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1. Introduction

The paper concerns a mathematical problem of foundations of statistical
physics. We consider the Second Law of thermodynamics in a reversible infinite
dimensional Hamiltonian equations. The Law states that the energy current
is directed from higher temperature to lower temperature. We derive the Law
for wave equations in R® with constant and variable coefficients. The key role
plays the mixing condition of Rosenblatt- or Ibragimov—Linnik-type for an ini-
tial measure. The mixing condition is introduced initially by R.L. Dobrushin
and Yu.M. Suhov in their approach to the problem of foundation of statisti-
cal physics for infinite-particle systems, [4,5]. The mixing condition is used
also in the paper [2] which concerns a discrete version of our result for a 1D
chain of harmonic oscillators. Let us explain our result in the case of constant
coefficients,

i(z,t) = Au(z, t), z € R?,
(1.1)

u|t:0: uo(x), z't|t:0: vo ().

We use the notation Y (t) = (YO(t),Y'(t)) = (u(,t),a(-, 1)), Yo = (YL,Yy) =
(ug,vg)- Then (1.1) becomes

Y(t)=F(Y (), teR, Y(0) =Y. (1.2)

We assume that the initial datum Yj is a random function with zero mean living
in a functional phase space H of states of finite local energy; the distribution of
Yy is denoted by po. Denote by p;(dY), t € R, the measure on H giving the
distribution of the random solution Y'(t) to problem (1.2). We assume that the
initial correlation functions Q (z,y) = E(Y{ (z)Yy (v)), i,j = 0,1, and some of
their derivatives are continuous and decaying as |z — y| — oo. In particular, the
initial mean energy density is bounded:

El[Vuo(2)[* + [vo(2)[*]
= [V, 'vago(way)“y:c + Q(l)l(xam) <C<oo, z€ R®. (1.3)

Next, we assume that the initial correlation matrix (QF (z,y))i j=o1 has the
form

. qz—](m - y)’ z3,Y3 <—a,
o@y) =4 (1.4)
@l (x—y), z3,y3> a.

Here ¢/ (x — y) are the correlation functions of some translation-invariant mea-
sures p4 with zero mean value in H, = = (21,%2,%3), ¥ = (y1,92,y3) € R?,
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and a > 0. The measure yg is not translation-invariant if q” # q'ﬁ Finally,
we assume that the initial measure o satisfies a mixing condition. Roughly
speaking, it means that

Yo(z) and Yp(y) are asymptotically independent as |z — y| — oo. (1.5)
Our main result establishes the (weak) convergence
Mt — Mooy T — 00, (1.6)

to an equilibrium measure p,, which is a translation-invariant Gaussian mea-
sure on H. The similar convergence holds for ¢ - —oo since our system is
time-reversible. We construct generic examples of the random initial datum
satisfying all assumptions imposed. We get the explicit formulas (2.13)—(2.15)
for the limiting correlation matrices.

We apply our results to the case of the Gibbs measures p+ = g+. Formally

gelduo,dun) = - exp (=5 [(Vuo@)P + oo (@)P) d)
x [Tduoe) dvo(a), pu = T2, (1.7

where Tt > 0 are the corresponding absolute temperatures. We adjust the
definition of the Gibbs measures g+ in Section 3. The Gibbs measures g+ have
singular correlation functions and do not satisfy our assumptions (2.10). Respec-
tively, our results can not be applied directly to g.. We reduce the problem by
a convolution with a smooth function § € D = C$°(R?): we consider Gaussian
processes u4 corresponding to the measures g+ and define the “smoothened”
measures g as the distributions of the convolutions u * 6. The measures gf.
satisfy all our assumptions, and the convergence g — ¢’ follows from (1.6).
This implies the weak convergence of the measures g; — g, since 6 is arbitrary.
We show that the limit energy current for g, is formally

Joo = —00-(0,0, T4 —T-).
The infinity means the “ultraviolet divergence”. This relation is meaningful in
the case of smoothened measures g%_,

0
Joo = —Cp - (0707T+ - T7)7
if () is axially symmetric with respect to Ozs; Cy > 0 if (z) # 0. This
corresponds to the Second Law of thermodynamics.
We prove the convergence (1.6) in three steps using the strategy of [10,18,19].

I. The family of measures p;, t > 0, is weakly compact in an appropriate
Fréchet space.
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II. The correlation functions converge to a limit: for ¢,5 = 0,1,
Y@y = [Y@Yi@m@) - @@y, toc (18
ITI. The characteristic functionals converge to the Gaussian:

(D) = / exp(i(¥, WNm(dY) = exp{ — 2 0u(@, W)}, 100, (19)

where ¥ is an arbitrary element of the dual space, and Q. is the quadratic
form with the integral kernel (Q% (z,y))s,j=0,1-

Property I follows from the Prokhorov Compactness Theorem by using meth-
ods of [23]. First, one proves a uniform bound for the mean local energy with
respect to the measure y;. The conditions of the Prokhorov theorem then fol-
low from Sobolev’s Embedding Theorem. We deduce the uniform bound from
the explicit expression for the correlation functions @’ (z,y). The expression
follows from the Kirchhoff formula for the solutions to (1.1). In particular, in
the case ug(z) = 0, we have

u(z,t)

/ vo(z') dS(a"), (1.10)

Si (J))

" ant

where dS(z') is the Lebesgue measure on the sphere Sy(z) : |z’ — x| =t.

Property II also follows from explicit formulas for Q3 (z,y). The formula
(1.10) allows to express the correlation functions Q;’ (z,y) in terms of integrals
over spheres of radius ¢. In the limit, £ — oo, the spheres become the planes.
Respectively, Q¥ (z,y) is expressed in terms of integrals of the Radon transform
of initial correlation functions Q¢ (z,y). We reduce the expressions to some
convolutions.

Remark 1.1. The dynamics (1.1) is translation invariant, and its Fourier trans-
form has a very simple form. However, the proof of (1.8) in Fourier transform is
not transparent and requires additional efforts since our main assumption (1.4)
is stated in the coordinate space.

Remark 1.2. Our proof of the convergence (1.8) in Sections 5 and 6 does not
allow a simplification in the particular case of the Gibbs measures (1.7). This
is related to the slow long-range decay of the correlation function Q3°(z,y) ~
[z =yl |z —y| = oo.

We deduce Property III using the method of [10]. The method is based on
a modification of the Bernstein ‘room-corridor’ argument, and it is suggested
by the structure of the Kirchhoff formula (1.10): roughly speaking, (1.10) is
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“the sum” of weakly dependent random values divided by the square root of
their “number”. This observation allows us to reduce the proof of (1.9) to the
Lindeberg Central Limit Theorem, similarly to [10]. We do not consider the
case n = 2: it requires a different approach since the strong Huyghen’s principle
breaks down.

Let us note that our mixing condition is weaker than that in [10]: this is
necessary in the application to the Gibbs measures (1.7). Namely, we introduce
different mixing coefficients for partial derivatives of the random solution at
t = 0: we assume that the long-range decay of the mixing coefficients depends
on the order of the derivatives. Respectively, our proof requires new tools (see
Sections 7, 9, 10). For instance, the splitting (7.15) and the bound (9.4) play a
crucial role.

All the three steps I-I11 of the argument rely on the mixing condition. Simple
examples show that the convergence to a Gaussian measure may fail when the
the mixing condition fails (see [10]).

In conclusion, we extend the convergence in (1.6) to the equations with vari-
able coefficients, that are constant outside a finite region. The extension follows
immediately from our result for constant coefficients, using method of [10]. The
method is based on the scattering theory for the solutions of infinite global
energy, which is constructed in [10].

The paper is organized as follows. In Section 2 we formally state our main
result. We apply it to the Gibbs measure in Section 3. Sections 4-10 deal
with the case of constant coefficients: the compactness (Property I) and the
convergence (1.8) are proved in Sections 4-6. In Section 7 we introduce the
‘room-corridor’ method, in Section 8 we prove the convergence (1.9), and in
Sections 9, 10 we check the Lindeberg condition. In Section 11 we establish
the convergence (1.6) for variable coefficients. Appendix 11 concerns the Radon
transform and convolution, and Appendix A concerns the Gaussian measures
in the weighted Sobolev spaces.

