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Abstract. We establish soliton-type asymptotic relations for finite-energy solutions of the
Maxwell-Lorentz equations describing a charge coupled to an electromagnetic field. Any
solution converges to a sum of a travelling wave and an outgoing free wave. The convergence
holds with respect to the global energy norm. The proof uses the method of nonautonomous
integral inequalities.

1. INTRODUCTION

Consider a single charge coupled to the Maxwell field. If ¢(¢t) € R? is the position of charge at
time ¢, then the coupled Maxwell-Lorentz equations are

div E(z,t) = p(x — q(t)), rot E(x,t) = —B(x,t),
div B(z,t) =0, rot B(z,t) = E(x,t) 4+ p(x — q(t))(t), (1.1)
itt) = -2

V1+p2(t)

p(t) = =VV(q(t)) + q(t) Arot A(g(t)) + / &’z [E(z,t) + 4(t) A Bz, t)]p(x — q(1)).

Here and below, all derivatives are understood in the sense of distributions. The last row is the
Lorentz force equation, and the first two rows give the inhomogeneous Maxwell equations. The
function p is the distribution of the charge, which is commented below. We use units for which the
velocity of light is ¢ = 1, the mechanical mass of the charge is m = 1, and ¢¢ = 1.

We consider all finite-energy solutions of equations (1.1). The appropriate phase space is intro-
duced below. First we note that the energy integral

HE,Ba.p) = (1492 4+ V(@) + 5 [ d (IB@P + B@)P) (1.2)

is conserved along the sufficiently smooth solution trajectories of (1.1). It is then natural to choose
the set of all finite-energy states as the phase space. As to the external potentials, we assume that
they are smooth and compactly supported,

V, A€ C*(R?), V(z)=0 and A(x)=0 for |z|> Rex, 0 < Rex < +00. (P)
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The real-valued charge distribution p is assumed to be rather smooth and compactly supported,
Vp, p € L*(R?), p(z) =0 for |z|>R,>0. (®)
Another important assumption is that the norm of p in L? is sufficiently small,

%o = ol <1, (1.3)

which means that the field-charge interaction is weak. We believe that this is an artifact of the

mathematical technique in use. Consider the corresponding nonperturbed system with V = 0 and
A=0,

div E(z,t) = p(z — q(t)), rot E(z,t) = —B(z,1),
div B(z,t) = 0, rot B(x,t) = E(x,t) + p(z — q(t))4(¢), (1.4)
i(t) = % 30 = [ @210 +i0) A Bl - a(0).

System (1.4) has the set of solutions corresponding to the charge travelling with uniform velocity, v.
Up to translation, they are of the form

Sy (t) = (Ey(x — vt), B, (x — vt),vt, p,) (1.5)

with an arbitrary velocity v € V = {v € R3 : |v| < 1}. Below, the term “soliton” means a travelling
solution of (1.4).

Let us now discuss and summarize our main results; the precise theorems will be stated in the
following section. Consider the set S of scattering solutions to (1.1) for which |g(¢)| = oo as t — cc.
Below we discuss the properties of solutions of class S, in particular, their scattering behavior will
be established. Since only a finite amount of energy can be dissipated when going to infinity, we
have a relaxation of the acceleration,

Gg(t) =0, t— too, (1.6)

an effect which is known as radiation damping. It differs from the usual friction for which the velocity
could vanish as t — co. Moreover, we establish the rate of convergence of the form |G(t)| ~ t=177
for some ¢ > 0. This is a crucial point of our asymptotic analysis. It follows that

q(t) = vy, t— oo, (1.7)
and the fields are asymptotically Coulomb travelling waves, which means that
(E(z,t), B(z,t)) ~ (Eyy (z — q(t), Buy (z — ¢(1))), t— Foo. (1.8)

Since the energy is conserved, it follows that the convergence here can be understood in the sense
of local energy seminorms, cf. Section 2. Further, we establish the corresponding asymptotics in
the global energy norm,

(E(z,t), B(x,t)) ~ (Bvy (z — q(1)), Buy (x — q(t))) + U(H)F,  t — Foo, (1.9)

where U (t) is the group of the free Maxwell equation with zero charge and currents, and Fy are
the scattering states.

