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We consider the long time behavior of the coupled Hamilton system of one-
dimensional string and nonlinear oscillator, in contact with a heat bath modeled by
the white noise. For any temperature the system converges to a statistical equilib-
rium described by the Boltzmann equilibrium measure. The convergence is caused
by radiation provided by the nonlinear coupling. If the oscillator potential has more
than one well and the temperature is small, the relaxation time is large, and the
system goes through a sequence of metastable states located near local minima of
the potential. When both, the temperature and the radiation rate are small, the
metastable states are distributions among the minima of the potential. © 2006
American Institute of Physics. �DOI: 10.1063/1.2189198�

. STRING COUPLED TO A NONLINEAR OSCILLATOR

We will consider a nonlinear oscillator coupled to a heat bath and to a one-dimensional �1D�
tring. The string is governed by the 1D wave equation

�ü�x,t� = Tu��x,t�, x � R \ �0� , �1.1�

here u�x , t� is the real function, ��0 is the string density, and T�0 is its tension. The oscillator
s a particle of mass m�0 attached to the string at the point x=0, so

u�0,t� = q�t�, t � R , �1.2�

here q�t� is the deviation of the oscillator. The heat bath is modeled as white noise, so the
scillator is governed by the stochastic equation

mq̈�t� = F�q�t�� + T�u��0 + ,t� − u��0 − ,t�� + ��Ẇ�t�; q�t� � u�0,t� , �1.3�

here F�q� stands for the oscillator force function, W�t� is the standard one-dimensional Wiener
rocess, and ��0 is the temperature of the heat bath. The middle term on the right-hand side of
1.3� descibes the string-oscillator interaction. Roughly speaking, Tu��0+ , t�, respectively,
Tu��0+ , t� is the “vertical projection” of the tension of the string to the right-handside, respec-

ively, to the left-handside of the oscillator �see Fig. 1�.
The system �1.1�–�1.3� is formally equivalent to a one-dimensional nonlinear wave equation

ith the nonlinear term concentrated at the single point x=0 and with a mass m concentrated at the
ame point,
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�� + m��x��ü�x,t� = Tu��x,t� + ��x��F�u�x,t�� + ��Ẇ�t��, �x,t� � R2. �1.4�

amely, the equation �1.1� follows from �1.4� with x�0, while �1.3� follows by equating the
oefficients at the delta function in both sides of �1.4�.

For the linear oscillator when F�q�=−�2q the system �1.1�, �1.3� with �=0 was considered
riginally by Lamb.11 For general nonlinear force function F�q� and �=0 the system was analyzed
n Refs. 8 and 9 �see also Ref. 10, pp. 26–37� where the convergence to stationary states has been
roved for all finite energy solutions in the long-time limit t→ ±�.

In the present paper we consider the long-time behavior of the Lamb system �1.1�–�1.3� with
�0 modeling the interaction with a heat bath of the temperature �. We consider the Cauchy
roblem for the system �1.1�–�1.3� with the initial conditions

u	t=0 = u0�x�, u̇	t=0 = v0�x�, q̇	t=0 = p0. �1.5�

e assume that initial functions are compactly supported or decreasing fast enough at infinity.
hen one can expect that, due to interplay between the energy dissipation caused by radiation and

he incident energy flow from the heat bath, a stationary regime will be established in large time.
f the potential U�q�ª−
F�q�dq has more than one well and the temperature � is small, the
elaxation time is large, and the system goes through a sequence of metastable states.

In generic situation, for a given time scale and an initial point, the system will be situated near
ertain local minimum of the potential. We consider also the situation when both, the temperature

and the radiation rate �which can be characterized by the product of the string density and its
ension�, are small. An “additional stochasticity” appears in this case due to instability near the
ocal maximums of potential. Therefore, even for generic potential, the metastable states are
istributions among the minima of the potential. We calculate these limiting distributions.

