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Chapter 1

Hyperbolic Equations.
Method of Characteristics

1.1  Derivation of the d'Alembert equation

The d’Alembert equation

0%u

W(%t) =

+ f(z,t), z€l0,0], t>0. (1.1.1)

describes small transversal oscillations of a stretched string or straight
oscillations of a flexible rod. Let us give a brief derivation of this equation
(for more rigorous derivation, see [V1a84, SD64, TS90]).

Transversal oscillations of a string

u
u(x, 1)
0 x I
Figure 1.1:

We assume that a string of length [ is
stretched with the force T. We choose the
direction of the axis Ox along the string
in its equilibrium configuration. Let x =0
corresponds to the left end of the string.
Then the right end of the string is given
by = = 1. We choose the axis Ou normal
to Oz, and only consider the transversal
oscillations of the string, such that each
point x moves only in the direction of
the axis Ou. Such oscillations could be
started by fixing the ends of the string,
or by attaching the ends to the tiny rings

which can move up and down along vertical rods as on Fig. 1.3.
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4 Practical PDEs, Section 1.1

We denote by u(x,t) the displacement of the point x of the string at a
moment t. We assume that the angles between the string and the axis Ox
are small: |af,|8] < 1 (see Fig. 1.2). Let us prove that u(z,t) satisfies the
equation (1.1.1). To do so, we write Newton’s Second Law for the piece of
the string from x to x + Ax, and take its projection onto the axis Ou:

aym = Fy. (1.1.2)

’ 5
£7/

0 X x+Ax X

Figure 1.2:

Here a, =~ %(m,t); m = u - Az, where p is the linear density of the
string, that is, the mass of its unit length (we assume that the string is

uniform), and )
F,~(F)uy+ (F)y+ f(z,t)Az. (1.1.3)

By F; (F,) we denoted the force which acts on the region [z,z + Az] from
the left (right) part of the string, and (F}),((F}).) stands for the projections
onto the axis Ou. f(z,t) is the density of the transversal external forces.
For example, in the gravitational field of the Earth, if the string is horizontal
and the axis Ou is directed upward, then f(z,t) = —gu, where g ~ 9,8 m/s2.
Substituting a,,m and F, into (1.1.2), we obtain
82

aTZ“A”” ~ (F))u + (Fy)u + f(z,t) Az (1.1.4)

Further, for an elastic string the force of tension 7' at each point is tangent
to the string and has the same magnitude (see [V1a84]). Then

(F))y = —TsinB; (F.)y=Tsina (1.1.5)
and (1.1.4) takes the form
Pu : : Fo A
Pl —TsinfB+ Tsina+ f(z,t)Ax. (1.1.6)

Since we consider the “small” oscillations, such that |o| and |8 < 1, with
the precision up to higher powers of o and f

sinﬁmtanﬁ:a—ux,t; sinamtana:%x—i—Agﬁ,t 1.1.7
0 0
T T
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Substituting these expressions into (1.1.6), we have with the same precision

2
% Ax~T @x—i—Am,t _B_u
5 M

ot o o (x,t)) + f(x,t)Ax. (1.1.8)

Dividing this expression by Az and sending Az — 0 we obtain with the
specified precision the equation (1.1.1), where

Ty @)
a—\/;, flz,t) L (1.1.9)

Remark 1.1.1. From our assumption about the tension we deduce that the
projections of the forces I} and F,. onto the axis Oz are equal to —T cos 3 and
T cos a, respectively. Therefore their sum (7 cosa — T cosf3) is the quantity
of magnitude O(a? + 3%). The projection of the resulting force which acts
on the piece of the string from z to xz 4+ Az is of the magnitude which is
small in the approximation we use. Thus, under this assumption about the
tension, the small oscillations of the string are transversal with the specified
precision.

Remark 1.1.2. From (1.1.5) and (1.1.7) it follows that

ou
T (1) (1.1.10)

is the vertical part of the tension of the string at a point x at a moment ¢.

