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Abstract. We consider a spinning charge coupled to the Maxwell field. Through the appropriate
symmetry in the initial conditions the charge remains at rest. We establish that any time-dependent finite
energy solution converges to a sum of a soliton wave and an outgoing free wave. The convergence holds
in global energy norm. Under a small constant external magnetic field the soliton manifold is stable in
local energy seminorms and the evolution of the angular velocity is guided by an effective finite-
dimensional dynamics. The proof uses a non-autonomous integral inequality method.
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1. Introduction

Over the past years we have studied the dynamical properties of the Abraham
model for a classical charge coupled to the Maxwell field, [6, 8, 11, 9]. The
Abraham model is semirelativistic, since the charge distribution is rigid and inde-
pendent of the velocity. Although widely used, physically this model is not quite
consistent: a rigid charged body which has zero internal angular momentum initi-
ally, will start to rotate, in general, through the self-generated Maxwell field. In
this note we will remedy such a short-coming and study a few dynamical aspects
of the Abraham model with spin.

The equations of motion are easily written down. The Maxwell field consists of
the electric field E(x, 7) and the magnetic field B(x, ). The charge has the center of
mass g with the velocity ¢. For notational simplicity we assume that the mass
distribution, m p(x), and the charge distribution, e p(x), are proportional to each
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other. Here m is the total mass, e is the total charge, and p(x) is a “smooth”
radially symmetric smearing function of compact support, explicitly,

Vo€ L@, o) =p(l) pl) =0 forle] >Ry [dpla) =1
(©)

The angular velocity of the charge is denoted by w(r) € R®. Then the Maxwell
equations read (cf. [4, 11] and compare with [1, 2])

E=r1otB—e(g+wA (x—q))plx—q), B = —rotE, (L.1)

where the current has now a contribution also from the internal rotation, together
with the constraints,

divE(x,1) = ep(x — ¢(1)), divB(x,t) = 0. (1.2)

The back reaction of the field onto the charge is given through the Lorentz force
equation

m&}:eJ[E—l—(q+w/\(x—q))AB]p(x—q)d3x (1.3)
and the Lorentz torque equation
b =e J(x — @) A[E+(G+wA (x—q)) ABlp(x — g)d’x, (1.4)
with the moment of inertia
I = %mszp(x)d%c. (1.5)

If necessary, one could add external fields Ecx, Bex according to the standard rules.
The perhaps most basic question is to obtain solutions having constant velocity
and being of the form

q(t) =g+, w(t)=w, E(xt)=E,(x—uvt), B(x,t)=By,(x—uvt).
(1.6)

If in (1.1), (1.3), (1.4) we set w =0, by hand, then for every ve R? there is a
unique solution of the form (1.6). However, for the Abraham model including spin,
the Eq. (1.4) can be satisfied only if either w|jv or w L v [10]. This result is
surprising at first sight, but reflects the semirelativistic nature of the Abraham
model. The velocity singles out a direction, which is then taken by w. Eventually
one has to understand the domain of attraction of these soliton-like solutions. In
this paper we want to restrict ourselves however to a somewhat simpler situation,
where the charge remains at rest for all times, ¢g=0. This can be achieved by
assuming the (anti-) symmetry conditions

E(—x) = —E(x), B(—x) = B(x) (1.7)
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for the initial fields. Then this property persists for all times. The Lorentz force
equation is automatically satisfied, the Maxwell equations simplify to

E =r0tB — e(w A x)p(x), B = —rotE, (1.8)

and the Lorentz torque equation simplifies to
Ihw = eJxA [E 4 (w A x) A B)p(x)d*x. (1.9)

Dynamical properties of (1.8), (1.9) together with the symmetry (1.7)
(= spinning charge at rest) are the subject of our paper. We consider solutions
of finite energy

Ibw2

H(E,B,w) = >

1
+§ﬁwwf+w@WM%<m. (1.10)
The corresponding phase space will be equipped with a suitable topology
below and the existence and uniqueness of finite energy solutions will be
shown.

