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Attractors of non-linear Hamiltonian

one-dimensional wave equations

A. I. Komech

Abstract. A theory is constructed for attractors of all finite-energy solutions of
conservative one-dimensional wave equations on the whole real line. The attractor
of a non-degenerate (that is, generic) equation is the set of all stationary solutions.
Each finite-energy solution converges as t → ±∞ to this attractor in the Fréchet
topology determined by local energy seminorms. The attraction is caused by energy
dissipation at infinity. Our results provide a mathematical model of Bohr transitions
(‘quantum jumps’) between stationary states in quantum systems.
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§0.1. Introduction

The aim of this paper is to study the large-time asymptotics of all finite-energy
solutions of non-linear Hamiltonian wave equations and systems.

0.1.1. Bohr transitions to stationary states. The exceptional role of station-
ary states in many phenomena described by non-linear Hamiltonian wave equations
is very surprising. The persistent recurrence of stationary states suggests that each
solution Y (t) of these equations tends to some stationary limit as t→∞:

Y (t)→ S±, t→ ±∞. (0.1.1)

For brevity, we refer to this behaviour of the system as stabilization. This means
that the set S of all stationary states is a point attractor of the corresponding
equation:

Y (t)→ S, t→ ±∞. (0.1.2)

Problems of this sort have been known in diverse fields for a long time. Exam-
ples include the radiative friction problem ([23], [15]) in classical electrodynamics
as well as problems related to Bohr transitions between stationary states [4], de
Broglie’s wave-particle duality, and stability and classification of elementary par-
ticles in quantum theory. Furthermore, according to Schrödinger only quantum
transitions can be responsible for the gene reproduction paradox [52].

Although quantum physics postulates transitions (0.1.1) on the basis of experi-
mental evidence, it has never been proved that they follow from the dynamic equa-
tions. If there were such a proof, then quantum stationary states could be defined
intrinsically as points belonging to the attractor of the dynamic equations. The
main problem is that the convergence (0.1.1) is apparently paradoxical and incon-
sistent with the fact that Hamiltonian equations are reversible and conservative.
Furthermore, such a convergence is impossible for linear autonomous equations.

The present paper deals mainly with a proof that in principle such convergence
is possible for, and even typical of, non-linear Hamiltonian wave equations of the
form

ü(x, t) = u′′(x, t) + f(x, u(x, t)), x ∈ R. (0.1.3)

We prove the convergence (0.1.1), (0.1.2) for a non-linearity f(x, u) = δ(x)F (u)
concentrated at a single point of a string (the Lamb system) in Chapter I, and for
a non-linearity f(x, u) =

∑
δ(x− xk)Fk(u) concentrated at finitely many points in

Chapter II. The same results are obtained in Chapter III for general one-dimensional
non-linear wave equations and systems with spatially localized non-linearities:

f(x, u) = 0, |x| > const . (0.1.4)

One of the main achievements in this research is the choice of an appropriate
topology in which the convergence (0.1.1), (0.1.2) is possible. For example, the
convergence (0.1.1) is impossible in the energy metric in general because of energy
conservation. We prove (0.1.1), (0.1.2) in the Fréchet topology determined by local
energy seminorms. This topology is apparently the best one for describing the
attraction to an attractor in the case of Hamiltonian equations.
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The main result of this investigation is the discovery of what causes the attraction
(0.1.1), (0.1.2). The cause is energy dissipation at infinity. This energy dissipation
was originally revealed in linear and non-linear scattering theory ([8], [17]–[19], [22],
[26], [42]–[45], [53], [57], [61]–[64]; see the surveys [49] and [58]) for the case in which
the attractor S consists of the single point 0. Then (0.1.1) and (0.1.2) are equivalent
to the well-known local-energy decay property.

When combined with perturbation theory, linearization is a powerful tool for
studying non-linear problems. However, problems related to large-time behaviour
cannot be solved in the framework of the linearization approach unless the trajec-
tory remains close to some known solution. In particular, this pertains to radia-
tive friction, Bohr transitions, and many other problems. To study the large-time
behaviour of non-linear Hamiltonian equations, we develop methods of non-linear
scattering theory without resorting to perturbation theory.

We restrict ourselves to the study of finite-energy solutions. Infinite-energy solu-
tions, for which the large-time asymptotics depends crucially on the behaviour of
the initial data at infinity, are not considered here.

By now these results have been generalized to systems describing the interaction
of a classical charged particle in three-dimensional space with a scalar wave field
([38], [36], [35]) or a Maxwell electromagnetic field ([37]; see the survey [34]).

We note that the attraction to an attractor consisting of stationary states is a
well-studied property of dissipative systems ([1], [21], [40], [51], [60]) which substan-
tially differ from Hamiltonian equations in that for dissipative systems, solutions
converge to the attractor in the global energy metric, but only as t→ +∞.

Our results imply that the asymptotic behaviour (0.1.1), (0.1.2) is typical of ‘non-
degenerate’ (that is, generic) Hamiltonian equations. On the other hand, numerous
examples, as well as numerical evidence, show that the large-time behaviour can
be completely different for some ‘exceptional’ classes of equations. For example,
G-invariant equations with some Lie symmetry group G (see [20]) are exceptional,
and the asymptotics (0.1.1), (0.1.2) does not hold for such G-invariant equations
in general. Indeed, such equations in general have solutions in the form of ‘solitary
waves’ [20] exp(iΩt)Ψ(x), where Ω is an element of the corresponding Lie algebra.
The asymptotics (0.1.1) does not hold in general for a solitary wave if Ω 6= 0.
Our results concerning the stabilization (0.1.1) correspond to the trivial symmetry
group G = {e}.

The existence of non-trivial solitary waves for scalar U(1)-invariant non-linear
Hamiltonian wave equations was proved in [3]. For U(1)-invariant non-linear Dirac,
Maxwell–Dirac, and Klein–Gordon–Dirac Hamiltonian systems, the corresponding
result was obtained in [13], [14].

For a number of non-degenerate U(1)-invariant systems, solitary waves form an
attractor in the Fréchet topology ([5]–[7], [48], [55], [56]) but this has yet to be
proved for the Maxwell–Dirac system.

Remark. The Yang–Mills system describing strong interaction is SU(2)-invariant
[67] or SU(3)-invariant [16], and the system describing electroweak interaction is
SU(2)×U(1)-invariant [65]. Our results for the trivial symmetry group G = {e}, as
well as the results of [5]–[7], [48], [55], [56] for G = U(1), suggest that the attractor
of ‘non-degenerate’ G-invariant Hamiltonian equations consists of ‘solitary waves’
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exp(iΩt)Ψ(x). This conjecture is also corroborated by well-known experimental
results concerning the relationship between the classification of elementary parti-
cles and that of Lie algebras of the symmetry groups of the corresponding equa-
tions ([16], [46]).

0.1.2. Notation and definitions. We consider some classes of one-dimensional
equations of the form{

ü(x, t) = u′′(x, t) + f(x, u(x, t)), x ∈ R,
u
∣∣
t=0

= u0(x), u̇
∣∣
t=0

= v0(x).
(0.1.5)

Here and in the following, all derivatives are treated in the sense of distributions,
u ∈ Rd, d > 1, and

f(x, u) = −∇uV (x, u), (0.1.6)

where V (x, u) is a real-valued function referred to as a potential. Then (0.1.5) is a
formally Hamiltonian system with Hamiltonian

H(u, u̇) =

∫ ( |u̇|2
2

+
|u′|2

2
+ V (x, u)

)
dx. (0.1.7)

Our results pertain to one-dimensional equations (0.1.5) with a spatially localized
non-linearity (see (0.1.4)). We set Y (t) = (u( · , t), u̇( · , t)) and Y 0 = (u0, v0) and
rewrite problem (0.1.5) in the form

Ẏ (t) = V(Y (t)), t ∈ R, Y (0) = Y 0. (0.1.8)

We introduce the phase space of finite-energy states for problem (0.1.8). Let ||| · ||| be
the norm in L2(R,Rd) and let ||| · |||R, R > 0 be the norm in L2(BR,Rd), where BR
is the interval [−R,R].

Definition 0.1.1. i) E is the Hilbert space of pairs (u(x), v(x)) ∈ C(R,Rd) ⊕
L2(R,Rd) with finite norm

‖(u, v)‖E = |||u′|||+ |u(0)|+ |||v|||. (0.1.9)

ii) EF is the space E equipped with the topology defined by the local energy
seminorms

‖(u, v)‖R = |||u′|||R + |||u|||R + |||v|||R, R > 0. (0.1.10)

By
EF−→ we denote the convergence in EF .

Remark. We note that EF is a countably normed linear topological space. Hence

the topology of EF is metrizable. This means that the convergence Yk
EF−→ Y is

equivalent to the convergence with respect to some metric ρ( · , · ) in EF . (The
metric is obviously not unique.) Furthermore, EF is separable.

For brevity, we refer to separable metrizable spaces as Fréchet spaces even if
they are not complete. In particular, EF is a Fréchet space in this sense. In such
spaces, a subset is compact if and only if it is sequentially compact.

We note that the HamiltonianH is continuous on E but is not continuous in the
Fréchet topology of EF in all problems considered in the present paper.
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Definition 0.1.2. S = {S ∈ E : V(S) = 0} is the set of stationary states of
problem (0.1.8).

In each chapter, we consider some class of equations of the form (0.1.5) dis-
tinguished by appropriate conditions imposed on the non-linearity f(x, u). For
each initial state Y 0 ∈ E we establish the existence and uniqueness of a solution
Y (t) ∈ C(R,E) and the conservation of energy:

H(Y (t)) = const, t ∈ R. (E)

Our main results imply large-time behaviour of the following two types.

Relaxation. For each initial state Y0 ∈ E the orbit O(Y ) = {Y (t) : t ∈ R} is
precompact in EF and satisfies

Y (t)
EF−→ S as t→ ±∞. (0.1.11)

By definition, this means that for each neighbourhood O(S) of S in EF there is a
T > 0 such that Y (t) ∈ O(S) for t > T .

Stabilization. There are stationary states S± ∈ S depending on the solution Y (t)
such that

Y (t)
EF−→ S± as t→ ±∞. (0.1.12)

Remark. Let ρ( · , · ) be an arbitrary metric defining the Fréchet topology of EF .
Then the convergence (0.1.11) is equivalent to convergence in this metric:

inf
S∈S

ρ(Y (t), S) → 0 as t→ ±∞ ∀R > 0, (0.1.13)

since the orbit O(Y ) is precompact. This is also equivalent to convergence in each
of the seminorms:

inf
S∈S
‖Y (t)− S‖R → 0 as t→ ±∞ ∀R > 0. (0.1.14)

The relation (0.1.11) implies (0.1.12) if the set S is finite. The implication
(0.1.11) =⇒ (0.1.12) can be formalized with the help of the following definition.
Let T be a subset of a topological space F.

Definition 0.1.3. The set T is called a trapping subset of F if for each continuous
curve Y (t) ∈ C(R,F) whose orbit O(Y ) is precompact in F it follows from the

convergence Y (t)
F−→ T as t→∞ that Y (t) converges in F to some point T ∈ T as

t→∞.

For example, a closed subset Z ⊂ R is trapping in R if and only if

Z contains no non-empty interval (c1, c2). (T1)

(Condition (T1) holds if and only if R\Z is dense in R.) In particular, every Cantor
subset of R is a trapping subset of R.
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0.1.3. Energy dissipation at infinity. At present, there is no reasonably general
description of the typical large-time behaviour of solutions of non-linear wave equa-
tions. Nor is there a universal method for the analysis of large-time behaviour. That
is why we study model problems in which possible types of large-time behaviour can
be examined. We consider three types of such problems in the subsequent chapters.

Let us briefly describe the main results. We establish large-time asymptotics
(0.1.11) and (0.1.12) for the following three types M1–M3 of one-dimensional wave
equations (0.1.5).

M1 In Chapter I, we consider a singular non-linearity f(x, u) = δ(x)F (u), concen-
trated at the single point x = 0. We assume that d > 1,

F (u) ∈ C1(Rd,Rd), F (u) = −∇V (u), and V (u)→ +∞ as |u| → ∞.
(0.1.15)

Then (0.1.11) holds for all solutions Y (t) ∈ C(R,E). If, moreover, Z = {z ∈
Rd : F (z) = 0} is a trapping subset of Rd, then (0.1.12) also holds. For any two
stationary states S± ∈ S, there are solutions Y (t) ∈ C(R,E) satisfying (0.1.12).

M2 In Chapter II, we consider a singular non-linearity of the form

f(x, u) =
N∑
k=1

δ(x− xk)Fk(u),

concentrated at finitely many points. We assume that d > 1 and that the following
conditions hold:

Fk ∈ C1(Rd,Rd), Fk(u) = −∇Vk(u); (0.1.16)

inf
u∈Rd

min
k
Vk(u) > −∞ and max

k
Vk(u)→ +∞ as |u| → ∞. (0.1.17)

Then (0.1.11) holds for all solutions Y (t) ∈ C(R,E). If, moreover, d = 1 and all Fk
are real-analytic functions on R, then (0.1.12) also holds.

M3 In Chapter III, we consider continuous non-linearities f(x, u) such that
f(x, u) = 0 for |x| > a with some a > 0. We assume that d > 1 and the fol-
lowing conditions hold:

f(x, u) = χ(x)F (u), F ∈ C1(Rd,Rd), χ(x) ∈ C(R); (0.1.18)

F (u) = −∇V (u) and V (u)→ +∞ as |u| → ∞; (0.1.19)

χ(x) > 0, χ(x) 6≡ 0 and χ(x) = 0 for |x| > a. (0.1.20)

Then (0.1.11) holds for all solutions Y (t) ∈ C(R,E). If, moreover, d = 1 and F is
a real analytic function on R, then (0.1.12) is also valid.

Remarks. i) The system M1 was introduced by Lamb [41] and was also considered
in [24].

ii) M1 is a special case of M2, and M2 is formally a special case of M3. However,
we consider these systems separately for the following reasons. First, we deal with
a modified model M1, and for M1 (respectively, M2) we obtain sharper results
than for M2 (respectively, M3). Second, the methods used in the analysis of M2
(respectively, M3) are a natural generalization of those used in the analysis of M1
(respectively, M2).
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0.1.4. Research methods. All the results of the present paper are based on a
study of the energy dissipation at infinity. In each of the problems one can obtain a
lower bound for the energy dissipated at infinity via the corresponding ‘dissipation
integral’. On the other hand, this energy is a priori bounded. This results in an
estimate of the dissipation integral that ensures the convergence (0.1.11).

For the Hamiltonian systems in question we develop methods of global analysis
of systems with dissipation ([1], [21], [40], [51], [60]) and apply the following general
scheme.

I. The dissipation integral is bounded.
II. The time derivatives of the solution decay.

III. The solution has an integral representation.
IV. The trajectory is attracted in EF to a set that is compact in EF .
V. Each ω-limit point (in EF ) of the trajectory is a stationary state.

