example, (2.17) breaks down for the
solution ψ(x, t) = sin[log(|x− t|+ 2)] in the case z± = ±1.

Further, asymptotics (2.17) in the local seminorms can be extended to the asymp-
totics in the global norms (2.6), taking into account the outgoing d’Alembert’s
waves. Namely, in [46] we have proved the following result. Let us denote by E∗ the
space of (φ0, π0) ∈ E for which there exist the finite limits and the integral (2.2),
and by E±∗ the subspace of E∗ defined by the identity

C+ + C− ±
∫ ∞
−∞

π0(y)dy = 0 (2.21)

in the notations (2.2).

Theorem 2.3. Let conditions of Theorem 2.2 i) and ii) hold. Then for any initial
state (φ0, π0) ∈ E∗

(ψ(·, t), ψ̇(·, t)) = S± +W (t)Φ± + r±(t), (2.22)

where S± ∈ S, W (t) denotes the dynamical group of the free wave equation (2.1),
Φ± ∈ E±∗ are some ‘scattering states’ of finite energy, and the remainder r±(t)
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converges to zero in the global energy norm:

‖r±(t)‖E −−−−→
t→±∞

0. (2.23)

The term W (t)Φ± represents the outgoing d’Alembert’s waves, and the condition
(2.21) provides that the W (t)Φ± → 0 as t → ±∞, according to (2.3) and (2.4).
Thus, Theorem 2.3 proves the ‘Grand Conjecture’ [55, p.460] for equation (2.5).

Finally, the asymptotic completeness of this nonlinear scattering was established
in [47, 48]. Let us fix a stationary state S+ = (z+, 0) ∈ S, and denote by E∗(S+) the
set of initial states (ψ0, π0) ∈ E∗ providing the asymptotics (2.22) with limit state
S+ as t→∞. Let F ′(z+) denote the corresponding Jacobian matrix and σ(F ′(z+))
denote its spectrum.

Theorem 2.4. Let conditions of Theorem 2.3 hold. Then the mapping (ψ0, π0) 7→
Φ+ is the epimorphism E∗(S+)→ E+

∗ if Re λ 6= 0 for λ ∈ σ(F ′(z+)).

Similar theorem holds obviously for the map (ψ0, π0) 7→ Φ−.

2.2. Generalizations. I. In [37, 38, 46], Theorems 2.2 and 2.3 were established
also for more general equation than (2.5):

(1 +mδ(x))ψ̈(x, t) = ψ′′(x, t) + δ(x)F (ψ(0, t)), x ∈ R, (2.24)

where m > 0 is the mass of the particle attached to the string at the point x = 0.
In this case the Hamiltonian (2.9) includes the additional term mv2/2, where v =

ψ̇(0, t). Moreover, the reduced equation (2.18) now becomes the Newton equation
with the friction:

mÿ(t) = F (y(t))− 2ẏ(t) + 2ẇin(t), t > 0. (2.25)

II. In [39], we have proved the convergence (2.15) and (2.17) to a global attractor
for the string with N oscillators:

ψ̈(x, t) = ψ′′(x, t) +

N∑
1

δ(x− xk)Fk(ψ(xk, t)). (2.26)

The equation is reduced to a system of N equations with delay, but its study requires
novel arguments, since the oscillators are connected at different moments of time.

III. In [40], the result was extended to equations of the type

ψ̈(x, t) = ψ′′(x, t) + χ(x)F (ψ(x, t)), (2.27)

where χ ∈ C∞0 (R), χ(x) ≥ 0, and χ(x) 6≡ 0 while F has structure (2.7) with
potential U satisfying (2.10). This guarantees the existence of global solutions of
finite energy and conservation of the Hamilton functional

H(ψ, π) =
1

2

∫
[|π(x)|2 + |ψ′(x)|2 + χ(x)U(ψ(x))] dx. (2.28)

Sketch of the proof. Again it suffices to consider only the case t → ∞. For the
proof of (2.15) and (2.17) in this case we develop our approach [39] based on the
finiteness of energy radiated from an interval [−a, a] ⊃ suppχ, which implies the
finiteness of ‘integral of dissipation’ [40, (6.3)]:∫

[|ψ̇(−a, t)|2 + |ψ′(−a, t)|2 + |ψ̇(a, t)|2 + |ψ′(a, t)|2]dt <∞. (2.29)
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This means, roughly speaking, that

ψ(±a, t) ∼ C±, ψ′(±a, t) ∼ 0, t→∞. (2.30)

It remains to justify the correctness of the boundary value problem for nonlinear
differential equation (2.27) in the band −a ≤ x ≤ a, t > 0, with the Cauchy
boundary conditions (2.30) on the sides x = ±a. This correctness should imply the
convergence of type

ψ(x, t) ∼ S(x), t→∞. (2.31)

The proof employs the symmetry of the wave equation with respect to permutations
of variables x and t with simultaneous change of sign of the potential U . In this
boundary-value problem the variable x plays the role of time, and condition (2.10)
makes the potential unbounded from below! Hence, this dynamics with x as ‘time
variable’ is not globally correct on the interval |x| ≤ a: for example, in the ordinary
equation ψ′′(x) − U ′(ψ) = 0 with U = ψ4, a solution can run away at a point
x ∈ (−a, a). However, in our setting the local correctness is sufficient in view of the
a priori estimates, which follow from the conservation of energy (2.28) due to the
conditions (2.10) and χ(x) ≥ 0, χ(x) 6≡ 0.

A detailed presentation of the results [37]–[40] is available in the survey [41].

2.3. Wave-particle system. In [42] we have proved the first result on the global
attraction (1.5) for the 3-dimensional real scalar wave field coupled to a relativistic
particle. The 3D scalar field satisfies the wave equation

ψ̈(x, t) = ∆ψ(x, t)− ρ(x− q(t)), x ∈ R3, (2.32)

where ρ ∈ C∞0 (R3) is a fixed function, representing the charge density of the particle,
and q(t) ∈ R3 is the particle position. The particle motion obeys the Hamilton

equations with the relativistic kinetic energy
√

1 + p2:

q̇(t) =
p(t)√

1 + p2(t)
, ṗ(t) = −∇V (q(t))−

∫
∇ψ(x, t)ρ(x− q(t)) dx. (2.33)

Here, −∇V (q) is the external force produced by some real potential V (q), and the
integral is the self-force. This means that the wave function ψ, generated by the
particle, plays the role of a potential acting on the particle, along with the external
potential V (q).

Definition 2.5. E := H1(R3) ⊕ L2(R3) ⊕ R3 ⊕ R3 is the Hilbert phase space of
tetrads (ψ, π, q, p) with finite norm

‖(ψ, π, q, p)‖E = ‖∇ψ‖+ ‖ψ‖+ ‖π‖+ |q|+ |p|, (2.34)

where ‖ · ‖ is the norm in L2 := L2(R3).

System (2.32)–(2.33) is equivalent to the Hamilton system ψ̇(t) = DπH(ψ(t), π(t), q(t), p(t)), π̇(t) = −DψH(ψ(t), π(t), q(t), p(t))

q̇(t) = DpH(ψ(t), π(t), q(t), p(t)), ṗ(t) = −DqH(ψ(t), π(t), q(t), p(t))

∣∣∣∣∣∣ (2.35)

with the conserved Hamilton functional

H(ψ, π, q, p)=
1

2

∫
[|π(x)|2+|∇ψ(x)|2] dx+

∫
ψ(x)ρ(x−q) dx+

√
1+p2+V (q). (2.36)

This functional is defined and is Gâteaux-differentiable on the Hilbert space E .
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We assume that the potential V (q) ∈ C2(R3) is confining:

V (q) −−−−→
|q|→∞

∞. (2.37)

In this case the finite energy solution Y (t) = (ψ(t), π(t), q(t), p(t)) ∈ C(R, E) exists
and is unique for any initial state Y (0) ∈ E .

In the case of a point particle ρ(x) = δ(x) the system (2.32)–(2.33) is undeter-
mined. Indeed, in this setting any solution to the wave equation (2.32) is singular
at x = q(t), and respectively, the integral on the right of (2.33) does not exist.

We denote Z = {z ∈ R3 : ∇V (z) = 0}. It is easily checked that the stationary
states of the system (2.32)–(2.33) are of the form

Sz = (ψz, 0, z, 0), (2.38)

where z ∈ Z, while ∆ψz(x) = ρ(x− z); i.e.,

ψz(x) := − 1

4π

∫
ρ(y − z) dy
|x− y|

is the Coulomb potential. Respectively, the set of all stationary states of this system
is given by

S := {Sz : z ∈ Z}. (2.39)

If the set Z ⊂ RN is discrete, then S is also discrete in E . Finally, we assume
that the ‘form factor’ ρ satisfies the Wiener condition

ρ̂(k) :=

∫
eikxρ(x) dx 6= 0, k ∈ R3. (2.40)

It means the strong coupling of the scalar field ψ(x) with the particle.
Let us denote BR = {x ∈ R3 : |x| < R} for R > 0 and let ‖ · ‖R stand for the

norm in L2(BR). We define the local energy seminorms

‖(ψ, π, q, p)‖ER = ‖∇ψ‖R + ‖ψ‖R + ‖π‖+ |q|+ |p| (2.41)

on the Hilbert phase space E . The main result of [42] is the following.

Theorem 2.6. i) Let conditions (2.37), (2.40) hold. Then for any finite energy
solution Y (t) = (ψ(t), π(t), q(t), p(t)) to the system (2.32)–(2.33)

Y (t) −−−−→
t→±∞

S, (2.42)

where the convergence holds in the metric (2.14) with seminorm (2.41).

ii) Let moreover, the set Z be discrete in RN . Then

Y (t) −−−−→
t→±∞

S± ∈ S, (2.43)

where the convergence holds in the same metric.

Sketch of the proof. The key point in the proof is the relaxation of acceleration

q̈(t) −−−−→
t→±∞

0, (2.44)

which follows from the Wiener condition (2.40). Then the asymptotics (2.42) and
(2.43) immediately follow from this relaxation and from (2.37) by the Liénard-
Wiechert representations for the potentials.

Let us explain how to deduce (2.44) as t→∞ in the case of spherically symmetric
form factor ρ(x) = ρ1(|x|). The energy conservation and condition (2.37) imply the
a priori estimate |p(t)| ≤ const, and hence

|q̇(t)| ≤ v < 1 (2.45)
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by the first equation of (2.33). The radiated energy during the time 0 < t < ∞ is
finite by condition (2.37):

Erad = lim
R→∞

∫ ∞
0

[ ∫
|x|=R

S(x, t) · x
|x|
d2x
]
dt <∞, (2.46)

where S(x, t) = −π(x, t)∇ψ(x, t) is the density of energy flux. Let us denote

Rω(t) :=

∫
ρ(y − q(t+ ω · y))

ω · q̈(t+ ω · y)

[1− ω · q̇(t+ ω · y)]2
dy, ω ∈ R3, |ω| = 1. (2.47)

It turns out that the finiteness of energy radiation (2.46) also implies the finiteness
of the integral

Irad =

∫ ∞
0

[ ∫
|ω|=1

|Rω(t)|2 d2ω
]
dt <∞, (2.48)

which represents the contribution of the Liénard–Wiechert retarded potentials. Fur-
thermore, the function R(ω, t) is globally Lipschitz in view of (2.45). Hence,

Rω(t) −−−→
t→∞

0, |ω| = 1. (2.49)

To deduce (2.44), it is necessary to rewrite (2.47) as a convolution. We denote
r(s) := ω · q(s) and observe that the map s 7→ θ := s − r(s) is a diffeomorphism
from R to R, inasmuch as |ṙ(s)| ≤ v < 1 by (2.45). Then the desired convolution
representation reads

Rω(t) = [ρa ∗ gω](t) :=

∫
ρa(t− θ)gω(θ)dθ, (2.50)

where ρa(q1) :=

∫
dq2dq3ρ(q1, q2, q3) and

gω(θ) := [1− ṙ(s(θ))]−3r̈(s(θ)), θ ∈ R. (2.51)

It remains to note that [ρa ∗ gω](t) → 0 by (2.49), while the Fourier transform
ρ̃a(k) 6= 0 for k ∈ R by (2.40). Now (2.44) follows from the Wiener Tauberian
theorem.

In [42] we have also proved the asymptotic stability of stationary states Sz with
positive Hessian d2V (z) > 0.

Remark 2.7. i) The proof of relaxation (2.44) does not depend on the condition
(2.37). In particular, (2.44) holds for V = 0.

ii) The Wiener condition (2.40) is sufficient for the relaxation (2.44) for solutions
to the system (2.32)–(2.33). However, it is not necessary for some specific classes
of potentials and solutions in the case of small ‖ρ‖, see Section 4.3.