The spinning charge at rest has a family of stationary solutions (E,, B,)
labelled by w & R, In the Fourier representation the stationary solutions are of
the form, cf. [11],

) (A @AV

E,=—i , B,=— = . (1.11)
Below by ““solitons” we mean these stationary solutions. The system (1.8), (1.9)
with constraints (1.2), (1.7) admits no other stationary solutions. Thus it is natural
to ask whether

w(t) > wy as t— Foo, (1.12)

to estimate the rate of convergence, and to also establish corresponding asympto-
tics of the field. We will resolve this questions under rather weak conditions on the
initial data. Since the contraction method developed in [5, 8] is used, |e| has to be
sufficiently small, however.

Physically, an external forcing of the spin is most easily supplemented by a
uniform external magnetic field B.x = B, with B a fixed vector and ¢ controlling
the strength of the field. The Lorentz torque equation reads then

Lho=e Jx A[E+ (wAx) A (B+eB)|p(x)dx
that can be transformed to

e _
v=—wAeB
w ) w +

eJwa+4wA@ABm@w%. (1.13)
m Iy

If the coupling to the Maxwell field is ignored, then according to (1.13) one has

wziwmis. (1.14)
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For non-zero coupling and small B, the Maxwell field generates an extra torque

which maintains precession but modifies its frequency according to
. eg 5
=—wAeB 1.15
w=5 whe (1.15)
which defines the gyromagnetic ratio g. We will show that on the time scale

t=¢ 7, 7=0(1), (1.15) is a good approximation to the true dynamics and

we identify the gyromagnetic ratio as

Iy
=—), 1.16
§ Ib +If ( )
where
2
=3¢ j Vep(k) P |k (1.17)

is the field moment of inertia generated by the coupling through the Maxwell field.
At higher corrections to the effective dynamics one expects to have radiative
damping. We refer to [11], Chapter 10, for a more exhaustive discussion of the
damping. The convergence (1.12) for the soliton with ¢ =0 is discussed also in [2]
for axially symmetric case.

2. Main Results

Asin any dynamical problem, the first step is to define a suitable phase space. Let L?
denote the real Hilbert space L?(R?, R*) with the norm | - | and the scalar product (-, -).
We introduce the Hilbert spaces # = L* @ L? and ¥ = # @& R* with finite norms

I(E(x), B(x))|l > = |E| + B,

Y]l o = |E| +|B] + |w| for ¥ = (E(x),B(x),w) € Z. (2.1)

£ is the space of finite energy states. The energy functional (1.10) is continuous in
the space .Z. In & and . we define the local energy seminorms by

I(E(x), B(x))llg = |Elz + |Blx,

1Yl = |El; + Bl + |w|  for ¥ = (E(x), B(x),w) (2.2)

for every R >0, where | - | is the norm in L?(Bg), By is the ball {x € R*: |x| < R}.
Let us denote by % p, L the spaces &, ¥ equipped with the Fréchet topology
induced by these seminorms. Note that the spaces ¥ and ¥, 7 p are metrisable,
but ¥, #  are not complete.

The system (1.1) has to satisfy the constraints (1.2). Therefore the actual phase
space is a nonlinear submanifold of the linear space .#.

Definition 2.1. (i) The phase space .# for Maxwell-Lorentz equations includ-
ing spin (1.1) is the metric space of states (E(x), B(x),w) € & satisfying (1.7) and
the constraints,

divE(x) = ep(x) and divB(x) =0 for xe R>. (2.3)
The metric on .# is induced through the embedding .# C &.
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(ii) .#° for 0 <o <1 is the set of the states (E(x),B(x),w) € .# such that
VE(x), VB(x) are LS. outside the ball Bg with some R = R(Y) >0 and

loc
|E(x)| + |B(x)| + [x|([VE®)| + |VBx)|) < Clx| '™ for |x|>R.  (2.4)
Let us write the system (1.2), (1.8), (1.13) as a dynamical equation in .#
Y(1) =F.(Y(r), t€R, (2.5)
where Y (1) = (E(x,t), B(x,1),w(t)) € .