VI. S is a trapping subset of EF .

However, implementation of this scheme is different for different systems. Step IV
for the system M2 is based on the notion of ‘relaxation at infinity’ of a function
f(t), t > 0; this notion is a weakened form of the convergence f ′(t)→ 0 as t→∞.
Roughly speaking, relaxation at infinity means that max06τ6T |f(t+τ)−f(t)| → 0
as t →∞ for each T > 0. This notion has a number of convenient properties (the
properties R0–R8 in § 2.6.1) which give the desired result when used systematically.

For the system M3 step IV follows from an analysis of the Goursat problem for
the non-linear wave equation. We first only manage to obtain convergence to a
compact set A ‘in the mean’:

∫ ∞
0

ρ2
R(t) dt <∞, (0.1.21)

where ρR(t) = infS∈A ‖Y (t) − S‖R. From this we infer that actually ρR(t) → 0 as
t→ ±∞. To this end, we use the compactness of A, the uniform continuity of the
dynamics near a compact set, and reasoning similar to the Borel–Cantelli lemmas.

On the other hand, in all the systems M1–M3 step V follows from the universal
Lemma 1.5.3 due to Egorov [10], and step VI is obtained from the following simple
universal criterion for S ⊂ EF to be a trapping subset.

Lemma 0.1.4. Suppose that F1 and F2 are Fréchet spaces, I : F1 → F2 is a con-
tinuous map, T2 is a trapping subset of F2, IT1 ⊂ T2, and I : T1 → T2 is injective.
Then T1 is a trapping subset of F1.

We explicitly construct such a map I from F1 = EF to F2 = R for each of the
systems M1–M3.

0.1.5. Comments. We establish that all finite-energy solutions of the Hamilton-
ian systems in this paper converge as t → ±∞ to an attractor, which possibly
consists of infinitely many points. This is a generalization of known results for
dissipative systems ([1], [21], [40], [51], [60]), but there are several fundamental
differences.
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I. In general, the convergence in dissipative systems occurs only as t→ +∞.
II. The cause of the convergence is quite different. There is energy absorption in

dissipative systems, but in Hamiltonian systems the energy is conserved, and the
role of absorption is played by energy dissipation at infinity.

III. The convergence fails in general for Hamiltonian wave equations in bounded
domains, since the waves are reflected by the boundary. That is why we con-
sider (0.1.5) in the entire space.

IV. For dissipative systems the convergence (0.1.11), (0.1.12) holds in the (global)
energy metric of the corresponding phase space E. For Hamiltonian systems the
convergence (0.1.12) in the metric of E is in general impossible by virtue of the
energy conservation law. Indeed, if ‖Y (t) − S±‖E → 0 as t → ±∞, then the rela-
tion (E) implies that H(S±) = H(Y (t)), since the Hamiltonian H is continuous
on E in all our problems. Hence the convergence in E of all finite-energy solutions
would mean that H(E) ⊂ H(S). However, this is impossible for any non-trivial
Hamiltonian system if S is discrete. Likewise, the convergence (0.1.12) of all solu-
tions is impossible for any non-trivial finite-dimensional Hamiltonian system.

V. For a dissipative system the flow consists of compact maps of E, while for
a Hamiltonian system the dynamic maps are only bounded, that is, compact in
the weak topology. This is the main difference, which complicates the proof of the
asymptotics (0.1.11), (0.1.12) and necessitates the use of the Fréchet topology in
the study of Hamiltonian systems.

The results of Chapter I show that all the conditions imposed on the system M1
are necessary for the validity of the main results. The conditions imposed on M2
are also close to being necessary, which is illustrated by numerous examples in
Chapter 2. The same pertains to the conditions imposed on M3 in Chapter III.

The convergence (0.1.12) implies a transition

S− 7→ S+ (0.1.22)

as time varies from −∞ to +∞. This provides a mathematical model of Bohr
transitions between stationary states in quantum systems. For the Lamb sys-
tem M1, there are transitions (0.1.22) between two arbitrary stationary states
S± ∈ S (Lemma 1.2.4).

In all cases considered in the paper, the convergence (0.1.12) implies the inequal-
ity

H(S±) 6 H(Y (t)) ≡ H(Y 0), t ∈ R, (0.1.23)

by analogy with a well-known property of weak convergence in Hilbert and Banach
spaces. Examples show that strict inequality in (0.1.23) is possible; this can be
called energy dissipation at infinity.

The results of the paper show that the asymptotic behaviour (0.1.11), (0.1.12)
is valid for ‘generic’ systems and may be violated for certain ‘exceptional’ systems.
Specifically, (0.1.12) holds if S is a trapping subset, that is, is discrete in some
sense. On the other hand, many examples show that the large-time behaviour
of solutions for some ‘narrow’ classes of equations (0.1.5) can be quite different
from (0.1.11) and (0.1.12). For example, this is the case for ‘degenerate’ systems M1
by Lemma 1.2.3 and for the G-invariant equations considered in [20].
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Chapters I and II contain a generalization of the author’s results [27]–[32]; the
results of Chapter III were first published in [33].

0.1.6. Open problems. The existence of stationary states of the form
(Φ(x), exp(iωt)ψ(x)) was recently proved in [13], [14] for the non-linear Dirac,
Maxwell–Dirac, and Klein–Gordon–Dirac systems. However, the large-time con-
vergence of type (0.1.11) or (0.1.12) to these stationary states is an open problem.

The large-time asymptotics (0.1.11), (0.1.12) has yet to be proved for relativis-
tically invariant equations (0.1.3), that is, for the case in which the non-linearity
f(x, u) = F (u) is independent of x. If the asymptotics (0.1.12) is valid for solutions
of this type, then they also have soliton-like asymptotics. This follows from the
relativistic invariance of the equation.

The author is deeply grateful to H. Brezis, M. I. Vishik, A. I. Shnirelman, and
H. Spohn for their undivided attention to this work and for useful discussions.

CHAPTER I

THE LAMB SYSTEM: A STRING WITH A NON-LINEAR OSCILLATOR

We prove convergence to stationary states for a system of equations describing
the interaction of an infinite string with a non-linear oscillator. This system was
considered by Lamb for the case of a linear oscillator [41]. The system is formally
equivalent to the one-dimensional wave equation with a non-linearity δ(x)F (u)
concentrated at the point x = 0. The limit stationary states corresponding to t =
±∞ may be distinct and arbitrary. The problem is reduced to studying an ordinary
non-linear equation for the oscillator. This chapter contains a generalization of the
author’s results in [27]–[30].

§1.1. Introduction

We establish convergence of type (0.1.11), (0.1.12) to stationary states for solu-
tions u(x, t) of the system

ü(x, t) = u′′(x, t), x ∈ R \ {0},
mÿ(t) = F (y(t)) + u′(0+, t)− u′(0−, t), y(t) ≡ u(0, t).

(1.1.1)

The solutions u(x, t) take values in Rd, d > 1. We consider the Cauchy problem
for the system (1.1) with initial conditions

u
∣∣
t=0

= u0(x), u̇
∣∣
t=0

= v0(x), ẏ|t=0 = p0. (1.1.2)

The last condition in (1.1.2) is needed only if m > 0. In the following, we consider
the case m > 0 and sometimes comment on the difference between this and the case
m = 0. From the viewpoint of physics, problem (1.1.1) describes small transverse
vibrations of an infinite string parallel to the axis 0x with a particle of mass m > 0
attached to the string at the point x = 0; F (y) is an external (non-linear) force
field acting on the particle in the direction perpendicular to the axis 0x (Fig. 1).
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Figure 1

The system (1.1.1) is formally equivalent to the one-dimensional non-linear wave
equation with non-linearity δ(x)F (u) concentrated at the point x = 0 (and with
mass m concentrated at the same point):

(1 +mδ(x))ü(x, t) = u′′(x, t) + δ(x)F (u(x, t)), (x, t) ∈ R2. (1.1.3)

In the linear case, where F (y) = −ky, k > 0, the system (1.1.1) has the unique
stationary finite-energy solution s(x) ≡ 0. In this case stabilization to zero was
considered for the first time by Lamb [41].

Let us introduce the phase space of finite-energy states for the system (1.1.1)
with m > 0 (respectively, m = 0). By L2 we denote the Hilbert space L2(R,Rd)
with norm ||| · |||.
Definition 1.1.1. i) E (respectively, E0) is the Hilbert space of triples (u(x), v(x),
p) ∈ C(R,Rd)⊕L2⊕Rd (respectively, pairs (u(x), v(x)) ∈ C(R,Rd)⊕L2) such that
u′(x) ∈ L2, with norm

‖(u, v, p)‖E = ‖u′‖+ |u(0)|+ ‖v‖+ |p|
(‖(u, v)‖E0 = ‖u′‖+ |u(0)|+ ‖v‖).

(1.1.4)

ii) EF is the space E equipped with the Fréchet topology defined by the seminorms

‖(u, v, p)‖R ≡ |||u′|||R + |u(0)|+ |||v|||R + |p|, R > 0, (1.1.5)

where ||| · |||R is the norm in L2(−R,R;Rd).

We assume that conditions (0.1.15) are satisfied. The system (1.1.1) is formally
a Hamiltonian system with phase space E and Hamiltonian

H(u, v, p) =
1

2

∫
R

[
|v(x)|2 + |u′(x)|2

]
dx+m

|p|2
2

+ V (u(0)) (1.1.6)

for (u, v, p) ∈ E. Let us consider solutions u(x, t) such that

Y (t) = (u( · , t), u̇( · , t), ẏ(t)) ∈ C(R,E), y(t) ≡ u(0, t),

and rewrite the Cauchy problem (1.1.1), (1.1.2) in the form

Ẏ (t) = V(Y (t)) for t ∈ R, Y (0) = Y 0, (1.1.7)
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where Y 0 = (u0, v0, p0). We discuss the statement of this Cauchy problem for
functions Y (t) ∈ C(R,E). First, u ∈ C(R2,Rd), since Y (t) ∈ C(R,E). It follows
that the first equation in (1.1.1) is equivalent to the d’Alembert formula

u(x, t) = f±(x− t) + g±(x+ t), ±x > 0, (1.1.8)

where

f±, g± ∈ C(R,Rd). (1.1.9)

Consequently,

u̇(x, t) = −f ′±(x− t) + g′±(x+ t),

u′(x, t) = f ′±(x− t) + g′±(x+ t),
for ± x > 0, (1.1.10)

where all derivatives are understood in the sense of distributions. The assumption
Y (t) ∈ C(R,E) implies that

f ′±, g
′
± ∈ L2

loc(R,Rd). (1.1.11)

Let us discuss the meaning of the second equation in (1.1.1).

Definition 1.1.2. In the second equation in (1.1.1), we set

u′(0±, t) ≡ f ′±(−t) + g′±(t) ∈ L2
loc(R,Rd), (1.1.12)

where the derivative ÿ(t) of the function y(t) ≡ u(0±, t) ∈ C(R,Rd) (or of ẏ(t) ∈
L2

loc(R,Rd)) is understood in the sense of distributions.

We note that the functions f± and g± in (1.1.8) are determined uniquely up to
an additive constant. Hence definition (1.1.12) is unambiguous.

One can readily find stationary states S = (s(x), 0, 0) ∈ E for (1.1.7). For each
c ∈ Rd we introduce the constant function

sc(x) = c for x ∈ R. (1.1.13)

Then the set S of all stationary states S ∈ E has the form

S = {Sz = (sz(x), 0, 0) : z ∈ Z}, (1.1.14)

where Z = {z ∈ Rd : F (z) = 0}. We say that the system (1.1.1) and the potential
V (u) are ‘non-degenerate’ if Z is a trapping subset of Rd. For d = 1, this means
that condition (T1) holds (see the Introduction), which is also equivalent to the
condition

F (u) 6≡ 0 on every non-empty interval c1 < u < c2. (ND)

The main result of this chapter is that S is a point attractor of the system (1.1.1)
in the Fréchet topology of EF .
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§1.2. Main results

We start from a construction of the dynamics.

Proposition 1.2.1. Suppose that m > 0 in the system (1.1.1), d > 1, and condi-
tion (0.1.15) is valid. Then the following assertions hold.

i) For every Y 0 ∈ E the Cauchy problem (1.1.7) has a unique solution Y (t) ∈
C(R,E).

ii) The map Wt : Y
0 7→ Y (t) is continuous in E and EF for every t ∈ R.

iii) The energy conservation law (E) holds.

Remark. For m = 0 the last condition in (1.1.2) is omitted. Then Proposition 1.2.1
remains valid with E replaced by E0.

Our main result is given by the following theorem.

Theorem 1.2.2. Suppose that the assumptions of Proposition 1.2.1 hold and the
initial state Y 0 belongs to E. Then the following assertions hold.

i) The orbit O(Y ) of the solution Y (t) ∈ C(R,E) of the Cauchy problem (1.1.7)
is precompact in EF , and

Y (t)
EF−→ S as t→ ±∞. (1.2.1)

ii) In addition, suppose that Z is a trapping subset of Rd. Then there are
stationary states S± ∈ S, depending on the solution Y (t), such that

Y (t)
EF−→ S± as t→ ±∞. (1.2.2)

iii) Let d = 1. Then (1.2.2) holds for any set Z if

u0(x) = C±, v0(x) = 0 for ± x > r0 (1.2.3)

for some r0 > 0 and C± ∈ R.

Remarks. i) It suffices to verify (1.2.1) and (1.2.2) only for the case t→ +∞, since
the system (1.1.1) is reversible.

ii) By Fatou’s lemma (0.1.23) follows from the convergence (1.2.2) in view of
(1.1.6) and (0.1.15).

iii) A similar theorem is valid for m = 0.

The convergence (1.2.2) is a typical property of ‘non-degenerate’ systems with
a trapping set Z. The question arises as to whether ‘degenerate’ systems (1.1.1)
whose sets of stationary states contain certain continuous components exhibit more
complicated large-time behaviour. One can expect that the convergence (1.2.1) to
these components is combined with ‘damped wanderings’ along these components.
The following lemma describes an example of this more complicated behaviour by
showing that for d = 1 condition (ND) is necessary for the convergence (1.2.2) of
all solutions Y (t) ∈ C(R,E).
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Lemma 1.2.3. Suppose that d = 1 and all assumptions of Proposition 1.2.1 are
satisfied, but condition (ND) is violated. Then there are solutions Y (t) ∈ C(R,E)
of the system (1.1.7) for which condition (1.2.2) is violated.

Remarks. i) Theorem 1.2.2, i) implies (1.2.1) for the solutions Y (t) in Lemma 1.2.3.
Hence these solutions describe damped wanderings along the attractor S.

ii) It follows from Theorem 1.2.2, iii) that condition (1.2.3) is violated for the
initial data Y (0) of all solutions described in Lemma 1.2.3.

Next, there is the question of the relationship between the limit stationary states
S± of solutions of the system (1.1.7) as t→ ±∞. The following lemma shows that
the limit stationary states in (1.2.2) can be arbitrary.