Let us consider the boundary conditions for the string.
A. If the left end of the string, x = 0, is fixed, then its displacement is
equal to zero:
u(0,t) =0, t>0. (1.1.11)

B. Assume that the left end of the string is attached to a tiny ring of
negligible mass, which can move without friction along a vertical rod (such
an end of the string is called a free end). Then the vertical component of
the force with which the rod acts on the left end of the string is equal to
zero. Therefore, according to Newton’s Third Law, the vertical component
(1.1.10) of the force of tension of the string at x =0 is also equal to zero:

%(O,t) =0, t>0. (1.1.12)

C. In a more general case, when we attach a mass m to the left end of the
string, there is the boundary condition

0%y ou

mg (0,) =T7-(0,1), >0 (1.1.13)
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If, besides, the mass m is attached to

u the spring (see Fig. 1.3) with the spring
[ ; constant k, then in the right side of
(1.1.13) we need to add the elasticity force

0 X
% —ku(0,t). If the mass m experiences an

additional friction force proportional to
the velocity, then in the right hand side
of (1.1.13) one needs to add a friction
force —n%—?(O,t). This way one obtains

Figure 1.3: a physically reasonable linear boundary
condition of the form
0%u Ju ou
—(0,t) =T—(0,t) — k t) —n—— t). 1.1.14
Mo (0,6) = TSE0,0) — ku(0,6) 0 + f(0). (1114)

Here f(t) is an external force parallel to the axis Ou which is applied to
the left end of the string.

Tangential oscillations of the elastic rod

I 1
I = —
(@] x x+Ax x
Figure 1.4:

Assume we have a uniform unstretched rod of length /. Choose the axis
Oz along the rod, so that its left end is located at the point = = 0. Then
x =1 is its right end. We will consider only tangential oscillations of the
rod. Denote by wu(z,t) the displacement of the point z of the rod at the
moment ¢, along the axis Ox.

Let us prove that wu(z,t) satisfies equation (1.1.1). For this, we write
down the projection onto the axis Ox of Newton’s Second Law for the piece
of the rod from x to x + Ax:

0%u

a;m=F,; a, =~ W(

xz,t);  m = pAmx. (1.1.15)
The force F, has the form

F, =F, +F, + f(z,t)Ax. (1.1.16)
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where Fj(F,) is the force along the axis Oz, acting at the piece [z, + Az]
at the left (respectively, right) part of the rod, and f(z,t) is the density of
the external forces directed along the axis Oxz. For example, if the rod is
hanging vertically in the field of gravity of the Earth so that the axis Ox
is directed downwards, then f(z,t) = gu.
Substituting F, into (1.1.15), we get
0%u

o (@ Dpds ~ Fi+ Fr+ flz,t)Az. (1.1.17)

To find F; and F,, we use Hook’s Law
o(x,t) = Ee(x,t). (1.1.18)

Here o(x,t) is a tension of the rod at the point x, that is, o(z,t) = T'(z,t)/S,
where T'(z,t) is the tension force at the point z and S is the section area;
E is Young’s module of the material of the rod, and £(z,t) is the relative
deformation at the point z. For the piece of the rod [z,z + h|, its initial
length (when no force is applied) is equal to h, while under tension it is
h+ u(x + h,t) — u(z,t). Therefore the absolute length increase is equal to
u(z + h,t) — u(z,t), while the relative length increase is

u(x + h,t) — u(x, t) ou

— — 0. 1.1.1
; D, h—0. (1119)
Thus,
ou
t) = —(x,t). 1.1.2
e, 1) = S (a1) (1120
From here, by Hook’s Law (1.1.18),
ou
T(xz,t) = So(z,t) = SEe(z,t) = SEa—x(x,t) (1.1.21)

Let us point out that Hook’s Law (1.1.18) is a linear approximation
for the dependence of o(z,t) of e(x,t), and is only applicable for small
deformations, that is, small values of e(z,t).

Taking into account the direction of the forces F; and F,., we obtain

{ F = -T(x,t) = —SE%(x,tg, (11.22)
F. = -T(z + Az, t) = —SEZ:(x + Az, t).

Indeed, if, for example, u(z,t) is monotonically increasing in x, then the
rod is stretched out, hence F; < 0, while F,. > 0. At the same time g—g > 0.
This means that the signs in (1.1.22) are correct.