I. NOTATIONS AND DYNAMICS

Write the Cauchy problem �1.4� and �1.5� in the form

Ẏ�t� = F�Y�t�,t�, t � R, Y�0� = Y0, �2.1�

here Y0= �u0 ,v0 , p0� and Y�t�= �u�t� ,v�t� , q̇�t��.
Let us introduce a phase space E of finite energy states for the system �1.1�–�1.3�. Denote by

· �, respectively, � · �R the norm in the Hilbert space L2
ªL2�R�, respectively, L2�−R ,R�.

Definition 2.1: �i� E is the Hilbert space of the triples �u�x� ,v�x� , p��C�R� � L2 � R with
��x��L2 and the global energy norm

��u,v,p��E = �u�� + 	u�0�	 + �v� + 	p	 . �2.2�

FIG. 1. String with the oscillator.
ii� EF is the space E endowed with the Fréchet topology defined by the local energy seminorms
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��u,v,p��E,R � �u��R + 	u�0�	 + �v�R + 	p	, R � 0. �2.3�

iii� Yn→
EF

Y if f �Yn−Y�E,R→0, "R�0.
Remark 2.2: This convergence is equivalent to the convergence with respect to the metric

��X,Y� = �
R=1

�

2−R �X − Y�E,R

1 + �X − Y�E,R
, X,Y � E . �2.4�

e assume that

F�q� � C1�R� , �2.5�

U�q� ª −
 F�q�dq → + � , 	q	 → � . �2.6�

hen the system �1.1�–�1.3� for �=0 is formally Hamiltonian with the Hamilton functional

H�u,v,p� =
1

2

 �	v�x�	2 + 	u��x�	2�dx + m

	p	2

2
+ U�u�0�� �2.7�

or �u ,v , p��E. We consider solutions u�x , t� such that Y�t�= �u�· , t� , u̇�· , t� , q̇�t���C�0, � ;E�.
Let us discuss the definition of the Cauchy problem �2.1� for the functions Y�t��C�0, � ;E�.

t first, u�x , t��C�R2� due to Y�t��C�0, � ;E�. Then the wave equation �1.1� is understood in the
ense of distributions. This is equivalent to the d’Alembert decomposition

u�x,t� = f±�x − at� + g±�x + at�, ± x � 0, �2.8�

here a=�T /��0, and f−�C�−� ,0�, g+�C�0, � �, and f+ ,g−�C�−� , � �. Therefore,

u̇�x,t� = − f±��x − at� + g±��x + at�, u��x,t� = f±��x − at� + g±��x + at� for ± x � 0, t � R ,

�2.9�

here all the derivatives are understood in the sense of distributions. The condition Y�t�
C�0, � ;E� implies that

f±�,g±� � Lloc
2 �R� . �2.10�

e now explain the second equation �1.3�.
Definition 2.3: In the equation �1.3� set

u��0 ± ,t� � f±��− at� + g±��at� � Lloc
2 �0, � � , �2.11�

hile the derivative q̈�t� of q�t��u�0, t��C�0, � � �or of q̇�t��Lloc
2 �0, � � by �2.10�� is understood

n the sense of distributions.
Note that the functions f± and g± in �2.8� are unique up to an additive constant. Hence

efinition �2.11� is unambiguous.
Proposition 2.4: �Ref. 9� Let the conditions �2.5�, �2.6� be fulfilled, and W�t��C�0, � ;R� is a

xed function. Then

�i� For every Y0�E the Cauchy problem �2.1� admits a unique solution Y�t��C�0, � ;E�.
�ii� The map U�t� :Y0�Y�t� is continuous in E and EF.

The proposition is proved in Ref. 9 for the case W�t��0. The proof for the general case is

ery similar.
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II. GLOBAL ATTRACTOR FOR ZERO TEMPERATURE

The stationary states S= �s�x� ,0 ,0��E for �1.1�–�1.3� with �=0 are evidently determined. We
efine for every c�R the constant function

sc�x� = c, x � R . �3.1�

hen the set S of all stationary states S�E is given by

S = �Sz = �sz�·�,0,0�: z � Z� , �3.2�

here Z= �z�R : F�z�=0�.
The set S is a global attractor for the Lamb system �1.1�–�1.3� with �=0.9 Our main goal in

his paper is to describe the convergence to the statistical equilibrium for the Lamb system with
�0, and metastable rejimes for small ��0 and m�0.