Proposition 2.2. Let (C) hold, e€R, and let Y° = (E°(x),B°(x),u°) € 4.
Then

(i) the system (2.5) has a unique solution Y(t)= (E(x,t),B(x,t),
w(t)) € C(R, .#) with Y(0) =YY,

(i1) the energy is conserved, i.e.,

H(Y(1)=#(Y"), teR. (2.6)

The proof is similar to that of [6], Proposition 2.3.

Denote the field part of the solution by F(x,t) = (E(x,1),B(x,t)). Let F,(x) =
(E,(x),B,(x)) be the field component of a solution of angular velocity w. Let U(r)

be the group of the free Maxwell-Lorentz equations, cf. section 3. First consider
the “‘unperturbed” system (2.5) with ¢ = 0.

Theorem 2.3. Let the conditions of Proposition 2.2 hold. Let l|e| < eg
with sufficiently small ey = eg(R,), Y(0)€ . #° with some o€ (0,1]. Consider
the solution

Y(1) = (E(x,1), B(x,1),w(t)) € C(R, .4)
to (2.5) with e = 0. Then Y (t) admits the following long-time asymptotics:

(i) There exist wy = lim,_, 4 w(t) such that

w(t) —w= [ < COA+)7, (2.7)
and the fields converge in the local energy seminorms:
IF(x, 1) = Fu.(x)llg < Ce(1 +[1)™7,  VR>0. (2.8)

(ii) There exist F1 € F such that the fields admit the following ““scattering”
asymptotics in the global energy norm:

1F(x, 1) = Fopn (x) = U(F 2 [| 7 < C(1 +[¢])™°. (2.9)
Next consider the ‘““perturbed” system (2.5) with an arbitrary € € R.

Theorem 2.4. Let the conditions of Theorem (2.3) hold. Consider the solution
Y(t) = (E(x,t), B(x,1),w(t)) € C(R, .4) to (2.5) with ¢ € R, and let F(0) = F ).
Then the following uniform in t € R bounds hold:

|F(x,t) — Fuu(x,1)||g < Cre, R>0, (2.10)

w(t)] < Ce, (2.11)
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(1) < Ce(e 4+ (1+2)7"). (2.12)
Let us define an effective dynamics as a solution to the equation
. eg _
Q) ==—=Q(t) NeB 2.13
() =201 A 2B, (2.13)
with g defined by (1.16). Finally, consider the perturbed system (2.5) with

small e.

Theorem 2.5. Let the conditions of Theorem 2.4 hold, and §)(t) be the solution
to (2.13) with the initial condition (0) = w(0). Then for sufficiently small € for
all 7> 0 there exists a positive C(7) such that

(1) — w(r)] < C(r)e, || < e (2.14)

Thus, for a sufficiently large interval of time the dynamics of w can be approxi-
mated with the dynamics of the solution {2 to the finite-dimensional system (2.13).
We call this asymptotics “‘adiabatic” in accordance with [5, 9].

3. Convergence to Soliton and Scattering
Let us prove Theorem 2.3. We denote
Z(xat):F<xat)_Fw(t)(x)' <3l>

Defining p(x) = (p(x),0) and A(E, B) = (rot B, —rot E), F satisfies the equation of
motion

F(x,t) = AF(x,1) — e(w(t) A x)p(x). (3.2)
Therefore, Z is governed by
Z(x,1) = AZ(x,1) — &(t) - VoF 0 (x). (3.3)

Lemma 3.1. Under the assumptions of Theorem 2.3 the following bound holds
for any R>0,

1Z(-, )l < Cr(Z(-,0), p)(1 + 1))~ (3-4)

Proof. Definition (3.1) and constraints (1.2) for F and F,, imply divZ = 0.
Therefore Z(-,1)€ ¥, = {Z(x) € F: divZ(x) = 0}. Denote by U(t) = exp(A?)
the group of the free Maxwell-Lorentz equations in ;. Namely, given
fo(x) = (eo(x),bo(x)) € F, then (e(x,t),b(x,1)):=[U(t)fp](x) reads, [9], [6,
Appendix]

e(x,1) !