Substituting (1.1.22) into (1.1.17), we get

2

a—tg(x,t)qu R~ SEZ—Z(CL' + Ax,t) — SE%(x,t) + f(z, t)Ax. (1.1.23)
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From here, dividing by Az, at the limit Az — 0 we get (1.1.1) with

_[SE_ JE. o f@
a=\= ﬁ, f(x,t) . (1.1.24)

where p = /S is the density of the material of the rod.

Let us consider boundary conditions for the rod.

A. For the fixed end of the rod at x = 0 there is the boundary condition
(1.1.11).

B. For the free end of the rod at x = 0 tension (1.1.21) is equal to zero.
Therefore (1.1.12) holds.

Figure 1.5:

C. In a more general case, assume that there is a mass m at the left
end z =0 of the rod, attached to the spring of stiffness £ > 0, and that the
equilibrium position of the spring corresponds to zero displacement of the
left end of the rod. Assume that the mass moves with the viscous friction:
Fg. = —nv, where 7 >0, v is the speed of the mass. Then at x =0 there
is the boundary condition

0%y ou ou
MO (0,6) = —ku(0,1) + SES-(0,1) 00 (0.1) + (1), (1.1.25)

where f(t) is the external force, acting at the left end of the rod along the
axis Ox.

1.2 Infinite string

The Cauchy problem for the d'Alembert equation

We consider the d’Alembert equation (1.1.1) in the real line:

0%u 5 0%u
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This corresponds to the physical problem about a string of relatively large
size. For simplicity we assume that f(z,t) =0, that is, that there are no
external forces.

As we will see below, there are infinitely many solutions of (1.2.1). To be
able to determine the movement of the string it suffices to prescribe initial
position and velocity of all points of the string (as usually in mechanics):

ou
Here ¢ and v are prescribed functions, ¢(z) is initial displacement, and
¢(x) is the initial velocity of a point x of the string.

The problem (1.2.1)—(1.2.2) is called the Cauchy problem (or initial value
problem) for the d’Alembert equation (1.2.1). The relations (1.2.2) are called
the boundary conditions, and the functions ¢(x), ¥ (x) are called initial data.

The d'Alembert method

The d’Alembert method is based on the fact that the general solution to
(1.2.1) has the form

u(z,t) = f(xr — at) + g(x + at), (1.2.3)

where f and g are arbitrary functions of one variable.

Remark 1.2.1. If f and g belong to C?(R), then u(z,t) also has two continuous
derivatives. It turns out, though, that one can take f and g non-smooth
and even non-continuous. Then u(x,t) is also non-smooth or non-continuous,
respectively.

As we will show in Section 4.6, such a non-continuous function satisfies
the equation (1.2.1) in the sense of distributions.

To prove (1.2.3), let us change the variables in the differential equation
(1.2.1)
E=zxz—at, n=z+at (1.2.4)
Change of variables in a differential equation
Let us express the function u(z,t) in the new coordinates &, n:

u(z,t) = v(g,n), (1.2.5)
where £, 7 are related to z,¢ by (1.2.4). For example,
1
wa,t) =z = w(En)=_(+n). (1.2.6)
To make a change of variables in the differential equation (1.2.1) means to

find a differential equation for the function v(£,n), which would be equivalent
to (1.2.1).
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For this we need to express %2;; and ‘gi’; via the derivatives of v(&,n)
with respect to &, n and to substitute the resulting expressions into (1.2.1).
The necessary expressions are obtained with the aid of the chain rule applied

to the identity

u(,t) = v((@, 1), n(@,t)) (1.2.7)
Namely, differentiating (1.2.7) with respect to ¢ and z, we obtain
du _ v 0 4 dv On
i-Rgtad 128)
ox ~ 0¢ Oz on Ox

In the same way one can express all other derivatives. Differentiating the
first relation (1.2.8) with respect to ¢, we obtain:

ot " o¢ o

0%u 0 Ov\ 06 Ov 0% 0 Ovy On Ov 0%
a2 = (1 5e) (o) 3t tonoe (129

We express the operator % from the same relation (1.2.8):

0 oo oo

= 1.2.1
ot ot o ot oy (1.2.10)

