JOURNAL OF MATHEMATICAL PHYSICS 50, 023514 (2009)

On asymptotic completeness for scattering in the
nonlinear lamb system

A. . Komech"® and A. E. Merzon>®

1Facull‘y of Mathematics, Vienna University, Nordbergstrasse 15, Vienna 1090, Austria
and the Institute for the Information Transmission Problems, RAS, 127994

Moscow, Russia

Institute of Physics and Mathematics, University of Michoacdn of San Nicolas de
Hidalgo, 58040, Morelia, Michoacdn, Mexico

(Received 30 December 2008; accepted 22 January 2009;
published online 27 February 2009)

We establish an asymptotic completeness for the scattering in a nonlinear Lamb
system with a nontrivial set of stationary states. We consider the nonlinear system
of the string coupled to a nonlinear oscillator of dimension d=1. The scattering
data consist of a stationary point of the oscillator and an asymptotic wave of finite
energy. We describe the set of possible scattering data: (i) for the asymptotic wave
with compact support, any stationary point is possible, and (ii) for one-dimensional
oscillator and a nondegenerate stationary point, any finite energy asymptotic wave
is possible. © 2009 American Institute of Physics. [DOI: 10.1063/1.3081428]

I. INTRODUCTION

In this paper we consider the asymptotic completeness in the nonlinear Lamb system of the
string coupled to the nonlinear oscillator with the force function F(y), y e R4, in the case of zero
oscillator mass m=0,

i(x,t) =u"(x,1), x € R\{0}

0=F(()+u’(0+,1)—u'(0—,1); y(2):=u(0,1), (LD

where 1:=du/dt, u' == du/ dx. The solutions u(x,?) take the values in R¢ with d=1.

The system (1.1) has been introduced originally by Lamb'* in the linear case when F (y)=
—w?y. The Lamb system with general nonlinear F(y) and the oscillator mass m=0 has been
considered in Ref. 9 where the questions of irreversibility and nonrecurrence were discussed. The
system was studied further in Ref. 10 where the global attraction to stationary states has been
established for the first time, and in Ref. 4 where metastable regimes were studied for the sto-
chastic Lamb system.

The Lamb system (1.1) is used in all the papers cited above as an example of simplest
nontrivial nonlinear time reversible conservative system allowing an effective analysis of various
questions. In present paper, we study an asymptotic completenes in the nonlinear scattering for the
Lamb system with a nontrivial attractor. This is first result of such kind. We consider the Cauchy
problem for the system (1.1) with the initial conditions

M|t:0 =up(x); bl|,:0 =vy(x). (1.2)

Denote by |[|-|| the norm in the Hilbert space L*(R,R%).
Definition 1.1: The phase space £ of finite energy states for the system (1.1) is the Hilbert

YElectronic mail: alexander.komech@univie.ac.at.
Electronic mail: anatoli@ifm.umich.mx.

0022-2488/2009/50(2)/023514/10/$25.00 50, 023514-1 © 2009 American Institute of Physics

Downloaded 20 May 2009 to 131.130.16.57. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp


http://dx.doi.org/10.1063/1.3081428
http://dx.doi.org/10.1063/1.3081428
http://dx.doi.org/10.1063/1.3081428

023514-2 A. |l. Komech and A. E. Merzon J. Math. Phys. 50, 023514 (2009)

space of the pars (u(x),v(x)) € C(R,RY) @ L>(R,RY) with u' (x) € L*(R,R) and the global energy
norm,

e 0)e = [le"[| + lze(0)] + [ (1.3)

The Cauchy problem (1.1) and (1.2) can be written in the form

Y(t)=F(Y(r)), teR; Y(0)=Y,, (1.4)

where Y(¢) = (u(-,1),u(-,1)) and Yy=(ug,v). In Refs. 11 and 15, the scattering asymptotics have
been proven,

Y(1) ~ Se + WP, 1— = oo, (1.5)

where S+ =(s.,0) are the limit stationary states with s € Z:={s € R: F(s)=0}, W(¢) is the dy-
namical group of the free wave equation, and W .. € £ are the corresponding asymptotic states. The
asymptotics (1.5) hold in the norm of the Hilbert phase space £ if the following limits exist:

ug = lim ug(x), wuy:= lim uy(x), o ==J vo(y)dy. (1.6)

X—+00 X——00 _oo

Definition 1.2: The scattering data (s,,V.) of the solution Y(t) at t— o consist of the limit
stationary state s, € Z and the asymptotic state V,(x) € £ .