V. REDUCED EQUATION FOR POSITIVE TEMPERATURE

The Lamb system �1.1�–�1.3� is equivalent to the following reduced equation:

mq̈�t� = F�q�t�� −
2T

a
q̇�t� +

2

a
ẇin�t� + ��Ẇ�t�, t � 0, �4.1�

here win�t��C�0, � � is determined by the initial conditions �1.5� and the equation is understood
n the sense of the corresponding integral equation �or distributions�.9,10

For 	x 	 �at�0 at the solution of the system �1.1�–�1.3� is determined uniquely by the initial
unctions and is expressed by the d’Alembert formula

u�x,t� =
u0�x − at� + u0�x + at�

2
+

1

2



x−at

x+at

v0�y�dy, 	x	 � at � 0. �4.2�

or 	x 	 	at the solution cannot be expressed in the initial functions. Indeed, the waves f+�x−at�,
espectively, g−�x+at� �see �2.8�� in the regions 0
x
at, respectively, −at
x
0 are the re-
ected waves and are not determined by the initial conditions. To determine both these two
eflected waves we need two equations: first is the gluing equation u�0+ , t�=u�0− , t�, and the
econd is the “jump equation” �1.3�. Substituting the d’Alembert representations �2.8� to the
quations, we get �see Ref. 9 or Ref. 10, Chap. 1, Lemma 4.6� the reduced equation �4.1�, where

in�t� is the sum of the incident waves g+�x+at� and f−�x−at� at the point x=0:

win�t� = g+�at� + f−�− at�, t � 0. �4.3�

or this function we have

ẇin�t� � L2�0, � � �4.4�

ince the initial functions belong to the phase space of finite energy states. Moreover, we get the
xpressions �see Ref. 10, Chap. 1, �4.33��

u�x,t� = ��q�t − x/a� + g+�x + at� − g+�at − x� , 0 
 x 
 at

q�t + x/a� + f−�x − at� − f−�− x − at� , − at 
 x 
 0
��, t � 0. �4.5�

t is important to note that this formula contains only the incident waves which are constant for
arge time if the initial functions are constant for large 	x	. Namely, let us consider the initial
unctions in �1.5� with

u0�x� = C±, v0�x� = 0, ± x � R0. �4.6�
hen g+�z�=c+ for z�R0, and f−�z�=c− for z
−R0. Hence �4.3� implies that
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win�t� = 0, t � R0/a . �4.7�

espectively, �4.1� becomes

mq̈�t� = F�q�t�� −
2T

a
q̇�t� + ��Ẇ�t�, t � R0/a , �4.8�

nd �4.5� implies that

u�x,t� = q�t − 	x	/a�, 	x	 
 R, t �
R + R0

a
�4.9�

or every R�0. Finally, take into account the value of a. Then �4.8� reads

mq̈�t� = F�q�t�� − 2��Tq̇�t� + ��Ẇ�t�, t � R0/a . �4.10�

ur goal is to describe a long-time behavior of the solution for the cases

m � ��T � 1, �� � 1. �4.11�

. CONVERGENCE TO EQUILIBRIUM DISTRIBUTION

If the supports of the initial functions u0�x� and v0�x� belong to a finite interval 	x 	 
R0
�,
hen, at least after time t0=R0 /a, no incident waves come to the origin. So the evolution of the
scillator can be described by Eq. �4.10� which is equivalent to the following system:

q̇�t� = p�t� ,

�5.1�
mṗ�t� = − U��q�t�� − 2��Tp�t� + ��Ẇ�t�, t � t0.

he values q�t0� and p�t0� are defined by the initial condition and by the trajectory W�t� for 0
t	 t0.