Lemma 1.2.4. Let d > 1 and let F (y) ∈ C(Rd,Rd) in the system (1.1.1). Then
for two arbitrary stationary states S± ∈ S there are solutions Y (t) ∈ C(R,E) of the
system (1.1.7) connecting S± in the sense of (1.2.2).

Remark. Lemma 1.2.4means that there is no exclusion principle in the system (1.1.1).
In other words, this is a system with non-trivial ‘Bohr’ transitions between distinct
stationary states S+ 6= S−. Such transitions are a purely non-linear phenomenon,
which is impossible in the linear autonomous Schrödinger and Dirac equations.

Example. As a trivial example, we consider (1.1.1) with d > 1, m = 0, and
F (y) ≡ 0. In this case, (1.1.1) coincides with the linear d’Alembert equation, and
neither of conditions (0.1.15) and (ND) is satisfied. Accordingly, the orbit O(Y )
of a solution Y (t) ∈ C(R,E) is not precompact in EF in the general case, and
the convergence (1.2.2) does not hold. At the same time, we have the convergence
(1.2.1), and the assertions of Theorem 1.2.2, iii), as well as Lemmas 1.2.3 and 1.2.4,
remain valid. This readily follows from the d’Alembert formula for the solution of
the Cauchy problem.

In §1.3 we derive the cited equation for the non-linear oscillator and prove Propo-
sition 1.2.1. In § 1.4 we construct the large-time asymptotics of solutions of the
reduced equation and give typical examples.

In §1.5 we prove Theorem 1.2.2 and Lemmas 1.2.3 and 1.2.4.

§1.3. Existence of dynamics and a prioria prioria priori estimates

Here we prove Proposition 1.2.1.

1.3.1. Existence of dynamics. First, we prove uniqueness of the solution Y (t) =
(u( · , t), u̇( · , t), ẏ(t)) ∈ C(R,E), existence being assumed. The proof also includes
an algorithm for constructing the solution, and so we essentially prove existence as
well.

Uniqueness of the solution. The initial conditions (1.1.2) and the d’Alembert
formula (1.1.8) imply the following well-known formulae for f±(z) and g±(z) in the
domain ±z > 0:

f±(z) =
u0(z)

2
− 1

2

∫ z

0

v0(y) dy + C±, ±z > 0,

g±(z) =
u0(z)

2
+

1

2

∫ z

0

v0(y) dy − C±, ±z > 0,

(1.3.1)
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where the C± are arbitrary constants. Since f± and g± in (1.1.8) are determined
only up to a constant, we can assume that C± = 0. It follows from (1.3.1) that

f ′±(z), g′±(z) ∈ L2(R±,Rd), (1.3.2)

since (u0, v0, p0) ∈ E, where R± ≡ {x ∈ R : ±x > 0}. From (1.3.1) we obtain the
usual d’Alembert formula for |x| > |t|:

u(x, t) =
u0(x− t) + u0(x+ t)

2
+

1

2

∫ x+t

x−t
v0(y) dy. (1.3.3)

Thus, the solution u(x, t) is uniquely determined in the domain |x| > |t|. It remains
to prove that the solution is unique in the domain |x| < |t|.

Let us consider the case t > 0. Then in the domain |x| < t the unknown functions
in (1.1.8) are f+(x− t) for 0 < x < t and g−(x+ t) for −t < x < 0. Thus, we must
find f+(z) for z < 0 and g−(z) for z > 0. To find these unknown functions, we
derive an ordinary non-linear differential equation for y(t) ≡ u(0, t).

Lemma 1.3.1. For each solution Y (t) = (u( · , t), u̇( · , t), ẏ(t)) ∈ C(R,E) of the
system (1.1.7), the function y(t) ≡ u(0, t) is a solution of the ‘reduced’ equation

mÿ(t) = F (y(t)) − 2ẏ(t) + 2ẇ(t), t ∈ R, (1.3.4)

where w(t) is the sum at x = 0 of the ‘incoming’ waves in (1.1.8):

w(t) ≡ g+(t) + f−(−t), t ∈ R, (1.3.5)

ẇ(t) ∈ L2(0,∞). (1.3.6)

Proof. The formulae (1.3.4) and (1.3.5) are obtained from the second equation in
the system (1.1.1) by substituting of the expressions for u(x, t) via y(t) ≡ u(0, t)
and the incoming waves:

u(x, t) ≡
{
y(t − x) + g+(x+ t)− g+(t− x) for x > 0,

y(t + x) + f−(x− t)− f−(−x− t) for x < 0.
(1.3.7)

In turn, these formulae follow from the expressions for the outgoing waves f+(x−t)
and g−(x+ t) via the incoming waves g+(x + t) and f−(x− t):

y(t) ≡ f+(−t) + g+(t) ≡ f−(−t) + g−(t), t ∈ R. (1.3.8)

Finally, (1.3.6) follows from (1.3.5) and (1.3.2).

Remarks. i) Equation (1.3.4) contains energy dissipation due to the string-oscillator
interaction. The description of the reversible system (1.1.1) via the ‘irreversible’
equation (1.3.4) is seemingly paradoxical. The explanation is as follows: along
with (1.3.4) one has a similar equation with ‘negative’ friction but with the ‘out-
going’ waves w(t) instead of the ‘incoming’ waves on the right-hand side in (1.3.4).
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Hence these equations exchange their roles, that is, pass into each other, under time
inversion. Thus, the relationship between (1.3.4) and the reversible system (1.1.1)
is ‘covariant’ with respect to time inversion.

ii) To obtain the asymptotics of solutions of (1.1.1) as t → +∞, one must
use (1.3.4) with positive friction and incoming waves. The point is that the incoming
waves, unlike the outgoing waves, are directly determined by the initial data.

iii) The relationship between (1.3.4) and (1.1.1) was studied from a slightly
different viewpoint in [24]. For the case of the linear oscillator F (y) ≡ −ky,
k > 0, (1.1.1) and (1.3.4) were considered for the first time by Lamb [41].

According to (1.3.2), the functions occurring in (1.3.4) and known from (1.3.1)
satisfy the conditions f ′−(−t), g′+(t) ∈ L2(R+,Rd). On the other hand, it fol-
lows by (1.1.11) from the assumption on the existence of a solution that ÿ(t) ∈
L2

loc(R+,Rd). By Definition 1.1.2, the derivative ÿ in (1.3.4) is understood in the

sense of distributions. Consequently, y ∈ C1(R+,Rd), and by the Lebesgue theo-
rem, (1.3.4) is equivalent to the same identity for almost all t > 0. Hence for any
given initial data y(0+) and ẏ(0+), there is a unique solution y(t) of (1.3.4) on some
interval t ∈ [0, ε), where ε > 0, since F ( · ) ∈ C1(Rd,Rd). One can readily derive
this from the contraction mapping principle by rewriting (1.3.4) in the equivalent
integral form

my(t) =

∫ t

0

(∫ s

0

F (y(τ)) dτ

)
ds+2

∫ t

0

[w(s)−y(s)] ds+C0 +C1t, t > 0, (1.3.9)

where
C0 = my(0+) and C1 = −2[w(0+)− y(0+)] +mẏ(0+).

Thus, y(t) is uniquely determined on [0, ε) for some ε > 0. Since y ∈ C1(R+,Rd),
it follows that y(t) is also uniquely determined for all t > 0 for any given y(0+)
and ẏ(0+).

It remains to specify y(0+) and ẏ(0+). First, it follows from (1.1.2) that

ẏ(0+) = p0. (1.3.10)

Next, since u(x, t) is continuous for |x| = t, it follows from (1.3.2) that f+(x− t) is
continuous for x = t and g−(x+ t) is continuous for x = −t. Consequently, in view
of (1.3.1) we have 

f+(0−) = f+(0+) ≡ u0(0)

2
,

g−(0+) = g−(0−) ≡ u0(0)

2
.

(1.3.11)

These conditions together are equivalent to

y(0+) = f±(0−) + g±(0+) = u0(0). (1.3.12)

Thus, both y(0+) and ẏ(0+), and hence y(t) for t > 0, are determined uniquely.
Then f+ and g− are determined uniquely by (1.3.8). Thus we have proved the
uniqueness of the solution u(x, t) for t > 0. The proof for t 6 0 is similar.



58 A. I. Komech

Existence of solutions. Let us prove the existence of a solution Y (t) ∈ C(R,E)
of (1.1.7). First, we define u(x, t) in the domain |x| > |t| by the d’Alembert for-
mula (1.3.3). In view of (1.3.2), u(x, t) then satisfies the definition of the class
C(R,E) of solutions in the domain |x| > |t|.

We now construct the solution in the domain t > 0, |x| < t as follows. We define
u(x, t) by the formula (1.1.8), where f+ and g− are found from (1.3.8) with given
y(t). Here y(t) is the solution of (1.3.4) with the initial conditions (1.3.10), (1.3.12).

Lemma 1.3.2. For any y(0+) and ẏ(0+), (1.3.4) has a unique solution for all
t > 0, and

sup
t>0
|y(k)(t)| 6 yk, k = 0, 1, (1.3.13)

where the yk are bounded for bounded ‖(u0, v0, p0)‖E.

Proof. Let us derive an a priori estimate for y(t). To this end, we multiply (1.3.4)
by ẏ(t) for almost all t > 0 and get, using F (y) = −∇V (y), that

m
d

dt

ẏ2(t)

2
= − d

dt
V (y(t)) + 2[ẇ(t) − ẏ(t)]ẏ(t) (1.3.14)

for almost all t > 0. By integrating this, we obtain from (1.3.6) and the Cauchy–
Bunyakovskii–Schwarz inequality that

m
ẏ2(t)

2
+ V (y(t)) 6 B, t > 0, (1.3.15)

where B is bounded for bounded ‖(u0, v0, p0)‖E by virtue of (1.3.2). Consequently,
(0.1.15) implies (1.3.13) with k = 1.

It follows from this estimate that there is a unique global solution of (1.3.4) for
any y(0+) and ẏ(0+), the estimate (1.1.13) holds, and the inclusion

ẏ(t) ∈ C(R+,Rd) (1.3.16)

is valid.

Thus, we determine f+ and g− from (1.3.8) with the function y(t) thus con-
structed. Then it follows from (1.3.16), (1.3.2), and (1.3.8) that

f ′+(z) ∈ L2
loc(R−,Rd), g′−(z) ∈ L2

loc(R+,Rd). (1.3.17)

Hence the function u(x, t) defined for t > 0 by (1.1.8) satisfies the definition of
the class C(R,E) of solutions in the domain |x| < t. Consequently, it follows
from (1.3.12) and (1.3.11) that for t > 0 the function Y (t) = (u(x, t), u̇(x, t), ẏ(t))
is the restriction to the domain t > 0 of some function belonging to C(R,E).

The solution u(x, t) in the domain t < 0 can be constructed in a similar way. It
follows from (1.3.3) that the function Y (t) thus constructed is continuous at t = 0;
consequently, Y (t) ∈ C(R,E).

It remains to verify that u(x, t) is a solution of the problem (1.1.1), (1.1.2). It
follows from (1.1.8) that u(x, t) satisfies the first equation in (1.1.1). The initial
conditions (1.1.2) for u follow from (1.3.3) and (1.3.10). It follows from the con-
struction of f+ and g− that u(x, t) satisfies the second equation in (1.1.1) for t > 0
(and likewise for t < 0). The second equation in (1.1.1) follows from (1.3.4) for
t > 0, a similar equation for t < 0, the equalities ẏ(0+) = p0 = ẏ(0−), and the
inclusion ÿ(t) ∈ L2

loc(R±,Rd). (The last inclusion follows from (1.3.4), (1.3.16),
and (1.3.2).) Thus we have proved the first assertion of Proposition 1.2.1.
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1.3.2. Continuity of the dynamics. The second assertion of Proposition 1.2.1
can also be derived from the above construction. To this end, it suffices to prove
the following lemma on the continuous dependence of solutions of (1.3.4) on the
initial data in (1.1.2).

Lemma 1.3.3. Let y1(t) and y2(t) be the solutions of (1.3.4) with initial data
(u0
i , v

0
i , p

0
i ), i = 1, 2, respectively. Then for each T > 0 there is a constant CT ,

which is bounded for bounded ‖(u0
i , v

0
i , p

0
i )‖E, such that

sup
[0,T ]

|y2(t)− y1(t)| 6 CT ‖(u0
2 − u0

1, v
0
2 − v0

1, p
0
2 − p0

1)‖E, (1.3.18)

sup
[0,T ]
|ẏ2(t)− ẏ1(t)| 6 CT ‖(u0

2 − u0
1, v

0
2 − v0

1, p
0
2 − p0

1)‖E. (1.3.19)

Proof. To prove the estimate (1.3.18), it suffices to subtract (1.3.9) for y1 from the
same equation for y2 and apply the Gronwall inequality. We also use the a priori
estimate (1.3.13). By differentiating (1.3.9), we obtain the estimate (1.3.19).

This lemma, together with the representation (1.3.7), implies the continuity of
the operator Wt in E. It follows that Wt is also continuous in EF , since u(x, t)
depends only on the initial data (u0(y), v0(y), p0) with |y − x| < |t| by virtue
of (1.3.7) and (1.3.9).

1.3.3. Conservation of energy. First, we prove the energy conservation law
(1.1.3) for sufficiently smooth initial data. Namely, we assume that u0(x) ∈
C2(R \ {0},Rd) and v0(x) ∈ C1(R \ {0},Rd), the limits u0(0±), (u0)′(0±), and
v0(0±) exist, and condition (1.2.3) is satisfied with some constant r0. We note
that such sufficiently smooth initial data form a dense subset of the Banach
space E with norm (1.1.4).

It follows from the above construction of u(x, t) that for such initial data one
has u ∈ C(R2,Rd) and all first and second partial derivatives of u(x, t) exist in the
usual sense and are locally bounded for x 6= 0 and x 6= ±t. Furthermore, for all
t ∈ R there are one-sided limits of u̇(x, t) and u′(x, t) as x → 0± and x → t ± 0,
and moreover,

(u̇+ u′)
∣∣
x=t−0

= (u̇+ u′)
∣∣
x=t+0

∀ t 6= 0. (1.3.20)

This follows from the d’Alembert formula (1.1.8). Indeed, both sides of (1.3.20) are
zero for f±(x − t), and the functions g±(x + t) are continuously differentiable for
x = t 6= 0. Similarly,

(u̇− u′)
∣∣
x=−t−0

= (u̇− u′)
∣∣
x=−t+0

∀ t 6= 0. (1.3.21)

We consider the ‘energy integral’

I(t) ≡
∫ +∞

−∞

[
|u̇(x, t)|2

2
+
|u′(x, t)|2

2

]
dx (1.3.22)

for t > 0. Let us split it into the sum of the integrals over (−∞,−t), (−t, 0), (0, t),
and (t,∞). Then by differentiating each of these integrals with respect to t we
obtain

I′(t) = Γ−(x, t)
∣∣∣x=−t−0

x=−t+0
+ u′u̇

∣∣∣x=0−

x=0+
+ Γ+(x, t)

∣∣∣x=t−0

x=t+0
, (1.3.23)
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where

Γ±(x, t) = ±
[
|u̇(x, t)|2

2
+
|u′(x, t)|2

2

]
+ u′(x, t)u̇(x, t) = ±1

2
|u̇(x, t)± u′(x, t)|2.