Here we study the asymptotic completeness which is one of main problem of the scattering
theory. Namely, we find which scattering data (s,,W,) are possible for the solutions with the
initial states Y, € £.

(a) First of all, the asymptotic state W, =(W,, V) necessarily satisfies the identity

i+ W+ ¥, =0, (1.7)
where W= lim W(x), ¥y= lim Wy(x), and ¥, =[* ¥ (y)dy.

X400 X——%
(b) The pair (s,,V,) with any s, € Z is possible if the asymptotic state WV, (x) e £ satisfies the
identity (1.7) and has a compact support.
(c) For the one-dimensional oscillator (i.e., for d=1), the pair (s,,¥V,) with a fixed s, € Z is
possible with each asymptotic states W (x) e £ satisfying (1.7) if F'(s,) #0.

The same results hold for the scattering data (s_,V'_) at r— —oo,

We study the asymptotic completeness for the model Lamb system (1.1) which is nonlinear
time reversible conservative system similarly to the coupled Schrodinger-Maxwell and Dirac-
Maxwell equations. Note that the validity of the asymptotics (1.5) for the Lamb system has been
established in Refs. 11 and 15 (we recall the result in Sec. II B).

The asymptotics of type (1.5) with S =0 were studied in scattering theory for the linear and
nonlinear wave, Schrodinger and Klein—-Gordon equations by many authors (see, e.g., Refs. 17,
16, and 20). In this case, the asymptotic completeness means a suitable description of the set of the
corresponding asymptotic states W..

First scattering asymptotics (1.5) with a nontrivial set of stationary states has been proved in
Ref. 11. Now the problem of the “nonlinear asymptotic completeness™ consists in an appropriate
description of all possible scattering data (S, W..) which is given for the first time in the present
paper.

The scattering asymptotics similar to (1.5) were proven in Refs. 1-3 and 18 for the nonlinear
Schrodinger and Klein—Gordon equations, and in Ref. 8§ for the Klein—Gordon equation coupled to
a particle. However, all the results concern the solutions with the initial states sufficiently close to
the solitary manifold. In Refs. 13 and 12 similar asymptotics were proven for all finite energy
solutions to three dimensional wave and Maxwell equations coupled to a particle. The asymptotic
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completeness for these equations is an open problem since the results'>"? rely on the Wiener

Tauberian theorem, which does not allow to specify the rate of the convergence in the asymptotics
(1.5). Our results for the Lamb system (1.1) rely on an exact characterization of the rate obtained
in Sec. VI from the inverse reduced ordinary differential equation (3.4).

The paper is organized as follows. In Sec. II we introduce basic notations, we recall some
statements and constructions from Refs. 10, 11, and 15, and prove (a). In Secs. III and IV we
reformulate the asymptotic completeness in terms of the solution to the inverse reduced equation
for the oscillator. In Sec. V we prove the results (b). In Sec. VI we prove the results (c) for
unstable (F’(s,)>0) and stable (F'(s,)<<0) stationary points.

Il. SCATTERING FOR THE LAMB SYSTEM

A. Existence of dynamics

We recall the construction'™'" of the solution to the Cauchy problem (1.4) with the initial

conditions Y= (uq,v,) € £. We assume that
F(u)=-VV(u), V(u) e C*(RLR), and V(u) — +, |u] — . (2.1)

Then the system (1.1) is formally Hamiltonian with the phase space £ and the Hamilton functional

H(u,v) = %f (o) + |’ (x)|*]dx + V(u(0)), (u,v) € E. (2.2)

We construct unique solution u(x,#) such that Y(r)=(u(-,1),u(-,1)) € C(R,E). The solution admits
the d’ Alembert representation

u(x, ) =f(x—0)+g.(x+1), E£x>0, (2.3)

where f.(z),g+(z) for £z>0 are defined by the d’ Alembert formulas

u 1(* u 1(*
f+(2) = OEZ) -3 fo vo()dy, g+(2):= O;Z) +3 fo voy)dy, *z>0. (2.4)