The stochastic process �q�t� , p�t�� defined by �5.1� is a �degenerate� diffusion process gov-
rned by the differential operator

Lu�q,p� = p
�u

�q
−

1

m
�U��q� + 2p��T�

�u

�p
+

�

2m2

�2u

�p2 . �5.2�

olving the stationary Fokker-Planck �forward Kolmogorov� equation L*v�q , p�=0, we find the
tationary Boltzman distribution

v�q,p� =
1

Z
exp�−

4��T

�
�mp2

2
+ U�q��� , �5.3�

here Z is a normalizing constant,

Z = 

−�

� 

−�

�

exp�−
4��T

�
�mp2

2
+ U�q���dp dq .

Assume that the following condition �*� is satisfied: for some Q0�0,

U��q� sign q � � � 0 for 	q	 � Q0 . �*�

his condition, in particular, provides finiteness of the normalizing constant Z.
Proposition 5.1: Let condition �*� be satisfied. Then

¯ ¯
�i� There exists a unique stationary solution �q�t� , p�t�� of system �5.1�. For any t, the
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distribution of �q̄t , p̄t� is given by �5.3�.
�ii� The solution �q�t� , p�t�� of system �5.1� with any initial condition q�0�=q0 , p�0�= p0,

converges to �q̄t , p̄t� as time tends to infinity, i.e.

For every A�0, the distribution of the random process �g�T+s� , p�T+s�� ,0	s	A, in C0,A

onverges weakly to the distribution of �q̄s , p̄s� as T→�.
Proof: Without loss of generality, we can assume, that m=2��T=�=1. Then the function

v�q,p� =
p2

2
+ �q − 
 arctan q�p + v�q� + 


0

q

�s − 
 arctan s�ds + k

or a suitable choice of parameters 
,k satisfies the conditions �see Ref. 7, Sec. 3.5� v�q , p�
0,Lv�q , p�
−�
0 for 	p 	 + 	q	 large enough, lim	p	+	q	→� v�q , p�=�. Here L is defined in �5.2�

nd � is a positive constant from �*�.
As we already mentioned, the Boltzman distribution is invariant for the equation �5.1�. To

rove uniqueness of the stationary distribution and convergence, one can use the standard con-
truction which goes back to Ref. 7. Therefore we give just a sketch of the proof.

Let 
A ,A�0 be the boundary of the square ��q , p��R2 : 	q 	 
A , 	p 	 
A� ,�A=
A+1. Consider
Markov chain Zn with the state space 
A which is defined as follows: Starting from any point

0= �q0 , p0��
A, the trajectory of the process Xt= �qt , pt� hits at some time �A and then comes
ack to 
A. Let � be the first time when Xt comes to 
A after hitting �A. Existence of the function
�q , p� constructed above implies that the random variable � is finite with probability 1, and the
xpected value E�
�, at least, if A is large enough. Set Z1=X�, so that the chain Zn in one step
umps from Z0 to Z1=X�. The standard proof of uniqueness of the stationary distribution and
onvergence to it is given under nondegeneracy assumption of the operator L.

In our case L is degenerate. But it satisfies the Hörmander conditions, providing the existence
f a positive density for Xt. Moreover, one can check that, due to the structure of the operator L,
oeblin conditions for the chain Zn are satisfied �Ref. 2, Sec. 6.2�. This implies that the chain Zn

n 
A has a unique stationary distribution which is also the limiting distribution for Zn.
The last property provides uniqueness of the stationary distribution for process �qt , pt� and

onvergence to this distribution �which is the Boltzman distribution� as t→�. This implies exis-
ence and uniqueness of a stationary process �q̄t , p̄t� satisfying equations �5.1� and the last state-

ent of Proposition 5.1. The stationary process �q̄t , p̄t� is the solution of �5.1� with the initial point
istributed according to the Boltzman distribution.

Theorem 5.1: Let �*� be satisfied, and the initial functions �1.5� have a compact support.
hen, we have the following:

�i� There exists a unique random field ū�t ,x�, t� �−� , � �, x�R1, such that ū�t ,x� is a
solution of equation

�
�2ū

�t2 = T
�2ū

�x2 , t � �− � , � �, x � R1 \ �0�; �5.4�

at x=0 the gluing conditions �1.2� and �1.3� are satisfied. The distribution of ū�t ,x� is
invariant with respect to time shifts: for any h�R1, ū�t+h ,x� and ū�t ,x� have the same
distribution in the space of continuous functions ��t ,x�, t� �−� , � � ,x�R1.