Let us note that equation (1.1) describes a continuous n-dimensional family
of harmonic oscillators. Therefore, our result is an extension of the results [2,21]
that concern the infinite one-dimensional chains of harmonic oscillators.

Our formulas for the limit correlation functions correspond to the discrete
one-dimensional version [2]. For instance, the position-momentum correlations
have a power long-range decay. On the other hand, in [16,20] the limit corre-
lation functions are constructed for the finite chains of IV oscillators with the
“Langevin” boundary value conditions. In the limit N — oo the correlation
functions have an exponential long-range decay. This means that this limit
leads to another stationary measure of the infinite chain, different from [2,21].

The convergence to statistical equilibrium for the wave equation is estab-
lished in [10] (see also [18,19]) for the case of a translation-invariant initial
measure po. This corresponds to our result in the particular case T = T..
The similar result has been proved for the Klein—Gordon equation, [9,14]. If
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the initial measure o coincides with one of the equilibrium limit measures fioo,
the corresponding random solution Y'(¢) is mixing in time, [6-8].

2. Main results

2.1. Notations

We assume that the initial datum Yj belongs to the phase space H defined
below.

Definition 2.1. # = H. (R®) @ HY_(R?) is the Fréchet space of pairs Y =
(u(z),v(x)) of real functions u(z), v(z), endowed with the local energy semi-
norms

1Y% = / (lu@)? + |Vu(@)]? + |v(z)[*) dz < 00, VR > 0. (2.1)
|z| <R
Proposition 2.1 follows from [15, Theorems V.3.1, V.3.2] as the speed of
propagation for equation (1.1) is finite.

Proposition 2.1.

i) For any Yy € H there exists a unique solution Y (t) € C(R,H) to the
Cauchy problem (1.2).

ii) For any t € R, the operator U(t) : Yo — Y (¢) is continuous in H.
iii) The energy inequalities hold for any R > 0,
IU(®)Yollr < C@)IYollr+e, t€R. (2.2)

Let us choose a function {(z) € C§°(R?) with ¢(0) # 0. Denote by H (R?),
s € R, the local Sobolev spaces, i.e. the Fréchet spaces of distributions u €
D'(R?) with the finite seminorms

lulls,r = 1A°({(z/R)u) | 2(re),

where A%v := F_ L ((k)*0(k)), (k) := \/]k|>+ 1, and © := Fw is the Fourier

k—z
transform of a tempered distribution v. For ¢ € D = C$°(R?) define Fap(k) =
J exp(ik - z)y(z) dx.
Definition 2.2. For s € R denote H* = HL *(R®) @ H, (R?).

loc

Using the standard techniques of pseudodifferential operators and Sobolev’s
theorem (see, e.g. [13]), it is possible to prove that H® = H C H~¢ for every
e > 0, and the embedding is compact. We denote by (-,-) the scalar product in
real Hilbert space L?(R?) or in L?(R®) ® R” or in its various extensions.
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2.2. Random solution. Convergence to equilibrium

Let (Q,0,P) be a probability space with the expectation E, let B(#) denote
the Borel o-algebra in 1. We assume that Yy = Yy(w, z) in (1.2) is a measurable
random function with values in (H, B(#H)). In other words, (w,z) — Yy(w,z)
is a measurable map Q x R®> = R? with respect to the (completed) o-algebra
¥ x B(R?) and B(R?). Then Y (t) = U(t)Y; is also a measurable random
function with values in (#H, B(#)), due to Proposition 2.1. We denote by o (dYp)
the Borel probability measure in H that is the distribution of Yy. Without loss
of generality, we assume (Q,%,P) = (H,B(H), uo) and Yp(w,z) = w(z) for
po(dw) x dz-almost all (w,z) € H x R3.

Definition 2.3. p; is the Borel probability measure in # that is the distribution
of Y (t):

1(B) = uo(U(=t)B), VB e B(H), teR. (2.3)

Our main goal is to derive the convergence of the measures p; as t — oo.
We establish the weak convergence of y; in the Fréchet spaces H™¢ with any
e>0:

HE
e — oo a8 T — 00, (2.4)

where o is the Borel probability measure in the space H. By definition, this
means the convergence

/ F) e (dY) - / f¥)poe(dY) s t— oo (2.5)

for any bounded continuous functional f(Y) in the space H .
Definition 2.4. The correlation functions of the measure p; are defined by

P (z,y) =E(Yi(z,t)Y(y,1)), 4,j=0,1, (2.6)
for almost all z,y € R® x R? if the expectations in the right-hand side are finite.

Weset D=D®D, and (Y, ¥) = (YO, ¥0) + (Y1, ¥l) for Y = (YO, V) € A,
and ¥ = (¥° ¥!) € D. For a Borel probability measure y in the space H we
denote by i the characteristic functional (Fourier transform)

AT = / exp(i(Y, ¥)) p(dY), ¥ € D.

A measure p is called Gaussian (with zero expectation) if its characteristic
functional has the form

() = exp (~3Q(8, ), TeD,
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where Q is a real nonnegative quadratic form in D. A measure p is called
translation-invariant if

wTwB) = u(B), VBeB(H), heR’
where T,Y () =Y (z — h).

2.3. Mixing condition

Let O(r) denote the set of all pairs of open subsets .A, B C R? of distance
p(A, B) > r, let a = (a1, as,a3) with integers a; > 0. Denote by 0;4(A) the
o-algebra of the subsets in H generated by all linear functionals

Y = (DY) /D"Y’ z)dz, |o| <1-i, i=0,1,

where 9 € D with suppy C A. For d = 0,1 let o4 be the o-algebra generated
by 0 with i + |a| > d, i.e.

We define the Ibragimov — Linnik mixing coefficient of a probability measure pg
on H (cf. [11, Definition 17.2.2]) for d;,ds = 0,1 as follows:

$ur.aa(r) = sup sup [10(AN B) — po(A)uo(B)|

(AB)EO(r) A€ 04, (A), B € 0y (B) po(B)
wo(B) >0

Definition 2.5. The measure pg satisfies the strong uniform Ibragimov—Lin-
nik mixing condition if for any dy,d> = 0,1

Gdr,a5(r) = 0, T — 00. (2.7)
Below we specify the rate of the decay.

2.4. Main theorem

Let vq € C[0,00) denote some continuous nonnegative nonincreasing func-
tions in [0, 00) (d = 0,1, 2) with the finite integrals,

/1+r “Lya(r) dr < oco. (2.8)
0

We also denote v(r) = vo(r). We assume that the measure pgo satisfies the
following conditions SO-S3:
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S0. po has the zero expectation value,

EYo(z) =0, 2R’ (2.9)

S1. The correlation functions of pg have the form (1.4).

S2. The following derivatives are continuous and the bounds hold,

ij Crvg(lz—y|) ifd=0orl
a,B8 )t d )
d=1i+j+|af+ ||

S3. The measure po satisfies the strong uniform Ibragimov—Linnik mixing
condition, and for d;,d2 = 0,1

Gar,a,(r) < CV3(r), d=di+ds. (2.11)

Remark 2.1. Condition S2 implies (1.3). Condition S3 implies estimates (2.10)
with i+ |a| < 1,7+ |8 <1.

Remark 2.2. Conditions S2 and S3 allow various modifications. We choose the
variant which allow an application to the case of the Gibbs measures (1.7)
(see the next section). Our mixing condition S3 is weaker than the mixing
condition [10] which corresponds to S3 with the functions vy 1(r) < v2(r). On
the other hand, the estimates (2.10) with d > 2 are not required in [10].