2.4. Maxwell–Lorentz equations: radiation damping. In [43] the attractions
(2.42), (2.43) were extended to the Maxwell equations in R3 coupled to a relativistic
particle:

Ė=rot B − q̇ρ(x−q), Ḃ=−rot E, div E=ρ(x−q), div B=0

q̇=
p√

1+p2
, ṗ=

∫
[E+Eext+q̇(t)× (B+Bext)]ρ(x−q(t)) dx

∣∣∣∣∣∣∣∣ (2.52)
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where ρ(x − q) is the charge density of a particle, q̇ρ(x − q) is the corresponding
current density, E = E(x, t) and B = B(x, t) and Eext = −∇φext(x), Bext =
−rot Aext(x) are external Maxwell fields. Similarly to (2.37), we assume that

V (q) :=

∫
φext(x)ρ(x− q) dx −−−−→

|q|→∞
∞. (2.53)

This system describes the classical electrodynamics of an ‘extended electron’ intro-
duced by Abraham [159, 160]. In the case of a point electron, when ρ(x) = δ(x),
such a system is undetermined. Indeed, in this setting any solutions E(x, t) and
B(x, t) to the Maxwell equations (the first line of (2.52)) are singular at x = q(t),
and respectively, the integral on the right of the last equation in (2.52) does not
exist.

The system (2.52) is time reversible in the following sense: if E(x, t), B(x, t), q(t),
p(t) is its solution, then E(x,−t), −B(x,−t), q(−t), −p(−t) is also the solution to
(2.52) with external fields Eext(x), −Bext(x). This system can be represented in the
Hamilton form if the fields are expressed via the potentials E(x, t) = −∇φ(x, t) −
Ȧ(x, t), B(x, t) = −rot A(x, t). The corresponding Hamilton functional is as follows

H =
1

2
[〈E,E〉+〈B,B〉]+V (q)+

√
1 + p2 =

1

2

∫
[E2(x)+B2(x)] dx+V (q)+

√
1 + p2.

(2.54)
This Hamiltonian is conserved, since

Ḣ(t) = 〈E(x, t), Ė(x, t)〉+ 〈B(x, t), Ḃ(x, t)〉+∇V (q) · q̇(t) + q̇(t) · ṗ(t)

= 〈E, rot B − q̇(t)ρ(x− q(t))〉 − 〈B, rot E〉 − 〈Eext(x), ρ(x− q(t))〉 · q̇(t)

+q̇(t) · 〈E + Eext(x) + q̇(t)× (B +Bext(x)), ρ(x− q(t))〉

= 〈E, rot B〉 − 〈B, rot E〉 = − lim
R→∞

∫
|x|<R

div [E(x, t)×B(x, t)]dx

= − lim
R→∞

∫
|x|=R

[E(x, t)×B(x, t)] · x
|x|

dS(x) = 0. (2.55)

This energy conservation gives a priori estimates of solutions, which play an impor-
tant role in the proof of the attractions of type (2.42), (2.43) in [43]. The key role
in these proofs again plays the relaxation of the acceleration (2.44) which follows
by a suitable development of our methods [42]: an expression of type (2.48) for
the radiated energy via the Liénard-Wiechert retarded potentials, the convolution
representation of type (2.50), and the application of the Wiener Tauberian theorem.

In Classical Electrodynamics the relaxation (2.44) is known as the radiation
damping. It is traditionally justified by the Larmor and Liénard formulas [44,
(14.22)] and [44, (14.24)] for the power of radiation of a point particle. These
formulas are deduced from the Liénard-Wiechert expressions for the retarded po-
tentials neglecting the initial fields. Moreover, the traditional approach neglects
the back field-reaction though it should be the key reason for the relaxation. The
main problem is that this back field-reaction is infinite for the point particles. The
rigorous meaning to these calculations has been suggested first in [42, 43] for the
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Abraham model of the ‘extended electron’ under the Wiener condition (2.40). The
survey can be found in [45].

Remark 2.8. All the above results on the attraction of type (1.5) relate to ‘generic’
systems with the trivial symmetry group, which are characterized by the discrete-
ness of attractors, the Wiener condition, etc.

3. Global attraction to stationary orbits. The global attraction to stationary
orbits (1.6) was first proved in [131, 132, 133] for the Klein–Gordon equation coupled
to the nonlinear oscillator

ψ̈(x, t) = ψ′′(x, t)−m2ψ(x, t) + δ(x)F (ψ(0, t)), x ∈ R. (3.1)

We consider complex solutions, identifying ψ ∈ C with (ψ1, ψ2) ∈ R2, where ψ1 =
Re ψ, ψ2 = Im ψ. We assume that F ∈ C1(R2,R2) and

F (ψ) = −∇ψU(ψ), ψ ∈ C, (3.2)

where U is a real function, and ∇ψ := ∂1 + i∂2. In this case equation (3.1) is

a Hamilton system of form (2.35) with the Hilbert phase space E := H1(R)⊕L2(R)
and the conserved Hamilton functional

H(ψ, π) =
1

2

∫ [
|π(x)|2 + |ψ′(x)|2 +m2|ψ(x)|2

]
dx+U(ψ(0)), (ψ, π) ∈ E . (3.3)

We assume that
inf
ψ∈C

U(ψ) > −∞. (3.4)

In this case a finite energy solution Y (t) = (ψ(t), π(t)) ∈ C(R, E) exists and is
unique for any initial state Y (0) ∈ E . The a priori estimate

sup
t∈R

[‖π(t)‖L2(R) + ‖ψ(t)‖H1(R)] <∞ (3.5)

holds due to the conservation of Hamilton functional (3.3). Note that condition
(2.10) now is not necessary, since the conservation of functional (3.3) with m > 0
provides boundedness of the solution.

Further, we assume the U(1)-invariance of the potential:

U(ψ) = u(|ψ|), ψ ∈ C. (3.6)

Then the differentiation (3.2) gives

F (ψ) = a(|ψ|)ψ, ψ ∈ C, (3.7)

and hence,
F (eiθψ) = eiθF (ψ), θ ∈ R. (3.8)

By ‘stationary orbits’ (or solitons) we shall understand any solutions of the form
ψω(x, t) = φω(x)e−iωt with φω ∈ H1(R) and ω ∈ R. Each stationary orbit provides
the corresponding solution to the nonlinear eigenfunction problem

− ω2φω(x) = φ′′ω(x)−m2φω(x) + δ(x)F (φω(0)), x ∈ R. (3.9)

The solutions φω ∈ H1(R) have the form φω(x)=Ce−κ|x|, where κ :=
√
m2−ω2>0

and C satisfies the equation
2κC = F (C).

Hence, the solutions exist for ω ∈ Ω, where Ω is a subset of the spectral gap [−m,m].
Let us define the corresponding solitary manifold

S = {(eiθφω,−iωeiθφω) ∈ E : ω ∈ Ω, θ ∈ [0, 2π]}. (3.10)
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Finally, we assume that equation (3.1) is strictly nonlinear:

U(ψ) = u(|ψ|2) =

N∑
0

uj |ψ|2j , uN > 0, N ≥ 2. (3.11)

For example, the known Ginzburg–Landau potential U(ψ) = |ψ|4/4−|ψ|2/2 satisfies
all conditions (3.4), (3.6) and (3.11).

Theorem 3.1. Let conditions (3.2), (3.4), (3.6) and (3.11) hold. Then any fi-
nite energy solution Y (t) = (ψ(t), π(t)) to equation (3.1) converges to the solitary
manifold in the long time limits (see Fig. 2):

Y (t) −−−−→
t→±∞

S, (3.12)

where the convergence holds in the sense of (2.16).

θ

−ω

+ω

t=− 8

t=+

8

ω

)ψ(t

Figure 2. Convergence to stationary orbits

Generalizations: Attraction (3.12) is extended in [134] to the 1D Klein–Gordon
equation with N nonlinear oscillators

ψ̈(x, t) = ψ′′(x, t)−m2ψ +

N∑
k=1

δ(x− xk)Fk(ψ(xk, t)), x ∈ R, (3.13)

and in [136, 137, 138], to the Klein–Gordon and Dirac equations in Rn with n ≥ 3
and a ‘nonlocal interaction’

ψ̈(x, t) = ∆ψ(x, t)−m2ψ +

N∑
k=1

ρ(x−xk)Fk(〈ψ(·, t), ρ(· − xk)〉), (3.14)

iψ̇(x, t) =
(
− iα · ∇+ βm

)
ψ + ρ(x)F (〈ψ(·, t), ρ〉), (3.15)

under the Wiener condition (2.40), where α = (α1, . . . , αn) and β = α0 are the
Dirac matrices.

Furthermore, attraction (3.12) is extended in [139] to discrete in space and time
nonlinear Hamilton equations, which are discrete approximations of equations like



20 ALEXANDER KOMECH

(3.14). The proof relies on the new refined version of the Titchmarsh theorem for
distributions on the circle, as obtained in [140].

Open questions:

I. Attraction (1.6) to the orbits with fixed frequencies ω±.

II. Attraction to stationary orbits (3.12) for nonlinear Schrödinger equations. In
particular, for the 1D Schrödinger equation coupled to a nonlinear oscillator

iψ̇(x, t) = −ψ′′(x, t) + δ(x)F (ψ(0, t)), x ∈ R (3.16)

(see Remark 3.12).

III. Attraction to solitons (1.9) for the relativistically-invariant nonlinear Klein–
Gordon equations. In particular, for the 1D equations

ψ̈(x,t) = ψ′′(x, t)−m2ψ(x, t) + F (ψ(x, t)).

Below we give a schematic proof of Theorem 3.1 in a more simple case of the
zero initial data:

ψ(x, 0) = 0, ψ̇(x, 0) = 0. (3.17)

The general case of nonzero initial data is reduced to (3.17) by a trivial subtraction
[131, 133]. The proof relies on a new strategy, which was first introduced in [131]
and refined in [133]. The main steps of the strategy are the following:

(1) The Fourier-Laplace transform in time for finite energy solutions to the nonlin-
ear equation (3.1).

(2) Absolute continuity of the Fourier transform on the continuous spectrum of the
free Klein–Gordon equation.

(3) The reduction of spectrum of omega-limit trajectories to a subset of the corre-
sponding spectral gap.

(4) The reduction of this spectrum to a single point.

The steps (2) and (4) are central in the proof. The property (2) is a nonlinear
analog of the Kato Theorem on the absence of embedded eigenvalues in the contin-
uous spectrum; it implies (3). Step (4) is justified by the Titchmarsh convolution
theorem. It means that the limiting behavior of any finite energy solution is single-
frequency, which essentially coincides with asymptotics (1.6). An important techni-
cal role plays the application of the theory of quasi-measures and their multipliers
[133, Appendix B].

The strategy (1)–(4) was also employed in [136]–[139].

3.1. Fourier-Laplace transform and quasi-measures. It suffices to prove at-
traction (3.12) only for positive times:

Y (t) −−−−→
t→+∞

S, (3.18)

We extend ψ(x, t) and f(t) := F (ψ(0, t)) by zero for t < 0 and denote

ψ+(x, t) :=

{
ψ(x, t), t > 0,
0, t < 0,

f+(t) :=

{
f(t), t > 0,
0, t < 0.

(3.19)

By (3.1) and (3.17) these functions satisfy the following equation

ψ̈+(x, t) = ψ′′+(x, t)−m2ψ+(x, t) + δ(x)f+(t), (x, t) ∈ R2 (3.20)
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in the sense of distributions. We denote by g̃(ω) the Fourier transform of the
tempered distribution g(t) given by

g̃(ω) =

∫
R
eiωtg(t) dt, ω ∈ R (3.21)

for test functions g ∈ C∞0 (R). It is important that ψ+(x, t) and +f(t) are bounded
functions of t ∈ R with values in the Sobolev space H1(R) and C, respectively,
due to the a priori estimate (3.5). Now the Paley–Wiener theorem [141, p. 161]
implies that their Fourier transforms admit an extension from the real axis to an
analytic functions of ω ∈ C+ := {ω ∈ C : Im ω > 0} with values in H1(R) and C,
respectively:

ψ̃+(x, ω) =

∫ ∞
0

eiωtψ(x, t) dt, f̃+(ω) =

∫ ∞
0

eiωtf(t) dt, ω ∈ C+. (3.22)

These functions grow not faster than |Im ω|−1 as Im ω → 0+ in view of (3.5). Hence,
their boundary values at ω ∈ R are the distributions of a low singularity: they are
second-order derivatives of continuous functions as in the case f̃+(ω) = i/(ω − ω0)
with ω0 ∈ R, which corresponds to f+(t) = θ(t)e−iω0t.