�ii� This unique solution is given by the formula �cf. �4.9��

ū�t,x� = q̄�t −
	x	
a
�, �x,t� � R2, �5.5�

where a=�T /�.
�iii� For every initial condition with a compact support, the solution u�t ,x� of problem

¯
�1.1�–�1.3� converges to the stationary solution u�t ,x�.

 Jun 2006 to 131.130.16.57. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ū
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For any A�0, the random process ũT�t ,x�=u�T+ t ,x� ,0	 t	A , 	x 	 	A, converges weakly to
�t ,x� as T→� in the space of continuous functions on �0,A�� �	x 	 	A� provided with uniform
opology.

Proof: As it follows from Proposition 5.1, if condition �*� is satisfied, a unique stationary
olution �q̄t , p̄t� of problem �5.1� exists. Then the function �5.5� satisfies equation �5.4� and the
luing conditions at x=0. Since the stochastic process q̄t is invariant with respect to the time shifts,

o is the function ū�t ,x�. If another time shift invariant solution ū̄�t ,x� exists, then ū̄�t ,0� should
oincide in distribution with q̄t, since problem �5.1� has a unique stationary solution. Convergence
f the solution of problem �1.1�–�1.3� with compactly supported initial functions to ū�t ,x� follows
y the formula �4.9� from the convergence of q�t� to q̄t.

I. LOW TEMPERATURE LIMIT

Let us note that the Boltzman equilibrium distribution �5.3� corresponds to the temperature
roportional to

�

��T
. �6.1�

ere we discuss low temperature behavior in the Lamb system �1.1�–�1.3�, when �→0 for fixed
and T.

If the potential U�q� has more than one well, and ��1, the convergence to the stationary
egime will be slow, and the system will go through a sequence of metastable regimes, where it
pends a long time before approaching the stationary solution described above.

The sequence of metastable regimes depends on the equilibrium state of equations �5.1� with
=0, to which the system was brought by the initial conditions �1.5�. Since we assume that the

nitial conditions have a compact support, say, they are equal to zero for 	x 	 ��, no incident waves
ome to the origin x=0 after time t0=� /a. Set u�t0 ,0�=q0

*, u̇�t0 ,0�= p0
*.

Assume that, for system �5.1� with �=0, the initial point �q0
* , p0

*� is attracted to the stable
quilibrium Ok�q0

*,p0
*�. The point Ok�q0

*,p0
*� in the phase space R2 has coordinates �qk�q0

*,p0
*� ,0�; qk�q0

*,p0
*�

s a local minimum of the potential U�q�.
If �=0, then the solution of system �5.1� with initial point �q0

* , p0
*� will stay near Ok�q0

*,p0
*�

orever. In the case 0
��1, the trajectory �qt
� , pt

�� of system �5.1� will stay in a neighborhood of

k�q0
*,p0

*� a time of order exp�const/��, and then will switch to another equilibrium of system �5.1�
ith �=0. It will stay there a long time and then again switches to the basin of another equilibrium

nd so on. It is important to underline that, in the generic case, for each stable equilibrium Ok,
here exists exactly one �nonrandom� equilibrium Ok�, such that, with probability close to 1 for �
mall enough, the system switches from Ok to Ok�. Since we assume that there are just a finite
umber of minima of U�q�, the sequence of transitions, after some time, becomes periodic �see
efs. 3 and 4�. Thus we will have a decomposition of the set of local minima of U�q� in cycles of

ank 1. Moreover, the transition time Tk,k�
� between the basins of Ok and Ok� is a random variable,

ut its logarithmic asymptotics as �↓0 is not random.3 In time scale larger than transition time in
rst rank cycles, transitions between the 1-cycles begin. So that in larger time scale, cycles of rank
appear, then cycles of rank 3, and so on, until all stable equilibriums of the nonperturbed system
ill be involved in the transitions.