Let £(z) = —(4x|z|)~! be the fundamental solution of the Laplacian, i.e.
AE = §(z) for x € R®, and P(z) = —iF~'sgnks/|k| where F~! is the inverse
Fourier transform. Define, for almost all 2,y € R®, the matrix-valued function

Qoo(@,9) = (QL(2,9)), ;0 = (@@~ ), ;0. > (2.12)
where
& = T+ Ex @ +a)
+Px (g% — ™ —a° + ¢, (2.13)
@ = - = i[qir°+q1_° —g -
+Px(gf — g — AP +A¢Y)],  (214)
Go = —AgQ = %[q}} +q = AP +¢%)

+Px A - ¢ — ¢ +¢")]. (2.15)
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The definition of the convolutions with P in formulas (2.13)—(2.15) is adjusted
in Appendix 11 (formula (6.10)).
Denote by Qo (¥, ¥) the real quadratic form in D defined by

@@= Y [ QLepVevedd. (@0

£3=0.1 payRs
Our main result is the following theorem.
Theorem 2.1. Let SO-S3 hold. Then

i) the convergence in (2.4) holds for any € > 0;

ii) the limiting measure o, is a Gaussian equilibrium measure on H;

iii) the limiting characteristic functional has the form

floo (¥) = exp ( - %Qm(qx,\p)), TeD,

where Q. is the quadratic form with the integral kernel Q. (z,y) defined
in (2.12)—(2.15).

Theorem 2.1 can be deduced from Propositions 2.2 and 2.3 below, by using
the same arguments as in [23, Theorem XIL.5.2].

Proposition 2.2. The family of the measures {u;, t > 0} is weakly compact
in H™¢ with any € > 0.

Proposition 2.3. For any ¥ € D,

() = /exp(i(Y,\I’)),ut(dY) s exp (—%Qoo(\I!,\IJ)), t—oo. (2.17)

Proposition 2.2 is proved in Section 4 for a simple particular case, and in
Section 6 for the general case. Proposition 2.3 is proved in Sections 7, 8.

2.5. Examples

2.5.1. Gaussian measures

We construct the Gaussian initial measures pg satisfying S0-S3. Let us take
some Gaussian measures py in H with correlation functions ¢7 (z — y) which
are zero for ¢ # j, while for 1 = 0,1,

¢i(z) = F'gi(k), (2.18)
(L+ k)87 g%E(k) € L'(R®), 0<d=2i+s<4, |y/<1+d,
gik) > o.
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Then p satisfy S0-S2 with the functions v4(r) = C(147)~1~¢ for a sufficiently
large C' > 0. Let us take the functions (1 € C*°(R) such that

Ci(s) = 1, for +s5 > a,
8= 0, for +s < —a.

Let us introduce (Y_,Y}) as a unit random function in the probability space
(H x H,p— x py). Then YL are Gaussian independent vectors in H. Define pg
as the distribution of the random function

Yo(z) = ¢ (23)Y- () + (4 (23) Yy (7). (2.19)

Then correlation functions of g are

z)](may) = ql_](x - y)<7($3)cf(y3) + qfi.-](x - y)C+($3)C+(y3)J 27.7 = 07 17
(2.20)

where = (21, 22,23), ¥ = (Y1,¥2,y3) € R?, qif are the correlation functions
of the measures p4. Then SO and S1 hold, and S2 follows for po with the same
functions v4(r) as for py. Let us assume, in addition to (2.19), that

qi(:c) =0, |z|>ro. (2.21)

Then the mixing condition (2.7) holds since ¢q, 4,(r) = 0, r > 1o, and S3
follows. For instance, (2.19) and (2.21) hold if G% (k1, ko, k3) = f (k1) f(k2) f(ks)
with

fz)=(1- cos(roz/\/g))/f)N, 2z €R,
where N > 0 is an integer, 2N —s > 1 (s = 4 — 2i).

2.5.2. Non-Gaussian measures

Let us choose some odd nonconstant functions f°, f! € C*(R) with bounded
derivatives. Let us define pg as the distribution of the random function

(O (@)), f1(Y(2))),

where (Y°,Y?) is a random function with the Gaussian distribution yg from
the previous example. Then S0, S1 and S3 hold for u§ with some appropriate
functions vy since corresponding mixing coefficients ¢ ;. (r) = 0 for r > rg.
Therefore, SO implies for the corresponding correlation functions Q¢(z,y) = 0
for |z — y| > ro, so S2 also holds. The measure pf is not Gaussian since the
functions f°, f! are bounded and nonconstant.

3. Application to Gibbs measures

We apply Theorem 2.1 to the case when py are the Gibbs measures (1.7)
corresponding to different positive temperatures T # T'.
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3.1. Gibbs measures

We will define the Gibbs measures g+ as the Gaussian measures with the
correlation functions (cf. (1.7))

PRz —y) = -Ti€(z—y),
(z—y) = Tiéz—y),
@z-y) = 24—y =0, (3.1)

where z,y € R®. The correlation functions qiij do not satisfy condition S2
because of singularity at z = y. The singularity means that the measures g4
are not concentrated in the space H. Let us introduce appropriate functional
spaces for measures g.. First, let us define the weighted Sobolev space with
any s,a € R.

Definition 3.1. H, ,(R?) is the Hilbert space of the distributions u € S'(R?)
with the finite norm

[ulls,a = [{2)* A%ul|pyrs) < 00,  A’u= F~H[(k)*a(k)]. (3.2)
Let us fix arbitrary s,a < —3/2.

Definition 3.2. G, is the Hilbert space Hyy o(R?) @ H; o(R?), with the
norm
1Y s, = lulls41,0 + [[V]ls,0 <00, Y = (u,v).

Introduce the Gaussian Borel probability measures g% (du), g} (dv) in spaces
H5+1,Q(R3) and HS,Q(R3), respectively, with characteristic functionals

93) = / exp{i(u, ) }g% (du) = exp{@wiliaw)}’
gzll:('lp) = /exp{i(v,w)}gi(dv) = exp{_«;}j—;ﬁ)},

¢ € D. By the Minlos theorem, [3], the Borel probability measures g%, g}
exist in the spaces Hyy1,4(R?), Hyo(R?), respectively, because formally (see
Appendix A)

/ 124 1,062 (du) < oo, / ol agh(do) < 00, s,a<-3/2.  (3.3)

Finally, we define the Gibbs measures g+ (dY’) as the Borel probability mea-
sures g% (du) x gl (dv) in Gs 4. Let go(dY) be the Borel probability measure
in Gs,, that is constructed as in the example of the previous section with
p+(dY) = g+ (dY). It satisfies SO and S1 with ¢ from (3.1). However, go does
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not satisfy S2. Therefore, Theorem 2.1 cannot be applied directly to g = go.
Gs,o C H® by the standard arguments of pseudodifferential equations, [13]. The
next lemma follows by Fourier transform from the finite speed of propagation
for wave equation.

Lemma 3.1. The operators U(t) : Yy — Y (¢) allow a continuous extension
H? = H.

3.2. Convergence to equilibrium

Let Y; be the random function with the distribution gg, hence ¥, € G, a.s.
Denote by g; the distribution of U (t)Yp.

Theorem 3.1. Let s < —5/2. Then there exists a Gaussian Borel probability
measure go, in H® such that

e
gt —7 Joo, T — 00. (3.4)

Proof. Let us fix an s < —5/2 and introduce the random function Y := A®Yp,
Y§ € Go,q a.s. Let us denote by g the distribution of U(t)(A®*Yp), ¢t € R. Then
9i = ¢A™%, and gy = g{A® since A*(U()Yo) = U(t)(A®Y;). Let us denote by
Q3 (z,y) the (matrix) correlation function of measure g;.

The measure g§ obviously satisfies SO. The correlation function Q§(z,y) also
satisfies S1 with a suitable modification: (1.4) holds up to 6(1 + |z| + [y|)™~
with any 6, N > 0 and with a = a(d§). This follows from the convolution
representation Q§(z,y) = Qo(z,y) * (As(x)As(y)) since Ag(z) = F~H(k)® is a
function from L. .(R?) with a rapid long-range decay. S2 also holds for g§ with
the functions v4(r) = C(1 + r)~!17¢ for a sufficiently large C' = C(s,T4) >
0. It follows immediately for s < 0 with sufficiently large |s| from the same
convolution representation. For s < —5/2 it follows by the pseudodifferential
operators techniques.