Here we have used the fact that (1.1.1) is satisfied for u(x, t) in the usual sense for
x 6= 0 and x 6= ±t. It follows from (1.3.20) and (1.3.21) that

Γ±

∣∣∣x=±t−0

x=±t+0
= 0. (1.3.24)

Finally, from (1.1.1) we obtain

u′u̇
∣∣∣x=0−

x=0+
= −ẏ(mÿ + V ′(y)) = − d

dt

[
m
ẏ2

2
+ V (y(t))

]
, t > 0. (1.3.25)

Hence it follows from (1.3.23) that

I′(t) +
d

dt

[
m
ẏ2

2
+ V (y(t))

]
= 0, t > 0. (1.3.26)

This implies (E) for t > 0. By passing to the limit as t → 0+, we obtain (E) for
t > 0. For t 6 0, the identity (E) can be proved in a similar way. Thus we have
proved (E) on a dense set of initial data in E. It remains to use Proposition 1.2.1, ii).

§1.4. Relaxation for the reduced equation

In the next section we shall derive Theorem 1.2.2 from the representation
(1.3.7) and the following relaxation lemma for the reduced equation. Let Z =
{(z, 0) ∈ R2d : z ∈ Z}.
Lemma 1.4.1. Suppose that the assumptions of Theorem 1.2.2 are satisfied. Then
the following assertions hold.

i) The dissipation integral is finite:∫ ∞
0

|ẏ(t)|2 dt <∞. (1.4.1)

ii) For each solution y(t) of (1.3.4),

(y(t), ẏ(t))→ Z as t→∞. (1.4.2)

iii) In addition, suppose that Z is a trapping subset of Rd. Then there is a point
(z, 0) ∈ Z such that

(y(t), ẏ(t))→ (z, 0) as t→∞. (1.4.3)

iv) Moreover, if d = 1 and ẇ(t) ≡ 0 for t > t0, then (1.4.3) holds for an
arbitrary set Z.

Before proving this lemma, we give some typical examples for d = 1.
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1.4.1. Examples. For simplicity we assume that the initial data satisfy condi-
tion (1.2.3). Then it follows from (1.3.5) that ẇ(t) ≡ 0 for t > r0, and (1.3.4) is
autonomous for large t.

Non-degenerate potentials. First, we consider the case m > 0. Then the phase
curves of the reduced equation (1.3.4) on the phase plane (y, ẏ) are described by
the system {

ẏ(t) = v(t),

mv̇(t) = F (y(t)) − 2νv(t),
t > r0. (1.4.4)

Here ν = 1 for the system (1.1.1) and ν =
√
µT in a more general case, where µ is

the string mass per unit length and T is the string tension. We treat this system
as a perturbation of the system {

ẏ = v,

mv̇ = F (y)
(1.4.5)

with ν = 0, which corresponds to a free oscillator not attached to the string. Let
us establish some simple relationships between the phase portraits of these two
systems.

A. The stationary points of these systems coincide.
B. The vertical component v̇ of the phase velocity vector in the system (1.4.4) is
smaller than in (1.4.5) in the upper half-plane v > 0 and is greater than in (1.4.5)
in the lower half-plane v < 0. The horizontal components of these vectors are the
same (Fig. 2).

Figure 2

C. Hence the phase curves of (1.4.4) intersect those of (1.4.5) downwards in the
half-plane v > 0 and upwards in the half-plane v < 0.

Let us consider the typical example

V (y) =
y4

4
− y2

2
, y ∈ R, (1.4.6)

of a non-degenerate potential. This potential satisfies the conditions (0.1.15).
Furthermore, (1.4.5) has the following phase curves:

• closed curves corresponding to periodic solutions;
• two separatrices entering the point (0, 0) and issuing from the same point;
• three stationary points, namely, a saddle at (0, 0) and two centres at (±1, 0)

(Fig. 3).
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Figure 3

By the property C, we find that (1.4.4) with the potential (1.4.6) has:

• stable foci at the points (±1, 0) for small ν > 0 (stable nodes for large
ν > 0);

• a saddle at the point (0, 0) (Fig. 4).

Figure 4

Now let us consider the case m = 0. Then the phase curves of (1.4.4) with the
potential (1.4.6) are the rays y < −1 and y > 1, the intervals (−1, 0) and (0,+1),
and three stationary points (the stable points ±1 and the unstable point 0) (Fig. 5).

Figure 5

Remark. In this example (the potential (1.4.6) for m > 0), the assumptions of
Lemma 1.4.1 are satisfied and the assertions of this lemma hold. In particular,
each phase curve enters some stationary point as t → +∞. We note that the
limit point may be unstable, like the saddle point (0, 0) in Fig. 4, which has two
separatrices entering it.
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Degenerate potentials. The function

V (y) ≡


k

(y − b1)2

2
, y 6 b1,

0, b1 6 y 6 b2,

k
(y − b2)2

2
, y > b2,

(1.4.7)

where k > 0 and b1 < b2, is an example of a degenerate potential. In the strip
b1 6 y 6 b2 the phase curves are described by the system (1.4.4) with F ≡ 0, that
is, {

ẏ = v

mv̇ = −2νv
⇒ dv

dy
= −α ≡ −2ν

m
. (1.4.8)

Hence the equations of the phase curves in the strip b1 6 y 6 b2 have the form

v = −αy + const . (1.4.9)

In particular, the phase curves for ν = 0 are segments parallel to the y-axis.
From the preceding we obtain the phase portraits of (1.4.4) with the poten-

tial (1.4.7).
1) The phase portrait for ν = 0 is shown in Fig. 6.

Figure 6

We see from the figure that ii) and iii) of Lemma 1.4.1 fail in this case. The
oscillator performs periodic oscillations as t→ +∞.

2) The phase portrait for small ν > 0 is shown in Fig. 7.

Figure 7
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We see from the figure that in this case (as well as for large ν > 0) all solutions
have limits as t → +∞, which agrees with Lemma 1.4.1, iv). We note that the
potential (1.4.7) does not satisfy condition (ND).

1.4.2. Proof of the relaxation property for the reduced equation. Let us
prove Lemma 1.4.1.

i) Equation (1.3.4) implies the energy identity

d

dt

[
m
|ẏ(t)|2

2
+ V (y(t))

]
= −2|ẏ(t)|2 + 2ẇ(t)ẏ(t), t ∈ R. (1.4.10)

The right-hand side is majorized by the function −εẏ2(t) + Cεẇ
2(t) with some

ε, Cε > 0; integrating, we obtain

ẏ2(t)

2
+ V (y(t)) + ε

∫ t

0

ẏ2(τ) dτ 6 C0 + Cε

∫ t

0

ẇ2(τ) dτ for t > 0. (1.4.11)

Hence from (0.1.15) and (1.3.6) we obtain (1.4.1).
ii) It follows from (1.3.13) that the trajectory (y(t), ẏ(t)) is bounded. Hence it

remains to prove that (y, p) ∈ Z if (y(tk), ẏ(tk))→ (y, p) for some sequence tk →∞.
The proof is by contradiction. Suppose that (y, p) /∈ Z. First, we analyze the case
p 6= 0. It follows from (1.4.11) that the right-hand side of (1.4.10) is integrable on
(0,∞). Consequently, the limit

E∞ ≡ lim
t→+∞

[
m
|ẏ(t)|2

2
+ V (y(t))

]
(1.4.12)

exists. Then p 6= 0 implies that V (y) < E∞. Thus, V (y) < E∞ − h in a small
neighbourhood U of the limit point (y, p) for some h > 0. Hence it follows from
(1.4.12) that

m
|ẏ(t)|2

2
> h > 0 for (y(t), ẏ(t)) ∈ U (1.4.13)

for large t. The trajectory (y(t), ẏ(t)) visits U infinitely often. We introduce the
entry and exit times

τ−k = inf{t ∈ [0, tk] : (y(s), ẏ(s)) ∈ U for all s ∈ (t, tk]},
(1.4.14)

τ+
k = sup{t ∈ [tk,∞) : (y(s), ẏ(s)) ∈ U for all s ∈ (tk, t]}.

(1.4.15)

Passing to a subsequence, we can assume that tk+1 − tk > 2 for each k = 1, 2, . . . ;
we set t−k = max(τ−k , tk − 1) and t+k = min(τ+

k , tk + 1). Then the intervals [t−k , t
+
k ]

are disjoint and (y(t), ẏ(t)) ∈ U for t ∈ [t−k , t
+
k ]. The interval [t−k , t

+
k ] will be called

the interval of the kth visit. For large k, the point (y(tk), ẏ(tk)) is very close to
(y, p), and then the duration of the visit satisfies t+k −t

−
k > T = min(1, C/y1) > 0 by

virtue of (1.3.13) with k = 1. Hence it follows from (1.4.13) that the contribution
of each visit to the dissipation integral (1.4.1) admits a lower bound of the form

m

2

∫ t+k

t−k

|ẏ(t)|2 dt > hT > 0. (1.4.16)
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However, the number of visits is infinite, and hence (1.4.1) cannot hold; this is a
contradiction proving that p = 0.

Finally, ∇V (y) = 0, which follows from a similar analysis of visits. Indeed, if
∇V (y) 6= 0, then the contribution of each visit to the dissipation integral (1.4.1)
admits a lower bound similar to (1.4.16). This follows from (1.3.4) in view of (1.4.1).

iii) The relation (1.4.2) implies (1.4.3), since Z is a trapping subset of R and
hence Z is a trapping subset of R2d.

iv) If ẇ(t) ≡ 0 for t > t0, then (1.3.4) acquires the form

mÿ(t) = F (y(t)) − 2ẏ(t), t > t0. (1.4.17)

Let us prove (1.4.3) by contradiction. If y(t) has no limit, then

y− = lim inf
t→+∞

y(t) < y+ = lim sup
t→+∞

y(t).

Hence it follows from (1.4.12) and the relation ẏ(t) → 0 that V (y) = E∞ for
y− 6 y 6 y+. Consequently,

mÿ(t) = −2ẏ(t) if y− < y(t) < y+, (1.4.18)

and the phase curves in the strip y− < y < y+ of the plane y, ẏ are the lines

ẏ = − 2

m
y + const . (1.4.19)

Hence (1.4.3) follows from the fact that ẏ(t)→ 0 (see Fig. 7).

§1.5. Large-time asymptotics

1.5.1. Transitions to stationary states. Here we prove Theorem 1.2.2.
A compact attracting set. First, we construct a compact attracting set A for
the trajectory Y (t) in question.

Definition 1.5.1. A = {Sz : z ∈ Rd, |z| 6 y0}, where the Sz are defined in (1.1.14)
and y0 in (1.3.13).

The set A is compact in EF , since it is homeomorphic to a compact set in Rd.

Lemma 1.5.2. Let all the hypotheses of Theorem 1.2.2 be satisfied. Then Y (t)
EF−→ A as t→ ±∞.

Proof. It suffices to verify that

‖Y (t)− Sy(t)‖R = |||u′( · , t)|||R + |||u̇( · , t)|||R + |ẏ(t)| → 0 as t→∞ (1.5.1)

for each R > 0 (see (0.1.14)). Here the seminorms ||| · |||R converge to zero as t→∞
by virtue of (1.3.7), (1.3.2), and (1.4.1). Hence, (1.4.2) completes the proof.

Proof of Theorem 1.2.2. i) It follows from Lemma 1.5.2 that the orbit O(Y ) is
precompact in EF . Hence the lemma below implies (1.2.1). Let Ω(Y ) be the ω-

limit set of Y (t) in the Fréchet topology of EF : Y ∈ Ω(Y ) if and only if Y (tk)
EF−→ Y

for some sequence tk → ±∞.
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Lemma 1.5.3. Ω(Y ) is contained in S.

Proof. We have Ω(Y ) ⊂ A, since A is an attracting set. Furthermore, the set Ω(Y )
is invariant with respect to Wt, t ∈ R, by virtue of the continuity of Wt in EF .
Hence for each Y ∈ Ω(Y ) there is a C2 curve t 7→ z(t) ∈ Rd such that WtY = Sz(t).
This implies that Sz(t) is a solution of (1.1.7). But then ż(t) = 0, that is, z(t) ≡ z
and Y = Sz ∈ S.

ii) The representation (1.3.7), (1.3.2), with Lemma 1.4.1, i), iii), implies (1.2.2).
iii) It follows from (1.2.3) that ẇ(t) ≡ 0 for t > r0. Then, by (1.2.3) and the

representation (1.3.7),

u(x, t) = y(t − |x|) for t− |x| > r0. (1.5.2)

Hence Lemma 1.4.1 implies (1.2.2).

1.5.2. Damped wanderings. Let us derive Lemma 1.2.3 from formulae
(1.3.4)–(1.3.7). Suppose that (ND) fails to hold. Without loss of generality, we
can assume that

F (z) ≡ 0 for − 1 6 z 6 1. (1.5.3)

We consider the cases m = 0 and m 6= 0 separately.

I. If m = 0, then we can take y(t) to be an arbitrary function with values in [−1, 1]
such that ẏ(t) ∈ L2(R), and set u(x, t) = y(t − x). Then Y (t) = (u( · , t), u̇( · , t)) ∈
C(R,E0) is a solution of (1.1.1). We take, say,

y(t) = sin log(1 + t2) for t ∈ R. (1.5.4)

Then (1.2.2) obviously fails.
II. If m 6= 0, then we again take y(t) in the form (1.5.4), find ẇ(t) from (1.3.4),
and set g+(t) ≡ w(t) and f−(t) ≡ 0. Then (1.3.4) holds, and u(x, t) = y(t − |x|)
by (1.3.7). Consequently, Y (t) = (u( · , t), u̇( · , t), ẏ(t)) ∈ C(R,E) is a solution
of (1.1.1), and (1.2.2) obviously fails to be true.

1.5.3. Transitivity. Let us prove Lemma 1.2.4. Let S± = (s±(x), 0, 0), where
s±(x) ≡ z± ∈ Z. One can construct transitions S− → S+ in various ways. We
choose the simplest way. Let us construct a solution Y (t) = (u( · , t), u̇( · , t), ẏ(t)) ∈
C(R,E) of (1.1.7) such that

y(t) ≡ u(0±, t) =

{
z− for t 6 −1,

z+ for t > 1.
(1.5.5)

We extend y(t) arbitrarily to the interval t ∈ (−1, 1) taking care that y(t) ∈
C2(R,Rd). Then we set g+ ≡ z− and find f− from (1.3.4):

mÿ(t) = F (y(t)) + 2
(
f ′−(−t) − ẏ(t)

)
, t ∈ R. (1.5.6)

Then f ′−(z) ∈ C(R,Rd). Since F (z±) = 0, it follows that

f ′−(−t) ≡ 0 for t 6 −1 and for t > 1. (1.5.7)
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We can determine f− uniquely, say, by requiring that

f−(−t) ≡ z− for t 6 −1. (1.5.8)

Then the outgoing waves g− and f+ are determined from (1.3.8). Since y(t), f−(−t),
and g+(t) are constant for large |t|, so are f+(−t) and g−(t). Hence for the function
u(x, t) defined in (1.3.7), the trajectory Y (t) = (u( · , t), u̇( · , t), ẏ(t)) ∈ C(R,E) is a
solution of (1.1.7), and (1.2.2) holds.