Note that system (1.1) can have solutions which are not scattering. For example, let ¢(0) coincide
with a local minimum point of V', and let the initial energy be sufficiently small. Then it follows from
conservation of energy that ¢(t) remains bounded for all ¢ € R. We will provide simple sufficient
conditions for solutions to belong to S. Certainly, S coincides with the set of all finite-energy
solutions in the case of V(z) = A(z) = 0.
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A soliton-type asymptotics of type (1.9) for coupled Maxwell-Lorentz equations (1.1) is proved
here in the global energy norm for the first time (for V= A = 0, the result was announced in [1]).
In [9], the long-time convergence to the set of solitons (1.5) is established. Here we essentially use
the results in [9] on the integral representation of solutions, as well as the existence of dynamics
for (1.1) (see also [3]). The orbital stability of the solitons of (1.1) is proved in [2]. In [7], a general
theory of orbital stability of solitons is developed.

A soliton-type asymptotics is proved for some translation-invariant completely integrable 1D
equations, see [10]. The soliton-type asymptotics in local energy seminorms is proved for translation-
invariant 3D systems of scalar fields coupled to particles, [8], and for translation-invariant 1D
kinetic-reaction systems, [6]. A soliton-like asymptotics of type (1.9) in the global energy norm
is proved initially for small perturbations of soliton-like solutions to 1D nonlinear Schrodinger
translation-invariant equations, see [4] and [5].

2. MAIN RESULTS

Let us first define a suitable phase space. We refer to a point of the phase space as a state. Let L2
be the real Hilbert space L?(R3,R?) with the norm | - | and the inner product (-,-). We introduce
the spaces F = L?> ® L? and £ = F ® R?® ® R? endowed with the norms

I(E(z), B(x))l| 7 = |E] + |B| and |[Y][, = |E] +|B| + |q| + [p| for YV = (E(z), B(z),q,p) E(ﬁ-)

2.1

We regard £ as the space of finite-energy states. The energy functional H is continuous on the
space L. On F and L, we define the local energy seminorms by

I(E(z), B(x))llr = |E|lr +|Blr and [[Y]r = |E|r +|B|r +lq| + |p| for ¥V = (E(x),B(fE),C(I,p))

2.2
for every R > 0, where | - |g is the norm in L?(Bpg) and Bp, is the ball {x € R3 : |z| < R}. Denote
by Fr and Lg the spaces F and L, respectively, equipped with the Fréchet topology induced by
the above seminorms. Note that the spaces £, L, and Fp are metrizable, and L and Fr are not
complete.

System (1.1) is overdetermined. Therefore, its actual phase space is a nonlinear submanifold of
the linear space L.

Definition 2.1. i) Introduce the phase space M for the Maxwell-Lorentz equations (1.1) as
the metric space of states (E(z), B(x),q,p) € L satisfying the constraints

divE(x) =p(xr —q) and divB(z)=0 for =€ R>. (2.3)

The metric on M is induced through by the embedding M C L.
ii) For 0 < o < 1, let M7 be the set of states (E(x),B(z),q,p) € M such that VE(z) and
VB(z) are of class L. outside the ball Bg for some R = R(Y') > 0, and

loc

|B(@)| + |B(@)| + |z|([VE@)| + [VB()|) < Cla| '~ for o] > R (2.4)

iii) Let Mg be the space M endowed with the Fréchet topology induced by the embedding
MC Lp.

Remark. M is a complete metric space which is a nonlinear submanifold of £. The space Mg
is metrizable.