Substituting this expression in (1.2.9), we get

Ou_ (%&+@ 32@)%+@&
o2 ot 92 " ot onog) ot | ag o2
P[P oty o oy
ot dcon - ot on?) ot on ot?
n t/ On
ov 0%¢  Ov 0%

—_———  — —. 1.2.11
o€ o T on o (1.2.11)

Here we used the identity

0%v B 0%v
onog — ocon’

(1.2.12)

In the same fashion (substituting in (1.2.11) ¢ by x) one can obtain the
formula

or

0%u (06?2 0% 0¢ on 0%v on\2 0%v
0z = (&) 58 "% 0 500 * (ow) o
Ov 9%¢  Ov 0%y

—_— = — —. 1.2.1
o€ 022 oy 022 (1.2.13)
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Problem 1.2.1. Derive the formula
Fu 060 0% (O€ 0n  On 06y O
otdr Ot dx O€2 ot Ox Ot Ox/ O&0n

on oy O 9% dv o oo
Ot Ox On2  Otdx 0  Otdx On

Remark 1.2.2. Usually the formulae (1.2.8) and (1.2.11)—(1.2.14) are written

with u instead of v. For example, (1.2.8) is written as

(1.2.14)

Qu _ du 0¢ | du o

ot — 9¢ Ot on Ot’

Du _ ou 0t , ou 0n (1.2.15)
dx — 9¢ Oz on Oz"

If so, the symbol g—’g (and g—f]) in the right hand side is to be understood
as the derivative along the line n = const (or & = const):

Oou d
ou_ 4da. , (1.2.16)
a€ dé n=const

which is actually %2 (or g—g), not as “partial derivative of u(x,t) with respect

to & (or 1)’ the latter does not make sense until the other variable, n (or
£), is chosen.

Indeed, from (1.2.16) one can see that g—“ depends not only on the choice
of the variable &, but also on the variable 7, although this is not reflected
in the notation g—’g. Thus, the usage of the notation u in the right hand

side of (1.2.8), instead of v, as in (1.2.15), can lead to a confusion.

Problem 1.2.2. Find g—g, if u(z,t)=t, E=x, and n=1¢+z.

Solution. t =n—x=n—-¢ :>g_15:71,
Problem 1.2.3. Find g—z, if u(z,t)=t, &=z and n=1¢— x.

Solution. t=n+z=n+¢ :>g_g:1_

Nevertheless, in the applied problems the formulae like (1.2.15) are often
used, so that the introduction of new notations would not be needed. For
example, the pressure is usually denoted by p, the current is denoted by 7,
the density is denoted by p, et cetera.

We will also use formulae like (1.2.15) everywhere below.

Proof of the d'Alembert representation (1.2.3)

From the generic formulae (1.2.15) for the change of variables (1.2.4) we
derive

9 _ _,9_ .9
T T
9 o 9

= — 4+ — 1.2.1
BE 2 T oy’ (1.2.17)
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From this we obtain:

ol 2 82 2 8° 2 92
=22 2 +a22%,
{ oA o e O (1.2.18)
el 852 + 265817 + an%

Substituting (1.2.18) into (1.2.1), we get

o2 02,0 2 92
22 922 —— —_— = —_— 1.2.1
(o oe aeon % o ;Ju=a (352 T 25eam T 9 ) (1.2.19)

After mutual cancellations we obtain

0%
&I

=0. (1.2.20)

This is the canonical form of the d’Alembert equation (1.2.1), its simplest
form that is, in which it could be easily solved. To solve (1.2.20), denote

g—;;@, n) = v(€, ) (1.2.21)

Then (1.2.20) could be written as

v d
— = —=v =0. 1.2.22
af df n=const ( )
It then follows that v does not depend on &, that is,
n=const
o€, m) = c(n), (1.2.23)
or, taking into account (1.2.21),
d
—u = c(n). (1.2.24)
d77 E=const

Integrating this ordinary differential equation, we obtain

u’ :/E@Mn+q@) (1.2.25)