Then the conclusions of Lemmas 4.1, 5.1 hold for the random function Yy’
and the correlation functions Qf (z,y) of the measures g;. The proofs are almost
unchanged. Hence, the convergence (2.4) holds for the Gaussian measures gj:
for any € > 0,

S ’H_E 8
9 — 95, t— o0, (3.5)

where g5, is a Gaussian measure in #H. Therefore,

HS—E
gt — Jo, t— 00,

since g; = g; A®. This implies Theorem 3.1. O
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The limiting measure go, is Gaussian with the correlation matrix Q. =
(QY(x,v))i,j=0,1, where

QRy) = Ba—y) = —5(T +TIEE 1), (35)
Q) = ~QU@y) = d-y) = LT ~T)P@—y), ()

Qu(z,y) = giz—y)

%(T+ +T )5z —y). (3.8)

The identities (3.6)—(3.8) follow formally from (3.1) and from (2.13)—(2.15). For
the proof we apply (2.13)—(2.15) to the initial measure g§.

3.3. Limit energy current density

Let u(z,t) be the random solution to (1.1) with the initial measure pg satis-
fying S0-S3. The mean energy current density is E j(z,t) = — Eu(z,t)Vu(z, t).
Therefore, in the limit ¢ — oo,

Ej(2,t) = Joo = Vo (0).
Respectively, in the case of the “Gibbs” initial measure go, the expression (3.7)
for the limiting correlation function implies formally that
- T, —T_
Joo = 75—

where [VP](z) = —F~![ksgnks/|k|](2). Hence, formally we have the “ultravi-
olet diverging” limit mean energy current density,

- T+—T,/ksgnk3
Too = T2 k]
RS

VP(0),

dk = —c0 - (0,0, Ty — T_).

On the other hand, for the convolution U(t)(Y, * 0) the corresponding limiting
mean energy current density is finite,

~6 T+—T_/ ~ o o ksgnks

B P—— =—Cp- T, —T_

Joo 2(271’)3 |6(k)| |k| dk Co (0305 + )a
R3

if 6(z) is axially symmetric with respect to Ozs; Cy > 0 if 8(x) Z 0.

4. Compactness of the measures family

Proposition 2.2 can be deduced from the bound (4.1) below with the help of
the Prokhorov theorem [23, Lemma II1.3.1] as in [23, Theorem XII.5.2].
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Lemma 4.1. Let S0-S2 hold. Then the following bounds hold
sup E|U(#)Yp||% < 00, R > 0. (4.1)
>0
Proof. Assumption S2 and Proposition 2.1 iii) imply by the Fubini theorem the
existence of the correlation functions in (2.6), where Y?(z, t) are the components
of Y(z,t) = (Y°(z,t),Y(z,t)). Therefore, Definition 2.1 implies
EVColh = E [ Waopa+E [ [9VaP
|z|<R lz|<R
+E / V' (2, 4)[2da
|lz|<R
= / Q?O (SE, .’E)d.f(} + / vm va?O (SL', y)|y:z dx
|z|<R |z|<R
- [ @ "
|z|<R

We bound for example the integral of Q9°(z, ) in (4.2) in the particular case
when Yy = uo(z) = 0 almost surely. The general case will be considered in
Section 6 as well as the bounds for two remaining integrals in (4.2). Let us
assume for a moment that the function Yj' = vy is continuous almost surely.
Then the Kirchhoff formula (1.10) gives by the Fubini theorem,

1
P@.9) = / (o' 2"y dS(a') dS(z"). (4.3)
St (z)xSt(z)
Let us assume for a moment that
d(', 2"y =0 for |&' —z"|>re, i,j=0,1. (4.4)

Then (4.3) implies the uniform bound

D(z,z) < ¢ / dS(z')dS(z") < I=Ciry, teR. (4.5)

Hence, the bound follows,
P(x,z)de < CIR?, teR. (4.6)
|z|<R

Next we remove the additional assumption (4.4) by the following known lemma,
on spherical integral identity, [12].
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Lemma 4.2. Let h(r) € C(0,+00). Then for any ro > 0 and z" € Si(x) the
identity holds,

h(e' — o)) dS(a') = 2n / rh(r) dr. (4.7)

{z' €S (z): |2’ —2"|>ro} To

Therefore, (4.3), S2 with d = 2 and Lemma 4.2 with ro = 0 imply (see (2.8)),

C
00 < r_ ! "
P < g | e -2 dse) s
St(z)xSt(z)
2t
< Cl/rl/g(r)dr < Oy < oo (4.8)
0

Then (4.6) follows without the assumption (4.4). The assumption on the a.s.
continuity of vp(z) can be removed by a convolution with a function § € D. O

5. Convergence of correlation functions

Here we prove the convergence (1.8) of the correlation functions of measure
pt- This implies the convergence of the characteristic functionals fi; in the case
of Gaussian measures pg, f+.

Lemma 5.1. Let S0-S2 hold. The following convergence holds as t — oo
J@y) = QL(x,y), Va,yeR®, Vi,j=0,1. (5.1)

Proof. We prove the lemma again for ¢ = j = 0 in the particular case, ug = 0
almost surely. The general case is considered in Section 6. Let us assume for a
moment that the function vg(z) is continuous almost surely. Then the Kirchhoff
formula (1.10) and the Fubini theorem give

9(x,y) = Eu(z, t)u(y,t) = (4;)2 / dsS(z") / 'y dS(y). (5.2)

St (ZU) St (?J)

This integral is the convolution of @Q§'(z,y) in both variables z,y with a dis-
tribution of compact support. The convolution of distributions with compact
support is commutative. Therefore, the assumption on the a.s. continuity of
vo(z) can be removed by a convolution with a function # € D. Changing the
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variables ' = x + wt in the right-hand side of (5.2), we get

1
T | @) [ edaasw)
St () St (y)
1 ! !
- &7 / dS(w) / (o 4 wt,y') dS (@)
|w|=1,w3<0 St (y)
1 1 !
v | 8@ [ Qerety)ase)
|w|=1,w3>0 St (y)
= I*(tamay) + I+(t,£l?,y). (53)

Let us recall that v(r) = va(r).

Definition 5.1. C,(R?) is the space of functions f(y) € C(R?) such that
| ()| < Cr(ly|) with a constant C € R.

Let us define for f(y) € C,(R?)

Rf(v) = dS(w) / fp)d?p, veERS.  (5.4)

|w|=1,+w3>0 Pw=v-w

(4m)?

Here d?p is the Lebesgue measure on the plane p-w = v -w. Note that the
integrals with + are identical and converge due to (2.8). Hence, the operator
R : C,(R?®) — Cy(R?) is continuous with the obvious norm in C,: ||f|lc, =

sup [f(y)l/v(ly])-

yERS3
The convergence (5.1) follows for ¢ = j = 0 from (5.2), (5.3) and Lemmas 5.2
and 5.3. O

Lemma 5.2. Let S2 hold. Then for z,y € R?,

Lemma 5.3. Let f(y) € C,(R?). Then
1
Rf = _Zg*f' (5.6)
Lemma 5.3 is proved in Appendix A.
Proof of Lemma 5.2. For a moment we assume additionally (4.4). Denote by
I; the inner integral entering (5.3):
I = In(z,y,w,t) = / (1)1(37 +wt,y') dS(y'). (5.7)

St (y)
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Change the variables y' = y + wt + p and denote R = |z — y|. Assumption (4.4)
implies that Q! (z + wt,y + wt + p) = 0 for |p| > ro + R, hence (5.7) becomes

h= [ QFetuty+at)dso) 8)
St(—wt)ﬂBo
where By denotes the ball |p| < ro + R. The sphere Si(—wt) contains the point
0, hence in a neighbourhood of the origin the sphere converges to its tangent
plane wt ast — co.

Further, consider the case ws < 0 and w3 > 0 separately. For w3 < 0 and
sufficiently large t > t(w) > 0,

T3 +wst < —a, ys+wst+ps<-—a, for |p|<ro+R.