= mj sy DY)+ N BO) + (5= 3) - V)eald)

b = oz | 00) = 1T o) + (=) V) (33)

sl
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The action of this group is isometric on % ; according to the corresponding energy
conservation law. Solving Eq. (3.3) through Duhamel method one obtains the mild
solution representation

2() = U(0)2(0) - | U= 5)lots) - Vo (s
=U(1)Z(0) — J W(s) - U(t — 5)V Fy (-)ds, (3.6)
where the set of three vectors Vw;F,, j = 1,2,3 is denoted by V F,, and

3
W-U(t—s)VuFu= Y - Ut — 5)VwF.
j=1

The action of the group under the integral sign is well defined, since
divVw;F,) = 0. Denote by Zi(x,t) = E(x,t) — E ) (x), Za(x,t) = B(x,1)—
B, (x) the components of Z(x,¢) and observe that

Jx A [E,(x) + (w A x) AB,(x)]p(x)d*x = 0,

since the soliton (1.11) is a solution to (1.9). Then (1.9) implies

w(t) = IEJX A[Z1(x, 1) + (w A x) A Za(x, )] p(x)dx. (3.7)
b
Thus, using (C) and uniform in ¢ boundness of w(¢) that follows from the energy
conservation, one obtaines

w(n)] < Cel|Z(:,1)ll,- (3-8)
Let us denote F,, = V,F,, S;_(x) = {y: |y — x| =t — s}, and
F(-,t,5) = U(t = 5)[Fo ()] (3.9)
Then [6, Appendix] implies the representation
F(x,1,5) = Z (t — )l J Ma(x — y)OOF 5 (y)d?y (3.10)
lof < 1 Si—s(x) ’

because diVFw(S) = 0. The coefficients m,(-) are bounded 6 x 6 matrix functions
and the sum runs over the multiindices & = (a1, a2, 3) with nonnegative integers
a; < 1. If x| < R,, then on the sphere S;_(x)

=1 =0) +x[ = =s) = x| = (1 =) = R, (3.11)

On the other hand, the representation (1.11) yields the bounds of type (2.4) with
oc=1,

|Fu(0)| + x| VFL(x)] < eC(R,)x| 7, x| =R, + 1. (3.12)
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Inserting (3.12) and (3.11) in the formula for F(x,¢,s), we obtain the pointwise
upper bound

7 lal-2 Ci (R[,)(t—s)z < C2<R/1)

|F(X,Z,S)|<€ (l—S) x€ ) |X|<R,,
g; (14 Je =) 14 (=9 ’
(3.13)
provided ¢ — s = 3R,,. Therefore (3.13) implies for large ¢ — s the integral estimate
= G (R))
HF("t?s)HRp e . P (3.14)

1+ (r—5)
On the other hand, for bounded 7 — s the integral estimate (3.14) follows from (3.9)

because the map U(t — s) is isometric, and ||Vw;F,| > < eC(R,), j=1,2,3 by
(C) and by uniform in ¢ boundness of w(¢). Finally, (3.8) and (3.14) imply
1Z(- 8)lIg,

1+ (1—s)*

As a last step, let us bound the first term on right hand side of (3.6). Note that
we have derived (3.14) from the bound (3.12) which corresponds to (2.4) with
o = 1. Since Y(0) € .#° by assumption, F(x,0) = (E(x,0),B(x,0)) satisfies the
bound (2.4) with a certain o € (0, 1]. On the other hand, F,,o)(x) satisfies the bound
(2.4) with o = 1. Hence, Z(x,0) = F(x,0) — F,,)(x) satisfies (2.4) with the same
o, as F(x,0). Therefore, proceeding as in (3.12)—(3.14), one gets
1UNZ(0)]lx < CR)(1+ o))" (3.16)
Combining (3.6) to (3.15) and (3.16) we arrive at

C(R CZ( )l
) ey [ 1200,
(1+1¢) ol+ (t—5)
Thus, setting M (1) = maxo < <(1+ |s|)' || Z(x, )|  , we have

<S5 <

M(t) < Co + EC(p)I,M(t),

(s) - F(x.1,5) 15, < €Ca(R,) (3.15)