Remarks. i) The solution thus constructed describes the following situation. The
oscillator is at the stationary point z− for t 6 −1; then the wave f−(x− t) comes
to the oscillator and takes it to the state z+ by the time t = 1; furthermore, for
t > −1 this wave generates two outgoing waves, g−(x+ t) for x < 0 and f+(x − t)
for x > 0. These outgoing waves propagate along the strip −1 < t− |x| < 1.

ii) From the viewpoint of physics, the inequality z+ 6= z− implies that the oscil-
lator absorbs radiation if V (z+) > V (z−) or emits radiation if V (z+) < V (z−).

CHAPTER II

A STRING WITH FINITELY MANY NON-LINEAR OSCILLATORS

We consider a system of equations describing the vibrations of an infinite string
coupled with finitely many non-linear oscillators. We prove convergence to sta-
tionary states as t → ±∞. In [31] and [32] this result was obtained under certain
additional restrictions imposed on the initial data.

§2.1. Introduction

We establish the convergence of the type (0.1.11), (0.1.12) to stationary states
for solutions of the system

ü(x, t) = u′′(x, t), x ∈ R \Q, t ∈ R,
u(xk + 0, t) = u(xk − 0, t), t ∈ R, k = 1, . . . , N,

0 = Fk(u(xk, t)) + u′(xk + 0, t)− u′(xk − 0, t).

(2.1.1)

Here Q = {x1, . . . , xN} is a finite set of N points xi ∈ R. For N = 1, the system
coincides with the Lamb system (1.1.1) with m = 0. The solutions u(x, t) take
values in Rd, d > 1. We consider the Cauchy problem for the system (2.1.1) with
initial conditions

u
∣∣
t=0

= u0(x), u̇
∣∣
t=0

= v0(x), x ∈ R. (2.1.2)

The system (2.1.1) is formally equivalent to the non-linear wave equation

ü(x, t) = u′′(x, t) +
N∑
k=1

δ(x− xk)Fk(u(x, t)), (x, t) ∈ R2, (2.1.3)

with non-linearity
∑N
k=1 δ(x − xk)Fk(u) concentrated on the set Q (see (1.1.3)).

From the viewpoint of physics, (2.1.1) describes small transverse vibrations
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Figure 8

of the string, which is subjected to forces Fk applied at the points xk and per-
pendicular to the string. For example, Fk = −Ryk if a linear spring of stiffness
R is attached to the string at xk (Fig. 8). In general, the functions Fk(yk) are
non-linear.

We introduce the ‘configuration space’ Q and the phase space E of finite-energy
states of (2.1.1), which coincides with the space E0 introduced in Chapter I. By L2

we denote the Hilbert space L2(R,Rd) with the norm ||| · |||, and by ||| · |||R the norm in
L2(−R,R;Rd), R > 0.

Definition 2.1.1. i) Q is the Hilbert space {u(x) ∈ C(R,Rd) : u′(x) ∈ L2}, with
norm

‖u‖Q = |||u′|||+ |u(0)|. (2.1.4)

ii) E = Q⊕ L2 is the Hilbert space of pairs (u(x), v(x)), with norm

‖(u, v)‖E = ‖u‖Q + |||v|||. (2.1.5)

iii) EF is the space E, equipped with the Fréchet topology defined by the semi-
norms

‖(u, v)‖R ≡ |||u′|||R + |u(0)|+ |||v|||R, R > 0. (2.1.6)

We assume that conditions (0.1.16)–(0.1.17) hold. Then (2.1.1) is formally a
Hamiltonian system with phase space E and Hamiltonian

H(u, v) =
1

2

∫
R
[|v(x)|2 + |u′(x)|2] dx+

N∑
k=1

Vk(u(xk)) (2.1.7)

for (u, v) ∈ E. We consider solutions u(x, t) such that Y (t) = (u( · , t), u̇( · , t)) ∈
C(R,E) and we rewrite the Cauchy problem (2.1.1)–(2.1.2) in the form

Ẏ (t) = V(Y (t)) for t ∈ R, Y (0) = Y 0, (2.1.8)

where Y 0 = (u0, v0). Let us discuss the statement of this Cauchy problem for func-
tions Y (t)∈C(R,E). The second equation in (2.1.1) makes sense and is satisfied
automatically, since u ∈ C(R2,Rd), which follows from the fact that Y (t) ∈ C(R,E).
The meaning of the third equation in (2.1.1) for N = 1 was explained in Chapter I.
Let us apply these constructions to (2.1.1). Equation (2.1.1) is treated in the sense
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of distributions in the domain x ∈ R \ Q, t ∈ R. Hence it is equivalent to the
d’Alembert formula for all k = 1, . . . , N + 1:

u(x, t) = fk(t− x) + gk(t + x), x ∈ ∆k, t ∈ R, (2.1.9)

where fk, gk ∈ C(R,Rd) since u ∈ C(R2,Rd). It follows that

u̇(x, t) = f ′k(t− x) + g′k(t+ x), u′(x, t) = −f ′k(t− x) + g′k(t+ x) (2.1.10)

for all k = 1, . . . , N and almost all (x, t) ∈ ∆k ×R, where all derivatives are in the
sense of distributions. It follows from the condition Y (t) ∈ C(R,E) that

f ′k( · ), g′k( · ) ∈ L2
loc(R,Rd) ∀ k = 1, . . . , N + 1. (2.1.11)

Now we discuss the third equation in the system (2.1.1).

Definition 2.1.2. In the third equation in (2.1.1),

u′(xk − 0, t) ≡ −f ′k(t− xk) + g′k(t + xk) ∈ L2
loc(R,Rd),

u′(xk + 0, t) ≡ −f ′k+1(t− xk) + g′k+1(t + xk) ∈ L2
loc(R,Rd)

(2.1.12)

for all k = 1, . . . , N .

We note that the functions fk and gk in (2.1.9) are determined up to a constant.
Hence Definition 2.1.12 is unambiguous.

§2.2. Main results

We start from a construction of the dynamics.

Proposition 2.2.1. Suppose that d > 1 and conditions (0.1.16)–(0.1.17) hold.
Then:

i) for each Y 0 ∈ E the Cauchy problem (2.1.8) has a unique solution Y (t) ∈
C(R,E);

ii) the map Wt : Y
0 7→ Y (t) is continuous in E and EF for each t ∈ R;

iii) the energy conservation law (E) holds.

By S we denote the set of stationary states S = (s(x), 0) ∈ E of the system (2.1.8).
The functions s(x) are linear in x on each interval ∆k ≡ (xk−1, xk), k = 2, . . . , N .
They are constant on ∆1 ≡ (−∞, x1) and ∆N+1 ≡ (xN ,+∞). The following
proposition gives a criterion for S to be a non-empty discrete trapping subset of EF .

Proposition 2.2.2. Suppose that conditions (0.1.16)–(0.1.17) hold and, moreover,
d = 1 and all the functions Fk(y), k = 1, . . . , N , are real-analytic on R. Then S is
a discrete trapping subset of EF , and the set {S ∈ S : H(S) 6 h} is finite for each
h ∈ R.

The main result of this chapter implies that S is a point attractor of the sys-
tem (2.1.8) in the Fréchet topology of the space EF .
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Theorem 2.2.3. Suppose that all the assumptions of Proposition 2.2.2 are satisfied
and the initial state Y 0 belongs to E. Then:

i) the orbit O(Y ) of the solution Y (t) ∈ C(R,E) of the Cauchy problem (2.1.8)
is precompact in EF , and

Y (t)
EF−→ S as t→ ±∞; (2.2.1)

ii) if, moreover, d = 1 and all the functions Fk(yk) are real-analytic on R,
then there are stationary states S± ∈ S, depending on the solution Y (t),
such that

Y (t)
EF−→ S± as t→ ±∞. (2.2.2)

In the following we set d = 1, since all proofs remain valid without change for
d > 1.

Remarks. i) Assertion ii) of this theorem follows from i) in view of Proposition 2.2.2.
ii) By Fatou’s lemma it follows from the convergence (2.2.2) in conjunction with

(2.1.7) and (0.1.16), (0.1.17) that (0.1.23) holds.

§2.3. Existence of dynamics and a prioria prioria priori estimates

For N = 1, Proposition 2.2.2 was proved in § 1.2. For N > 1 the proof is
similar. The solution is constructed by the d’Alembert method, that is, by using
the representation (2.1.9). However, for N > 1 we must find the waves repeatedly
reflected by the points xk, k = 1, . . . , N . The non-linear equations for the reflected
waves were considered in detail in § 1.2. Let us show that the energy conservation
law (E) implies the following a priori estimate.

Corollary 2.3.1. Let conditions (0.1.16)–(0.1.17) be satisfied. Then for each solu-
tion Y (t) ∈ C(R,E) of (2.1.8), all the functions yk(t) ≡ u(xk, t), t ∈ R, are bounded:

max
16k6N

|yk(t)| 6 B for t ∈ R, (2.3.1)

where B <∞ depends on the solution.

We actually prove a stronger assertion. Let yk = yk(u) = u(xk) and y = y(u) =
(y1, . . . , yN) for u ∈ Q. We define a potential energy functional U on Q by setting

U(u) ≡H(u, 0) =
1

2

∫ ∞
−∞
|u′(x)|2 dx+

N∑
k=1

Vk(u(xk)), yk ≡ u(xk) (2.3.2)

for u ∈ Q.

Lemma 2.3.2. Let conditions (0.1.16)–(0.1.17) be satisfied. Then

U(u)→∞ as |y(u)| → ∞. (2.3.3)

Proof. Let us show that
sup

U(u)6E
|y(u)| <∞ (2.3.4)
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for any bounded constant E. Indeed, it follows from (2.3.2) and (0.1.17) that

sup
U(u)6E

∫ ∞
−∞
|u′(x)|2 dx = D <∞. (2.3.5)

Hence from the Cauchy–Bunyakovskii–Schwarz inequality we obtain

sup
U(u)6E

|yk − yj | = sup
U(u)6E

∣∣∣∣∫ xj

xk

u′(x) dx

∣∣∣∣ 6 |xk − xj|1/2D1/2 (2.3.6)

for all k, j. In conjunction with (0.1.17), this implies (2.3.4).

Corollary 2.3.1 follows from Lemma 2.3.2 and (0.1.17).

Remark. It follows from conditions (0.1.16) that the Hamiltonian H is Fréchet
differentiable on E. If u′′

∣∣
∆k
∈ L2(∆k) for all k = 1, . . . , N + 1, then the limits

u′(xk ± 0) exist for all k = 1, . . . , N and

δH

δv(x)
= v(x),

δH

δu(x)
= −u′′(x) +

N∑
k=1

(−[u′(xk + 0)− u′(xk − 0)] +∇Vk(yk))δ(x − xk),

where yk ≡ u(xk). Hence (2.1.1) is a formally Hamiltonian system:

u̇ =
δH

δv
, v̇ = −δH

δu
. (2.3.7)

More precisely, if we assume that v̇( · , t) is a regular distribution, then the second
equation in (2.3.7) implies the third equation in (2.1.1).

§2.4. Stationary states

Let us prove Proposition 2.2.2. To find all stationary solutions, we substitute
u(x, t) = s(x) into (2.1.1). Then it follows from the first equation in (2.1.1) that
u′′(x) = 0 for x ∈ R \Q, and so

s(x) = akx+ bk for x ∈ ∆k, k = 1, . . . , N + 1. (2.4.1)

It follows from the condition s′ ∈ L2(R) that

a1 = aN+1 = 0. (2.4.2)

By substituting (2.4.1) in the second and third equations in (2.1.1), we obtain{
akxk + bk = ak+1xk + bk+1 (≡ yk),

0 = Fk(yk) + ak+1 − ak
(2.4.3)
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for all k = 1, . . . , N . It follows from (2.4.2) that the function (2.4.1) is uniquely
determined by its values yk at the points xk, k = 1, . . . , N :

ak =
yk − yk−1

lk
, bk = yk − akxk, k = 1, . . . , N ; bN+1 = yN . (2.4.4)

Here y0 ≡ y1, yN+1 ≡ yN , lk = xk − xk−1, and l1 ≡ lN+1 ≡ 1 (for example). For
the unknowns yk, the system (2.4.3) is equivalent to

Fk(yk) +
yk+1 − yk
lk+1

− yk − yk−1

lk
= 0, k = 1, . . . , N. (2.4.5)

Let SN be the set of all real solutions (y1, . . . , yN) ∈ RN of (2.4.5).

Remark. Since s(x) ∈ C2(∆k) for all k = 1, . . . , N + 1, it follows that the formu-
lae (2.3.7) are valid for the stationary states (s(x), 0) of (2.1.8). Consequently, for
stationary states (2.1.8) is equivalent to the equation

δU

δu
(s) = 0. (2.4.6)

Proof of Proposition 2.2.2. On RN we define the function

UN(y1, . . . , yN) = U(s), (2.4.7)

where s = s(x) is the function (2.4.1) with ak and bk defined in (2.4.4). Then it
follows from (2.3.2) that

UN(y1, . . . , yN) =
N∑
k=1

Vk(yk) +
1

2

N∑
k=2

∣∣∣∣yk − yk−1

lk

∣∣∣∣2lk. (2.4.8)

The above remark suggests that (2.4.5) is equivalent to

∂UN
∂yk

(y1, . . . , yN) = 0, k = 1, . . . , N. (2.4.9)

This equivalence can readily be verified by a straightforward computation.

Remark. It follows from (2.3.3) that

UN(y1, . . . , yN)→∞ as |(y1, . . . , yN)| → ∞. (2.4.10)

Consequently, UN attains its minimum at some point (y1, . . . , yN) ∈ RN , so (2.4.9)
holds and S 6= ∅.

We take y0(λ) = y1(λ) = λ ∈ R. Then we can uniquely determine y2(λ), . . . ,
yN (λ), yN+1(λ) by the formulae (2.4.5) with k = 1, . . . , N . Hence the continuous
map I : EF → R defined by the formula I(u(x), v(x)) = u(y1) is injective on S.
Thus Proposition 2.2.2 is a consequence of Lemma 0.1.4 and the following lemma.
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Lemma 2.4.1. Z = IS is a discrete set in R.