Then S1 implies that

o' (z +wt,y+wt +p) =q" (z—y —p). (5.9)
Therefore, if wz < 0,
i, — / @z —y—p)d3p, t— o0 (5.10)
winBy

that coincides with the inner integral in the right-hand side of (5.4), with f = ¢'1
and v = x — y. Similarly for w3 > 0. Lemma, 5.2 is proved with the additional
assumption (4.4). At last, Lemma 4.2 and S2 give the uniform smallness of
integral (5.7) over |p| > ro + R with large ro. Therefore, (5.10) holds for any
w with ws # 0. Hence, (5.5) follows by the Lebesgue theorem on dominated
convergence. O

6. Correlation functions in general case

We prove Lemmas 4.1 and 5.1 in the general case. Let us assume for a
moment that ug € C*(R?) and vy € C(R?) almost surely. Then we apply the
general Kirchhoff formula for the solution u(z,t) to the Cauchy problem (1.1):
formally,

/ (Ug(a:') + %uo(:c') + Vuo(z") nw(a:')) dS(z'), (6.1)

St (w)
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where ng(z') = (' — x)/|z" — z|. It implies similarly to (5.2),

L) = g | @) [ (@ay)

Sz(z) St(?/)
+ Vy (vz’ng(wla yl) : nz(xl)) : "y(yl)]

1
+ 5[y + Q8 ) + I, Q) -y ()

Q) () + QR )] (62)

+ [Var Q@ y') - ma(@') + Ty Q4" y') -y (4)] ) dS ().
Proof of Lemma 4.1 in the general case. We will prove the uniform bounds for
9(z,z), Ve - VyQP (2, y)|2=y and Q;'(z, ). Then (4.2) implies (4.1).
Step 1. Relation (6.2) represents Q?°(z,y) as the sum of convolutions with
DB QE (x,y) in both variables z,y, with 0 < d = k+I+|a|+|A| < 2. Therefore,
V- V,QP°(z,y) is the similar sum involving Dg‘;gle (z,y) with 2 < d < 4. The
similar representation holds for Q}!(z,y). Hence, V.-V, Q% (z,y) and Q}'(z,y)

can be estimated by the method of the proof of Lemma 4.1 in Section 4. Indeed,
due to S2 with d = 2, (2.8) and Lemma 4.2 we get (cf. formula (4.8)),

Ve - Vy 20($ay)|w=y + Q%l(m,m)
/ vo(lz' — 2""])dS(2") dS(2") < C1 < oo.

St (z) X St (z)

Step 2. Q9°(z,y) requires the particular attention due to the presence in the

integrand of the functions D;’;@, k(z',y") that are estimated by v4(|z' — y'|)
with d = 0, 1. In this case due to (2.8) and Lemma 4.2 we have to analyze (6.2)
more carefully. The corresponding contribution of D‘;,’g, k(z',y") with d =
kE+1+|al+1|8=0,11is

1 1 1

00 — ! - 10¢,.1 1 . Z—N00 !

@)= oz | 456@) [ {[QE )+ 4 )] aS)
Si(z) St (y)

Lemma 6.1. The integral I?°(z,y) converges to zero as t — co.

Proof. The assumption S2 implies

C 1 1
e | 5@ [ Flamie =y + e’ - yD]asw).
Sq(z) Se(y)

117°(2,9)| <

(6.3)



62 T.V. Dudnikova, A.I. Komech and H. Spohn

Therefore, Lemma 4.2 implies

2t

C 1 1
Pl < qap [ 8@ [ (1m0 + o) o
Si(z) 0
2t
T T
< 0 [ (3n0) + Fum) dn (6.4)
0
Now (2.8) implies the convergence to zero by the Lebesgue theorem. O
Lemma 4.1 is proved in the general case. O

Proof of Lemma 5.1 in the general case. We will consider 4 = j = 0. The other
cases can be considered similarly.

Step 1. The integrals of Dg,’g, k(a',y') with d = k+1+|a|+|8| < 1 enter-
ing (6.2), converge to zero by Lemma 6.1. For the integrals of D;‘,’z, k(z',y")
with 2 < d < 4, the convergence follows by the method of proof of Lemma, 5.2.

Let us define the operator

= w W 2 v 3 -
PIO) =g | 5@ [ Viowds  veRL (03

|w|=1,w3>0 vV w=p-w

for the functions f € CLR?) := {f € LL.(R?) : |Vf(y)| € C,(R*} (cf.
Definition 5.1). With the obvious norm in C}: || fllc1 = sup,cgs [V f(¥)|/v(ly]),
the operator P : CL(R?) — Cy(R?) is continuous. For instance, the operator P
can be applied to ¢ with 1 < k+1 < 2 since ¢§' € CL(R?) by S2. Similarly, the
operator R (see formula (5.4)) can be applied to D% with 2 < k+1+ |a| <4
since Dg% € C,(R?). Now, (6.2) and the method of proof of Lemma 5.2 imply

the convergence (5.1) with ¢ = j = 0 to the limiting function
¢ =R + ¢ — AP + ¢°)] +Pgd - ¢* — ¢2° +¢']. (6.6)

Step 2. It remains to prove that ¢%° = ¢%°. First, let us prove that

1
RAGY = —Zqio. (6.7)

In fact, A(RA¢YP) = —Aq¢}°/4 due to (5.6), hence f(z) = RA¢YP —¢%° is a
smooth harmonic function in R®. On the other hand, A¢%® € C,(R?) by S2.
Hence, g(z) = RA¢Y € C,(R?), and moreover,

g(z) = 0, |z| = 0. (6.8)
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Indeed,
[ adeas|s [ ovhdp=2n [nma ©9)
Pw=T-w PWw=T-w Tw

similar to (4.7) with ¢ = oo. This integral is bounded uniformly in |w| =1 and
converges to zero if |z| — 0o and z = |z|6 with 8-w # 0. Therefore, (6.8) follows
from (5.4) by the Lebesgue theorem. Further, |f(z)| < |g(z)| + vo(|z|) again
by S2. At last, vo(r,) — 0 for some sequence r,, — 0o due to (2.8). Finally, the
maximum principle and (6.8) imply for any fixed z € R?,

umNS@gmwwﬂmeam n — 0.
Therefore, f(z) = 0 and (6.7) is proved. Further, let us consider the terms
with P in (6.6). Obviously, Pf is a convolution. We prove the next lemma in
Appendix 11. Let us recall that P(z) = —iF~'[sgnks/|k|].

Lemma 6.2. For f € D we have
1
Pf= ZPai:f. (6.10)

Let us assume for a moment that all the correlation functions gk!(-) are
smooth and have a rapid decay. Then (6.6) coincides with (2.13) by (6.7) and
Lemmas 5.3, 6.2. In the general case we consider the formula (6.10) as the
definition of the convolutions with P, entering (2.13)—(2.15). Lemma 5.1 is
proved in the general case. m|

7. Bernstein’s argument for the wave equation

In this and the subsequent section we develop a version of the Bernstein
‘room-corridor’ method. We use the standard integral representation for the
solutions, divide the domain of integration into ‘rooms’ and ‘corridors’ and
evaluate their contribution. As the result, (U(t)Yy, ¥) is represented as the
sum of weakly dependent random variables. We evaluate the variances of these
random variables that will be important in next section.

For the wave equation the similar method has been used in [10, Section 6] for
an odd n > 3. Our mixing condition S3 is different from [10] (see Remarks 2.1
and 2.2 ). Respectively, the method of [10] requires a suitable modification.