Recall that the Fourier transform of functions from L∞(R) are called quasi-
measures [142]. Further we will use a special weak ‘Ascoli–Arzela’ convergence in
the space L∞(R):

Definition 3.2. For g, gn ∈ L∞(R) the convergence gn
AA−→ g means that

lim
n→∞

‖gn(t)− g(t)‖L∞(−T,T ) = 0 ∀T > 0 and sup
n
‖gn‖L∞(R) <∞. (3.23)

Definition 3.3. i) A tempered distribution µ(ω) is called a quasi-measure if µ = g̃,
where g ∈ L∞(R).

ii) QM denotes the linear space of quasi-measures endowed with the following
convergence: for a sequence µn = g̃n ∈ QM with gn ∈ L∞(R)

µn
QM−→ µ if and only if gn

AA−→ g. (3.24)

The following technical lemma will play an important role in our analysis. Denote
L1 := L1(R).

Lemma 3.4. i) The function M(ω) is a multiplier in QM if M = G̃, where G ∈ L1.

ii) Let µn
QM−→ µ, and Gn

L1

−→ G. Then, for Mn := G̃n and M = G̃,

Mnµn
QM−→Mµ. (3.25)

For the proof it suffices to verify that Gn ∗ gn
AA−→ G ∗ g if gn

AA−→ g.

Further, by (3.17) equation (3.20) in the Fourier transform reads as the stationary
Helmholtz equation

− ω2ψ̃+(x, ω) = ψ̃′′+(x, ω)−m2ψ̃+(x, ω) + δ(x)f̃+(ω), x ∈ R. (3.26)

Its solution is given by

ψ̃+(x, ω) = −f̃+(ω)
eik(ω)|x|

2ik(ω)
, Im ω > 0. (3.27)

Here k(ω) :=
√
ω2 −m2, where the branch of the root is chosen to be analytic for

Im ω > 0 and having positive imaginary part. For this branch, the right-hand side
of equation (3.27) belongs to H1(R) in accordance with the properties of ψ̃+(x, ω),
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while for the other branch the right-hand side grows exponentially as |x| → ∞.
Such argument for the choice of the solution is known as the ‘limiting absorption
principle’ in the theory of diffraction [113]. We will write (3.27) as

ψ̃+(x, ω) = α̃(ω)eik(ω)|x|, Im ω > 0, (3.28)

where α(t) := ψ+(0, t). A nontrivial observation is that equality (3.28) of analytic
functions implies the similar identity for their restrictions to the real axis:

ψ̃+(x, ω + i0) = α̃(ω + i0)eik(ω+i0)|x|, ω ∈ R, (3.29)

where ψ̃+(·, ω+ i0) and α̃(ω+ i0) are the corresponding quasi-measures with values
in H1(R) and C, respectively. The problem is that the factor Mx(ω) := eik(ω+i0)|x| is
not smooth in ω at the points ω = ±m, and so identity (3.29) requires a justification.

Lemma 3.5. ([133, Proposition 3.1]) For each x ∈ R,

α̃(ω+ iε)
QM−→ α̃(ω+ i0) and Gx(ω+ iε)

L1

−→ Gx(ω+ i0) as ε→ 0+, (3.30)

where G̃x(ω + iε) = Mx(ω + iε) and G̃x(ω + i0) = Mx(ω + i0).

Now (3.29) follows from Lemma 3.4.

Finally, the inversion of the Fourier transform can be written as

ψ+(x, t) =
1

2π

∫
R
e−iωtψ̃+(x, ω+i0) dω =

1

2π

∫
R
e−iωtα̃(ω+i0)eik(ω+i0)|x|dω (3.31)

for t > 0 and x ∈ R.

3.2. A nonlinear analogue of the Kato theorem. It turns out that properties
of the quasi-measure α̃(ω + i0) for |ω| < m and for |ω| > m differ greatly. This is
due to the fact that the set {iω : |ω| ≥ m} coincides, up to the factor i, with the
continuous spectrum of the generator

A =

(
0 1

d2

dx2 −m2 0

)
(3.32)

of the linear part of (3.1). The following proposition plays the key role in our
proofs. It is a non-linear analogue of the Kato theorem on the absence of embedded
eigenvalues in the continuous spectrum. Let us denote Σ := {ω ∈ R : |ω| > m}, and
we will write below α̃(ω) and k(ω) instead of α̃(ω + i0) and k(ω + i0) for ω ∈ R.

Proposition 3.6. ([133, Proposition 3.2]) Let conditions (3.2), (3.4) and (3.6)
hold and let ψ(t) be a finite energy solution of equation (3.1). Then the distribution
α̃(ω) := α̃(ω + i0) is absolutely continuous on Σ, and α̃ ∈ L1(Σ). Moreover,∫

Σ

|α̃(ω)|2 |ω k(ω)|dω <∞. (3.33)

The proof [133] relies on the integral representation (3.31), the a priori estimate
(3.5), and uses some ideas of the Paley–Wiener theory [141, p. 161]. The main idea
is that the functions eik(ω+i0)|x| in (3.31) do not belong to H1(R) for ω ∈ Σ.
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3.3. Dispersive and bound components. Proposition 3.6 suggests the splitting
of the solution (3.31) into the ‘dispersion’ and ‘bound’ components

ψ+(x, t) =
1

2π

∫
Σ

(1− ζ(ω))e−iωtα̃(ω)eik(ω)|x|dω +
1

2π
〈α̃(ω), ζ(ω)e−iωteik(ω)|x|〉

= ψd(x, t) + ψb(x, t), t > 0, x ∈ R, (3.34)

where
ζ(ω) ∈ C∞0 (R), ζ(ω) = 1 for ω ∈ [−m− 1,m+ 1], (3.35)

and 〈 ·, ·〉 is the duality between quasi-measures and the corresponding test functions
(in particular, Fourier transforms of functions from L1(R)). Note that ψd(x, t) is
a dispersion wave, because

ψd(x, t) :=
1

2π

∫
Σ

(1− ζ(ω))e−iωtα̃(ω)eik(ω)|x|dω −−−→
t→∞

0 (3.36)

by (3.33) and the Lebesgue–Riemann theorem. The meaning of this convergence is
specified in the following simple lemma.

Lemma 3.7. ([133, Lemma 3.3]) ψd(x, t) is a bounded continuous function of t ∈ R
with values in H1(R), and

(ψd(·, t), ψ̇d(·, t))→ 0 (3.37)

in the seminorms (2.13).

Hence, it remains to prove the attraction (3.18) for Yb(t) := (ψb(·, t), ψ̇b(·, t))
instead of Y (t):

Yb(t) −−−−→
t→+∞

S. (3.38)

3.4. Compactness and omega-limit trajectories. To prove (3.38) we note,
first, that the bound component ψb(x, t) is a smooth function, and

∂jx∂
l
tψb(x, t) =

1

2π
〈α̃(ω), ζ(ω)(ik(ω) sgn x)j(−iω)le−iωteik(ω)|x|〉, t > 0, x ∈ R,

(3.39)
which implies the boundedness of each derivative:

Lemma 3.8. ([133, Proposition 4.1]) For any j, l = 0, 1, 2, . . . and R > 0

sup
0<|x|≤R

sup
t∈R
|∂jx∂ltψb(x, t)| <∞. (3.40)

Proof. It suffices to verify that ζ(ω)kj(ω)ωle−iωteik(ω)|x| = g̃x(ω), where gx(·) be-
longs to a bounded subset of L1(R) for 0 < |x| ≤ R. Then (3.40) follows from (3.39)
by the Parseval identity, inasmuch as α(t) := ψ(0, t) is a bounded function.

Hence, by the Ascoli–Arzela theorem, for any sequence sj → ∞ there exists
a subsequence sj′ →∞, for which

∂jx∂
l
tψb(x, sj′ + t)→ ∂jx∂

l
tβ(x, t), (x, t) ∈ R2, (3.41)

the convergence being uniform on compact sets. We will call any such function
β(x, t) an omega-limit trajectory of the solution ψ(x, t). It follows from bounds
(3.40) that

sup
(x,t)∈R2

|∂jx∂ltβ(x, t)| <∞. (3.42)
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Lemma 3.9. Attraction (3.38) is equivalent to the fact that any omega-limit tra-
jectory is a stationary orbit:

β(x, t) = φω+
(x)e−iω+t, ω+ ∈ R. (3.43)

This lemma follows from the uniform convergence (3.41) on each compact set
and the definition of the metric (2.14).

3.5. Spectral representation of omega-limit trajectories. Let us note that
ψb(x, t) is a bounded function of t ∈ R with values in H1(R) due to the similar
boundedness of ψ+(x, t) and ψd(x, t). Therefore, ψb(x, ·) is a bounded function
of t ∈ R2 for each x ∈ R, and convergence (3.41) with j = l = 0 implies the
convergence of the corresponding Fourier transforms in time in the sense of tempered
distributions. Moreover, this convergence holds in the sense of Ascoli–Arzela quasi-
measures (3.24)

ψ̃b(x, ω)e−iωsj′
QM−→ β̃(x, ω), ∀x ∈ R. (3.44)

Hence, representation (3.39) implies that

ζ(ω)α̃(ω)eik(ω)|x|e−iωsj′
QM−→ β̃(x, ω), ∀x ∈ R. (3.45)

Further, e−ik(ω)|x| is a multiplier in the space of Ascoli–Arzela quasi-measures ac-
cording [133, Lemma B.3]). Now (3.45) gives that

ζ(ω)α̃(ω)e−iωsj′
QM−→ γ̃(ω) := β̃(x, ω)e−ik(ω)|x|, ∀x ∈ R. (3.46)

Hence, (3.39) with j = l = 0 and t+ sj′ instead of t, gives in the limit j′ →∞ the
integral representation

β(x, t) =
1

2π
〈γ̃(ω)eik(ω)|x|, e−iωt〉, (x, t) ∈ R2, (3.47)

since eik(ω)|x| is a multiplier. Note that

β(0, t) = γ(t). (3.48)

Moreover,

supp γ̃ ⊂ [−m,m] (3.49)

by (3.46) and Proposition 3.6 due to the Riemann–Lebesgue theorem.

3.6. Equation for omega-limit trajectories and spectral inclusion. Note
that ψ+(x, t) is a solution of (3.1) only for t > 0 because of (3.19) and (3.20).
However, the following simple but important lemma holds.

Lemma 3.10. Any omega-limit trajectory satisfies the same equation (3.1):

β̈(x, t) = β′′(x, t)−m2β(x, t) + δ(x)F (β(0, t)), (x, t) ∈ R2. (3.50)

The lemma follows by substitution ψ+(x, sj′ + t) = ψd(x, sj′ + t) + ψb(x, sj′ + t)
into equation (3.20) and subsequent limit sj′ → ∞ taking into account (3.37) and
(3.41).

The following proposition implies (3.38) by Lemma 3.9.

Proposition 3.11. Under the hypotheses of Theorem 3.1 any omega-limit trajectory
is a stationary orbit of the form (3.43).
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First, (3.50) in the Fourier transform becomes the stationary equation

− ω2β̃(x, ω) = β̃′′(x, ω)−m2β̃(x, ω) + δ(x)f̃(ω), (x, ω) ∈ R2, (3.51)

where f(t) := F (β(0, t)) = F (γ(t)) by (3.48). Further, (3.7) gives that

f(t) = a(|γ(t)|)γ(t) = A(t)γ(t), A(t) = a(|γ(t)|), t ∈ R. (3.52)

Hence, in the Fourier transform we obtain the convolution f̃ = Ã ∗ γ̃, which exists
by (3.49). Respectively, (3.51) reads

− ω2β̃(x, ω) = β̃′′(x, ω)−m2β̃(x, ω) + δ(x)[Ã ∗ γ̃](ω), (x, ω) ∈ R2. (3.53)

This identity implies the key spectral inclusion

supp Ã ∗ γ̃ ⊂ supp γ̃, (3.54)

since supp β̃(x, ·) ⊂ supp γ̃ and supp β̃′′(x, ·) ⊂ supp γ̃ by (3.47). Using this inclu-
sion, we will deduce below Proposition 3.11 applying the fundamental Titchmarsh
convolution theorem of harmonic analysis.

3.7. The Titchmarsh convolution theorem. In 1926, Titchmarsh proved a the-
orem on the distribution of zeros of entire functions [143], [144, p.119], which implies,
in particular, the following corollary [145, Theorem 4.3.3]:

Theorem. Let f(ω) and g(ω) be distributions of ω ∈ R with bounded supports.
Then

[supp f ∗g] = [suppf ] + [suppg], (3.55)

where [X] denotes the convex hull of a subset X ⊂ R.