Let us rewrite system (1.1) as a dynamical equation on M,
Y(t)=F(Y(t)) for teR, (2.5)

where Y (t) = (E(x,t), B(x,1),4(t),p(t)) € M.
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS ~ Vol.9  No.4 2002



Proposition 2.1 [9]. Let (C) and (P) hold and let Y° = (E°(z), B°(x), ¢°, p°) € M.
i) System (1.1) has a unique solution Y (t) = (E(x,t), B(z,t),q(t),p(t)) € C(R, M) with Y (0) = Y°.
ii) The energy is conserved, i.e.,

H(Y (1) = H(Y?) forteR (2.6)
iii) The inequality
sup|g(t)| <7 < 1 (2.7)
teR

holds with © depending only on the initial data Y°.

The field components of the soliton have the form

d3y
|+ Ay —z)L
v

1—v2

B@) = ~Vou@) +0-V Aufa) (@) = [ s (),

B,(x) =rot A, (z), Ay () = vdy (), Py =

(2.8)

Here A = v/1 —v2, and we set v = vr) +x1, where 7y € Rand vlz, € R? for x € R3.
Write F(z,t) = (E(z,t), B(z,t)) and F,(z) = (E,(z), By(x)). Set 7, = ||p||12. Let

Fs={Z(z) € F:divZ(z) = 0}.

Denote by U(t) the group of the free Maxwell-Lorentz equations on Fy. The existence of this group
follows from the appendix in [9] if we set 7 = 0 and p = 0. The action of this group is isometric
on F; according to the corresponding energy conservation law.

Theorem 2.1. Let vy, = ||pl|r2 be sufficiently small, v, < v(,R),).

Let Y(t) = (E(x,t), B(z,t),q(t),p(t)) € C(R,M) be a solution of (1.1) belonging to S, and let
Y (0) € M? with some o € (0,1]. Then (1.6) holds, and the solution Y (t) admits the following
long-time asymptotics.

1) There exist limits vy = limy_, 100 ¢(t) € V such that
1g(t) —vel, <CA+E)77, (2.9)
|F(z+q(t),t) = Fop(z)|r < CrR(1+ )77, VR>0. (2.10)

ii) There exist limits Fy € F, such that

1F(,t) = Foy(@ — (b)) = U() Fellz < C(L+ [¢)77, (2.11)

Remark. In [9], the relaxation of acceleration (1.6) and the convergence
1E(z +q(t),t) = Foy ()[R = 0

were established under the Wiener condition p(k) # 0. The technique developed here avoids this
condition at the expense of the constraint ||p||r2 < 1 and even gives a bound for the rate of
convergence.

Let us formulate a criterion for a solution Y (¢) to be scattering. Write v(t) := ¢(t).

Theorem 2.2. Consider solutions Y (t) of system (1.1) with the initial data Y (0) € M for
some o € (0,1]. Then, for |v(0)| close enough to 1 and sufficiently small ~,, the solution Y (t)
belongs to S, i.e.,

lim |q(t)] = oc.

t—+oo
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3. INTEGRAL INEQUALITY METHOD
Consider a solution Y (t) € S of system (1.1). If ¢ is sufficiently large, then Y (¢) obeys the

nonperturbed equations (1.4). Since system (1.1) is invariant with respect to time translations, we
can assume that Y (¢) obeys equations (1.4) for ¢ > 0.
If the soliton-like asymptotics is approximately valid, then the field should be close to the soliton
centered at ¢(t) and having the velocity v(t) = ¢(t). We therefore consider the difference
Z(ZE,t) :F(.Cll',t) _Fv(t)(x_q(t))' (31)
Setting p(x) = (p(x),0) and A(E, B) = (rot B, —rot E), we see that F satisfies the equations of

motion

F(z,t) = AF (z,1) — p(x — q(1))o(t)- (3.2)
On the other hand, for the soliton field F,, with a fixed v, the following equation holds:

—v-VF,(z —q(t)) = AF,(z — q(t)) — p(z — q(t))v
Then we have the equation
Z(z,t) = AZ(x,t) = p(t) - VypFoy (@ — 4(t)) (3.3)
for Z. According to the chain rule,

V,F, = V,F, dv(p), (3.4)

where dv(p) is the differential of the mapping p — v(p) = p/4/1 + p2. In the Cartesian coordinate
system, dv(p) is represented by the Jacobi matrix dv;/0dp;.