Proof. All the functions yk(λ) are real-analytic on R, k = 2, . . . , N + 1. The
sequence {yk(λ) : k = 2, . . . , N + 1} defines a stationary solution sλ(x) of the
form (2.4.4), (2.4.1) if and only if aN+1 = 0, that is, yN+1 = yN . We obtain the
following equation for λ:

yN+1(λ) = yN (λ). (2.4.11)

Both sides of this equation are real-analytic functions of λ ∈ R. Thus, either the
set Z of all solutions of (2.4.11) is discrete in R, or Z = R. Let us show that the
case Z = R is impossible by virtue of (0.1.16) and (0.1.17) even if the Fk are not
real-analytic.

Lemma 2.4.2. Let Fk ∈ C1(R) for all i, and let the Vk satisfy conditions (0.1.16)
and (0.1.17). Then Z 6= R.

Proof. Suppose the contrary: Z = R. Then

UN(y1(λ), . . . , yN(λ)) = const for λ ∈ R. (2.4.12)

Indeed, since Fk ∈ C1(R), it follows that yk(λ) ∈ C1(R) for all k = 1, . . . , N . Hence
it follows from (2.4.9) that

d

dλ
UN(y1(λ), . . . , yN(λ)) =

N∑
k=1

∂UN
∂yk

dyk
dλ

(λ) = 0, λ ∈ R. (2.4.13)

On the other hand, it follows from (2.4.8) that

UN(y1(λ), . . . , yN(λ)) =
N∑
k=1

Vk(yk(λ)) +
1

2

N∑
k=2

∣∣∣∣yk(λ) − yk−1(λ)

lk

∣∣∣∣2lk. (2.4.14)

Consequently, the second sum on the right-hand side in (2.4.14) is bounded for
λ ∈ R by virtue of (2.4.12) and (0.1.16). Hence

yk(λ)→∞ as y1 = λ→∞ ∀ k = 1, . . . , N. (2.4.15)

But then the first sum on the right-hand side in (2.4.8) tends to infinity as λ→∞
in view of (0.1.17). Hence

UN (y1(λ), . . . , yN(λ))→∞ as λ→∞, (2.4.16)

which contradicts (2.4.12).

Thus the set Z is discrete in R, and hence SN is discrete in RN . It remains to
note that for stationary states (s(x), 0) ∈ E of (2.1.18) the conditionH(s(x), 0) 6 h
is equivalent to UN(y1, . . . , yN)6 h. The set of such points (y1, . . . , yN) ∈ RN is
bounded in RN by (2.4.10). Hence the intersection of this set with the discrete set
SN is finite for any h ∈ R.

Remark. The equations (2.4.9) follow from (2.4.6) and (2.4.5). But the converse is
not obvious. For x ∈ R\Q, (2.4.6) follows directly from (2.4.1). Roughly speaking,
(2.4.9) ensures the validity of (2.4.6) also for x ∈ Q.
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Example 0. Suppose that each potential Vk(y) is a polynomial of even degree
pk + 1 > 2 with positive leading coefficient. Then all assumptions of Lemma 2.4.2
are satisfied. All the Fk(y) are polynomials of degree pk > 1. By (2.4.5), all
functions yk(λ) are polynomials of degree p1 · · ·pk−1. Consequently, (2.4.11) has at
most p ≡ p1 · · · pN roots λ ∈ R, and the set S consists of at most p points.

Remark. If the potentials Vk fail to satisfy condition (0.1.16), condition (0.1.17),
or the analyticity condition, then S need not be discrete, as shown by the following
examples.

Example 1. Let us omit condition (0.1.16). We consider (2.1.1) with N = 2,
x1 = −1, x2 = 1, and

Vk(y) = −y
2

2
, k = 1, 2. (2.4.17)

Then Fk(y) = y is a repulsive force with centre y = 0, and (2.1.1) has a continuum
of solutions of the form

sλ(x) =


λ, x 6 −1,

−λx, −1 6 x 6 1,

−λ, x > 1

(2.4.18)

(see Fig. 9).

Figure 9

Here y1 = sλ(−1) = λ is an arbitrary real number, that is, Y1 = R. The
potentials Vk(y) are real-analytic functions. Condition (0.1.17) is violated but can
be ensured formally. Namely, let us add the elastic force F3(y) = −y with potential
V3(y) = y2/2 at the point x3 = 0. Then condition (0.1.17) is satisfied. The
functions (2.4.18) remain stationary solutions of the new system involving three
forces. Indeed, since sλ(0) = 0 for all λ ∈ R, it follows that the force F3 is zero.
Thus, condition (0.1.17) and the analyticity condition are satisfied, but S is not
discrete.

Example 2. Let us omit condition (0.1.17). We take Vk(y) ≡ const for all i; then
Fk(y) ≡ 0. Consequently, sλ(x) ≡ λ, x ∈ R, is a stationary solution of (2.1.1).
We see that Y1 = R, just as in Example 1. Condition (0.1.16) and the analyticity
condition are satisfied, but S is not discrete.
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Example 3. Let us omit the analyticity condition. We consider potentials Vk(y)
such that

i) Vk(y) ∈ C2(R) satisfies condition (0.1.16);
ii) Vk(y)→∞ as |y| → ∞ for all k = 1, . . . , N , and

Vk(y) = Ckn for y ∈ In ≡ [2n, 2n+ 1], n ∈ Z (2.4.19)

for some constants Ckn ∈ R.

Clearly, such functions Vk exist and are not real-analytic. Furthermore, Fk(y) ≡ 0
for y ∈ In and for all n ∈ Z. Hence the functions sλ(x) ≡ λ, x ∈ R, are stationary
solutions of (2.1.1) if λ ∈ In for some n ∈ Z. It follows that S is not discrete despite
the fact that conditions (0.1.16) and (0.1.17) are satisfied. However, we note that
Y1 6= R in accordance with Lemma 2.4.2.

§2.5. Large-time asymptotics

Here we prove Theorem 2.2.3.

A compact attracting set. First, we construct a compact attracting set A for
the trajectory Y (t) in question. This set consists of piecewise-linear functions. For
a = {(ak, bk) ∈ R2 : k = 1, . . . , N + 1} ∈ (R2)N+1, we set (see (2.4.1))

ua(x) = akx+ bk for x ∈ ∆k, k = 1 . . . , N + 1. (2.5.1)

Let AE = {a ∈ (R2)N+1 : ua(xk − 0) = ua(xk + 0), k = 1, . . . , N ; a1 = aN+1 = 0}.
Then (ua(x), 0) ∈ E for each a ∈ AE.

Definition 2.5.1. We set A = {Sa = (ua(x), 0) ∈ E : a ∈ AE, |u(xk)| 6 B for all
k = 1, . . . , N}, where B is the bound in (2.3.1).

The set A is compact in EF , since it is homeomorphic to a compact set in
(R2)N+1. In the next section, we shall prove the following lemma.

Lemma 2.5.2. Let all assumptions of Theorem 2.2.3 be satisfied. Then Y (t)
EF−→ A

as t→ ±∞.

Proof of Theorem 2.2.3. It follows from Lemma 2.5.2 that the orbit O(Y ) is pre-
compact in EF . Hence the following lemma implies (2.2.1).

Lemma 2.5.3. The orbit Ω(Y ) is contained in S.

Proof. We have Ω(Y ) ⊂ A, since A is an attracting set. Furthermore, Ω(Y ) is
invariant with respect to the group Wt, t ∈ R, since Wt is continuous in EF . It
follows that for each Y ∈ Ω(Y ) there is a C2 curve t 7→ a(t) ∈ AE such that
WtY = Sa(t). This implies that Sa(t) is a solution of (2.1.8). But then ȧ(t) = 0,

that is, a(t) ≡ a and Y = Sa ∈ S.
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§2.6. Attraction to a compact set

Here we prove Lemma 2.5.2. It suffices to construct a function a(t) ∈ C[0,∞;AE)
such that

‖Y (t)− Sa(t)‖R → 0 as t→ +∞ (2.6.1)

for each R > 0 (see (0.1.14)). Without loss of generality, we can assume that
x1 = 0. Then Sa(x1) = b1 and (2.6.1) takes the form∫ R

−R
|u′(x, t)− u′t(x)|2 dx+

∫ R

−R
|u̇(x, t)|2 dx+ |y1(t) − b1(t)| → 0 as t→ +∞.

(2.6.2)
We set b1(t) = y1(t) for t > 0; then in the notation (2.5.1), (2.6.2) acquires the
form ∫ x1

−R
|u′(x, t)|2 dx+

∑
26k6N

∫ xk

xk−1

|u′(x, t)− ak(t)|2 dx

+

∫ R

xN

|u′(x, t)|2 dx+

∫ R

−R
|u̇(x, t)|2 dx→ 0 as t→ +∞ (2.6.3)

if R > a. It remains to verify the convergence in (2.6.3) with some ak(t).

Proposition 2.6.1. For each k = 1, . . . , N + 1 there is a function ck(t) ∈ C(R+)
such that

|||f ′k(t+ · )− ck(t)|||R + |||g′k(t+ · ) + ck(t)|||R → 0 as t→ +∞ (2.6.4)

for every R > 0, and moreover, c1(t) = cN+1(t) = 0 for t ∈ R.

This proposition, together with the d’Alembert formula (2.1.9), obviously implies
the convergence in (2.6.3) with ak(t) = 2ck(t).

2.6.1. Relaxation at infinity. Let us prove Proposition 2.6.1 by using an appro-
priate notion of relaxation describing large-time behaviour of the type (2.6.4). We
introduce the standard Sobolev metric ‖ · ‖R of the space H1(−R,R):

‖y‖2R ≡ |||y(s)|||2R + |||ẏ(s)|||2R. (2.6.5)

Definition 2.6.2. i) A function z(t) ∈ L2
loc(R+) relaxes in L2 if there is a function

z(t) such that
|||z(t + · )− z(t)|||2R → 0 as t→ +∞ (2.6.6)

for each R > 0. In this case we write z(t)
L2

∼ z(t) as t→ +∞.
ii) A function y(t) ∈ H1

loc(R+) relaxes in H1 if there is a function y(t) such that

‖y(t + · )− y(t)‖R → 0 as t→ +∞ (2.6.7)

for every R > 0. In this case we write y(t)
H1

∼ y(t) as t→ +∞.

The following properties of relaxation are obvious.
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R0. Without loss of generality one can set y(t) ≡ y(t) in (2.6.7).
R1. If a function z(t) relaxes in H1, then it also relaxes in L2.
R2. For a function z(t) to relax in L2, it is sufficient that∫ ∞

0

|z(t)|2 dt <∞. (2.6.8)

In this case one can set z(t) ≡ 0; in other words, z(t)
L2

∼ 0 as t→ +∞.

R3. For a function y(t) to relax in H1, it is sufficient that∫ ∞
0

|ẏ(t)|2 dt <∞. (2.6.9)

Indeed, then it follows from the Cauchy–Bunyakovskii–Schwarz inequality that

|y(t+s)−y(t)| =

∣∣∣∣∫ t+s

t

ẏ(τ) dτ

∣∣∣∣ 6 R1/2|||ẏ2(t+ · )|||1/2R → 0 as t→ +∞ (2.6.10)

for |s| 6 R.

R4. If y(t) relaxes in H1, then the derivative z(t) ≡ ẏ(t) relaxes in L2 and

ẏ(t)
L2

∼ 0 as t→ +∞ by virtue of R2.

R5. If z(t) relaxes in L2, then the integral y(t) =

∫ t+h+

t+h−

z(s) ds relaxes in H1 for

every h± ∈ R. Moreover, one can take

y(t) ≡ (h+ − h−)z(t). (2.6.11)

R6. If y(t) ∼ y(t) as t → +∞ in H1

(respectively, L2), then y(t + h) ∼ y(t) in H1 (respectively, L2) for every h ∈ R.

R7. The set of all functions z(t) relaxing in L2 (or H1) is a linear space, and
z1(t) + z2(t) ∼ z1(t) + z2(t) if zj(t) ∼ zj(t), j = 1, 2.

R8. Let F ( · ) ∈ C1(R) and y(t) ∈ Cb(R+). Then y(t)
L2

∼ y(t) implies that

F (y(t))
L2

∼ F (y(t)).

In the following section we prove that the Cauchy data

yk(t) ≡ u(xk, t) and z±k (t) ≡ u′(xk ± 0, t), t ∈ R, k = 1, . . . , N, (2.6.12)

of the solution u(x, t) on the lines x = xk ± 0 relax.

Lemma 2.6.3. All the functions yk(t), k = 1, . . . , N , relax in H1, and all the func-

tions z±k (t), k = 1, . . . , N , relax in L2. Moreover, y1, yN+1
H1

∼ 0 and z1, zN+1
L2

∼ 0
as t→ +∞.

This lemma, together with the d’Alembert formula (2.1.9) and relaxation prop-
erties R0–R8, enables us to prove Proposition 2.6.1.
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Proof of Proposition 2.6.1. Let us prove (2.6.4) for k > 2 (the case k = 1 is
completely similar to this one). The representation (2.1.9) results in the well-known
d’Alembert formula

u(x, t) =
yk(t− (x− xk)) + yk(t+ (x− xk))

2
+

1

2

∫ t+(x−xk)

t−(x−xk)

z+
k (s) ds (2.6.13)

for xk < x < xk+1. Consequently,

u̇(x, t) =
ẏk(t− (x−xk)) + ẏk(t+ (x−xk))

2

+
z+
k (t+ (x−xk)) − z+

k (t− (x−xk))

2
,

u′(x, t) =
−ẏk(t− (x−xk)) + ẏk(t+ (x−xk))

2

+
z+
k (t+ (x−xk)) + z+

k (t− (x−xk))

2
.

(2.6.14)

Hence the relation (2.6.4) with ck(t) = −z+
k (t)/2 follows from Lemma 2.6.3, R7,

R6, and R4.

Remark. One can obtain (2.6.3) directly from (2.6.14) and Lemma 2.6.3. We
derive (2.6.3) from Proposition 2.6.1 for simplicity.

It remains to prove Lemma 2.6.3. To this end, we analyze the energy dissipation
at infinity.

2.6.2. Energy dissipation at infinity.

Lemma 2.6.4.∫ ∞
0

(
|ẏ1(t)|2 + |z−1 (t)|2 + |ẏN+1(t)|2 + |z+

N+1(t)|2
)
dt <∞. (2.6.15)

Proof. It follows from the d’Alembert representation (2.1.9) with k = 1 and k =
N + 1 that (2.6.15) is equivalent to∫ ∞

0

(
|f ′1(t−x1)|2+|g′1(t+x1)|2+|f ′N+1(t−xN )|2+|g′N+1(t+xN )|2

)
dt <∞. (2.6.16)

Here the integrals of f ′1 and g′N+1 are bounded in view of the d’Alembert formulae

f1(−x) =
u0(x)

2
− 1

2

∫ x

x1

v0(s) ds for − x < x1,

gN+1(x) =
u0(x)

2
+

1

2

∫ x

x1

v0(s) ds for x > xN ,

since (u0, v0) ∈ E. To prove (2.6.16) for g′1 and f ′N+1, we introduce the following
energy functional on the interval ∆ = [x1, xN ] for Y = (u(x), v(x)) ∈ E:

H∆(Y ) =
1

2

∫ xN

x1

[
|v(x)|2 + |u′(x)|2

]
dx+

N∑
k=1

Vk(yk), where yk = u(xk).