The cycles of higher rank, as well as the logarithmic asymptotics of transition times between
hem, are also not random. So that one can speak on quasideterministic approximation for the
ong-time behavior of a dynamical system perturbed by a small noise. This hierarchy of cycles in

rather general situation was described in Refs. 3 and 4. The construction based on the large
eviation theory for dynamical system perturbed by a small noise.6

1
Denote by E�Ok ,E�, E�U�Ok�, the connected component of the set �q�R :U�q�	E� con-
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aining the stable equilibrium Ok. Let Ok*�k,E� be the point of E�Ok ,E� such that min�U�q� :q
E�Ok ,E��=U�Ok*�k,E��. We assume that the potential U�q� is generic. Then the equilibrium

k*�k,E� is defined in a unique way.
It is clear that for E close enough to U�Ok�, Ok*�k,E�=Ok. If the potential is generic, and Ok is

ust a local, but not global, minimum of U�q�, then one can find E1 such that Ok*�k,E�=Ok for E
�U�Ok� ,E1�, and Ok*�k,E��Ok for E�E1. In general, E1
E2
 ¯ 
Em exist such that Ok*�k,E�

Ok̄, k̄= k̄�k ,Ei ,Ei+1�=const for E� �Ei ,Ei+1�, i� �0, . . . ,m�, E0=U�Ok�, Em+1=�. Such an in-
reasing sequence Ei can be defined for any stable equilibrium Ok. If U�Ok�=min�U�q� :q�R1�,
hen set E1=�.

For example, for the potential shown in Fig. 2 and Ok=O5, E1=U�O6�, E2=U�O4�, E3

U�O2�, and E4=�; k̄�5,U�O5� ,E1�=5, k̄�5,E1 ,E2�=7, k̄�5,E2 ,E3�=3, k̄�5,E3 ,E4�=1.
Set �1=E1−U�Ok�, �2=E2−U�Ok̄�E1,E2�� , . . . ,�l=El−U�Ok̄�k,El−1,El�

� , . . . ,�m=Em

U�Ok̄�k,Em−1,Em��. It is easy to see that �1
�2
 ¯ 
�m.
It follows from Refs. 6 and 4 that in the time scale T��e�/�, �l
�
�l+1 �here “�” is the sign

f logarithmic equivalency as �↓0�, trajectory �qt , pt� of system �5.1� starting at a point from the
asin of Ok spends most of the time as a↓0 in a small neighborhood of Ok̄�El,El+1�: For each �
0, the random variable,

��
� =

1

T� Ù �t � �0,T��:d��qt,pt�,Ok̄�k,ElEl+1�� � �� ,

here Ù�·� stands for the Lebesgue measure in R1, and d�· , · � is Euclidian distance in R2, tends to
ero in probability as �↓0.

This and formula �4.9� imply the following result.

FIG. 2. Potential.
Theorem 6.1: Let condition �*� be satisfied and the initial functions �1.5� have a compact
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upport: u0�x�=v0�x�=0 for 	x 	 �R0. Suppose the point �u�� /a ,0� , u̇�� /a ,0�� belongs to the basin
f a stable equilibrium Ok. Let T��e−�/�, �� ��l ,�l+1�, Ok̄�k,ElEl+1�= �qk̄�k,El,El+1� ,0�. Then, for every
�0,



−A

A

dx

0

A

	u�tT�,x� − qk̄�k,El,El+1�	2 dt

ends to zero in probability as �↓0.

II. LOW TEMPERATURE AND RADIATION LIMIT

Consider now the case

m � 1, 2m−1�T� � 1, k =
�

m
� 1. �7.1�

hen the Eq. �4.10� can be written as follows:

q̈�t� = −
1

m
U��q�t�� − q̇�t� +� �

m
Ẇt. �7.2�

ence, the first two conditions in �7.1� mean that the Hamiltonian vector field is large with respect
o the “radiative effects” described by the friction term in �7.2�, so we can apply the averaging
rguments. The last two conditions in �7.1� mean the low temperature limit �→0, as above �see
6.1��.