These formulas imply that

f4(2),8%(z) € L*(R*,RY) (2.5)
since (ug,v() € €. The “outgoing waves” f,(z) for z<0 and g_(z) for z>0 are given by
=0 =y(0) =g, g ():=y(O)-f(=1), >0 (2.6)

since y(1):==u(0,)=f (=) +g. (1)=f_(-1)+g_(). Hence,

u(x,t):{ y(t-x)+g,(x+1)—g.(t—x), 0<x<r =0 2.7)

yE+x)+f(x—0)—f(-x-1), —r<x<0

Finally, the function y(7) can be determined from the Cauchy problem for the “reduced equation,”

29(1) = F(y(1)) + 2wiy(1), 1> 0, y(0) =uy(0), (2.8)

where w;,(t) =g, (¢)+f_(~t) for t>0 is the “incident wave.” Note that w;, € L*(R*) by (2.5), hence
the Cauchy problem (2.8) admits a unique solution for all >0, and the a priori bound holds,

sup;=oly(1)] + f ¥(1)]*dt = B <. (2.9)
0

These arguments imply that the Cauchy problem (1.4) admits a unique solution Y(r)
=(u(x,1),u(x,1) e C(R,E) for any Y, € &, where u(x,t) is defined by (2.3), (2.4), and (2.7).
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The following lemma plays a crucial role in our constructions below.
Lemma 2.1: (i) Similarly to the “direct” reduced Eq. (2.8), the “inverse” one holds,

29(t) == F(y(1)) + 2ou(t), >0, oy € LARY), (2.10)

where the function wy is the sum of the outgoing waves at the point x=0: wq,(1)=f,(=1)+g_(1)
SJor t>0. (ii) Y(£)=(u(x,1),u(x,1)) € C(R,E) is a solution to (1.4), if u(x,t) is defined by (2.3),
(2.4), and (2.7), where y(1) is a solution to (2.10) with y € L*(R*).

Let us note that the lemma follows from (2.8) and (2.9) by the change in variable — —t when
the ingoing waves become the outgoing waves.

B. Scattering asymptotics

The stationary states S(x)=(s(x),0) € £ for (1.4) are evidently determined: the set S of all
stationary states S € € is given by S={S,=(z,0):z € Z}, where Z={z € R?: F(z)=0}. Let us denote
by W(z) the dynamical group of free wave equation corresponding to F(u)=0.

Definition 2.2: &, is the space of (u,v) € € such that the limits (1.6) exist.

The following theorem is proved in Ref. 11, Theorem 4.5, part (ii) (b) and Ref. 15.

Theorem 2.3: Let the assumptions (2.1) and (1.6) hold, the set Z be a discrete subset in R¢,
and initial state Yy e &, .

(1) For the corresponding solution Y(t) € C(R,E) to the Cauchy problem (1.4), the scattering
asymptotics hold,

YO)=S,+ W)W, +r,(t), t=0, (2.11)
with some limit stationary state S, € S and asymptotic state Ve &, . The remainder is
small in the global energy norm,

Irs@)lle =0, 1—oe. (2.12)
(ii)  The dispersive wave W(t)W, converges to zero in local energy seminorms, i.e.,

WO, |exg—0, t—0, YVR>O. (2.13)

Here ||(u,v)||¢z:=|u'||z+|u(0)|+|v|lz . where |- | stands for the norm in L*(=R,R:;R%).
(iii)  W()W, admits the representation W(1)W,=(W,,(x,1), W, (x,1)) , where

ug + Uy + 0,
Wout,0) = Co+ fo(x =) +g_(x+1), Cpi= %‘) ~2s,. (2.14)
Remark 2.4: (i) Similar asymptotics hold for t— —oo. (ii) Representations (2.14) and (2.10)
imply that
Wou(0,8) = Co+ wou (1), 1>0.
Thus,

Wout(0,0) = rou(1), 1> 0. (2.15)

The following lemma on relaxation for the reduced equation plays a crucial role in the proof
of Theorem 2.3.

Lemma 2.5: [See Refs. 15 and 11, Lemma 4.9, part (ii)]. Let all assumptions of Theorem 2.3
hold. Then there exists an s, € Z such that

y(t) — s, t—o, (2.16)
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where y(t) is the solution to the Cauchy problem (2.8).
Definition 2.6: Ler Y () € C(R, &) be the solution to (1.4) with Y(0)=Y, € E., . Let us set

W,Yo=(V,,s,) € £, X Z, (2.17)

where V_ is defined by (2.11) and s,=S,(0) . The map W,:E,—E,XZ is called the wave
operator, and (s,.,V,) -the scattering data, corresponding to Y.