(2.6.17)
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Let us consider the energy flux from ∆. It follows from (2.1.1) and (2.1.9) with
k = 1 and k = N + 1 that

d

dt
H∆(Y (t)) = u̇u′

∣∣∣x=xN+0

x=x1−0
= |f ′1(t− x1)|2 − |g′1(t + x1)|2

+ |g′N+1(t+ xN)|2 − |f ′N+1(t − xN)|2 for almost all t ∈ R

for piecewise-smooth initial data (u0, v0). By integrating, we obtain the energy
identity

H∆(Y (t)) +

∫ t

0

(
|g′1(s+ x1)|2 + |f ′N+1(s− xN)|2

)
ds = H∆(Y (0))

+

∫ t

0

(
|f ′1(s− x1)|2 + |g′N+1(s+ xN)|2

)
ds for t ∈ R. (2.6.18)

We see that the estimate (2.6.16) for g′1 and f ′N+1 follows from the same estimate
for f ′1 and g′N+1, since

inf
Y ∈E
H∆(Y ) > −∞

by (0.1.16).

2.6.3. The relaxation lemma. Here we prove Lemma 2.6.3 by induction on k.
First, let k = 1 or k = N+1. It follows from (2.6.15) that y1(t), yN+1(t) and z−1 (t),
z+
N+1(t) relax by virtue of R3 and R2, respectively. Consequently, the relaxation

of z+
1 (t) and z−N+1(t) follows from R7, R8, and (2.3.1) in view of the third equation

in (2.1.1) with k = 1, N , that is,

z+
k (t) − z−k (t) = −Fk(yk(t)), t ∈ R. (2.6.19)

Now let k = 2. We prove relaxation of y2(t) and z−2 (t). First, it follows from
(2.6.13) with k = 2 that

y2(t) = u(x2, t) =
y1(t− l2) + y1(t + l2)

2
+

1

2

∫ t+l2

t−l2
z+

1 (s) ds, where l2 ≡ |x2− x1|.

(2.6.20)
Hence relaxation of y2(t) in H1 follows from R5 and R6. Second, let us differenti-
ate (2.6.13). We obtain

z−2 (t) ≡ u′(x2−0, t) =
−ẏ1(t − l2) + ẏ1(t+ l2)

2
+
z+

1 (t + l2) + z+
1 (t− l2)

2
. (2.6.21)

We see that relaxation of z−2 (t) in L2 follows from R2, R6, and R7. The proof of
Lemma 2.6.3 can be completed by induction.
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CHAPTER III

A NON-LINEAR STRING WITH A
SPATIALLY LOCALIZED NON-LINEARITY

In this chapter we establish convergence to stationary states for a one-dimensional
non-linear wave equation with a non-linearity concentrated on a bounded interval.
The result generalizes that of [33].

§3.1. Introduction and main results

We establish the convergence (0.1.11), (0.1.12) to stationary states for solutions
of the Cauchy problem

ü(x, t) = u′′(x, t) + f(x, u(x, t)), x ∈ R, t ∈ R, (3.1.1)

u
∣∣
t=0

= u0(x), u̇
∣∣
t=0

= v0(x). (3.1.2)

The solutions u(x, t) take values in Rd, d > 1. We assume that f(x, u) = 0 for
|x| > a with some a > 0. From the viewpoint of physics, (3.1.1) describes small
transverse vibrations of a string interacting with a non-linear elastic medium on
the interval [−a, a]. We use the configuration space Q and the phase spaces E
and EF introduced in Definition 2.1.1, and we consider general functions f(x, u)
satisfying (0.1.18)–(0.1.20). By V (x, u) = χ(x)V (u) we denote the potential of the
non-linear force. Under these assumptions, (3.1.1) is formally a Hamiltonian system
with phase space E and Hamiltonian

H(u, v) =

∫
R

[
1

2
|v(x)|2 +

1

2
|u′(x)|2 + V (x, u(x))

]
dx for (u, v) ∈ E. (3.1.3)

We consider solutions u(x, t) for which Y (t) = (u( · , t), u̇( · , t)) ∈ C(R,E), and we
rewrite the Cauchy problem (3.1.1)–(3.1.2) in the form

Ẏ (t) = V(Y (t)) for t ∈ R, Y (0) = Y 0, (3.1.4)

where Y 0 = (u0, v0).

Proposition 3.1.1. Suppose that d > 1 and conditions (0.1.18)–(0.1.20) are sat-
isfied. Then:

i) for each Y 0 ∈ E the Cauchy problem (3.1.4) has a unique solution Y (t) ∈
C(R,E);

ii) the map Wt : Y
0 7→ Y (t) is continuous in E and EF for all t ∈ R;

iii) the energy conservation law (E) holds.

Let S be the set of stationary states S = (s(x), 0) ∈ E of the system (3.1.4). We
set Sh = {S ∈ S : H(S) 6 h} for h ∈ R. The set Sh is closed and bounded in E by
virtue of (0.1.18)–(0.1.20) and (3.1.3):

sup
S∈Sh

‖S‖E <∞ ∀h ∈ R. (3.1.5)
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Proposition 3.1.2. Suppose that conditions (0.1.18)–(0.1.20) are satisfied, d = 1,
and F (u) is a real-analytic function on R. Then Sh is a finite set for every h ∈ R.

The main result of this chapter implies that the set S is a point attractor of the
system (3.1.4) in the Fréchet topology of EF .

Theorem 3.1.3. Suppose that the assumptions of Proposition 3.1.1 hold and the
initial state Y 0 lies in E. Then the following assertions hold.

i) The orbit O(Y ) of the solution Y (t) ∈ C(R,E) of the Cauchy problem (3.1.4)
is precompact in EF , and

Y (t)
EF−→ S as t→ ±∞. (3.1.6)

ii) In addition, suppose that d = 1 and F (u) is a real-analytic function on R.
Then there are stationary states S± ∈ S, depending on the solution Y (t), such that

Y (t)
EF−→ S± as t→ ±∞. (3.1.7)

Remarks. i) By Fatou’s lemma, it follows from the convergence (3.1.7) together
with (0.1.18)–(0.1.20) and (3.1.3) that the relation (0.1.23) holds.

ii) For simplicity, we assume that f(x, u) = χ(x)F (u). All results of this chapter
can readily be transferred to the case of non-linearities f(x, u) that do not have this
structure; one only needs to generalize conditions (0.1.18)–(0.1.20) appropriately.

§3.2. Existence of dynamics and a prioria prioria priori estimates

Let us derive Proposition 3.1.1 from the contraction mapping principle. Let W 0
t

be the dynamical group corresponding to the linear equation (3.1.1) with f(x, u) ≡
0. Then the Cauchy problem (3.1.4) for Y (t) ∈ C(R,E) is equivalent to the integral
equation

Y (t) = W 0
t Y

0 +

∫ t

0

W 0
t−τ
(
0, f( · , u( · , τ))

)
dτ. (3.2.1)

By the contraction mapping principle, there is a unique local solution Y (t) ∈
C(−ε, ε;E) for some ε > 0. The continuity of Wt in E and EF for small |t| follows
from this construction by virtue of the corresponding properties of the operators
W 0
t .
To prove the energy conservation law, we assume momentarily that u0(x) ∈

C2(R), v0(x) ∈ C1(R), and

u0(x) = v0(x) = 0 for |x| > R0. (3.2.2)

Then it follows from the integral representation (3.2.1) that u(x, t) ∈ C2(R×(−ε, ε))
and

u(x, t) = 0 for |x| > R+ |t|, R = max(R0, a). (3.2.3)

Hence the energy conservation law (E) follows by standard integration by parts.
Energy conservation for arbitrary (u0, v0) ∈ E follows by a standard continuity
argument.

The energy conservation law (E), together with the existence of a local solu-
tion, implies the existence of a global solution Y (t) ∈ C(R,E) with all the above
properties for all t ∈ R.

However, we need a more subtle characterization of properties of the solutions.
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Proposition 3.2.1. Suppose that conditions (0.1.18)–(0.1.20) are satisfied. Then:

i) the mapping Wt : Y
0 7→ Y (t) is Lipschitz continuous in EF , that is,

‖WtY1 −WtY2‖R 6 LT ‖Y1 − Y2‖R+T for |t| 6 T (3.2.4)

for any R, T > 0, where the constant LT is bounded if the norms ‖Y1‖R+T

and ‖Y2‖R+T are bounded;
ii) the a priori estimate

|u(x, t)| 6 α+ β
√
|x| for x ∈ R, t ∈ R (3.2.5)

holds, where the constants α and β are bounded if the energy H(Y 0) is
bounded;

iii) u(x, · ) ∈ C(R, H1
loc(R)) and u′(x, · ) ∈ C(R, L2

loc(R));
iv)∫ t+1

t

(
|u̇(x, s)|2 + |u′(x, s)|2 + |u(x, s)|2

)
ds 6 e(x) <∞ for t ∈ R (3.2.6)

for almost all x ∈ R, where e(x) may depend on x and H(Y 0) and is inde-
pendent of t ∈ R.

Proof. i) The Lipschitz continuity (3.2.4) for small T > 0 follows from the con-
struction of Wt by the contraction mapping method in view of the corresponding
properties of W 0

t . The generalization to arbitrary T > 0 is obvious.
ii) It follows from (E), (0.1.19), and (0.1.20) that

D = sup
t∈R

∫
|u′(x, t)|2 dx <∞; (3.2.7)

moreover,D is bounded ifH(Y 0) is. Then it follows from the Cauchy–Bunyakovskii–
Schwarz inequality that

|u(x, t)− u(x0, t)| =
∣∣∣∣∫ x

x0

u′(y, t) dy

∣∣∣∣ 6 √D√|x− x0| for x, x0, t ∈ R. (3.2.8)

We take an x0 such that χ(x0) > 0. Then it follows from (E), (0.1.19), and (0.1.20)
that

sup
t∈R
|u(x0, t)| <∞.

Hence (3.2.8) implies (3.2.5).
iii) Let us use the integral representation (3.2.1). The first term on the right-

hand side in (3.2.1) obviously possesses the desired properties, and the same is true
of the integral, since u(x, t) ∈ C(R2).

iv) The estimate (3.2.6) follows from (E), (3.2.5), and the integral representation
of type (3.2.1)

Y (s) = W 0
s−tY (t) +

∫ s−t

0

W 0
θ

(
0, f( · , u( · , t+ θ))

)
dθ, (3.2.9)
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which is valid since the solution is unique. Namely, estimates like (3.2.6) are valid
for the first term on the right-hand side in (3.2.9), since the estimate (E) holds
for Y (t) uniformly in t. The same is true of the second term, in view of the
estimates (3.2.5), which are uniform in t.

Remark. It follows from conditions (0.1.18)–(0.1.20) that the Hamiltonian H is
Fréchet differentiable on E and

δH

δv(x)
= v(x),

δH

δu(x)
= −u′′(x)− f(x, u(x)). (3.2.10)

Hence we can rewrite (3.1.1) in the Hamiltonian form

u̇ =
δH

δv
, v̇ = −δH

δu
. (3.2.11)

§3.3. Stationary states

Let us prove Proposition 3.1.2. To find all stationary states, we substitute
u(x, t) = s(x) in (3.1.1). Then from (0.1.18)–(0.1.20) we obtain{

s′′(x) + f(x, s(x)) = 0 for x ∈ [−a, a],

s(x) = s(±a) for ± x > a,
(3.3.1)

since s′(x) ∈ L2(R). Hence the continuous map I : EF → R given by the formula
I(u(x), v(x)) = u(−a) is injective on S. Now Proposition 3.1.2 is a consequence of
the following assertion.

Lemma 3.3.1. The set Zh = ISh is finite for each h ∈ R.

Proof. The set Sh is compact in EF by (3.1.5) and (3.3.1). Hence Zh is a closed
bounded subset of R. It remains to verify that Zh has no limit points. Suppose the
contrary: there is a sequence

zk ∈ Zh such that zk → z ∈ Zh as k→∞. (3.3.2)

Let sλ(x) be a solution of the problem{
s′′λ(x) + f(x, sλ(x)) = 0 for x ∈ [−a, a],

s′λ(−a) = 0, sλ(−a) = λ,
(3.3.3)

if a solution exists at all. By Λ we denote the set of all λ ∈ R such that sλ(x)
exists. We extend sλ(x) by constants to |x| > a:

sλ = sλ(±a) for ± x > a. (3.3.4)

Then Sλ = (sλ(x), 0) ∈ E for each λ ∈ Λ. We consider the map T : Λ→ R given by
the formula

T : λ 7→ s′λ(a− 0). (3.3.5)
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Then Zh = {λ ∈ Λ : T (λ) = 0, H((sλ(x), 0)) 6 h}. The set Λ is open, and hence

Λ =
∞⋃
1

Λj, Λj = (λ−j , λ
+
j ) 6= ∅, λ−j , λ

+
j /∈ Λ. (3.3.6)

Needless to say, z ∈ Λl for some l. We claim that

|λ±l | <∞ and λ±l ∈ Λ. (3.3.7)

This contradicts (3.3.6) and completes the proof of Lemma 3.3.1.

The map T : Λ → R is real-analytic, and T (z) = 0 for z ∈ Z. Hence T (λ) = 0
for all λ ∈ Λl by virtue of (3.3.2), that is,

(sλ(x), 0) ∈ S ∀λ ∈ Λl. (3.3.8)

Let U be the potential energy functional on the configuration space Q:

U(u) ≡H(u, 0) =

∫ ∞
−∞

(
1

2
|u′(x)|2 + V (x, u(x))

)
dx for u ∈ Q. (3.3.9)

Then (3.3.1) is equivalent to the equation

δU(s) = 0 (3.3.10)

(which follows also from (3.2.11)), where δU is the Fréchet differential of U on Q.
Hence, by (3.3.8),

d

dλ
U(sλ) =

〈
δU(sλ),

d

dλ
sλ

〉
= 0 for λ ∈ Λl, (3.3.11)

and consequently the function λ 7→ U(sλ) is constant on Λl. By analogy with (3.2.5),
this implies the a priori estimate

|sλ(x)| 6 α1 + β1

√
a for |x| 6 a and λ ∈ Λl (3.3.12)

with some α1 and β1 independent of λ ∈ Λl. We now see that the interval Λl
is bounded, since sλ(−a) = λ. On the other hand, it follows from the uniform
estimates (3.3.12) and from (3.3.3) that the set {sλ( · ) : λ ∈ Λl} of functions is
precompact in Q, and we obtain λ±l ∈ Λl.

The proof of Proposition 3.1.2 is complete.

§3.4. Large-time asymptotics

Here we prove Theorem 3.1.3.

3.4.1. A compact attracting set. Let us construct a compact attracting set A
for the trajectory Y (t) in question. By α and β we denote some positive constants
to be chosen later.
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Definition 3.4.1. We set A = Aαβ = {Sλ = (sλ(x), 0) ∈ E : λ ∈ Λ and |sλ(x)| 6
α+ β

√
x for |x| 6 a}.