1Z(, 1)llg, < 1>0.  (3.17)

where

I, = sup(1 + |¢[)'™
t=0

ds<oo for o€ (0,1].

f0+MW”
o(1+r—s])°
It remains to choose ¢*C (p)Iy < 1, then (3.4) with R = R, follows. We claim that
the bound (3.4) with R = R, implies (3.4) for any R > 0. Indeed, (3.14)—(3.17)

hold with the norm || - || instead of || - || on the left hand sides and with C;(R)
instead of C;(R,) on the right hand sides. Then (3.17) with this generalization and

(3.4) with R = R,, imply (3.4) for any R > 0. O
Proof of Theorem 2.3. (i) (3.4) with R = R, and (3.7) imply
OB < C+ )~ (3.18)

Therefore the limits wy exist and (2.7) follows. By (3.4) also (2.8) holds.
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(i) We have to prove that ||Z(x,t) — U(t)Fy || < C(1+|t])"°. This is
equivalent to ||U(—1)Z(x,1) — F1 || < C(1 + |¢])”7 since the group U(r) is iso-
metric. Apply U(—t) to integral Eq. (3.6) and get U(—1)Z(¢) =
Z(0) — [y U(=$)[w(s) - VuF.5)(-)lds. Then (3.18) implies the convergence of
the integral with the mentioned rate.

Theorem 2.3 is proved. O]

4. A Priori Bounds

Here we prove Theorem 2.4. First, the proof of (2.10) repeats with some
modifications the one of Theorem 2.3. The bound (3.8) now reads

w®)| < Ce(l|Z(-,1)l[x, + €)- (4.1)

Instead of (3.15) we obtain

J606) - Pl 5], < CalRy) ot S 42)
’ 1+ (r—ys)
Since Z(0) = 0 and U(#)Z(0) = 0, the estimate (3.17) becomes
1Z(9)llg, +€
Z(-, )|, <e*Cs(R J—”d, 0 43
1200, < ECalRD | S (43)

We set M (1) = maxp <</ ||Z(x, 5)|lg, and obtain
M(1) < EC(p)I(M(r) +¢),

where

1
1
1= supJ —————ds<oo.
1>0Jo (14|t —s])

Finally choose ¢2C(p)I < 1, then (2.10) with R = R, follows. The rest of the proof
of (2.10) is the same as the one of Theorem 2.3.

Next let us prove (2.11). The angular velocity w obeys the following equation
of motion,

W= icu/\aB%—ﬁJx/\ [E + (w A x) A Blp(x)d’x.
2m Iy

On the other hand, for the corresponding soliton we have
0= IeJX A [E, + (wAx) AByp(x)d*x.
b
So, by subtraction
e

2m

Ww=—wAeB+ IEJX AZi 4 (WA X) A Zp(x)dx. (4.4)
b
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Recall that by the energy conservation law (2.6) |w(f)| is bounded uniformly in
teR. (2.11) follows then from (4.4) and (2.10).
It remains to prove (2.12). We differentiate (4.4) in ¢ and obtain

@:Ziw/\aB—i—IEJxA [Z, + (WAX) AZy + (WA X) A Zo]p(x)d>x
m b

— % OAeB +I£Jx A (@ Ax) A Zo)p(x)dx
b

2m
+ IE Jx AZi 4 (wAx) A Zy]p(x)d’x. (4.5)
b
From the estimates (2.11) and (2.10) it follows that
()] < C(e* + [M(n)]), (4.6)
with
M(t) = (G(1), p),
where

Ge) = <x/\((z//\\3A22))7 o= <28>

Therefore (2.12) is a consequence of

Lemma 4.1. Let e be sufficiently small. Then for t € R the bound holds
M(1)] < C(R,)e(e + (1 4+ ) 7). (4.7)

Proof. We extend the method of the previous section. Denote Z(x, 1) = Z(x, 1).
To obtain an equation for =(¢) we differentiate Eq. (3.3) in ¢ and arrive at