C. Expression of the asymptotic states

First let us express the asymptotic states in initial data and the function y(z). Substituting the
expressions (2.4) and (2.6) into (2.14), we obtain that the asymptotic state ¥, ,=(V,, V) € &, is
expressed in the initial data (ug,v,) € £, by the formulas

u —up(— 1
y(x) + tolx) = uy(= 1) > o) _ 2 L voydy, x=0
‘I’O(x) = CO + (218)

y(=x) + M + %f vo(y)dy, x=0,

y/(x) _ u6(x) _214(,)(_ X) + UQ(X) —200(— x) ’ =0

W (x) = , : (2.19)
1 (x lox) + ug(x) —2140(— x) . vo(x) —2v0(— x), £<0.

where C, is given by (2.14). Further, let us justify some properties of the asymptotic states.
Lemma 2.7: (Reference 15) Let all assumptions of Theorem 2.3 hold, and ¥ ,=(V, V) be
the asymptotic state from (2.11).

(1) WV, €., ie., there exist the finite limits

Vo= lim Wy(x), Vo= lim Wo(x), \171=f W (y)dy. (2.20)

xX—+0 X——%
(i)  The following identity holds:
Vh+ W+ W, =0. (2.21)

Proof: The existence of the limits (2.20) follows from (2.18) and (2.19) by (1.6) and (2.16).
The identity (2.21) follows from the d’Alembert formula,

Yox—0)+Polx+1) 1"
Wl = 2= W) 1 f W, (y)dy (2.22)
2 2),.
since W(H)W,=(Wou(x,1), Wou(x,1) —0 in &g as t— by (2.13). u
The lemma implies that
W,.E.CELXZ, where &L:={¥*"e&,:(2.20)-(2.21) hold}. (2.23)

lll. RECONSTRUCTION OF INITIAL CONDITIONS

In the following sections we prove the asymptotic completeness. Namely, we fix an
asymptotic state W, and we want to construct the trajectory Y(z) of (1.4) such that the asymptotics
(2.11) hold. Here, we start with the reconstruction of Y, via W, and y(r). For W =(W¥,,V,)
e &, let us introduce the function
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S(1) == W, (0,1) = w + %j v, (y)dy, telR. (3.1
Then
S(1) = Wou(t) € LA(R), ST :=1im S()=0 (3.2)

by (2.15), (2.10), and (2.21).
Lemma 3.1: Let Y(1) € C(R,&) be a solution of (1.4) with Y(0)=Y, € &, and (2.17) hold.

(1) The initial conditions are expressed in V, and y(t)=u(0,1) by

y) =8k),  x=
y(=x)=S(=x), x=0

vy (x)=8"(x), x>0
v (=x)=8"(-x), x<0.
(3.3)

uo(x) = Wo(x) + { vo(x) =T, (x) + {

(ii)  The function y(t) satisfies the following conditions:

25()=—F(y() +28(1), t>0; yelLl*R,, y@t)—s, t— +0o. (3.4)

Proof:
(1) Differentiating (2.18), and using (2.19), we obtain

Wo(x) + W (x) = 2y (x) + ug(=x) = vo(=x),

W) =W, (0) = () — vglx), for x>0, (3.5)
Wo(x) =Wy (x) = = 2y" (= x) + ug(=x) + vo(- %),

W(x) + W, (0) = ul () + vglx), for x <0, (3.6)

Hence, we know u(x) and voy(x) for x# 0. Integrating u/)(x), we obtain (3.3) since S(0)
=W,(0) by (3.1) and uy(0)=y(0) by (2.8).
(i)  Equation (3.4) follows from (2.10) and (3.2). Other conditions in (3.4) follow from (2.9)
and (2.16).

|
Remark 3.2: For any given V,=(V,, V) € £ and y(t) € C(R*) , the formulas (3.3) imply
(2.18) and (2.19) with Cy=Y4(0)—y(0).
Proof: Differentiating (3.3), we obtain (3.5) and (3.6), and then (2.18) and (2.19) follow by
integration.