Let us note that supp γ̃ is bounded by (3.49). Therefore, supp Ã is also bounded,
since A(t) := a(|γ(t)|) is a polynomial of |γ(t)|2 by (3.11). Now the spectral inclusion
(3.54) implies by the Titchmarsh theorem that

[supp Ã] + [supp γ̃] ⊂ [supp γ̃], (3.56)

which gives [supp Ã] = {0}. Furthermore A(t) := a(|γ(t)|) is a bounded function by

(3.42), because γ(t) = β(0, t). Hence, Ã(ω) = Cδ(ω). Thus,

a(|γ(t)|) = C1, t ∈ R. (3.57)

Now the strict nonlinearity condition (3.11) also gives that

|γ(t)| = C2, t ∈ R. (3.58)

It is easy to deduce from this identity that supp γ̃ = {ω+} by the same Titchmarsh
theorem. Hence, γ̃(ω) = C3 δ(ω − ω+), which implies (3.43) by (3.47).

Remark 3.12. In the case of the Schrödinger equation (3.16) the Titchmarsh the-
orem does not work. The point is that the continuous spectrum of the operator
−d2/dx2 is the half-line [0,∞), so that the unbounded half-line (−∞, 0) now plays
the role of the ‘spectral gap’. Respectively, in this case inclusion (3.60) goes to

supp β̃(x, ·) ⊂ (−∞, 0), while the Titchmarsh theorem is applicable only to distri-
butions with bounded supports.
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3.8. Dispersion radiation and nonlinear energy transfer. Let us give an
informal comment on the proof of Theorem 3.1 behind the formal arguments. The
key part of the proof is concerned with the study of omega-limit trajectories of
a solution

β(x, t) = lim
sj′→∞

ψ(x, sj′ + t). (3.59)

First, Proposition 3.6 implies the inclusion (3.49), which gives

supp β̃(x, ·) ⊂ [−m,m], x ∈ R (3.60)

according to (3.47). Next the Titchmarsh theorem allows us to conclude that

supp β̃(x, ·) ⊂ {ω+}. (3.61)

These two inclusions are suggested by the following informal ideas:

A. Dispersion radiation in the continuous spectrum.

B. Nonlinear inflation of the spectrum and energy transfer.

A. Dispersion radiation. Inclusion (3.60) is suggested by the dispersion mech-
anism, which is illustrated by energy radiation in a wave field under harmonic ex-
citation with frequency lying in the continuous spectrum. Namely, let us consider
the three-dimensional linear Klein–Gordon equation with the harmonic source

ψ̈(x, t) = ∆ψ(x, t)−m2ψ(x, t) + b(x)eiω0t, x ∈ R3,

where b ∈ L2(R3). For this equation the limiting amplitude principle holds [113,
146, 147]:

ψ(x, t) ∼ a(x)eiω0t, t→∞, (3.62)

where a(x) is a solution to the stationary Helmholtz equation

−ω2
0a(x) = ∆a(x)−m2a(x) + b(x), x ∈ R3.

It turns out that the properties of the limiting amplitude a(x) differ greatly for the
cases |ω0| < m and |ω0| ≥ m. Namely,

a(x) ∈ H2(R3) for |ω0| < m, but a(x) 6∈ L2(R3) for |ω0| ≥ m. (3.63)

This is obvious from the explicit formula in the Fourier transform

â(k) = − b̂(k)

k2 +m2 − (ω + i0)2
, k ∈ R3. (3.64)

By (3.62) and (3.63), the energy of the solution ψ(x, t) tends to infinity for large
times if |ω0| ≥ m. This means that the energy is transferred from the harmonic
source to the wave field! In contrast, for |ω0| < m the energy of the solution remains
bounded, so that there is no radiation.

Exactly this radiation in the case |ω0| ≥ m prohibits the presence of harmonics
with such frequencies in omega-limit trajectories, because the finite energy solution
cannot radiate indefinitely. These arguments make natural the inclusion (3.60),
although its rigorous proof, as given above, is quite different.

Recall that the set Σ := {ω ∈ R, |ω| ≥ m} coincides with the continuous spec-
trum of the generator of the Klein–Gordon equation up to a factor i. Note that the
radiation in the continuous spectrum is well known in the theory of waveguides for
a long time. Namely, the waveguides only pass signals with frequency greater than
the threshold frequency, which is the edge point of continuous spectrum [148].

B. Nonlinear inflation of spectrum and energy transfer. For convenience,
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we will call the spectrum of a distribution the support of its Fourier transform.
Inclusion (3.61) is due to an inflation of the spectrum by nonlinear functions. For
example, let us consider the potential U(|ψ|2) = |ψ|4 and respectively, F (ψ) =
−∇ψU(|ψ|2) = −4|ψ|2ψ. Consider the sum of two harmonics ψ(t) = eiω1t + eiω2t

whose spectrum is shown in Fig. 3, and substitute the sum into this nonlinearity.
Then we obtain

F (ψ(t)) ∼ ψ(t)ψ(t)ψ(t) = eiω2te−iω1teiω2t + . . . = ei(ω2+∆)t + . . . ∆ := ω2−ω1.

ω1 ω2
* *

−m +m0

∆=ω2− ω1

ω

Figure 3. Two-point spectrum

The spectrum of this expression contains the harmonics with new frequencies
ω1−∆ and ω2 +∆. As a result, all the frequencies ω1−∆, ω1−2∆, . . . and ω2 +∆,
ω2 + 2∆, . . . will also appear in the dynamics (see Fig. 4)).

ω1 ω2

−m +m0

∆=ω2− ω1

** * *

∆
∆

∆

∆ ∆
∆

** ** ω

Figure 4. Nonlinear inflation of spectrum

Therefore, the frequency lying in the continuous spectrum |ω0| ≥ m will necessarily
appear, causing the radiation of energy. This radiation will continue until the
spectrum of the solution contains at least two different frequencies. Exactly this
fact prohibits the presence of two different frequencies in omega-limit trajectories,
because the finite energy solution cannot radiate indefinitely.

Let us emphasize that the spectrum inflation by polynomials is established by
the Titchmarsh convolution theorem, since the Fourier transform of a product of
functions equals the convolution of their Fourier transforms.

Remark 3.13. Physically the arguments above suggest the following nonlinear
radiation mechanism:

i) The nonlinearity inflates the spectrum which means the energy transfer from
lower to higher modes;

ii) Then the dispersion radiation of the higher modes transports their energy to
infinity.
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We have justified this radiation mechanism for the first time for the nonlinear U(1)-
invariant equations (3.1) and (3.13)–(3.15). Our numerical experiments confirm the
same radiation mechanism for nonlinear relativistically-invariant wave equations,
see Remark 7.1.

4. Global attraction to solitons. Here we describe the results of global attrac-
tion to solitons (1.9) for translation-invariant equations.

4.1. Translation-invariant wave-particle system. In [150], we considered the
system (2.32)–(2.33) with zero potential V = 0:

ψ̇(x, t) = π(x, t), π̇(x, t) = ∆ψ(x, t)− ρ(x− q(t)), x ∈ R3

q̇(t) =
p(t)√

1 + p2(t)
, ṗ(t) = −

∫
∇ψ(x, t)ρ(x− q(t)) dx.

∣∣∣∣∣∣∣∣ (4.1)

The corresponding Hamiltonian reads

H0(ψ, π, q, p) =
1

2

∫
[|π(x)|2 + |∇ψ(x)|2] dx+

∫
ψ(x)ρ(x− q) dx+

√
1 + p2, (4.2)

which coincides with (2.36) for V = 0. It is conserved along trajectories of the sys-
tem (4.1). Furthermore, this system is translation-invariant, and the corresponding
total momentum

P = p−
∫
π(x)∇ψ(x) dx. (4.3)

is also conserved. The system (4.1) admits traveling wave solutions (solitons)
ψv,a(x, t) = ψv(x− vt− a), πv,a(x, t) = πv(x− vt− a)

qv,a(t), = vt+ a pv := v/
√

1− v2

∣∣∣∣∣∣ (4.4)

where v, a ∈ R3 with |v| < 1. The set of these solitons form a 6-dimensional solitary
submanifold in E :

S = {Sv,a = (ψv(x− a), πv(x− a), a, pv) : v, a ∈ R3, |v| < 1} (4.5)

The main result of [150] is the following theorem.

Theorem 4.1. Let the Wiener condition (2.40) hold. Then, for any finite energy
solutions to the system (4.1),

q̇(t) −−−−→
t→±∞

v±. (4.6)

Moreover, for the field components the soliton asymptotics hold,

(ψ(x, t), π(x, t)) = (ψv±(x− q(t)), πv±(x− q(t))) + (r±(x, t), s±(x, t)) (4.7)

where the remainders locally decay in the moving frame of the particle: for every
R > 0

‖∇r±(q(t) + x, t)‖R + ‖r±(q(t) + x, t)‖R + ‖s±(q(t) + x, t)‖R −−−−→
t→±∞

0. (4.8)

The proof [150] relies on a) the relaxation of acceleration (2.44) which holds for
V = 0 (see Remark 2.7 i)), and b) on the canonical change of variables to the
comoving frame. The key role plays the fact that the soliton Sv,a minimizes the
Hamiltonian (4.2) under fixed total momentum (4.3), implying the orbital stability
of solitons [34, 35]. Furthermore, the strong Huygens principle for the 3D wave
equation is used.
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Remark 4.2. The Wiener condition (2.40) is sufficient for the relaxation (2.44)
of solutions to translation-invariant system (4.1). However it is not necessary: for
example, (2.44) obviously holds for ρ(x) ≡ 0. Moreover, (2.44) holds also in the
case of small ‖ρ‖, see Section 4.3.

4.2. Translation-invariant Maxwell–Lorentz equations. In [151], asymptotics
of type (4.6)–(4.8) were extended to the translation-invariant Maxwell–Lorentz sys-
tem (2.52) with zero external fields. In this case, the Hamiltonian (2.54) reads
as

H0 =
1

2

∫
[E2(x) +B2(x)] dx+

√
1 + p2. (4.9)

The extension of the arguments [150] to this case required an essential analysis
of the corresponding Hamiltonian structure which is necessary for the canonical
transformation. Now the key role in application of the strong Huygens principle
play novel estimates for the decay of oscillations of the Hamiltonian (4.9) and of
total momentum along solutions to a perturbed Maxwell–Lorentz system, see [151,
(4.24) and (4.25)].

4.3. Weak coupling. Asymptotics of type (4.6)–(4.8) in a stronger form were
proved for the system (2.32)–(2.33) under the weak coupling condition

‖ρ‖L2(R3) � 1. (4.10)

Namely, in [152] we have considered initial fields with a decay |x|−5/2−σ with a
parameter σ > 0 (condition (2.2) of [152]), assuming that

∇V (q) = 0, |q| > const. (4.11)

Under these assumptions we prove the strong relaxation

|q̈(t)| ≤ C(1 + |t|)−1−σ, t ∈ R (4.12)

for ‘outgoing’ solutions which satisfy the condition

|q(t)| → ∞, t→ ±∞. (4.13)

In particular, all solutions are outgoing in the case V (q) ≡ 0. Asymptotics (4.6)–
(4.8) under these assumptions are refined similarly to (2.22): q̇(t)→ v± and

(ψ(x, t), π(x, t))=(ψv±(x−q(t)), πv±(x−q(t)))+W (t)Φ±+(r±(x, t), s±(x, t)) (4.14)

as t → ±∞. Here the ‘dispersion waves’ W (t)Φ± are solutions to the free wave
equation, and the remainder now converges to zero in the global energy norm:

‖∇r±(q(t) + x, t)‖+ ‖r±(q(t) + x, t)‖+ ‖s±(q(t) + x, t)‖ −−−−→
t→±∞

0. (4.15)

Remark 4.3. This progress with respect to the local decay (4.8) is due to the fact
that we identify the dispersion wave W (t)Φ± under the smallness condition (4.10).
This identification is possible by the decay rate (4.12) which is more strong than
(2.44).

The solitons propagate with velocities less than 1, and therefore they separate at
large time from the dispersion waves W (t)Φ±, which propagate with unit velocity
(Fig. 5).

The proofs rely on the integral Duhamel representation and rapid dispersion
decay for the free wave equation. A similar result was obtained in [153] for a system
of type (2.32)–(2.33) with the Klein–Gordon equation, and in [154], for the system
(2.52) under the same condition (4.13) assuming that Eext(x) = Bext(x) = 0 for
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|x| > const. In [155], this result was extended to a system of type (2.52) with
a rotating charge in the Maxwell field.

Remark 4.4. The results [152]–[155] imply the ‘Grand Conjecture’ [55, p.460] in
the moving frame for the corresponding systems with V (q) ≡ 0 and Eext(x) ≡
Bext(x) ≡ 0 under the smallness condition (4.10).