E(x,1) = AZ(x,1) — & - VoF, — (- V.,)°F,
Thus,

2(t) = U(1)=Z(0) — JO Ut — )|+ VoFo(s) + (- Vo) Fu(s)lds.  (4.8)

For M(t) we have
M(t) = <G1 (l‘),[_)> - <G2(t)7f_)> - <G3(t)vﬁ>v (49)
where

B x A [U(1)Z(0)],
Gi(t) = (x A ((wAx) AU[)Z(0)],) >’

- XA [JyUE—s)o- VuF.ds],
Galt) = (x/\(w/\x Uo (t—s)w-V Fa’s] )> (411)

(4.10)
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t . 2
XA [[yU(t—s)(w- Vo) Fods], > (4.12)

Galt) = (xA ( (wAX) Uo (r—s)( 'Vw)szds]z)

We estimate the three summands one by one.

(i) For the first summand one notes that Z(0) = —d(t
because of (3.3) and since Z(0) = 0. Recall that F,, = (E,, B
B., are given by (1.11). Since E,, does not depend on w, Z;(0) =

e 2

) V F ( )|t 0
) where E and
0. Furthermore it
(0) = O(]x| %) a

»-w(0) A eB, and

is easy to obtain that B, (x) = O(|x|?) as |x| — oo, henc
|x| — oo. Apply U(#) to (O, Zg( ), see (3.5), recall that w(0)
obtain that U(¢)Z(0) = ()(et~2) as t — 0.

More precisely, by the energy conservation for the free Maxwell-Lorentz equa-
tions, one obtains that ||U(£)Z(0)|| » < & - min(Cy, C2¢t~?) with Cy, C, depending
on initial data and |B|. Hence,

(G1 (1), )] < = - min(C}, Cy12) (4.13)

with C}, C}, depending on initial data, |B| and R,. Below we suppress the depen-
dence on initial data and |B].

(ii) From (4.5) and (2.11), (2.10) it follows that (w-V,F,)(x,t) =
e(x,t) + m(x,t), where by (C) again (cf (4.6))

sup [le(x )]l < eC(Ry)e,  lm(x,)ll 5

I

< C(R,)elM(1). (4.14)

Therefore by repeating the argument in (3.9) to (3.15) we arrive at the estimate

)
M
(Ga2(1), p)| < Cz(R,;)eZJ L(s)l t>0. (4.15)
ol 4 (t—5)
(ii1) For the third summand in (4.9) the estimate
(Gs(1), p)| < EC(Ry) (4.16)

follows from (2.11), (C), and properties of the group U(?).
Finally, one substitutes (4.13), (4.14), (4.15), and (4.16) to (4.9) and obtains the
integral inequality

t 2
M
M(0)] < & min(Cl(R,). Ch(R, ) %) + CalR,)e% + CoR)e | XM

ol +(r—s)°
Therefore (4.7) follows provided that e < eg(R,). O

5. Self-torque

To prove Theorem 2.5 we analyse the self-torque
Teer(t) = Jx A [E + (w A x) A B)p(x)dx.

We represent the fields as the sum
E=Eq+Ew,  B=Bq+Bp,
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where E(O), B(0> are initial fields propagated to the time ¢, and E(r), B(r) are retarded
fields. In [11, 9, 6] both x- and k-representations for E(O), B(()), E(r>, B(r) are given.
Then we obtain

Tsert (1) = Jx AN [E@) + (wAx) A B(0>]p(x)d3x

+ Jx A[Ew + (wAx) A Byylp(x)d’x
= T(g)(l) + T(r) (l)

Proposition 5.1. Let Iy be defined by (1.17). Then

(i) T(o)(t) = 0 for t >2R, and
(1) forteR

T(r)(t) = —Ifd)(l) + (e, 1) (5.1)
with |6(e, )| < Ce(e + (1 +2)71).

Proof. (i) The fields E (o) and B are the initial fields propagated to the time 7.
Similar to [9], Lemma 4.1, one obtains

A R I A

where G(t) is the group generated by the free wave equation. Since p has its
support in Bg (0), one has Eq(x,tf) =0 for 7> |x|+R, Then the term
J(x NE())p(x)d®x of T()(t) is equal to zero for > 2R,. For the term of T(g)(t)
containing B(g(x, ) the argument is similar.