Denote by &(z) = E(z,t) = 6(|z|> — 2)/27 the fundamental solution to
the wave equation. The support of & is the sphere S; = {z € R? : |z| = t}.
Therefore, the dynamical group U(t) of the problem (1.2) is the convolution
operator

U)o =G +Yy, t>0, (7.1)
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where

_ gt gt
gt - ( Agt é',t > . (72)

Next we introduce a ‘room-corridor’ partition of the space R®. Given ¢ > 0,
choose d = dy > 1 and p = p; > 0 and an integer N = Ny > 0. Asymptotic
relations between ¢, d; and p; are specified below. Define

ar = —t, b1=a1+d; a2=b1+p, b2=a2+d; ...,bNEaN+d=t.
(7.3)

We divide the sphere S; by the planes orthogonal to the axis Oz3 into the slabs
which we call the ‘rooms’ R} (k = 1,...,N), separated by the ‘corridors’ C},
(k=1,...,N—1),

Ri = {.73 €S5;: x3 € [ak,bk]}, C}é = {.73 €S;: 23 € [bk,ak+1]}. (74)
Here x = (x1,%2,23), d is the width of a room, and p of a corridor. Then
Sy = (URf)U (UC). (7.5)

For any region ¥ C S; we define the distribution & s with the support in 3
1
(Ers,0) = —— /o(z) dS(z), 6€D.
’ 47t
b

Note that for any ¢ > 0

Eia) = = L8|z - £) = jEila) - V (FE(@))-

For any region & C S; we define the distribution & 5,
; 1 T
St,z(w) = gé’t,g(m) - V(;Et,g(x)) (76)

Then for ¥ = S; we have f,"t,g = &. Let us denote

(s iy
Gix = ( Ay Euv ) : (7.7)

We define the random variable

I (%) = (G,x * Y0, 9), (7.8)
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where ¥ € D is a fixed function from (2.17). For instance, define

rf = L(Rf), cf = L(C}). (7.9)
(7.5) implies that
N, Ny—1
(U(t)Yo, ®) = (Ge x Yo, ) =Y rf + Y cf. (7.10)
k=1 k=1

Lemma 7.1. Let SO, S3 hold. The following bounds hold for t > 1 and for
arbitrary k:
Efrf]”
Elcff?

< cwa, (711)
< o)t (7.12)
Proof. We prove the following estimate: for any region ¥ C S,
E|L(D)]* < O(D)[2|/¢. (7.13)

Then (7.11) and (7.12) would follow from this estimate with ¥ = R¥ and ¥ =
RE, respectively, as |RF| = 2ntd; and |CF| = 2ntp,.

Now we prove (7.13). From (7.7) and (7.8) it follows that for ¥ = (¥°, ¥1),
TeD,

I(Z) = <£t,E X Uuop, lIl()) + <gt’2 % Vo, ‘I’O) — (&,2 % VUO, V‘I’l) —|— <gt,2 X Vo, ‘I’1>
(7.14)

Substituting (7.6) in the first and the last terms in the right-hand side of (7.14),
we get

1) = (Eumruo/t, 8) = ((FEx) « Vuo, ¥°) = (€15 + Vuo, V')
1 T
=+ (gt,E * Vg, \I’O) + ;(Et,g * Vg, l:[»'1) + <(¥Et,g) * 'U(),VIIJI>.

Hence,
M .
L) =Y 1, (7.15)
j=1

where I] = Cj(t)(gg’z x w;,0;). Here M < 6, ¢;(t) is a bounded function for
t >8>0, w,; is one of t~ ug, Vug or vo, é_’tj,z is one of & 5 (z) or 2& »(2)/t, 8;
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is one of D*W! with |a| < 1. Therefore, for ¢t > 1

E|L(Z)) < CZEW
j=1

M

CY (E[(E s+ w)) (@) (] 5 xw;) ®)],0;(2)0; ()

]:

lejt%‘ // 200 (@—z~(y —p))

j=1

VAN

IA

+ Y, DHPQP(z-z—(y-p)

lal=]8|=1
+ Qi (@=2 —(y—p))) dS() dS(p), 0;@)0;(») ) - (7.16)
We have
supp¥ C By, = {z € R®: |z| < 1o} (7.17)

with an ro > 0. Since 2,y € suppb; C supp¥ C B, [t —2—y +p| >
(|2 — p| — 2r¢) 4, where s, = max(s,0), s € R. Since v4(r) are non-increasing
functions, (7.16) and S3 imply

E|1,(5)? (718)
< o) [asG) [ (m(lz = ol = 2r0)0) + val(lz = 51 = 200)1) S

) )

Then Lemma 4.2 and (2.8) imply as in Lemma 6.1,

ELE®P < OB [ (ra(e =200 + Sl —2r0)) dr <& L.
0

8. Convergence of characteristic functionals

In this section we complete the proof of Proposition 2.3. If Q. (¥, ¥) =0,
Proposition 2.3 is obvious, due to (5.1). Thus, we may assume that

Qo (T, T) #£0. (8.1)
Choose 0 < 6 < 1, and
o~ (In(t+ 1)1 p~ 10 o oo, (8.2)
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Lemma 8.1. The following limit holds true:

N, (yg(pt) + (%)1/2) + N2 (l/o(pt) + %) 50, t—=oo.  (83)

Proof. Since v4(r) are non-increasing functions, (2.8) implies

Vo(r)ln(r+1):/yo(r) ds</:0—gds§0<oo.
0 0

Then (8.2) implies (8.3). 0
By the triangle inequality,
(®) = e ()] < |Eexp{i(U Y0, 1)} - Eexp {iY" rt }|
+|exp{ - %Zt E(rf)?} —exp { - %Qm(m,m)}‘
+|Eep (i i} —exn { - % JECPH

I + 15 + I3, (84)

where the sum ), stands for ZQI;I. We are going to show that all the summands
I, I, I3 tend to zero as t — oo.

Step (i). Equation (7.10) implies

I = ‘ Eexp {iztrf}<exp {iztcf} - 1)‘ <D Elef| < (Elcf)

(8.5)
From (8.5), (7.12) and (8.2) we obtain that
I < CN(pe/t)/? -0, t— 0. (8.6)
Step (ii). By the triangle inequality,

1 1
L < 53 E0H? - 0n(T,0)| < 5]0i(T,T) - Qu(T, U)

+o () - eeb|+ 5[ (Tt) - o w)
= Doy + s + Dps, (8.7)

where Q; is the quadratic form with the integral kernel (Q%(z,y)). Equation
(5.1) implies Iz; — 0, t = 0c. As to Ia, we first obtain that

In = 5|E (X ) - Eby| < > IErtrl (8.8)

The next lemma is a corollary of ( [11, Lemma 17.2.3]).
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Lemma 8.2. Let £ be a random value measurable with respect to the o-algebra
04,(A), n be a random value measurable with respect to the o-algebra o4,(B),
and dist(A,B) > h > 0.

i) Let (E[£?)'/? < a, (E|n|?)'/? < b. Then
|Eén—EEEq| < Cab ¢/, (h).

ii) Let |¢| < a, |n| < b almost surely. Then
|[E{n —ESEn| < Cab ¢d17d2(h)-

We apply Lemma 8.2 to deduce that Iy, — 0 as t — oo. Note that rf =
(G, rr * Yo, ¥) is measurable with respect to the o-algebra oy, (AF), where

AP ={z —y: y€e R} zcsupp¥ C By, }.
The distance between the different rooms R is greater or equal to p; according
to (7.3) and (7.4). Then p(A¥, A) > p(RF, Rl) — 2rg > p;y — 2ry. Hence (8.8)
and S0, S3 imply, together with Lemma 8.2 i),

Iy < CNPwo((py — 2r0)1) — 0, t — o0, (8.9)

because of (7.11) and Lemma 8.1. Finally, it remains to check that In3 — 0,
t — 0o. By the Cauchy—Schwarz inequality,

E(T) e T )|
NS ek + 2( E (Ztrf)z)l/z (Ntzt E |c,’;|2)1/2. (8.10)

(7.11), (8.8) and (8.9) imply E(}",rF)? < C1 + CoNvo((pr — 270)4) < C3 < 0.
Then (7.12), (8.10) and Lemma 8.1 imply

I3

IN

IN

I3 < CthZpt/t + CgNt(pt/t)l/Z —0, t— o0. (811)

So, In1, In2, I3 tend to zero, as t — oo. Then (8.7) implies
1 £\2
I < §‘Zt E(rk)? — Qw(m,\p)‘ -0, t-oo0. (8.12)

Step (iii). It remains to verify

I = ‘ Eexp{iztrf} —exp{ - %Zt E(rf)2}‘ —0, t— o0 (8.13)
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Using Lemma 8.2, ii) we obtain

Ny
‘ Eexp {zztrf} - H Eexp{irf}‘
k=1

N Ny

< |Eexp{ir§}exp {z rf} — Eexp{ir; } Eexp {zerH
k=2 k=2
N, N,
+ ‘ Eexp{ir; } Eexp {z rf} - H Eexp{z’rf}‘
k=2 k=1
N,