Lemma 3.1. Under the assumptions of Theorem 2.1, the following bound holds for any R > 0:
1Z(- 4+ q(t), t)llr < Cr(1+[t)™177, (3.5)

where Cr depends also on the initial data, v, and R,.

Proof. First, let us prove the estimate for R = R,. Definition (3.1) and the Maxwell-Lorentz
equations (1.1) for F' and F, imply that div Z = 0. Therefore, Z(-,t) € F;. Solving equations (3.3),
we obtain the representation for the mild solution Z,

Z(t) =U(t)Z(0) - /Ot U(t = 8)[p(s) - VpFu(s) (- = q(s))] ds. (3.6)
The action of the group on the integrand is well defined since div V, F),(s) = 0. Denote by
Zy(z,t) = E(z,t) — Ey)(x — q(t)) and  Zy(x,1) = B(z,t) — By)(z — q(t))
the components of Z(x,t) and observe that
/ Ba[By(x) +v A By(@)]p(z) = 0
for |v| < 1 because the soliton (1.5) is a solution of (1.4). Then formula (1.1) implies

p(t) = /d3w[Zl (= +q(t),t) + ¢(t) A Za(x + q(2), 1)]p().- (3.7)
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Thus, using the inequality |¢(¢)| < 1 and condition (C'), we obtain
@) < CpllZ(- + q(8), )] g, - (3-8)
Let us write F, = V,F,, Si—s(z) ={y: |y — x| =t — s}, and
F(t,8) = Ut — 8)[Fos)(- — als))]- (3.9)

Then the formula for U(t — s) in the appendix of [9] implies the representation

Flats) = 3 =90t [ L, Evmae =0T v~ a(s) (3.10)

le|<1

because div FU(S) = 0. The coefficients m(-) are bounded 6 x 6 matrix functions, and the sums are

taken over the multiindices a = (a1, as, a3) with the integers o; > 0. Therefore, F(z + ¢(t),t,s)
can be represented by integrals of type (3.10) over the shifted sphere S;_(z+¢(t)) in which z+q(¢)
replaces z in my(z — y). If |z| < R, then on this sphere we have

ly—q(s)| =y —z—q(t)) + (x+q(t) —q(s))| 2 (t—5) — |x| =v(t —s) 2 (1 -V)(t—5) = R, (3.11)

by the bound (2.7) on ¢(¢). On the other hand, by the Cauchy—Schwarz inequality, the integral
representation (2.8) yields the bounds of type (2.4) for o =1,

[Fo(@)| + 2| VFy (@) <9, C@,Rp)lal ™, 2] > 2Ry, | <7 (3.12)

Substituting (3.12) and (3.11) into the formula for F(x + ¢(t),t, s), we obtain the pointwise bound

< 3 (- sl 2C1T Ry)(t —5)* _  Ch(, Ry)

F
IFe+q() A+ [t—s]olt2 ST (= 5)2

(3.13)
|le|<1

for |z| < R, provided that t —s > 3R,/(1 — ¥). Therefore, for large ¢t — s, formula (3.13) implies
the integral estimate
— C3(v, R,
IPlo+ a0 9, <y et

On the other hand, for bounded ¢ — s, this integral estimate follows from (3.9) because the mapping
U(t — s) is isometric, and ||V, Fy || < 7,C(7, R,) by condition (C). Finally, (3.8) and (3.14) imply

1Z(-+q(s): 8) g,
14 (t—s)?