Figure 5. Soliton and dispersion waves

Remark 4.5. Let us comment on the term generic in our conjecture on the as-
ymptotic (1.4).

i) The asymptotics (2.43) holds under the Wiener condition (2.40) which determines
an ‘open dense set’ of functions ρ. This asymptotics can break down if the Wiener
condition fails: for instance, if ρ(x) ≡ 0.

ii) Similarly, the asymptotics (3.12) hold for an open dense set of U(1)-invariant
equations which correspond to polynomials (3.11) with N ≥ 2. This asymptotics
can break down for ‘exceptional’ U(1)-invariant equations corresponding to N = 1.
The examples are constructed in [133].

iii) If a Lie Group G1 is a (proper) subgroup of another Lie group G2, then G2-
invariant equations form ‘an exceptional subset’ of G1-invariant equations, and the
corresponding asymptotics (1.4) can be quite different. In particular, {e} is the
subgroup of U(1) and of Rn, and the asymptotics (1.6), (1.9) can be different from
(1.5).

4.4. Solitons of relativistically-invariant equations. The existence of soliton
solutions ψ(x − vt) was extensively studied in the 1960–1980’s for a wide class of
relativistically-invariant U(1)-invariant nonlinear wave equations

ψ̈(x, t) = ∆ψ(x, t) + F (ψ(x, t)), x ∈ Rn. (4.16)

Here F (ψ) = −∇ψU(ψ), where U(ψ) = u(|ψ|) with u ∈ C2(R). In this case,

equation (4.16) is equivalent to the Hamilton system of type (2.8) with a conserved
in time Hamilton functional

H(ψ, π) =

∫
[
1

2
|π(x)|2 +

1

2
|∇ψ(x)|2 + U(ψ(x))] dx. (4.17)
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This equation is translation-invariant, so the total momentum

P := −
∫
π(x)∇ψ(x) dx (4.18)

is also conserved. Furthermore, this equation is also U(1)-invariant; i.e., F (e−iθψ) ≡
eiθF (ψ) for θ ∈ [0, 2π]. Respectively, it can admit soliton solutions of the form
e−iωtφω(x). Substitution into (4.16) gives the nonlinear eigenfunction problem

− ω2φω(x) = ∆φω(x) + F (φω(x)), x ∈ R. (4.19)

Under suitable conditions on the potential U , solutions φω ∈ H1(Rn) exist and
decay exponentially as |x| → ∞ for ω ∈ O, where O is an open subset of R.

The most general results on the existence of the solitons were obtained by Strauss,
Berestycki and P.-L. Lions [28, 29, 30]. The approach [30] relies on variational
and topological methods of the Ljusternik–Schnirelman theory [31, 32]. The de-
velopment of this approach in [33] provided the existence of solitons for nonlinear
relativistically-invariant Maxwell–Dirac equations (A.6).

The orbital stability of solitons has been studied by Grillakis, Shatah, Strauss,
and others [34, 35]. However, the global attraction to solitons (1.10) is still open
problem.

The equation (4.16) is also Lorentz-invariant. Hence, the solitons with any ve-
locities |v| < 1 are obtained from the ‘standing soliton’ e−iωtφω(x) via the Lorentz
transformation

ψv,ω(x, t) := e−iωγv(t−vx)φω(γv(x− vt)), γv :=
√

1− v2. (4.20)

The total energy (4.17) and the total momentum (4.18) of the soliton coincide with
the corresponding formulas for a relativistic particle (see [157, (4.1)]):

Ev,ω =
m0(ω)√
1− v2

, Pv,ω =
m0(ω)v√

1− v2
, (4.21)

where m0(ω) > 0 for ω 6= 0, provided (3.4) holds. Therefore, the relativistic ‘dis-
persion relation’ holds,

E2
v,ω = m2

0(ω) + P 2
v,ω, (4.22)

which implies the Einstein’s famous formula E = m0c
2 if v = 0 (recall that we set

c = 1).

In the one-dimensional case n = 1, equation (4.19) reads

− ω2φω(x) = φ′′ω(x) + F (φω(x)), x ∈ R. (4.23)

This ordinary differential equation is easily solved in quadratures using the ‘energy
integral’

1

2
|φ′ω(x)|2 − U(φω(x)) +

1

2
ω2|φω(x)|2 = const, x ∈ R. (4.24)

This identity shows that finite energy solutions to the equation (4.24) exist for
potentials U , similar to shown in Fig. 6. Namely, the potential Vω(φ) := −U(φ) +
1
2ω

2|φ|2 with ω2 < U ′′(0) has the shape represented in Fig. 7, guarantying the
existence of an exponentially decaying trajectory as x → ±∞ (the green contour)
which represents the soliton.
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Figure 6. The potential U

0

ω
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U

Figure 7. Potentials and soliton on the phase plane

5. Adiabatic effective dynamics of solitons. Existence of solitons and soliton-
type asymptotics (4.7) are typical features of translation-invariant systems. How-
ever, if a deviation of a system from translation invariance is small in some sense,
then the system may admit solutions that are permanently close to solitons with
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parameters depending on time (velocity, etc.). Moreover, in some cases it turns out
possible to find an ‘effective dynamics’ describing the evolution of these parameters.

5.1. Wave-particle system with slowly varying external potential. Solitons
(4.4) are solutions to the system (4.1) with zero external potential. However, even
for the corresponding system (2.32)–(2.33) with a nonzero external potential the
soliton-like solutions of the form

ψ(x, t) ≈ ψv(t)(x− q(t)) (5.1)

may exist if the potential is slowly varying:

|∇V (q)| ≤ ε� 1. (5.2)

Now the total momentum (4.3) is not conserved, but its slow evolution together
with evolution of solutions (5.1) can be described in terms of finite-dimensional
Hamiltonian dynamics.

Let us denote by P = Pv the total momentum of the soliton Sv,Q in the notations
(4.5), and observe that the mapping P : v 7→ Pv is an isomorphism of the ball |v| < 1
onto R3. Therefore, we can regard Q,P as the global coordinates on the solitary
manifold S and define an effective Hamilton functional

Heff(Q,Pv) ≡ H0(Sv,Q), (Q,Pv) ∈ S, (5.3)

where H0 is the unperturbed Hamiltonian (4.2). It is easy to observe that the
functional admits the splitting Heff(Q,Π) = E(Π)+V (Q), so that the corresponding
Hamilton equations read

Q̇(t) = ∇E(Π(t)), Π̇(t) = −∇V (Q(t)). (5.4)

The main result of [164] is the following theorem.

Theorem 5.1. Let condition (5.2) hold, and let the initial state (ψ0, π0, q0, p0)
be a soliton S0 ∈ S with total momentum P0. Then the corresponding solution
ψ(x, t), π(x, t), q(t), p(t) to the system (2.32)–(2.33) admits the following ‘adiabatic
asymptotics’

|q(t)−Q(t)| ≤ C0, |P (t)−Π(t)| ≤ C1ε for |t| ≤ Cε−1, (5.5)

sup
t∈R

[
‖∇[ψ(q(t) + x, t)− ψv(t)(x)]‖R + ‖π(q(t) + x, t)− πv(t)(x)]‖R

]
≤ Cε,(5.6)

where P (t) is the total momentum (4.3), the velocity v(t) = P−1(Π(t)), and (Q(t),
Π(t)) is the solution to the effective Hamilton equations (5.4) with initial conditions

Q(0) = q(0), Π(0) = P (0). (5.7)

Note that the relevance of effective dynamics (5.4) is due to consistency of the
Hamilton structures:

1) The effective Hamiltonian (5.3) is the restriction of the Hamiltonian (4.2) onto
the solitary manifold S.

2) As shown in [164], the canonical form of the Hamilton system (5.4) is also the
restriction of the canonical form of the original system (2.32)–(2.33) onto S:

P dQ =
[
p dq +

∫
ψ(x) dπ(x)dx

]∣∣∣
S
. (5.8)

Hence, the total momentum P is canonically conjugate to the variable Q on the
solitary manifold S. This fact clarifies definition (5.3) of the effective Hamilton
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functional as the function of the total momentum Pv, rather than of the particle
momentum pv.

One of main results of [164] is the following ‘effective dispersion relation’:

E(Π) ∼ Π2

2(1 +me)
+ const, |Π| � 1. (5.9)

It means that the non-relativistic mass of the slow soliton increases due to the
interaction with the field by the value

me = −1

3
〈ρ,∆−1ρ〉. (5.10)

This increment is proportional to the field-energy of the soliton at rest, that agrees
with the Einstein principle of the mass-energy equivalence (see below).

Remark 5.2. The relation (5.9) suggests only a hint that me is the increment of
the effective mass. The genuine justification is given by relevance of the adiabatic
effective dynamics (5.4) which is confirmed by the asymptotics (5.5)–(5.6).

5.2. Generalizations and the mass-energy equivalence. In [165], asymptotics
(5.5), (5.6) were extended to solitons of the Maxwell–Lorentz equations (2.52) with
small external fields, and the increment of the non-relativistic mass of type (5.10)
was calculated. It also turns out to be proportional to the own field energy of the
static soliton.

Such an equivalence of the own electromagnetic field energy of the particle and of
its mass was first suggested in 1902 by Abraham: he obtained by a direct calculation
that the electromagnetic self-energy Eown of the electron at rest contributes the

increment me =
4

3
Eown/c

2 into its nonrelativistic mass (see [159, 160], and also

[8, pp. 216–217]). It is easy to see that this self-energy is infinite for the point
electron with the charge density δ(x − q), because in this instance the Coulomb
electrostatic field |E(x)| ∼ C/|x−q|2 as x→ q, so that the integral in (2.54) diverges.
Respectively, the field mass for a point electron is infinite, which contradicts the
experiment. This is why Abraham introduced the model of ‘extended electron’ for
which the self-energy is finite.

At that time Abraham put forth the idea that the whole mass of an electron is
due to its own electromagnetic energy; i.e., m = me: ‘... the matter has disappeared,
only the radiation remains...’, as wrote philosophically minded contemporaries [162,
pp. 63, 87, 88] (Smile :) )

This idea was refined and developed in 1905 by Einstein, who has discovered the
famous universal relation E = m0c

2 suggested by the relativity theory [161]. The
extra factor 4

3 in the Abraham formula is due to the non-relativistic nature of the
system (2.52). According to the modern view, about 80 % of the electron mass has
electromagnetic origin [163].

Further, the asymptotics of type (5.5), (5.6) were obtained in [166, 167] for the
nonlinear Hartree and Schrödinger equations with slowly varying external poten-
tials, and in [168]–[170], for nonlinear Einstein–Dirac, Chern–Simon–Schrödinger
and Klein–Gordon-Maxwell equations with small external fields.

Recently, a similar adiabatic effective dynamics was established in [171] for an
electron in the second-quantized Maxwell field in presence of a slowly varying ex-
ternal potential.
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Remark 5.3. The dispersion relation (4.22) for relativistic solitons formally implies
the Einstein’s formula E = m0c

2 if v = 0 (recall that c = 1). However, its genuine
dynamical justification requires the relevance of the corresponding adiabatic effec-
tive dynamics for the solitons with the relativistic kinetic energy E =

√
m2

0 + P 2.
The first result of this type for relativistically-invariant Klein–Gordon-Maxwell
equations is established in [170].

6. Asymptotic stability of solitary waves. The asymptotic stability of solitary
manifolds means the local attraction; i.e., for the state sufficiently close to the
manifold. The main peculiarity of this attraction is the instability of the dynamics
along the manifold. This follows directly from the fact that the solitary waves move
with different velocities, and therefore run away over a long time.

Analytically, this instability is related to the presence of the discrete spectrum of
the linearized dynamics with Re λ ≥ 0. Namely, the tangent vectors to the solitary
manifolds are the eigenvectors and the associated eigenvectors of the generator of the
linearized dynamics at the solitary wave. They correspond to the zero eigenvalue.
Respectively, the Lyapunov theory is not applicable in this case.

In a series of papers an ingenious strategy was developed for proving the as-
ymptotic stability of solitary manifolds. In particular, this strategy includes the
symplectic projection of the trajectory onto the solitary manifold, the modula-
tion equations for the soliton parameters of the projection, and the decay of the
transversal component. This approach is a far-reaching development of the Lya-
punov stability theory.