The set A is compact in EF by virtue of (3.3.1). In the next section, we shall
prove the following lemma on attraction.

Lemma 3.4.2. Let the assumptions of Theorem 3.1.3 be satisfied. Then

Y (t)
EF−→ A = Aαβ as t→ ±∞ (3.4.1)

if the constants α and β are sufficiently large.

3.4.2. Proof of Theorem 3.1.3. i) It follows from Lemma 3.4.2 that the orbit
O(Y ) is precompact in EF . Hence the following lemma implies (3.1.6).

Lemma 3.4.3. The orbit Ω(Y ) is contained in S.

Proof. We have Ω(Y ) ⊂ A, since A is an attracting set. Furthermore, Ω(Y ) is
invariant with respect to Wt, t ∈ R, since Wt is continuous in EF . Hence for
each Y ∈ Ω(Y ) there is a C2 curve t 7→ λ(t) ∈ R such that WtY = Sλ(t). This

implies that Sλ(t) is a solution of (3.2.1). But then λ̇(t) = 0, that is, λ(t) ≡ λ and

Y = Sλ ∈ S.
ii) By analogy with (0.1.23), one can prove that Ω(Y ) ⊂ Sh for h = H(Y 0).

Hence Y (t)
EF−→ Sh by (3.1.6). However, Sh is finite in view of Proposition 3.1.2.

Hence (3.1.7) follows from the continuity of Y (t).

§3.5. Attraction to a compact set

We derive Lemma 3.4.2 from the following lemma on ‘attraction in the mean’,
which will be proved in the next section. For R > 0, we set

ρR(t) = inf
S∈A
‖Y (t) − S‖R for t ∈ R. (3.5.1)

Lemma 3.5.1. For any R > 0,∫ ∞
0

ρ2
R(t) dt <∞. (3.5.2)

Let us choose an arbitrary metric ρ( · , · ) defining the topology EF on E. We
prove (3.4.1) by contradiction. Suppose that there is an ε > 0 and a sequence
tk →∞ such that

ρ(Y (tk),A) > ε for all k = 1, 2, . . . . (3.5.3)

Let us prove that this is impossible, thus completing the proof of Lemma 3.4.2. We
can assume that tk + 1 < tk+1 for each k. Then it follows from (3.5.2) by Fatou’s
theorem that ∫ 1

0

σR(θ) dθ <∞, where σR(θ) =
∞∑
1

ρ2
R(tk + θ). (3.5.4)



86 A. I. Komech

Consequently, σR(θ) <∞ for each θ ∈ Θ(R), where Θ(R) ⊂ [0, 1], and moreover,∫
Θ(R)

dx = 1. Then

ρR(tk + θ) → 0 as k→∞ for θ ∈ Θ =
∞⋂
R∈N

Θ(R) (3.5.5)

for each R > 0. Hence Y (tk + θ)
EF−→ A as k → ∞ for each θ ∈ Θ ⊂ [0, 1], and

moreover,

∫
Θ

dx = 1. Then for each θ ∈ Θ it follows from the compactness of A in

EF that

Y (tk(θ) + θ)
EF−→ Y (θ) ∈ A as k(θ)→∞ for θ ∈ Θ (3.5.6)

for some sequence k(θ)→∞. Since the map W−θ is continuous in EF , we see that

Y (tk(θ))
EF−→W−θY (θ) as k(θ) →∞ for θ ∈ Θ. (3.5.7)

On the other hand, since A is compact in EF , there is a sequence θj ∈ Θ such that
θj → 0 as j →∞ and

Y (θj)
EF−→ Y ∗ ∈ A as j →∞. (3.5.8)

Finally, since that maps W−θ, θ ∈ [0, 1], satisfy the uniform Lipschitz condi-

tion (3.2.4) and W−θjY
∗ EF−→ Y ∗ as j →∞, we obtain

W−θjY (θj)
EF−→ Y ∗ as j →∞. (3.5.9)

But this convergence, together with (3.5.7) for θ = θj , contradicts (3.5.3).

§3.6. Attraction in the mean

Here we prove Lemma 3.5.1. It suffices to construct a function Sλ(t) ∈ A = Aαβ
defined for t > T , where α, β, T > 0 are sufficiently large, with the following
property: ∫ ∞

T

‖Y (t) − Sλ(t)‖2R dt <∞ (3.6.1)

for each R > 0. We claim that one can take λ(t) = u(−a, n) for n 6 t < n + 1,
n = 0, 1, . . . . We can replace the seminorm ‖ · ‖R in (2.1.6) by the equivalent
seminorm with |u(−a)| instead of |u(0)|. Then (3.6.1) with R > a implies that∫ ∞

T

(∫
|x|<a

(
|u′(x, t)− s′λ(t)(x)|2 + |u̇(x, t)|2

)
dx+ |u(−a, t)− λ(t)|2

+

∫
a<|x|<R

(
|u′(x, t)|2 + |u̇(x, t)|2

)
dx

)
dt <∞. (3.6.2)
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3.6.1. Energy dissipation at infinity. We have∫ ∞
0

(
|ẏ−(t)|2 + |z−(t)|2 + |ẏ+(t)|2 + |z+(t)|2

)
dt <∞, (3.6.3)

where y±(t) = u(±a, t) and z±(t) = u′(±a, t). By analogy with (2.6.15), this follows
from the d’Alembert representation

u(x, t) = f±(t− x) + g±(t+ x), ±x > a, t ∈ R, (3.6.4)

and the finiteness of the energy flux to infinity. The proof uses the following energy
functional on the interval ∆ = [−a, a]:

H∆(Y ) =

∫
∆

[
|v(x)|2

2
+
|u′(x)|2

2
+ V (x, u(x))

]
dx (3.6.5)

for Y = (u(x), v(x)) ∈ E.

3.6.2. The non-linear Goursat problem. We consider the following Goursat
problem for the wave equation (3.1.1) with the Cauchy data on the lines x = const:{

ü(x, t) = u′′(x, t) + f(x, u(x, t)),

u
∣∣
x=r

= y(t), u′
∣∣
x=r

= z(t), t ∈ R.
(3.6.6)

Let us prove that the map Gr,x : (y( · ), z( · )) 7→ (u(x, · ), u′(x, · )) is continuous.
Using this continuity, we derive (3.6.2) from (3.6.3) in the next section.

Remark. Although our assumptions (0.1.19) and (0.1.20) ensure that the Cauchy
problem (3.1.1), (3.1.2) is well-posed globally with respect to t, the Goursat prob-
lem (3.6.6) is not well-posed globally with respect to x ∈ R in general. However,
the Goursat problem is well-posed locally with respect to x, which is sufficient for
our purposes. To derive (3.6.1) from (3.6.3), we need only prove that the map Gb,x
is continuous for b = −a and for x in a bounded interval [−R,R]. This continuity
holds ‘for large t’ along the (global) solution u(x, t) in question.

Let σ be an arbitrary interval of length |σ| on R.

Definition 3.6.1. E(σ) is the Hilbert space of functions (y(t), z(t)) ∈ H1(σ) ⊕
L2(σ) such that

‖(y, z)‖E(σ) = |||ẏ|||σ + |||y|||σ + |||z|||σ <∞, (3.6.7)

where ||| · |||σ is the norm in L2(σ).

Definition 3.6.2. E is the space of functions (y(t), z(t)) ∈ H2
loc(R) ⊕ L2(R) such

that

‖(y, z)‖E = sup
|σ|>1

‖(y, z)‖E(σ)√
|σ|

<∞. (3.6.8)

Remark. It follows from Proposition 3.2.1, iii) and iv) that (u, u′)|x=r ∈ E for each
r ∈ R, and moreover, ‖(u, u′)|x=r‖E 6 2e(r).

We consider solutions u(x, t) of the Goursat problem (3.6.6) with (y, z) ∈ E such
that (u, u′) ∈ C(r − ε, r + ε;E) for some ε > 0. For such solutions the Goursat
problem is equivalent to the following integral equation, which is similar to (3.2.1):

Z(x) = W 0
x−rZr +

∫ x

r

W 0
x−s
(
0, f(s, u(s, · ))

)
ds, (3.6.9)

where Z(x) = (u(x, · ), u′(x, · )) and Zr = (y( · ), z( · )).
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Lemma 3.6.3. Suppose that conditions (0.1.18)–(0.1.20) hold and Zr ∈ E. Then
the following assertions are valid.

i) The Goursat problem (3.6.6) has a unique solution Z(x) =: Gr,xZr ∈ C(r− ε,
r + ε;E) with some ε > 0.

ii) The number ε = ε(R,B) > 0 in i) depends only on R and B for r 6 R and
‖Zr‖E 6 B.

iii) Let R,B > 0 be arbitrary. For any |r| 6 R, ‖Zr‖E 6 B, |x− r| < ε(R,B),
and any interval σ ⊂ R, the function Z(x, · )|σ depends only on Zr

∣∣
Σ

, where Σ is
the δ-neighbourhood of the interval σ in R, δ = |x− r|.

iv) For ‖Zr‖E 6 B the map Gr,x : Zr
∣∣
Σ
7→ Z(x, · )

∣∣
σ

is a Lipschitz-continuous
map E(Σ)→ E(σ):

‖Gr,xZ1
r −Gr,xZ2

r ‖E(σ) 6 L(R,B)‖Z1
r − Z2

r ‖E(Σ) (3.6.10)

for |r| 6 R and δ = |x − r| 6 ε(R,B) for any Zjr ∈ E, j = 1, 2. The Lipschitz
constant L(R,B) is independent of the interval σ.

Proof. It follows from the contraction mapping principle that there is a unique
solution Z(x) of the problem (3.6.9) such that Z(x) ∈ C(r− ε, r+ ε;E(σ)) for any
closed interval σ ⊂ R. The point is that ε = ε(R,B) > 0 is independent of the
position of σ, since we have uniform estimates for ‖Zr‖E(σ) with bounded |σ| > 1
and since the problem is homogeneous with respect to t.

The properties iii) and iv) follow from the same properties of the Picard approx-
imations in view of the corresponding properties of the operators W 0

x−s.

3.6.3. Proof of attraction in the mean. Let us derive (3.6.2) from (3.6.3) with
the help of the estimates (3.6.10). We set λ(t) = y−(n) ≡ u(−a, n) for n 6 t < n+1,
n = 0, 1, . . . .

Step 1. It follows from the estimates (3.6.3) and the d’Alembert representa-

tion (3.6.4) that the integral

∫ ∞
T

∫
a<|x|<R

· · · in (3.6.2) converges.

Step 2. The integral

∫ ∞
0

|u(−a, t)− λ(t)|2 dt also converges, since it is equal to

∞∑
n=0

∫ n+1

n

|y−(t)− y−(n)|2 dt 6
∫ ∞

0

|ẏ−(t)|2 dt <∞.

Step 3. Let us verify that
∞∑
n=N

∫ n+1

n

(∫ a

−a

(
|u′(x, t)− s′λ(n)(x)|2 + |u̇(x, t)|2

)
dx

)
dt <∞ (3.6.11)

for sufficiently large N . Proposition 3.2.1, iv) implies that the solution Z(x) =
(u(x, · ), u′(x, · )) = G−a,x(y−( · ), z−( · )) of (3.6.9) satisfies

‖Z(r)‖E 6 B = 2e(a) for r ∈ [−a, a]. (3.6.12)

On the other hand, for each n = 0, 1, . . . the function

Sn(x) = (sλ(n)(x), 0) = G−a,x(y−(n), 0)

is also a solution of (3.6.9). Hence Lipschitz continuity (Lemma 3.6.3, iv)) enables
us to estimate the difference between these two solutions.



Attractors of non-linear Hamiltonian equations 89

Lemma 3.6.4. For all sufficiently large n > N there are solutions Sn(x) =
G−a,x(y−(n), 0) of (3.6.9). Moreover,

‖Z(x)−Sn(x)‖2E([n,n+1]) 6 L
∫ n+1+δ

n−δ

(
|z−(t)|2+|ẏ−(t)|2

)
dt for n > N (3.6.13)

for each x = −a+ δ ∈ [−a, a].

We shall prove this lemma later. Bu summing (3.6.13) over n > N and by
integrating with respect to x ∈ [−a, a], we obtain (3.6.11) in view of (3.6.3).

Step 4. We claim that Sn(x) ∈ Aαβ for sufficiently large α, β > 0. Indeed, it

follows from (3.6.11) and the estimate (3.2.7) that

D = sup
n>N

∫
|s′λ(n)(x)|2 dx <∞ (3.6.14)

for sufficiently large N . Moreover, it follows from (3.2.5) with x = −a that

d = sup
n>0
|sλ(n)(−a)| <∞. (3.6.15)

Hence from (3.6.14), we obtain by analogy with (3.2.7) that

sup
n>0
|sλ(n)(x)| 6 α+ β

√
x for |x| 6 a (3.6.16)

if α and β are sufficiently large.

Proof of Lemma 3.6.4. We set ε = ε(a, B) and prove the existence of a solution
Sn(x) = G−a,x(y−(n), 0) and the estimate (3.6.13) for −a+(k−1)ε 6 x 6 −a+kε
by induction on k = 1, 2, . . . for k 6 2a/ε+ 1.

First, let k = 1. On the interval −a6x6 − a+ ε the existence of a solution
Sn(x) =G−a,x(y−(n), 0) and the estimate (3.6.13) for all n > 0 follow readily from
the inequality (3.6.10) with r = −a for the two solutions Z(x) and Sn(x), since
Z(−a) − Sn(−a) = (y−( · )− y−(n), z−( · )) and

‖Z(−a) − Sn(−a)‖2E([n−δ,n+1+δ]) 6 C(δ)

∫ n+1+δ

n−δ

(
|z−(t)|2 + |ẏ−(t)|2

)
dt. (3.6.17)

The estimate (3.6.10) can be applied to these solutions by virtue of (3.6.12) with
r = −a and a similar estimate for Sn(−a) = (y−(n), 0).

Now let k = 2. On the interval −a + ε 6 x 6 −a+ 2ε the existence of Sn(x) =
G−a,x(y−(n), 0) = G−a+ε,xSn(−a + ε) and the estimate (3.6.13) can be proved by
repeated application of (3.6.10) with sufficiently large n > N1 such that

‖Sn(−a + ε)‖E 6 B for n > N1. (3.6.18)

The existence of a number N1 <∞ with this property follows from (3.12) and the
estimate (3.13) with x = −a+ ε, which has already been proved, since∫ n+1+δ

n−δ

(
|z−(t)|2 + |ẏ−(t)|2

)
dt→ 0

as n→∞ by virtue of (3.6.3).
Induction on k completes the proof.
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[13] M. J. Esteban, V. Georgiev, and E. Séré, “Stationary solutions of the Maxwell–Dirac

and Klein–Gordon–Dirac equations”, Calc. Var. Partial Differential Equations 4 (1996),
265–281.
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