IV. CHARACTERIZATION OF THE ASYMPTOTIC STATES

In this section we prove that the conditions (2.20) and (2.21) are sufficient for the existence of
the dynamics with the scattering asymptotics (2.11) provided that the inverse reduced differential
equation (3.4) has an appropriate solution.

Lemma 4.1: Let (V, ,s+) € £.. X Z, and the following condition hold: there exists a trajectory
v(t) satisfying (3.4), with S(t) given by (3.1). Then there exists Yy € E,, such that (2.17) hold.

Proof: Let us define u, and vy by (3.3) and u(x,r) by (2.3), (2.4), and (2.7). Then Y(¢)
= (u(x,1),u(x,1)) e C(R,E), and Y(7) is a solution to Cauchy problem (1.4) by Lemma 2.1, part
(ii).
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It remains to prove (2.17). First, Y= (ug,v,) € &, by (3.3) and (3.4). Hence, by Theorem 2.3
and Lemma 2.7 Y(7) satisfies asymptotics of type (2.11): Y()=S,+ W(t)W’ +r,(t), where

Si=(s5,0), Vie&l, [Fi(0)]e—0, 1—c. (4.1)

It remains to check that s;=s, and W,=W,. First, u(0,7)=y(z) by (2.7), hence s, =lim,_.. y(7)
=s, by (3.4). Second, W} is expressed by formulas (2.18) and (2.19) with the constant C,
=((ug)*+(ug)"+vy) /225, by (2.14). On the other hand, W, also is expressed by the same for-
mulas, with Cy=V(0)—y(0) by Remark 3.2. Therefore, ¥j=W¥, and W(x)—W¥(x)=const, x
€ R. Finally, the constant is zero since the identity (2.21) holds (i) for (¥, ¥,) € £X by definition
and (i) for (¥, ¥]) by Lemma 2.7. [ |

Remark 4.2: (i) The condition (2.21) plays an essential role in our proof. (ii) We choose the
inverse reduced equation (3.4) for the characterization of the asymptotic states since the term S(1)
is expressed in the scattering data W, by (3.1).

V. COMPACTLY SUPPORTED ASYMPTOTIC STATES

In this section we prove the asymptotic completeness for the asymptotic states with compact
support.

Lemma 5.1: Let the function V,(x)=(Vy(x),V,(x)) € & has a compact support, d=1, and
the force function F satisfy conditions (2.1). Then for arbitrary s, € Z there exists Y € &, such
that (2.17) hold.

Proof: According to Lemma 4.1, it suffices to prove that there exists a trajectory y(z) satis-
fying (3.4).

First, (3.1) implies that supp S(r) is a compact set since supp W, and supp ¥, are compact.
Let 7>0 be such that S(1)=0 for r=T.

Second, let us construct a solution to Eq. (3.4) for 0=¢=T with the “initial condition”
y(T)=s,, and then set y(¢):=s, for r=T. It suffices to prove a priori estimate. Multiplying Eq.
(3.4) by y(r) and using (2.1), we obtain that

V' (p(0)y(0) =2|y(0)]* = 28(0y(0), 0<r<T. (5.1
Integrating and using the initial condition, we get

T

T
V(y(2)) = V(s,) + ZJ S(Dy(Ddr— 2] [y(D|%dr, 0=r=T. (5.2)

t

Using the Young inequality, we estimate the second term in the right hand side as

T T T
2 f S(ny(ndr Sf |S(7‘)|2dT+f |y(T)|2dT.
Hence,
T T
V(y(2)) +f ly(D|*dT= V(s,) +f |S(D)?dr=B, te[0,T]. (5.3)
Therefore, y(z) is bounded for r € [0, 7] by (2.1). [ |

VI. ONE-DIMENSIONAL OSCILLATOR

In this section we consider the case d=1 and prove the asymptotic completeness for all finite
energy asymptotic states and nondegenerate stationary states s, with

F'(s,) # 0. 6.1)
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Theorem 6.1: Let d=1, ¥V, (x)=(V,(x),V,(x)) € &, , and (6.1) hold. Then there exists Y,
e &, such that (2.17) hold.