E=const

Thus,
u=g(n)+ f(&), (1.2.26)

where g and f — are some functions of one variable. On the other hand, a
function of the form (1.2.26) satisfies the equation (1.2.20) for any f and
g. At last, changing the variables in (1.2.26) according to (1.2.4), we obtain
the d’Alembert representation (1.2.3).
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Remark 1.2.3. The graph of a function f(x —at) in (1.2.4) is a wave moving
along the direction of the axis Ox to the right, with the speed a, while
g(x + at) represents a wave moving with the same speed to the left. This

means that the graph of the function f(x — at) <g(z +at)) for any ¢ >0

as a function of = is obtained from the graph of the function f(x) (g(m))

with the aid of a parallel transform to the right (left) along the axis Ox by
the distance at. Therefore, a form of the graph of the function f(z — at)
considered as a function of x with fixed ¢ is the same. In Physics, such
functions are called traveling waves. Thus, the d’Alembert decomposition
(1.2.3) means that any solution of the d’Alembert equation is the sum
(physicists also use words superposition and interference) of two traveling
waves.

Solution of the Cauchy problem (1.2.1), (1.2.2) for the d'Alembert equation.
The d'Alembert formula

We apply the d’Alembert method to the problem (1.2.1), (1.2.2). To do so,

we substitute the equation (1.2.1) by its equivalent (1.2.3). Thus, we are left

to take into account the initial conditions (1.2.2). It is from these conditions

that we will determine the unknown functions f and g from the given ¢ .
Namely, substitute (1.2.3) into (1.2.2):

(@) (—a) + ¢ (x)a=¢(z), zeR.

Remark 1.2.4. In the second equation (1.2.27) we have used the chain rule:

(Ge-0)

Here f’(z) is an ordinary derivative (not a partial one). This is the advantage
of the d’Alembert method, which allows to reduce the equations (1.2.1), (1.2.2)
with partial derivatives to the equations (1.2.27) with ordinary derivatives.

{ f(@) + g(x) = o(x), (1.2.27)

= f'(z)(—a) (1.2.28)

t=0

= (f'(a: - at)%(a: - at))

t=0

Then, integrating the second equation (1.2.27) and dividing it by a, we
obtain:

—f(z) +9(x) = 2/1/)(5) ds + g (1.2.29)
0

Taking the sum of this equation with the first equation from (1.2.27) and
dividing by 2, we obtain

g(x) = %s@(w) + % /t/}(s) ds + i; (1.2.30)
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instead, taking the difference of these two equations, we obtain

T . 0 .
flx)= %w(m) - % /w(s) ds — %0 = %ap(m) + %/ W(s)ds — % (1.2.31)

Substituting these expressions into the d’Alembert decomposition (1.2.3),
we obtain the d’Alembert formula

x+at
u(z, 1) = L& =) ! pletal) % / W(s) ds (1.2.32)

Remark 1.2.5. One can see from (1.2.30)—(1.2.31) that the waves f(x — at)
and g(x + at) are determined by the initial data ¢ and ¥ not uniquely, but
only up to an additive constant. At the same time, the solution wu(z,t) to
the Cauchy problem is uniquely defined.

1.3 Analysis of the d'Alembert formula

Propagation of the waves

Problem 1.3.1. Take the following initial data in (1.2.2) (see Remark 1.2.1):

L p(x)=0.

Figure 1.6:

Let us draw the shape of the string at ¢t =1, 2, 3, 4, 5, taking a = 1.
(We may assume that ¢(z) is a piecewise-linear function. Then the solution
is also going to be a piecewise-linear function, which is a solution of equation
(1.2.1) in the sense of distributions (see Remark 1.2.1). Instead, one can
think that the graph ¢ is slightly smoothed out at the corner points, so
that ¢(z) € C*(R). Then the solution is also going to be of class C?, and
one should think that all the corners are slightly smoothed out at all the
drawings below.)

Solution. According to the d’Alembert formula (1.2.32),

u(z,t) = %ap(x -t + %(p(m +t). (1.3.1)
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This means that the graph ¢(x) should be compressed to the axis Oz by
the factor of 2, shifted to the right by ¢, to the left by ¢, and the results

added up (see Figure 1.7). Thereafter these humps of hight % and width

1=1r
X
1=2:
i
- 7 —
-2 -1 0 1 2 3 4 X
Figure 1.7:

2 propagate to the left and to the right, each with the speed 1.