6.1. Linearization and decomposition of the dynamics. The strategy was
initiated in the pioneering works of Soffer and Weinstein [49, 50, 51]; see the survey
[55]. The results concern the nonlinear U(1)-invariant Schrodinger equation with
a real potential V (x)

iψ̇(x, t) = −∆ψ(x, t) + V (x)ψ(x, t) + λ|ψ(x, t)|pψ(x, t), x ∈ Rn, (6.1)

where λ ∈ R, p = 3 or 4, n = 2 or n = 3, and ψ(x, t) ∈ C. The corresponding
Hamilton functional reads

H =

∫
[
1

2
|∇ψ|2 +

1

2
V (x)|ψ(x)|2 +

λ

p
|ψ(x)|p] dx. (6.2)

For λ = 0 the equation (6.1) is linear. Let φ∗(x) denote its ground state correspond-
ing to the minimal eigenvalue ω∗ < 0. Then Cφ∗(x)e−iω∗t are periodic solutions for
any complex constant C. The corresponding phase curves are the circles filling the
complex line (which is the real plane). For nonlinear equations (6.1) with small real
λ 6= 0, it turns out that a remarkable bifurcation occurs: a small neighborhood of
zero of the complex line is transformed into an analytic-invariant solitary manifold
S which is still filled by the circles ψω(x)e−iωt with frequencies ω close to ω∗.

The main result of [50, 51] (see also [52]) is the long time attraction to one of
these trajectories at large times for any solution with sufficiently small initial data

ψ(x, t) = ψ±(x)e−iω±t + r±(x, t), (6.3)

where the remainder decays in the weighted norms: for σ > 2

‖〈x〉−σr±(·, t)‖L2(Rn) −−−−→
t→±∞

0, (6.4)
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where 〈x〉 := (1 + |x|)1/2. The proofs rely on linearization of the dynamics, the
decomposition

ψ(t) = e−iΘ(t)(ψω(t) + φ(t)),

and the orthogonality condition

〈ψω(0), φ(t)〉 = 0 (6.5)

(see [50, (3.2) and (3.4)]). This orthogonality and the dynamics (6.1) imply the

modulation equations for ω(t) and γ(t) where γ(t) := Θ(t)−
∫ t

0

ω(s)ds (see (3.2) and

(3.9a), (3.9b) of [50]. The orthogonality (6.5) ensures that φ(t) lies in the continuous
spectral space of the Schrödinger operator H(ω0) := −∆ + V + λ|ψω0

|m−1 which
results in the time decay [50, (4.2a) and (4.2b)] of the component φ(t). Finally, this
decay implies the convergence ω(t)→ ω± and the asymptotics (6.3) as t→ ±∞.

These results and methods were further developed by many authors for nonlin-
ear Schrödinger, wave and Klein–Gordon equations with external potentials under
various types of spectral assumptions on the linearized dynamics [52] - [57] for the
case of small inital data.

A significant progress in this theory has been achieved by Buslaev, Perelman and
Sulem who have established in [58]–[60] the asymptotics of type (6.3) for the first
time for translation-invariant 1D Schrödinger equations

iψ̇(x, t) = −ψ′′(x, t) + F (ψ(x, t)), x ∈ R (6.6)

which are also U(1)-invariant. The latter means that the nonlinear function F (ψ)
satisfies the identities (3.6)–(3.8). Then the corresponding solitons have the form
ψ(x, t) = ψv,ω(x−vt−a)e−i(ωt+θ). The set of all solitons form 4-dimensional smooth
submanifold S of the Hilbert phase space X := L2(R).

The novel approach [58]–[60] relies on the symplectic projection P of solutions
onto the solitary manifold. This means that for S := Pψ we have

Z := ψ − S is symplectic-orthogonal to the tangent space T := TSS. (6.7)

The projection is well defined in a small neighborhood of S: it is important that
S is the symplectic manifold, i.e. the symplectic form is nondegenerate on the
tangent spaces TSS. Now the solution is decomposed into the symplectic orthogonal
components ψ(t) = S(t)+Z(t) where S(t) := Pψ(t), and the dynamics is linearized
at the solitary wave S(t) := Pψ(t) for every t > 0. In particular, the approach
[58]–[60] allowed to get rid of the smallness assumption on initial data.

The main results of [58]–[60] are the asymptotics of type (4.14), (6.3) for solutions
with initial data close to the solitary manifold S:

ψ(x, t) = ψ±(x− v±t)e−iω±t +W (t)Φ± + r±(x, t), (6.8)

where W (t) is the dynamical group of the free Schrödinger equation, Φ± are some
finite energy states, and r± are the remainders which tend to zero in the global
norm:

‖r±(·, t)‖L2(R) −−−−→
t→±∞

0. (6.9)

The asymptotics are obtained under the condition [60, (1.0.12)] which means the
strong coupling of the discrete and continuous spectral components. This condi-
tion is the nonlinear version of the Fermi Golden Rule [86] which was originally
introduced by Sigal [87, 88]. In [63], these results were extended to nD translation-
invariant Schrödinger equations in dimensions n ≥ 2.
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6.2. Method of symplectic projection in the Hilbert space. The proofs of
asymptotics (6.8)–(6.9) in [58]–[60] rely on the linearization of the dynamics (6.6) at
the soliton S(t) := Pψ(t) which is the nonlinear symplectic projection of ψ(t) onto
the solitary manifold S. The Hilbert phase space X := L2(R) admits the splitting
X = T (t)⊕Z(t), where Z(t) is the symplectic orthogonal space to the tangent
space T (t) := TS(t)S. The corresponding equation for the transversal component
Z(t) reads

Ż(t) = A(t)Z(t) +N(t), (6.10)

where A(t)Z(t) is the linear part while N(t) = O(‖Z(t)‖2) is the corresponding
nonlinear part. The main peculiarity of this equation is that it is nonautonomous,
and the generators A(t) are nonselfadjoint (see Appendix [78]). The main issue is
that A(t) are Hamiltonian operators. The strategy of [58]–[60] relies on the follow-
ing ideas.

S1. Modulation equations. The parameters of the soliton S(t) satisfy mod-
ulation equations: for example, for its velocity we have v̇(t) = M(ψ(t)), where
M(ψ) = O(‖Z‖2) for small ‖Z‖. Hence, the parameters vary extra slowly near the
solitary manifold, like adiabatic invariants.

S2. Tangent and transversal components. The transversal component Z(t) in
the splitting ψ(t) = S(t) +Z(t) belongs to the transversal space Z(t). The tangent
space T (t) is the root space of A(t) which corresponds to the ‘unstable’ spectral
point λ = 0. The key observation is that i) the symplectic-orthogonal space Z(t)
does not contain the ‘unstable’ tangent vectors, and moreover, ii) Z(t) is invari-
ant under the generator A(t) since T (t) is invariant and A(t) is the Hamiltonian
operator.

S3. Continuous and discrete components. The transversal component admits
further splitting Z(t) = z(t) + f(t), where z(t) and f(t) belong respectively to the
discrete and continuous spectral spaces Zd(t) and Zc(t) of the generator A(t) in the
invariant space Z(t) = Zd(t) + Zc(t).
S4. Elimination of continuous component. Equation (6.10) can be projected
onto Zd(t) and Zc(t). Then the continuous transversal component f(t) can be
expressed via z(t) and the terms O(‖f(t))‖2 from the projection onto Zc(t). Sub-
stituting this expression into the projection onto Zd(t), we obtain a nonlinear ‘cubic’
equation for z(t) which includes also ‘higher order terms’ O([‖f(t))‖+ |z(t)|2]2): see
equations (3.2.1)-(3.2.4) and (3.2.9)-(3.2.10) of [60]. (For relativistically-invariant
Ginzburg-Landau equation similar reduction has been done in [75, (4.9) and (4.10)].)

S5. Poincaré normal forms and Fermi Golden Rule. Neglecting the higher
order terms, the equation for z(t) reduces to the Poincaré normal form which im-
plies the decay for z(t) due to the ‘Fermi Golden Rule’ [60, (1.0.12)].

S6. Method of majorants. A skillful interplay between the obtained decay
and the extra slow evolution of the soliton parameters S1 provides the decay for
f(t) and z(t) by the method of majorants. This decay immediately results in the
asymptotics (6.8)-(6.9).

6.3. Development and applications. In [56, 57], these methods and results were
extended i) to the Schrödinger equation interacting with nonlinear U(1)-invariant
oscillators, ii) in [68, 71], to the system (4.1) and to (2.52) with zero external fields,
and iii) in [67, 69, 70], to similar translation-invariant systems of Klein–Gordon,
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Schrödinger and Dirac equations coupled to a particle. A survey of the results
[67, 68, 71] can be found in [72].

For example, in [71] we have considered solutions to the system (4.1) with initial
data close to the solitary manifold (4.4) in the weighted norm

‖ψ‖2σ =

∫
〈x〉2σ|ψ(x)|2dx. (6.11)

Namely, the initial state is close to soliton (4.4) with some parameters v0, a0:

‖∇ψ(x, 0)−∇ψv0(x− a0)‖σ + ‖ψ(x, 0)− ψv0(x− a0)‖σ + ‖π(x, 0)− πv0(x− a0)‖σ
+|q(0)− a0|+ |q̇(0)− v0| ≤ ε,

(6.12)
where σ > 5 and ε > 0 are sufficiently small. Moreover, we assume the Wiener
condition (2.40) for k 6= 0, while

∂αρ̂(0) = 0, |α| ≤ 5; (6.13)

this is equivalent to ∫
xαρ(x) dx = 0, |α| ≤ 5. (6.14)

Under these conditions, the main results of [71] are the following asymptotics:

q̇(t)→ v±, q(t) ∼ v±t+ a±, t→ ±∞ (6.15)

(cf. (4.6)). Moreover, the attraction to solitons (4.7) holds, where the remainders
now decay in the weighted norm in the moving frame of the particle (cf. (4.8)):

‖∇r±(q(t) + x, t)‖−σ + ‖r±(q(t) + x, t)‖−σ + ‖s±(q(t) + x, t)‖−σ −−−−→
t→±∞

0. (6.16)

In [73]–[76] and [79], the methods and results [58]–[60] were extended to relativisti-
cally-invariant nonlinear equations. Namely, in [73]–[76] the asymptotics of type
(6.8) were obtained for the first time for the relativistically-invariant nonlinear
Ginzburg–Landau equations, and in [79], for relativistically-invariant nonlinear Dirac
equations. In [77], we have constructed examples of Ginzburg–Landau type po-
tentials providing the spectral properties of the linearized dynamics imposed in
[73]–[76]. In [78], we have justified the eigenfunction expansions for nonselfadjoint
Hamiltonian operators which were used in [73]–[76]. For the justification we have
developed a special version of M.G. Krein theory of J-selfadjoint operators.

In [80], the system of type (4.1) with the Schrödinger equation instead of the wave
equation is considered as a model of the Cherenkov radiation of a tracer particle (the
system (1.9)–(1.10) of [80]). The main result of [80] is the long time convergence
to a soliton with a subsonic speed for initial solitons with supersonic speeds. The
asymptotic stability of the solitons for similar system has been established in [69].

Asymptotic stability of N -soliton solutions to nonlinear translation-invariant
Schrödinger equations was studied in [81]–[84] by developing the methods of [58]–
[60].
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6.4. Further development. After 2003, the results on asymptotic stability of
solitary waves described above were developed in many directions.

Multibound state systems. In the case of many simple eigenvalues of the
linearized equation the asymptotic stability and long time asymptotics of solutions
to the nonlinear Schrödinger equation

iψ̇(x, t) = (−∆ + V (x))ψ(x, t)± |ψ(x, t)|2ψ(x, t), x ∈ R3 (6.17)

was proved for the first time in [89]–[93]. The main assumptions were as follows:
i) the bottom of continuous spectrum is neither an eigenvalue nor a resonance for
the linearized equation; ii) the eigenvalues of the linearized equation satisfy a novel
nonresonance condition; iii) a suitable novel version of Fermi Golden Rule holds.

The main result is the following: any solution with small initial data and which
is sufficiently close to a ground state converges to some ground state as t→∞ with
the rate t−1/2 in L2

loc(R3). Depending on the relative sizes of the bound states in
the initial data, there are different long-time regimes. One of the difficulties is the
possible existence of invariant tori corresponding to eigenvalues of the linearization.
A large amount of effort has been spent to show that metastable tori decay like
t−1/2 as t→∞.

This result was extended in [92] to the nonlinear Klein–Gordon equation

ψ̈(x, t) = (∆ + V (x)−m2)ψ(x, t) + β′(ψ(x, t)), x ∈ R3. (6.18)

Any small solution is asymptotically a free wave in the norm H1(R3) if i) the zero
point is neither an eigenvalue nor a resonance for the linearized equation and ii)
the corresponding Fermi Golden Rule condition holds. The linearized equation can
have many multiple eigenvalues, which satisfy a nonresonance condition of type [91].
The proofs rely heavily on the Birkhoff normal form theory. The main innovation
is the use of normal form expansions without losing the Hamiltonian structure of
the PDE.