(3.14)

15(s) - (F(z + q(2), 1, 5)l|r, < 75Ca(T, R) (3.15)

Now, let us bound the first term on the right-hand side of (3.6); more precisely, we should estimate
N[U(#)Z(0)](- + q(t),t)||r,- Let us note that we have derived (3.14) from the bounds (3.12), which
correspond to (2.4) with ¢ = 1. Since Y (0) € M7 by assumption, it follows that the function
F(z,0) = (E(z,0),B(x,0)) satisfies the bounds (2.4) with some o € (0,1]. On the other hand,
Fy0)(x—q(0)) satisfies the same bounds (2.4) with o = 1. Hence, Z(x,0) = F(x,0) — F,(o)(z —¢(0))
satisfies (2.4) with the same o. Therefore, following (3.12)—(3.14) in the same way, we see that

U@ ZO)](- + (1), )&, < C(@,Ry) (A +[t)) 7177 (3.16)

For bounded ¢, this estimate follows from conservation of energy for the free Maxwell-Lorentz
equation.
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Combining (3.6), (3.15), and (3.16), we arrive at the inequality

C(3,R,)
(L+[e])t*e

2N / 126 +a6) e,y 0

Z(-+q(t),t < ,
1Z(- +q(t), )l g, R N s

Therefore, setting M (t) = maxogs<i(1 + [s))' || Z(- + ¢(s), 8)||r,, We obtain
M(t) < C +72Cu(v, p) I, M(2),

where

t 14+ |S|)—1—a

I, =sup(l+ |t 1+"/ (—ds<oo for o€ (0,1].
t;lg( ) o (L+1]t—sf?) (0.1

It remains to choose 72C4(7, p)I, < 1, which implies (3.5) with R = R,. We claim that the bound

(3.5) with R = R, implies (3.5) for any R > 0. Indeed, relations (3.14)—(3.17) hold with the norm

|||z instead of ||-||g, on the left-hand sides and with C;(7, R) instead of C;(7, R,,) on the right-hand

sides. Then (3.17) (with this generalization) and (3.5) (with R = R),) imply (3.5) for any R > 0.

Proof of Theorem 2.1. i) (3.5) with R = R, and (3.7) imply the equivalence
pt)] < CLA+ )77 <= 1g()] < Cr(1 + [¢) 7' (3.18)

Then the limits (1.7) exist, and (2.9) follows. Therefore, (3.5) implies (2.10).
ii) We must prove that | Z(x,t) — U(t)Fy||x < C(1 + |t|)~7. This is equivalent to

[U(=t)Z(z,t) — Fellr < C(L+[t))77
since the group U (t) is isometric in F,. Apply U(—t) to the integral equation (3.6); this gives

U(=t)Z(t) = Z(0) —/0 U(=9)[p(s)Fo(s) (- — a(s))] ds.

By condition (2.7), the norm of F,,)(- — ¢(s)) in F is bounded uniformly with respect to s. Then
(3.18) implies the convergence of the integral in F; at the desired rate.
Theorem 2.1 is proved.

4. CONSTRUCTING SCATTERING SOLUTIONS

In this section we prove Theorem 2.2. Since system (1.1) is time-invertible, we consider only
the case t — +o00. Consider the charge with initial data ¢(0),v(0). Introduce e := v(0)/|v(0)|.
The orthogonal projections of the vectors v(t), p(t), q(t) to e are ve(t)e, pe(t)e, ge(t)e, respectively,
with ve(t) := v(t) - €, pe(t) := p(t) - €, qc(t) := q(t) - e, where the dot means the inner product in R3.
Note that the vectors v(¢) and p(t), ve(t), and pe(t) are of the same direction, and v (0) = |v(0)|,
Pe(0) = |p(0)|. Introduce the layer in R of the form L(e, Rex) = {z : |z - €| < Rex}. In this case,
suppV C L(e, Rex) and supp A C L(e, Rey).

The statement of the theorem follows from the three propositions proved below. Since system
(1.1) is invariant with respect to time translations, we start from ¢ = 0 in each of the propositions.

Proposition 4.1. Let |g(0)] > Rex, let |v(0)| be close enough to 1, and let e be directed towards
L(e,Rex). Then the charge enters L(e, Rex) at a certain instant T with |v.(7)| close to 1.