N,
< yy((pe — 2ro)4) + ‘ Eexp {z rf} - H Eexp{irf}‘.
k=2 k=2

We then apply Lemma 8.2, ii) recursively and get, according to Lemma, 8.1,

N,
‘ Eexp {zztrf} — H Eexp{irf}‘ < N2 ((pe — 2r0)4) = 0, t— oo.
k=1

(8.14)
It remains to verify the convergence
0 ok 1 k)2
‘ ,};[1 Eexp{iry} — exp{ - 5215 E(r}) }‘ -0, t—o0. (8.15)

According to the standard statement of the Central Limit Theorem (see, e.g.,
[17, Theorem 4.7]) it suffices to verify the Lindeberg condition: for any € > 0

1
o—tzt E.oor Irf[? =0, t— o0 (8.16)

Here o, = ), E(r})?, and Es f = E(Xsf), where X; is the indicator of the event
|f| > &62. Note that (8.12) and (8.1) imply

o = Quo(P, V) #£0, t— 0.
Hence it remains to verify that for any € > 0
Zt E.[rF> =0, t— . (8.17)

We check (8.17) in Sections 9, 10. Finally, (8.4) and (8.6), (8.12)—(8.15) imply
Proposition 2.3.
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9. The Lindeberg condition

The proof of (8.17) can be reduced to the case when for some b > 0 we have
almost surely that

Yo(z)| <b, = €R?. (9.1)

The general case can be covered by the standard cutoff argument in the following

way. We decompose Yy in two summands: the first one, satisfying the estimate

(9.1), and the remainder. For large b, the dispersion of the remainder is small

due to S2, S3 and Lemma 8.2, i), then the dispersion (7.11) of the corresponding

variables r¥ is small uniformly in ¢. The last fact follows from the proof of (7.11).
Further, we estimate

1 1
k2 _ k k|2 2 k|2
Zt Eclri|” = zt|Rt| A Ec [r|” < dmt T TRE| Ee | "
Therefore, it remains to prove
1 k2 _ -2
pmax TR Ec.|rf]" =o(t™"), t— 0. (9.2)
The Chebyshev inequality implies
. 1
E-Irf? < S ElrhI 93)
Using (7.15), we get
Elr|* =E|L +---+ " <CM)E(L | + -+ [I]"). (94)
Therefore, (9.2) follows from the estimate
1 _
mgx@ E| <& gy *wk, 0k > [*=o(t?), t— oo. (9.5)
£

We prove the following proposition in the next section.

Proposition 9.1. Assume that (9.1) holds, and w = t 'ug,Vug or vg. Then
for any ¥ C S; the folling bound holds

_ by4 _ .
E|l<&sswd>|'< c<a)(¥) =2, (9.6)

Here 5’{2 is one of & x(z) or %5,5,2(2),' 6; is one of D*W! with |a| < 1.
This proposition implies (9.5):

1 - 1 b4 RF _
T E|< c‘,’t,Rf * Wy, Op > |4 < —kC’(‘Il) - |Rf|2 < C(b,@)% =o(t 2),
|RE| |RF| t t

t t

since |RF| < 4wt?/N;, where N; — oo. (8.17) is proved.
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10. The fourth order moment functions

Proof of Proposition 9.1. We deduce Proposition 9.1 from the bounds for the
fourth order moment functions.

Define m(()l)(i) :=Ew(z)---- w(z;), Z = (21,...,21), where w(zg) = vo(z)
for every k = 1,...,1, or w(z) = Vug(zi) for every k = 1,...,1, or w(z) =
t~Lug(zy) for every k = 1,...,1. We have suppf C B,, for 7o > 0. Then the
left-hand side of (9.6) is estimated as follows,

E|<&srwd>]< //| 4z _ 5)|dS() dz (10.1)

where dS(Z) := dS(#1) ...dS(z4). Therefore, we have to prove that

/|m (T —2)|dS(Z) < CV*|2|?, T € By,. (10.2)

Step 1. Let us prove an estimate for the moment functions mé4) (y1,Y2,Y3,Y4)
by the method [10, Section 6.2]. We use the mixing condition for different
configurations of the points y1,y2,y3,y4 in the space R3.

Lemma 10.1. The following bound holds

m§? (y1, v, ys,94)] < 4D* (”22 (%'yl N y2|) % (1|y1 - 2|)t74)

1.
#1600 3 (oA — sl - A vz — wal

4,7=0,2

1 . 1
v = vl - 53 (e —wal)- (103)
Proof. Let us divide the space R? in three regions I, Ir, Iz by two hyperplanes
that are orthogonal to the segment [y1, y2] and divide it in three equal segments,
y1 € I1, yo € I3. At least one of the regions I, I, Is does not contain ys,ys. If
the points ys, ys & I1, then SO and S3 imply (10.3), since

Im$Y (1,02, 95,00 = [m$Y (1,92, 3, 54) — M (1)mE (ya, y3, y4)|

< 4! (Vz ( lyr — |) +15 (%H/l - 2/2|)t_4)-

The same proof is valid for the case y3,y4 &€ I3. Now let us assume that ys3,y4 &
I,, for instance, y3 € I1, ys € Is. Then SO, S3 imply (10.3), since by Lem-

A\
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ma 8.2, ii)

(2)

m§’ )(Z/17213)mo (y2,v4)

4 4
|m8)(y1,yz,y3,y4)l < |m((,)(y1,y2,y3,y4)

+ |m(() (yl,y3)m((] )(Z/27y4)|

. 1 _
< 4b4(u§(§|y1 - y2|) + u§(§|y1 - y2|)t 4)
1 1 .
+16b" Y ﬁyg—i(kl/l - ys)- g”f_j(|y2 = Yal)-
i,j=0,2
The proof for the case y3 € I3, ys € I is the same. O

Remark. For a translation-invariant measure po the estimate similar to (10.3)
is obtained in [1, inequality (20.42)].

Step 2. (10.3) holds with any permutations of y1, y2, 3, ¥4 in the right-hand
side. Hence

im$” (7))

IA

1 1 _
4v* (13 (lvs — wol) + 18 (51w - yp|)t Y
1
w166 S (ol — el 522, (o — )
i,j=0,2
1 1
+ 53 ills —wil) - 553 (lyp — i)
M, (y) + MZ,(9) (10.4)

for any permutation {s,p,k,l} of {1,2,3,4}. Let us define

Y., ={zex! | |25 = 2p| = rrzga;x|zi — 25}

Then (£)* = U(s,p) Zs,p> Where the union is taken over all the pairs (s, p) of the
indexes 1,2, 3,4. Therefore, (10.4) implies

I(z) / m{ @ - 2)|dS(2)

IA

/ ML, (% — 2)dS(z / (7 —2)dS(z )}. (10.5)

(s,p) E

Here the sum is taken over all the pairs (s,p). Every of the six terms corre-
sponding to different pairs (s,p) in the right-hand side of (10.5) coincide. We
have to estimate I(Z) only for Z € By, (see (10.2)). Then |z, — zp — s + p| >
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(|25 — 2p| — 270)4 for any 25,2, € R®. Since v, is a non-increasing function,

(10.4), (10.5) imply
Ch* / <u§ (%(|z1 — 25| — 2r0)+)

Y12

412 (%(|zl — oo~ 2r0), )1 ) dS(2)

I(z)

IN

tt
4,j=0,2 oo

xR (122 = 2] = 2r0)4)) dS(2)

wert 3 [ (e - 2l - 2n0))

Step 3. Let us estimate I; and I separately.
Lemma 10.2. I; < Cb*|Z|?.