In the preceding section, under certain conditions, we described metastable regimes of our
ystem: For a given initial state and a time scale, the system spends most of the time near certain
tationary state of the system without noise �zero temperature�. Under conditions of this section,
he metastable state, in general, is not a stationary state of the zero temperature system, but a
ertain distribution among such states. This distribution is determined by the initial conditions and
he time scale.

To be specific, we assume that the potential has four minima. Then the Hamiltonian H�p ,q�
p2 /2m+U�q� has the wells as it is shown in Fig. 3. The case of general potential can be treated

imilarly.
The level set C�z�= ��q , p� :H�q , p�=z� consists, in general of several connected components

k�z� :C�z�=�k=1
N Ck�z�. We denote by Gk�z� the domain bounded by Ck�z� �compare with Ref. 6,

hap. 8�. Let � be the graph homeomorphic to the set of connected components of all level sets
f the Hamiltonian H�q , p� �Fig. 3�b�� provided with natural topology.

The connected component of the level set of a saddle point O2, containing O2, is an eight-
haped curve 
 �Fig. 3�c� and 3�d�� consisting of two parts G1 and G2.

Equation �7.2� can be written as the system

q̇m,��t� =
1

�m
pm,��t� ,

�7.3�

ṗm,��t� = −
1

�m
U��qm,��t�� − pm,��t� + ��Ẇ�t� .

et, first, m→0, then we are in the situation when the averaging principle should be applied. The
ast component of the process �qm,��t� , pm,��t�� is, roughly speaking, the motion along the trajec-

ories of the Hamiltonian system with
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H =
p2

2
+ U�q� ,

nd the slow component is the projection Y�qm,��t� , pm,��t�� on the graph �: Y�x� is the point of the
raph corresponding to the connected component of H�x�-level set containing the point x�R2.5,6

t is shown in Ref. 5 that Y�qm,��t�, pm,��t�� converges weakly �in the space of continuous func-
ions on any finite time interval �0,M� with the values in �� to a diffusion process Y��t� on �. The
rocess Y��t� is defined by the family of second order operators Lk

�, one on each edge of the graph,
nd by gluing conditions at the vertices.

The operator Lk
� on the edge Ik has the form

Lk
��q,p�f�z� =

�

2Tk�z�
d

dz
�āk�z�

df

dz
� −

�̄k�z�
Tk�z�

df

dz
,

here Tk�z� is the period of rotation along the level set component Ck�z� corresponding to the
oint �z ,k� of the graph: k is the number of the edge containing this point, and z is the corre-
ponding value of the Hamiltonian H�q , p� on the level set of component corresponding to the
oint of �.

Further, Tk�z�=S��z�, where Sk�z� is the area of the domain Gk�z� bounded by Ck�z�, and

āk�z� = �̄k�z� = Sk�z� .

o define the process Y��t� on � in a unique way one should add gluing conditions at the vertices.
hese conditions were calculated in Ref. 5, but we do not need their form, so we will not describe

hem here.
Now we want to take � to zero in the process Y��t� on �. Then �see Ref. 1� Y��t� converges

eakly as �→0 to a process Y�t� on �, which has the following structure. Inside an edge Ik��,
¯

FIG. 3. Hamiltonian, graphs and level sets.
his is a nonrandom motion with the speed −�k�z� /Tk�z�=−Sk�z� /Sk��z�. When a trajectory comes
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o a vertex O corresponding to a saddle point �vertices O2, O4, and O6 in Fig. 3�, it proceeds
ithout any delay at O in one of the edges below �in energy� of O with certain probabilities P1�O�

nd P2�O�, P1�O�+ P2�O�=1. To find these probabilities, one should consider the eight-shaped
urve 
�O� corresponding to the vertex O �see Fig. 3�d��. It has two components G1�O� and

2�O�. Then

Pi�O� =
S�Gi�

S�G1� + S�G2�
, i = 1,2,

�Gi� being the area of Gi.
Assume that at time t0 the oscillator has the energy H0 greater than the level set of the highest

addle point �H0�H�O4� in Fig. 3�. Then because of “friction” �=radiation� it will lose the energy
ntil it comes to the level H�O4�; this will happen in a finite time. Then trajectory goes to the left
to the edge �O2 ,O4�� with probability