In [93], the long-time asymptotics ‘ground state + dispersion wave’ in the norm
H1(R3) was proved for solutions to the nonlinear Schrödinger equation

iψ̇(x, t) = (−∆ + V (x))ψ(x, t) + β(|ψ(x, t)|)ψ(x, t), x ∈ R3, (6.19)

which are close to a ground state solution. This is a development of the results
[92, 64]. The corresponding linearized equation can have many multiple eigenvalues
that satisfy the nonresonance condition [92], and the corresponding Fermi Golden
Rule condition holds. However, for NLS the methods of [92] require a significant
improvement: now the canonical coordinates are constructed through the Darboux
theorem.

General Relativity. The paper [94] concerns the so-called kink instabilities of
the self-similar and spherically symmetric solutions to the general relativity equa-
tions with a scalar field and those with a stiff fluid as the sources. The authors
give some examples of self-similar solutions which are unstable against the kink
perturbations.

The paper [95] examines the linear stability of slowly rotating Kerr solutions
of the Einstein vacuum equations [95]. In [96], the pointwise decay properties of
solutions to the wave equation is studied on a class of stationary asymptotically flat
backgrounds in three space dimensions.

In [97], the Maxwell equation is considered in the exterior of a very slowly rotating
Kerr black hole. The main results are as follows: i) the boundedness of a positive



40 ALEXANDER KOMECH

definite energy on each hypersurface of constant t, and ii) the convergence of each
solution to a stationary Coulomb solution.

In [98], a pointwise decay was proved for linear waves on a Schwarzschild black
hole background.

The method of concentration compactness. In [99] the method of con-
centration compactness was applied for the first time to the proof of global well-
posedness, scattering and blow-up of solutions to the energy-critical, focusing, non-
linear Schrödinger equation

iψ̇(x, t) = −∆ψ(x, t)− |ψ(x, t)|
4

n−2ψ(x, t), x ∈ Rn (6.20)

in the radial case. Later the method was extended to general nonradial solutions
and to the nonlinear wave equations

ψ̈(x, t) = ∆ψ(x, t) + |ψ(x, t)|
4

n−2ψ(x, t), x ∈ Rn (6.21)

see [100, 102, 104, 105]. One of the main results is a splitting of initial states that
are close to a critical level into three sets with distinct long-time asymptotics: either
leading to a finite time blow up, or to an asymptotically free wave, or to a sum of
ground state and asymptotically free wave. All three alternatives are possible; all
nine combinations at t→ ±∞ also are possible. The lectures [106] give an excellent
introduction to this area. The papers [101, 103] concern the supercritical non-linear
wave equations.

Recently, these methods and results were extended to the critical wave maps
[107]–[109]. The authors prove the ‘soliton resolution’: every energy finite 1-
equivariant wave map from the exterior of a ball with Dirichlet boundary conditions
to the three-dimensional sphere exists globally in time and scatters to a unique sta-
tionary solution within its topological class.

6.5. Linear dispersion. The key role in all results on long-time asymptotics of
Hamilton nonlinear PDEs is played by the dispersion decay of solutions to the
corresponding linearized equations. There being a huge literature on this subject,
we restrict their survey mainly to the recent publications.

Dispersion decay in weighted Sobolev norms. The dispersion decay was
first discovered for wave equations in the linear scattering theory [110]. For the
Schrödinger equation with a potential a systematical approach to the dispersion
decay was discovered by Agmon, Jensen and Kato [111, 112]. This theory was
extended by many authors to the wave, Klein–Gordon, and Dirac equations, and
to the correspondig discrete equations, see [113]–[130] and the references therein.

L1 − L∞ decay estimates. This decay was first established by Journé, Soffer
and Sogge [126]:

‖Pcψ(t)‖L∞(Rn) ≤ Ct−n/2‖ψ(0)‖L1(Rn), t > 0 (6.22)

for solutions to the linear Schrödinger equation

iψ̇(x, t) = Hψ(x, t) := (−∆ + V )ψ(x, t), x ∈ Rn (6.23)

when n ≥ 3, λ = 0 is neither an eigenvalue nor a resonance of H, and V = V (x)
is sufficiently smooth and decays sufficiently fast as |x| → ∞. Here Pc is the the
orthogonal projection onto the continuous subspace of L2(Rn) with respect to H.
This result was further generalized by many authors. Let us comment on some
generalizations.
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In [120], the decay (6.22) with n = 3 and the Strichartz estimates were estab-
lished for equation (6.23) with ‘rough’ and time-dependent potentials V = V (x, t)
(for the stationary case V (x) belongs both to the Rollnik and to the Kato class).
Recently, similar estimates were established in [121] for 3D linear Schrödinger and
wave equations with the (stationary) potentials from the Kato class.

In [122], the Schrödinger equation (6.23) was considered in R4 when there are
obstructions, a resonance or an eigenvalue at zero energy. In particular, there is
a time dependent finite rank operator Ft such that ‖Ft‖L1→L∞ ≤ 1/ log t for t > 2
and

‖eitHPc − Ft‖L1→L∞ ≤ Ct−1, t > 2.

The operator Ft = 0 if there is an eigenvalue but no resonance at zero energy.
Analogous dispersive estimates are developed for the solution operator to the four
dimensional wave equation with potential.

In [123], the Schrödinger equation (6.23) is considered in Rn with an odd n ≥ 5
when there is an eigenvalue at zero energy. In particular, there is a time dependent
rank one operator Ft such that ‖Ft‖L1→L∞ ≤ C|t|2−n/2 for |t| > 1 and

‖eitHPc − Ft‖L1→L∞ ≤ C|t|1−n/2, |t| > 1,

where Pc denotes the projection onto the continuous part of the spectrum of H.
With stronger decay conditions on the potential the evolution admits the operator-
valued expansion

eitHPc(H) = |t|2−n/2A−2 + |t|1−n/2A−1 + |t|−n/2A0,

where A−2 and A−1 are finite rank operators mapping L1(Rn) to L∞(Rn), while A0

maps weighted L1 spaces to weighted L∞ spaces. The leading order terms A−2 and
A−1 vanish when certain orthogonality conditions between the potential V and the
zero energy eigenfunctions are satisfied. Under the same orthogonality conditions,
the remaining term |t|−n/2A0 also exists as a map from L1(Rn) to L∞(Rn), hence
eitHPc(H) satisfies the same dispersive bounds as the free evolution, despite the
eigenvalue at zero.

Lp − Lq decay estimates. The Lp − Lq decay was first proved in [124] for

solutions to the free Klein–Gordon equation ψ̈ = ∆ψ − ψ with ψ(0) = 0:

‖ψ(t)‖Lq ≤ Ct−d‖ψ̇(0)‖Lp , t > 1, (6.24)

where 1 ≤ p ≤ 2, 1/p+ 1/q = 1, d ≥ 0 is a piece-wise linear function of (1/p, 1/q).
The proofs use the Riesz interpolation theorem. In [125] the estimates (6.24) were
extended to solutions of the perturbed Klein–Gordon equation

ψ̈ = ∆ψ − ψ + V (x)ψ

with ψ(0) = 0. The authors show that (6.24) holds as long as 0 ≤ 1/p − 1/2 ≤
1/(n + 1). The smallest value of p and the fastest rate of decay d occur when
1/p = 1/2 + 1/(n + 1), d = (n − 1)/(n + 1). The result is proved under the
assumption that V is both smooth and small in a suitable sense. For example, the
result is true when |V (x)| ≤ c(1 + |x|2)−σ, where c is sufficiently small and σ > 2
for n = 3, σ > n/2 for n odd ≥ 5, σ > (2n2 + 3n+ 3)/4(n+ 1) for even n ≥ 4. The
results also extend to the case when ψ(0) 6= 0.

The seminal paper [126] deals with Lp − Lq decay estimates for solutions of
the Schrödinger equation (6.23). It is assumed that for some η > 0 and α >
n+ 4, (1 + |x|2)αV (x) is a multiplier of the Sobolev space Hη and that the Fourier
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transform of V is in L1. With these hypotheses the main result of the paper is the
following theorem: if λ = 0 is neither an eigenvalue nor a resonance for H, then

‖Pcψ(t)‖Lq ≤ Ct−n(1/p−1/2)‖ψ(0)‖Lp , t > 1, (6.25)

where 1 ≤ p ≤ 2 and 1/p+ 1/q = 1. The proofs rely on the L1 − L∞ decay (6.22)
and the Riesz interpolation theorem.

In [127], the decay estimates (6.25) were proved under suitable decay assumptions
on V (x) for all 1 ≤ p ≤ 2 if H has no threshold resonance and eigenvalue; and for
all 3/2 < p ≤ 2 otherwise.

The Strichartz estimates. Recently, the Strichartz estimates were extended
i) in [128] to the magnetic Schrödinger equation in Rn with n ≥ 3, ii) in [129] to
wave equations with magnetic potentials in Rn with n ≥ 3, and iii) to the wave
equation in R3 with a potential in the Kato class [130].

7. Numerical simulation of soliton asymptotics. Here we describe the results
of our joint work with Arkady Vinnichenko (1945–2009) on numerical simulation
of the global attraction to solitons (1.9) and (1.10), and adiabatic effective soliton-
type dynamics (5.6) for the relativistically-invariant one-dimensional nonlinear wave
equations [156].

7.1. Kinks of relativistically-invariant Ginzburg–Landau equation. We
have considered real solutions to the relativistically-invariant 1D Ginzburg–Landau
equation, which is the nonlinear Klein–Gordon equation with polynomial nonlin-
earity

ψ̈(x, t) = ψ′′(x, t) + F (ψ(x, t)), where F (ψ) := −ψ3 + ψ. (7.1)

Since F (ψ) = 0 for ψ = 0,±1, there are three equilibrium positions S(x) ≡
0,+1,−1.

The corresponding potential reads U(ψ) = ψ4

4 −
ψ2

2 . This potential has minimum
at ±1 and maximum at 0, so the two equilibria are stable, and one is unstable. Such
potentials with two wells are called the Ginzburg–Landau potentials.

Besides constant stationary solutions S(x) ≡ 0,+1,−1, there is still a non-
constant steady-state ‘kink’ solution S(x) = tanh x√

2
. Its shifts and reflections

±S(x − a) are also stationary solutions, as well as their Lorentz transformations
±S(γ(x− a− vt)) with γ = 1√

1−v2 for |v| < 1. These are uniformly moving waves

(i.e., solitons). When the velocity v is close to ±1, this kink is very compressed.
Equation (7.1) is equivalent to the Hamiltonian system of form (2.8) with the

Hamilton functional

H(ψ, π) =

∫
[
1

2
|π(x)|2 +

1

2
|ψ′(x)|2 + U(ψ(x))] dx (7.2)

defined on the Hilbert phase space E of states (ψ, π) with the norm (2.6), for which

ψ(x) −−−−→
|x|→∞

±1.

Our numerical experiments show the decay of finite energy solutions to a finite
collection of kinks and a dispersion wave that confirms the asymptotics (1.10).
One of the simulations is shown on Fig. 8: the considered finite energy solution to
equation (7.1) decays to three kinks. Here, the vertical line is the time axis and the
horizontal line is the space axis. The spatial scale redoubles at t = 20 and t = 60.

The red color corresponds to values ψ > 1−ε, the blue one, to values ψ < −1+ε,
and the yellow one, to values −1+ε < ψ < 1+ε. Thus, the yellow stripes represents
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the kinks, while the blue and red zones outside the yellow stripes are filled with the
dispersion waves W (t)Φ+.

At t = 0 the solution starts from a fairly chaotic behavior when there are no
kinks. After 20 seconds, there are three distinct kinks, which further move almost
uniformly.

The left kink moves to the left with small velocity v1 ≈ 0.24, the central kink
is almost standing with the velocity v2 ≈ 0.02, and the right kink is very fast
with velocity v3 ≈ 0.88. The Lorentz contraction

√
1− v2

k is clearly visible on this
picture: the central kink is wide, the left one is slightly narrower, and the right one
is quite narrow.

Furthermore, the Einstein time delay here is also very pronounced. Namely,
all three kinks oscillate due to presence of a nonzero eigenvalue in the linearized
equation on the kink: substituting ψ(x, t) = S(x) + εϕ(x, t) into (7.1) we obtain

ϕ̈(x, t) = ϕ′′(x, t)− 2ϕ(x, t)− V (x)ϕ(x, t)

in the first order the linearized equation, where the potential

V (x) = 3S2(x)− 3 = − 3

cosh2 x√
2

exponentially decays for large |x|. It is a great joy that for this potential the

spectrum of the corresponding Schrödinger operator H := − d2

dx2 + 2 + V (x) is well
known [158]. Namely, the operator H is non-negative, and its continuous spectrum
coincides with [2,∞). It turns out that H still has a two-point discrete spectrum:
the points λ = 0 and λ = 3

2 . These pulsation, which we observe for the central

slow kink, have frequency ω1 ≈
√

3
2 and period T1 ≈ 2π/

√
3
2 ≈ 5 s. On the other

hand, for the fast kink the ripples are much slower; i.e., the corresponding period
is larger. This time delay agrees with the Lorentz formulas.