Proof. The integrand in I; does not depend on 23 and z4. Therefore, the result of
the integration in 23, 24 is estimated by the factor 7|X||z1 — 22|2, since |23 — 24| <
|21 — 22| by the definition of ¥; 5. Lemma 4.2 implies

1 1
I < b3 / (ug(ngl — 2| - 2r0)+) + t’41/§(§(|z1 — 29| — 2r0)+))
(£)2
X|21 - 2’2|2 dS(Zl) dS(ZQ)

2t
< Gz / (1/22 (%(r - 2r0)+) +t 4 (%(r - 2r0)+))r3 dr.  (10.7)
0

Condition (2.8) implies

T T

r2uy(r) = 1/2(7")2/st < 2/31/2(3) ds <C < .
0 0

Therefore, using (2.8) again,

2t
1

/r31/22(§(r — 2r0)+) dr < C < 0. (10.8)

0
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Finally, the integral

/Ztyg (l(r — 2r0)+) 17"3 dr = /ZtVo(%(r - 2r0)+) Vo(%(r - 2r0)+) Pt N

3 t4 r 4
0

is bounded: it converges to zero as t — oo by the Lebesgue theorem as in
Lemma 6.1. Hence, Lemma 10.2 follows from (10.7) and (10.8). O

Lemma 10.3. I, < Cb*|Z|?.

Proof. Since v3(r) < Cvgy(r) and ¥ 5 C £*, we have by Lemma 4.2

o= 8y [ el = zal = 2r0)4) e ((f2a = 4] = 2r0)1) dS(2)

4 t ti
%,j=0,2 21’2
1
<ot Y /FVQ_i((|zl—z3|—2r0)+)dS’(zl) dS(z3)
1,j=0,2 »2
1
x [ iUzl 2r0)4) dS(a2) dS )
»2
2 2
T T
< ovt Z |Z|/EV24((7‘—2T0)+)CZT' |E|/ﬁszj((7‘—2To)+)dT
i.j=0,2 o
< CHZ)A (10.9)
In the last inequality we use (2.8) and the Lebesgue theorem as in Lemma, 6.1.
Lemma 10.3 is proved. O
Now Lemmas 10.2, 10.3 and (10.6) imply (10.2). O

11. Convergence to equilibrium for variable coefficients

We extend all results of previous sections to the case of the wave equations
with variable coefficients. We consider the wave equations in R? with the initial
conditions

i@, )= 3 Os(am(@)dkul, 1)) ~ ao(@)ulz, 1), w e R% LER, 1))

uli=0 = uo(x), Ult=0 = vo(x),

0
where 0; = Fr We assume the following properties E 1-E 3 of equation (11.1).
J
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El. ajp(x) = 5 + bjr (), where bjr(z) € D; also ap(z) € D.
E2. ag(z) > 0, and the hyperbolicity condition holds: there exists a > 0 such
that

3
> aij(@)kik; > alkl’, z,k € R%. (11.2)
ij=1

H(w,k)z%

E 3. Non-trapping condition holds (see [22]): for (2(0),%k(0)) € R® x R? with
k() #0

|z(t)] = o0, t— o0, (11.3)
where (z(t), k(t)) is a solution to the following Hamiltonian system
&(t) = ViH(x(t), k(1), k() = Vo H(z(t), k(1))
Example. E1-E3 hold in the case of constant coefficients, aji(2) = d;;. For
instance, E 3 holds because k(t) = 0 = z(t) = k(0)t + z(0).

We use the notation as above, Y (t) = (u(-,t),u(-,t)), Yo = (ug,v0). Then
(11.1) becomes

Y(t) = F.(Y(t), teR, Y(0)=Y,. (11.4)

Proposition 2.1 holds for the solutions to the Cauchy problem (11.4) as well
as for (1.2). Let Yp in (11.4) be a measurable random function with values in
(H, B(H)), and let ug be its distribution, as above. Denote by y; the distribu-
tion of the solution Y (¢) to the problem (11.4). Let us state the extension of
main Theorem 2.1. We introduce the appropriate Hilbert spaces of initial data
of the infinite energy. Let § be an arbitrary positive number.

Definition 11.1. #; is the Hilbert space of functions Y = (u,v) € H with the
finite norm

v = /e’r"‘”z'(IU(w)l2 + [ Vu(@)]* + [o(2)*) dz < co.

Theorem 11.1. Let E1-E 3, S0-S3 hold. Then
i) the convergence (2.4) holds for any € > 0;

ii) the limit measure p is a Gaussian measure on H;
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iii) the limit characteristic functional has the form

fioo () = exp { ~ %QOO(W@,W\P)}, TeD,

where W : D — H's is a linear continuous operator for sufficiently small
6> 0.

Theorem 11.1 follows immediately from Theorem 2.1, using the method
of [10]. The method is based on the scattering theory for the solutions of infinite
energy.

Appendix A. Radon transform

Proof of Lemma 5.3. Since fpw:zw f(p) d?p is an even function with respect to

w, it suffices to prove the next lemma.

Lemma A.1. Let (2.8) hold, and f € C,(R?). Then

i [ @ [ oer=-jene, weR. (A

Jw|=1 prw=z-w

Proof. Both sides of (A.1) define the continuous operators C, (R?) = Cj(R?).
Therefore, it suffices to consider f € D. Applying the Fourier transform, we
obtain with p = |k|,

€+ )2) = ﬁ / E(k)f (k) exp{—iz - k} d°k (A.2)
“+oo

1
0

R / dS(w) / p? exp{—ipz - w}&(pw) f (pw) dp.
Jw|=1

We substitute £(pw) = —p~2 in the right-hand side of (A.2) and get

+oo

ENE =G [ 450 [ explcipz-w}flo)de. (A3)
|w|=1 0
Note that
+oo
flpw) = / exp{iph} f*(h,w) dh, (A.4)

—0Q
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where f*(h,w) = [,

w—n S () d%y. Then from (A.3), (A.4) we have

—+oo
1 1 ,
ENE) = G / as(w) / exp{—iyz - w} dy
|w|=1 —o0
+o0
X / exp{iph}f*(h,w) dh
= =L [ as@E L P Fihw)
- ]2 Wy (zw) T h—y W
|w|:1
= -5 [ Feewdsw
= 32 Zw,w w).
|w|=1
Lemma A.1 is proved. O

Proof of Lemma 6.2. Since F[P](k) = —i|k|~! sgn k3, we have

(P f)(2) (er)g / P(k)f (k) exp{—iz - k} d~3k (A5)

. +m
i

= _(27r)3| /lds(w)0/Pexp{—ipz-w}sgn(w3)f(pw)dp

. +o0
= @y / dS(w) / pexp{—ipz-w}f(pw)dp
|w|=1,w3>0 0
. +o0
lw|=1,w3<0 0

In the last integral we change the variables w — —w, p — —p, then apply (A.4)
and get

+o00

PepE) = ~grs [ 456 [ pexp(zips-w}ipw)dp
|w|=1,w3>0 —0o0
+oo

= - L / dS(w) /exp{—ipz-w}pdp

|w|=1,w3>0 —00
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400
y / exp{iph} fH(h, w) dh. (A.6)
Note that
+o0 oo
p / e fH(h,w) dh = i / ¢ (V)i (h,w) -wdh, pER. (A7)

Indeed, applying (A.4) in the both sides of

FIVfl(pw) - w = —ipF[f](pw),
we obtain (A.7). Finally, from (A.7) and (A.6) we get

+o0
(P = f)(2) (27r)3| :1/ . dS(w)é exp{—ipz -w}dp
+o0 7
x / expliph}(V ) (h,w) - wdh (A.8)

—00

1
T 42 / F;iz-thﬁp(vf)ﬂ(h;w)'WdS(w)
lw|=1,w3>0
1
) (VA2 w,w) -wdSw) = 4Pf(z).
|w|=1,w3>0

Lemma 6.2 is proved. O

Appendix B. Gaussian measures in Sobolev’s spaces

We verify (3.3). Definition (3.2) implies for u € Hy q,

= [ @ fal)? ([ e #1121+ fn*a(k)atn) e ) .
(B.1)

Let p(du) be a Gaussian translation invariant measure in Hy o with a correlation
function Q(z,y) = q(z — y). Let us introduce the following correlation function

Clhym) = / a(kya() () (B.2)
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in the sense of distributions. Since u(x) is real-valued, we get

C(kﬂ?) = Fw—)kFyaan(xa y) = Cn(s(k - ﬂ)(i(k) (B3)

Then, integrating (B.1) with respect to the measure u(du), we get the formula

[l it = Co [+ lahods [+ ) amdr. (B4)
Substituting §(k) = 1 and §(k) = |k| 2, we get (3.3). ]
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