P1�O4� =
S�G1�O4��

S�G1�O4�� + S�G2�O4��
,

nd to the right �to �O4 ,O6�� with probability

P2�O4� =
S�G2�O4��

S�G1�O4�� + S�G2�O4��
.

rajectory Y�t� proceeds to go down until it meets the next saddle point �O2 or O6�. It is scattered
n those saddle points and eventually approaches one of the local minima of the potential. In a
nite time for every ��0 it approaches the � neighborhood of one of the local minima and stays

n the corresponding well a time of order eC/�, where

C = min�U�O2� − U�O1�,U�O2� − U�O3�,U�O6� − U�O5�,U�O6� − U�O7�� .

hus if we observe �qt
m,� , pt

m,�� on the time interval 1� t
TE
� =eE/� with 0
E
C, it is distributed

mong the local minima O1,O3,O5,O7 with probabilities, respectively, equal to

m1 =
S�G1�O4��

S�G1�O4�� + S�G2�O4��
·

S�G1�O2��
S�G1�O2�� + S�G2�O2��

,

m3 =
S�G1�O4��

S�G1�O4�� + S�G2�O4��
·

S�G2�O2��
S�G1�O2�� + S�G2�O2��

,

�7.4�

m5 =
S�G2�O4��

S�G1�O4�� + S�G2�O4��
·

S�G1�O6��
S�G1�O6�� + S�G2�O6��

,

m7 =
S�G2�O4��

S�G1�O4�� + S�G2�O4��
·

S�G2�O6��
S�G1�O6�� + S�G2�O6��

,

f, first, m↓0 and then �↓0. This is metastable distribution in the time scale TE
� =eE/� for E
C. In

arger time scales, the support of this limiting distribution will become smaller and smaller. To be
pecific, assume that

U�O6� − U�O7� 
 U�O6� − U�O5� 
 U�O4� − U�O5� 
 U�O2� − U�O1� 
 U�O2� − U�O3� .

�7.5�

hen if U�O6�−U�O7�
E
U�O6�−U�O5�, trajectory already have enough time to leave O7 so
hat the metastable distribution among O1,O3,O5,O7 in this time scale is �m1 ,m3 ,m5+m7 ,0�. If

� �U�O4�−U�O5� ,U�O2�−U�O1��, the metastable distribution is
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� S�G1�O2��
S�G1�O2�� + S�G2�O2��

,
S�G2�O2��

S�G1�O2�� + S�G2�O2��
,0,0� .

ventually, if E�U�O2�−U�O1�, then the distribution is concentrated at point O3, which is the
bsolute minimum of the potential.

Together with the equality u�t ,x�=um,��t ,x�=qm,��t− 	x 	 /a�, a=T /m, which holds for any x
R1 and t large enough, this implies the following result.

Theorem 7.1: Let condition �*� be satisfied, and initial functions �1.5� have a compact support
elonging to �	x 	 
���R1. Let the Hamiltonian H�p ,q�= p2 /2+U�q� be as shown in Fig. 3. Let
he energy of the oscillator with �=0 be greater than U�O4� at time t0=� /a:

m

2
� �um,0�t0,0�

�t
�2

+ U�um,0�t0,0�� � U�O4� .

ssume that inequalities �7.5� are satisfied. Then for any A, E�0 and TE
� �exp�E /��, the random

unction um,��TE
�t ,x�, t� �0,A�, x� �−A ,A�, converges weakly in L�0,A���−A,A�

2 to a random variable

E as, first, m↓0 and then �↓0.
The random variable �E has values O1,O3,O5,O7 with probabilities m1,m3,m5,m7, respectively,

f 0
E
C, with probabilities �m1 ,m3 ,m5+m7 ,0� if E� �U�O6�−U�O7� ,U�O6� ,−U�O5��, with
robabilities m1+m3 ,m5+m7 ,0 ,0� if E� �U�O4�−U�O5� ,U�O2�−U�O1��, and P��E=O3�=1 if
�U�O2�−U�O1�.
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