(ii) For T(;(t) we use Fourier transform to have

Ti(t) = — Jivkp(k) NEyd*k — Jivkﬁ(k) A [(w A Vi) ABgld k.
By substitution, compare with [11, 9], denoting k= k/|k|,

() = - J; dscos (Jk|( — 5))w(s) A iVip(k) + ZJ; ds sin ([k|(t — s))kp(k),

By (1) = —iJ; dssin ([k|(t — $))k A (w(s) A iV)p(k)

we obtain
Ty 1) = 4 [ 43p(0) A — [ dscos ke =5))et6) 1171500
+ Jd%vkﬁ(k) A (J; dssin (|k|(1 — s))icp(k))

_ in3kin AW AV A lJ; dssin ([K|(t — ))& A ((5) A V)R] A(K).
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The second integral is zero, since V,p(k) is collinear to k. The third integral
simplifies to

Ja’3k|k|lvkﬁ A[Vip A (w(t) A J; ds sin (|k|(t — s))w(s))].
Finally,

t
T (1) = — Jd3kj dscos (|k|(t — 5))Vip A (w(s) A Vip)
0
t
— Jd3k|k|lvkﬁ A [Vip A (w(t) A J dssin (|k|(t — s))w(s))].  (5.2)
0
Returning to the x-representation, one obtains that, provided ¢, T > 2R, the
integrals J}; can be replaced by LZT and do not depend on 7, compare with [5, 9].
Let us complete the computation of the T(;(¢). We use the Taylor expansion
w(s) = w(t) — (1)t — ) + ale, ) with |a(e,1)| < Ce(e + (1 +)7") according
to (2.12). Then for the first integral of (5.2) one obtains

_ Jd3k J:T ds cos ([k|( — $))Vip A [(@(t) — &(0)(t = 5) + ale, ) A Vil

= — | Pk|k| " sin [k|TVip A (w(1) A Vip)

+ TJd3k(|k|_1 sin |k|T + k| % cos [K|T)Vip A (0(1) A Vip)

— | PKIK[>Vip A (@(1) A Vip) + Ble, 1) (53)
and for the second integral of (5.2)

Jd3k|k|lvkﬁ/\ [Vip A (wl(r) /\J

t

1-— kT
= Jd3k|k|_1vkﬁ/\ [kam (w(t) Aw(l)%")}

_ k|T k|T — sin |k|T
+Jd3k|k| ]ka)A[ka)/\<w(t)/\w(t)| [T cos| m sinK )]+7(5,I).

t

stsin (Ik|(t = $))(w(t) = w(t)(1 = 5) + (e, 1))]

(5.4)

The first integral in (5.4) equals zero, the first and the second integral in (5.3), and
the second integral in (5.4) are oscillatory and tend to zero as 7 — co. The sum of
all integrals in (5.3) and (5.4) does not depend on 7 and hence equals its limit as
T — oo. Finally,

T (1) = — Jd3k|k|_2vkﬁ A (@(t) A Vip) + 6(e,1)
=— %w(z) Jd3k|k|_2|Vk/3|2 + 6(e, 1) (5.5)

with |6(¢,1)] < C'e(e + (1 +2)™"). The statement (ii) is proved. O
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6. Effective Dynamics
We complete the proof of Theorem 2.5. Recall the effective equation
Q:%Q/\aB, (6.1)
where g is given by (1.16). Let €2 be the solution to (6.1) with the initial condition
Q(0) = w(0). Set = eg/2m. Then r=w — 2 obeys the equation
i =eur AB+ a.(t) (6.2)

with the initial condition r(0)=0. Here |a.(r)| < Ce(e+ (14)""). For
bounded |7| this follows from the Eq. (4.4), for large |¢| from Proposition 5.1.
Resolving the linear inhomogeneous Eq. (6.2), one obtains the following estimate
for |r(1)],

!
()] < ClJ oz (s)1ds. (63)
0
This implies (2.14). Theorem 2.5 is proved. ]
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