Proof: According to Lemma 4.1, it suffices to prove that there exists a trajectory y(z) satis-
fying (3.4). We can assume that s, =0, hence it suffices to construct a solution y(¢) to the inverse
reduced equation (3.4) satisfying

y(t) =0, t—ow, yeLl*0,%). (6.2)

Let us reduce the vector field F(y) in a small neighborhood of the stationary point 5,=0 to a
canonical linear form az where a=F’'(0). Namely, (6.1) implies by the Grobman-Hartman
theorem® that for some 5> 0 there exists a diffeomorphism z=¢(y) transforming the vector field
F(y), y € (=6, ) into az. In our case the theorem is trivial, and the function ¢(y) € C'(=8,6) can
be found as the solution to the differential equation

' (VF(y) = ad(y). (6.3)

Obviously, ¢(0)=0, and ¢ is a diffeomorphism of (-8, ) onto a neighborhood of the point z
=0 containing an interval (—&,&) with a small £>0. Hence, Eq. (3.4) for y(r) with |y(r)] < ¥ is
equivalent to the equation

1) = - gz@ +¢' ((0)SW), te T, (6.4)

for the function z(#):= ¢(y(1)), where a# 0 by (6.1) and 7(z) :={¢r>0:|z(t)| <e}. Let us consider
Eq. (6.4) with an initial value z(7) € (-¢,¢) at sufficiently large 7> 0. Denoting y(f):= ¢~ (z(¢))
for |z(¢)| <e, we obtain the equivalent identity

z(1) = f e 2= B (y(5))S(s)ds + z(T)e 2D (6.5)
T

for ¢ close to T.

Further we consider two cases separately: @>0 and a<0. For a>0 we will show that all the
solutions y(#):= ¢~ (z(¢)) satisfy (6.2) provided |z(T)| is sufficiently small. For a<<0 we will
construct at least one solution y(f):= ¢~ !(z()) satisfying (6.2).

A. Unstable stationary point: «>0

In this case, the solution (6.5) admits an extension to all #> T if T is sufficiently large. Indeed,
(6.5) implies the bound

2(0)] = C(@)B|IS| 2700y + [2(D]e @D, 1> T, |z(r)] <e, (6.6)

where a>0 and B=supj,|=4 ¢’ (y)| <. Therefore, |z(1)| <& for all 1> T, if T, is sufficiently large
since [|S]|2(.:)— 0, as t— by (3.4). Hence, formula (6.5) holds with T=T, for all 1> T,. Then

(6.5) and (6.6) also hold for any 7>T, that implies |z(1)| = C(@)B||S| ;207 +e€™°7?, t>2T.
Hence, z(1) — 0 as t— o0, and

y(t) =0, t— oo, (6.7)
Similarly to (5.2),

V(y(Ta)):V(y(t))+2f Sydr—Zf ly|%dr, t>T.. (6.8)
T, T

€

Using (6.7), we obtain that
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t t
J |)}|2d75f |Sy|d+const, ¢t>T,,
T T,

which implies that y € L*(T,, ).
Finally, the extension of the solution y(¢) to t € [0,7,] can be done as in SecV.

B. Stable stationary point: @<0
In this case, we consider the solutions z=z; to (6.5) with z/(7)=0 and estimate it for r<<T as

T
lz7(0)]| = BJ e®52|S(s)|ds = CB||S‘||L2(W), 1<T, (6.9)
t

since @<0. Therefore, |z(f)|<e€ for t € [T,,T] if T=T,>0 and T, is sufficiently large. Then Eq.
(6.4) holds for all ¢ € [T,,T], since |z(t)|<e.

Lemma 6.2: For any T*>T, , the family of functions zy , with T>T" , restricted fto t
elT,,T*] is precompact in C[T,,T"].

Proof: First, the family is uniformly bounded. Second, the equicontinuity follows from Eq.
(6.4). |

The lemma implies that there exists a sequence T*— o0, k— oo, such that

t) = 2(0), k—oo, t>T,, (6.10)

and the convergence is uniform for bounded ¢. Hence, z(7) satisfies Eq. (6.4) for all > T,. Finally,
the first equation (6.2) holds since (6.9) and (6.10) imply that

2(1)] = CBSl 2, 1>0. (6.11)

Now the second condition (6.2) follows from (6.8). The extension of the solution y(z) to #
€[0,T.] can be done as in Sec. V.
Theorem 6.1 is proven. |
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