Proposition 4.2. Let |q(0)| < Rex, and let |v(0)| be close to 1. Then the charge leaves L(e, Rex)
at a certain instant T such that |ve(7)| > 0, and ve(7)e is directed outside L(e, Rex).
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Proposition 4.3. Let |¢(0)| > Rex, let [v(0)| > 0, and let e be directed outside L(e, Rex). Then
the charge never enters L(e, Rex) and |qe(t)] — o0 as t — +o0.

Proof of Proposition 4.1. For v (t), we have the estimate

velt) 3 0e0) = [ po(olds = )] = [ pcslas.

Since the free equations (1.4) are satisfied outside L(e, Rex), the following estimate is valid (see
(3.5) and (3.8)):

Cy
()] < ——2 4.1
|o(2)] (1+ [ttt (4.1)
where the finite number C' is determined by the initial data, v, and R,. Thus,
© Cry,dt Cy
o(t) > _ _ P _Z/p
wlt) > O] - [ T = - 2.
and we obtain the desired result for any sufficiently small ~,.
Proof of Proposition 4.2. Let us first show that the growth of the field energy
1
ht)i= 5 [ da(B 0 + Bl o)
is not very fast.
Lemma 4.1.
h(t) < (VR(0) + V2v,1)2. (4.2)

Proof. Taking system (1.1) into account, we obtain

h(t) = (E,E) + (B, B) = (E,rot B — p(z — q(t))i(t)) — (B, rot E)
= (E,rot B) — (B,rot E) — (E, p(z — q(t))q(t))-

Since (E, rot B)— (B, rot E) = 0 (see details in [9]) and |(¢)| < 1, we have h(t) < |E| o] < v27,Vh.

Integrating this differential inequality with respect to ¢, we come to \/h(t) < 1/h(0) ++/27,t, which
proves (4.2).

Let us now prove the proposition.

Set G := sup,crs(|VV ()| + |rot A(x)|). Recall that v = p/4/1 + p?, and hence p = v/v1 — v2.
Thus, |v| is close to 1 if and only if |p| is large. Due to (4.2), from the equation

p(t) = =VV(q(t)) + 4(t) Arot A(g /d3 (z,t) +¢(t) A B(x, t)]p(z — q(1)),

we see that

5] < G+ (IED] + B0, < G+ (2h(t)) /27, < G+ ((20(0))/? + 29,t)7, = G1 + 24,1
with G1 = G + (22(0))'/2,. Then we obtain the lower bound

Ip(t |—/Wp|w (0)] - Gut — 222 = P — f(1),
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where P := [p(0)| and f(t) := G1t +~t>. For o(t) = p(t)(1 + p2(t))~3/2, we obtain the estimate

) POl 0 Git2y
PO = TR S P S - 707 S ® -0
and hence
G142
> |vo| — /|v )|ds = |vo| — /0( + (Z;) ds > |vo| — m (4.3)

The corresponding estimate for ¢.(t) is

e(®) > 0.0) + ookt = [ 5

For sufficiently large P, the statement of the proposition follows from the estimates (4.4) and (4.3).

(4.4)

Proof of Proposition 4.3. We claim that there are small numbers v, > 0 and v > 0 such
that ve(t) > v for any ¢ > 0. Indeed, set T = sup{t > 0: v.(t) > v}. If v < v(0)/2, then T' > 0 by
continuity. Further, it is possible to choose small numbers v, > 0 and v > 0 such that T = +o0.
Moreover, for t € [0,T], the free equations (1.4) are satisfied, and hence the estimate (4.1) is valid.

Take -~ c c
Ve Yp

0 0) = [ T~ (0) - 2

< v < 0,(0) / A = w0 -

the choice is possible for any sufficiently small v,. If T' < +o0, then v(T") > v, and hence we have
ve(T + €) > v for some ¢ > 0 by continuity. This contradicts the definition of T. Thus, T' = 4o0.
Hence, for ¢t > 0, one obtains g.(t) > ¢.(0) + vt.

Analyzing the proof we obtain the following statement.

Corollary 4.1. Let Y(0) € M?, where 0 < o < 1. Then, for v(0) # 0 and for sufficiently small
Y, and G, the solution Y (t) is scattering.
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