These agreements confirm the relevance of our numerical simulations of the soli-
tons. Moreover, an analysis of the dispersion waves gives additional confirmations.
Namely, the space outside the kinks in Fig. 8 is filled with dispersion waves, whose
values are very close to ±1, with the accuracy 0.01. The waves satisfy, with high
accuracy, the linear Klein–Gordon equation, which is obtained by linearization of
the Ginzburg–Landau equation (7.1) on the stationary solutions ψ = ±1:

ϕ̈(x, t) = ϕ′′(x, t) + 2ϕ(x, t).

The corresponding dispersion relation ω2 = k2 + 2 defines the group velocities of
the wave packets,

∇ω =
k√

k2 + 2
= ±
√
ω2 − 2

ω
(7.3)

which are clearly seen in Fig. 8 as straight lines whose propagation velocities ap-
proach ±1. This approach is explained by the limit |∇ω| → 1 for high frequencies
ω = ±nω1 →∞ generated by the polynomial nonlinearity in (7.1).

Remark 7.1. These observations agree completely with the radiation mechanism
summarized in Remark 3.13.

The nonlinearity in (7.1) is chosen so as to have well-known spectrum of the
linearized equation. In the numerical experiments [156] we have considered more
general nonlinearities, and the results were qualitatively the same: for ‘any’ initial
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Figure 8. Decay to three kinks
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data the solution again splits into a sum of solitons. Numerically, this can be clearly
visible, but the rigorous justification is still the matter for the future.

7.2. Numerical observation of soliton asymptotics. Besides the kinks our nu-
merical experiments [156] have also resulted in the soliton-type asymptotics (1.10)
and adiabatic effective dynamics of type (5.6) for complex solutions to the 1D
relativistically-invariant nonlinear wave equations (4.16). Namely, we have consid-
ered the polynomial potentials of the form

U(ψ) = a|ψ|2m − b|ψ|2n, (7.4)

where a, b > 0 and m > n = 2, 3, . . . . Respectively,

F (ψ) = 2am|ψ|2m−2ψ − 2bn|ψ|2n−2ψ. (7.5)

The parameters a, b,m, n were taken as follows:

N a m b n
1 1 3 0.61 2
2 10 4 2.1 2
3 10 6 8.75 5

We have considered various ‘smooth’ initial functions ψ(x, 0), ψ̇(x, 0) with the sup-
port on the interval [−20, 20]. The second order finite-difference scheme with
∆x,∆t ∼ 0.01, 0.001 was employed. In all cases we have observed the asymptotics
of type (1.10) with the numbers of solitons 0, 1, 3 for t > 100.

7.3. Adiabatic effective dynamics of relativistic solitons. In the numerical
experiments [156] was also observed the adiabatic effective dynamics of type (5.6)
for soliton-like solutions for the 1D equations (4.16) with a slowly varying external
potential (5.2):

ψ̈(x, t) = ψ′′(x, t)− ψ(x, t) + F (ψ(x, t))− V (x)ψ(x, t), x ∈ R. (7.6)

This equation is equivalent to the Hamilton system (2.8) with the Hamilton func-
tional

HV (ψ, π) =

∫
[
1

2
|π(x)|2 +

1

2
|ψ′(x)|2 + U(ψ(x)) +

1

2
V (x)|ψ(x)|2] dx. (7.7)

In notations (4.20), the soliton-like solutions are of the form (cf. (5.1))

ψ(x, t) ≈ eiΘ(t)φω(t)(γv(t)(x− q(t))). (7.8)

Below we describe our numerical experiments, which qualitatively confirm the adi-
abatic effective Hamilton type dynamics for the parameters Θ, ω, q, and v, but its
rigorous justification is still not established.

Figure 9 represents a solution to equation (7.6) with the potential (7.4), where
a = 10, m = 6 and b = 8.75, n = 5. We choose V (x) = −0.2 cos(0.31x) and the
initial conditions

ψ(x, 0) = φω0(γv0(x− q0)), ψ̇(x, 0) = 0, (7.9)

where v0 = 0, ω0 = 0.6 and q0 = 5.0. Note that the initial state does not belong
to the solitary manifold. An effective width (half-amplitude) of the solitons is in
the range [4.4, 5.6]. It is quite small when compared with the spatial period of
the potential 2π/0.31 ∼ 20, which is confirmed by numerical simulations shown on
Figure 9. Namely,

• Blue and green colors represent the dispersion wave with values |ψ(x, t)| < 0.01,
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Figure 9. Adiabatic effective dynamics of relativistic solitons
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while the red color represents the soliton with values |ψ(x, t)| ∈ [0.4, 0.8].

• The soliton trajectory (‘red snake’) corresponds to oscillations of a classical par-
ticle in the potential V (x).

• For 0 < t < 140 the solution is rather distant from the solitary manifold, and the
radiation is intense.

• For 3020 < t < 3180 the solution approaches the solitary manifold, and the ra-
diation weakens. The oscillation amplitude of the soliton is almost unchanged for
a long time, confirming a Hamilton type dynamics.

• However, for 5260 < t < 5420 the amplitude of the soliton oscillation is halved.
This suggests that at a large time scale the deviation from the Hamilton effective
dynamics becomes essential. Consequently, the effective dynamics gives a good ap-
proximation only on the adiabatic time scale t ∼ ε−1.

• The deviation from the Hamilton dynamics is due to radiation, which plays the
role of dissipation.

• The radiation is realized as the dispersion waves which bring the energy to the
infinity. The dispersion waves combine into uniformly moving bunches with discrete
set of group velocities, as in Fig. 8. The magnitude of solutions is of order ∼ 1 on
the trajectory of the soliton, while the values of the dispersion waves is less than
0.01 for t > 200, so that their energy density does not exceed 0.0001. The amplitude
of the dispersion waves decays for large times.

• In the limit t→ ±∞ the soliton should converge to a static position corresponding
to a local minimum of the potential. However, the numerical observation of this
‘ultimate stage’ is hopeless since the rate of the convergence decays with the decay
of the radiation.

Appendix A. Attractors and quantum postulates. The foregoing results on
attractors of the nonlinear Hamilton equations were suggested by fundamental pos-
tulates of quantum theory, primarily Bohr’s postulate on transitions between quan-
tum stationary orbits. Namely, in 1913 Bohr suggested ‘Columbus’s’ solution of the
problem of stability of atoms and molecules [7], postulating that

Atoms and molecules are permanently on some stationary orbits |Em〉 with

energies Em, and sometimes make transitions between the orbits,

|Em〉 7→ |En〉. (A.1)

The simplest dynamic interpretation of this postulate is the attraction to stationary
orbits (1.6) for any finite energy quantum trajectory ψ(t). This means that the
stationary orbits form a global attractor of the corresponding quantum dynamics.

However, this convergence contradicts the Schrödinger’s linear equation due to
the superposition principle. Thus, Bohr’s transitions (A.1) in the linear theory do
not exist.

It is natural to suggest that the attraction (1.6) holds for a nonlinear modification
of the linear Schrödinger theory. Namely it turns out that the original Schrödinger
theory is nonlinear, because it involves interaction with the Maxwell field. The
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corresponding nonlinear Maxwell–Schrödinger system is contained essentially in the
first Schrödinger’s article of 1926:{

iψ̇(x, t) =
1

2
[−i∇+ A(x, t) + Aext(x, t)]2ψ + [A0(x, t) +Aext

0 (x)]ψ

�Aα(x, t) = 4πJα(x, t), α = 0, 1, 2, 3

∣∣∣∣∣ (A.2)

where x ∈ R3 and the units are chosen so that ~ = e = m = c = 1. Maxwell’s equa-
tions are written here in the 4-dimensional form, where A = (A0,A) = (A0, A1, A2,
A3) denotes the 4-dimensional potential of the Maxwell field with the Lorentz gauge

Ȧ0 +∇·A = 0, Aext = (Aext
0 ,Aext) is an external 4-potential, and J = (ρ, j1, j2, j3)

is the 4-dimensional current. To make these equations a closed system, we must
also express the density of charges and currents via the wave function:

J0(x, t) = |ψ(x, t)|2; Jk(x, t) = [(−i∇k+Ak(x, t)+Aext
k (x, t))ψ(x, t)]·ψ(x, t), (A.3)

where k = 1, 2, 3 and ‘ · ’ denotes the scalar product of two-dimensional real vectors
corresponding to complex numbers. In particular, these expressions satisfy the
continuity equation ρ̇+ div j = 0 for any solution of the Schrödinger equation with
arbitrary potentials [8, Section 3.4].

System (A.2) is non-linear in (ψ,A) although the Schrödinger equation is formally
linear in ψ. Now the question arises: what should be the stationary orbits for the
nonlinear hyperbolic system (A.2)? It is natural to suggest that these are the
solutions of type

(ψ(x)e−iωt, A(x)). (A.4)

Indeed, such functions give stationary distributions of charges and currents (A.3).
Moreover, these functions are the trajectories of one-parameter subgroups of the
symmetry group U(1) of the system (A.2). Namely, for any solution (ψ(x, t), A(x, t))
and θ ∈ R the functions

Uθ(ψ(x, t), A(x, t)) := (ψ(x, t)eiθ, A(x, t)) (A.5)

are also solutions. The same remarks apply to the Maxwell–Dirac system introduced
by Dirac in 1927:

3∑
α=0

γα[i∇α −Aα(x, t)−Aext
α (x, t)]ψ(x, t) = mψ(x, t)

�Aα(x, t) = Jα(x, t) := ψ(x, t)γ0γαψ(x, t), α = 0, . . . , 3

∣∣∣∣∣∣∣∣ x ∈ R3, (A.6)

where∇0 := ∂t. Thus, Bohr’s transitions (A.1) for the systems (A.2) and (A.6) with
a static external potential Aext(x, t) = Aext(x) can be interpreted as the long-time
asymptotics

(ψ(x, t), A(x, t)) ∼ (ψ±(x)e−iω±t, A±(x, t)), t→ ±∞ (A.7)

for every finite energy solution, where the asymptotics hold in a local norm. Ob-
viously, the maps Uθ form the group isomorphic to U(1), and the functions (A.4)
are the trajectories of its one-parametric subgroups. Hence, the asymptotics (A.7)
correspond to our general conjecture (1.4) with the symmetry group U(1).

Furthermore, in the case of zero external potentials these systems are translation-
invariant. Respectively, for their solutions one should expect the soliton asymptotics
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of type (1.10) as t→ ±∞:

ψ(x, t) ∼
∑
k

ψk±(x− vk±t)eiΦ
k
±(x,t) + ϕ±(x, t), (A.8)

A(x, t) ∼
∑
k

Ak±(x− vk±t) +A±(x, t), (A.9)

where the asymptotics hold in a global norm. Here Φk±(x, t) are suitable phase
functions, and each term-soliton is a solution to the corresponding nonlinear system,
while ϕ±(x, t) and A±(x, t) represent some dispersion waves which are solutions
to the free Schrödinger and Maxwell equations respectively. The existence of the
solitons for the Maxwell–Dirac system is established in [33].

The asymptotics (A.7) and (A.8) are not proved yet for the Maxwell–Schrödinger
and Maxwell–Dirac equations (A.2) and (A.6). One could expect that these asymp-
totics should follow by suitable modification of the arguments from Section 3.
Namely, let the time spectrum of an omega-limit trajectory ψ(x, t) contain at least
two different frequencies ω1 6= ω2: for example, ψ(x, t) = ψ1(x)e−iω1t+ψ2(x)e−iω2t.
Then the currents Jα(x, t) in the systems (A.2) and (A.6) contains the terms with
the harmonics e−i∆t and ei∆t, where ∆ := ω1 − ω2 6= 0. Thus the nonlinearity
inflates the spectrum as in U(1)-invariant equations, considered in Section 3.

Further, these time-dependent harmonics on the right hand side of the Maxwell
equations induce the radiation of an electromagnetic wave with the frequency ∆
according to the limiting amplitude principle (3.62) since the continuous spectrum
of the Maxwell generator is the whole line R. Finally, this radiation brings the en-
ergy to infinity which is impossible for omega-limit trajectories. This contradiction
suggests the validity of the one-frequency asymptotics (A.7). Let us note that the
spectrum of the radiation contains the difference ω1 − ω2 in accordance with the
second Bohr postulate.

We have justified similar arguments rigorously for U(1)-invariant equations (3.1)
and (3.13)–(3.15). However, for the systems (A.2) and (A.6) the rigorous justifica-
tion is still an open problem.
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