Problem 1.3.2. In the settings of the previous problem, draw the shape of

the string at t = i, %

Problem 1.3.3 (Hit at the string by a hammer). In (1.2.2), take the following
initial data: Draw the shape of the string at t =1, 2, 3, 4, 5, setting a = 1.

p(x)=0, 1 w(x)
0 1 2 X
Figure 1.8:

Solution. According to the d’Alembert formula (1.2.32),

x+t
1

u(z,t) = 3 / P(s)ds = ¢p(z+t) — plx — t), (1.3.2)

r—t

where

b(x) = % / (s) ds. (1.3.3)
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$(x)
1
0 i 2 ¥
Figure 1.9:
t=1: | _
ST
1 0 i 2 3 x
1=2:
1
= >
2 70 1 2 3 4 x
Figure 1.10:

See Figure 1.9. This formula means that the graph of the function ¢(z)
should be shifted to the left and to the right by ¢, and to subtract the
results (see Figure 1.10). Thereafter this trapezoid spreads out to the left
and to the right with the speed 1.

Problem 1.3.4. Under the settings of the previous problem, draw the shape

of the string at ¢t =1 and t = 1.

Characteristics

When solving two previous problems, we have seen that the lines x+t¢ = const
play a special role. For example, the corner points of the graphs of the
solutions u(z,t) lie on the lines x £¢=0 and z+¢t=2.

For equation (1.1.1) with the coefficient a the similar role is played by the
lines = + at = const. They are called the characteristics of equation (1.1.1).
Thus, the characteristics of the d’Alembert equation are two families of lines
(see Fig. 1.11). We will call the lines = — at = const the characteristics
moving to the right (with the speed a). Obviously, they are the level curves
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x+tat = const t x-at = const

Figure 1.11:

of the wave f(x —at). The greater the speed a, the smaller is the angle
between the characteristic and the axis Oz (if the scale on the axes Ox and
Ot is the same):

1
t = —. 1.34
ana = — ( )

Similarly, the lines x + at = const are called characteristics, moving to the
left. They are the level curves of the wave g(x + at).

Discontinuities of the solution

Let us take f(z) to be discontinuous:

0, =<2,
ro={ 1 153 (135
1____
0 1 2 X
Figure 1.12:
Then the function
u(z,t) = f(x — at) (1.3.6)

is discontinuous along the characteristic * —at = 2. See Fig. 1.13. Function
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Figure 1.13: Profiles of the function w(z,t) at t =1, 3, 5.

(1.3.6) satisfies the d’Alembert equation (1.2.1) in the sense of distributions
(see Remark 1.2.1).
Thus:

H Solutions of the d’'Alembertequation could have discontinuities; (1.3.7)

Discontinuities propagate along characteristics.

Remark 1.3.1. One can take a smooth function f.(x), which changes from 0
to 1 on a small interval from z =2 to x =2+ ¢, where € > 0:

L.

0 1 2 2+g X

Figure 1.14:

Then the function f.(z —at) will be a classical (smooth) solution of the
d’Alembert equation, rapidly changing from 0 to 1 near the points of the
characteristic  —at = 2. In the limit ¢ — 0+ the solutions f.(xz —at) converge
to a discontinuous function f(x —at). It is in this sense it is natural to
treat such a discontinuous function as a solution of d’Alembert equation in
the sense of distributions (see also Remark 1.2.1).

Remark 1.3.2. Discontinuous solutions u(z,t) to the d’Alembert equation for
the string and for the rod do not make a physical sense. Still, the d’Alembert
equation also describes the gas pressure p(x,t) in a long narrow pipe (such
as a flute or an organ). The function p(x,t) can be discontinuous.
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Figure 1.15:

Discontinuous solutions in the Dynamics of Gas are called the shock
waves. When the plane travels with the supersonic speed (see Section 1.8)
there is such a shock wave coming from the front edge of the wings, with
the pressure being higher behind the front of this wave than ahead of it.
We hear a bang when the wave front passes our ear (see Fig. 1.62).

Region of dependence and its graphical representation

Question. What do we need to know in order to compute the solution u of
problem (1.2.1)—(1.2.2) at the point (z,,t,)?

Answer. From the d’Alembert formula (1.2.32) we see that one needs the
initial displacements ¢(x) at two points: © = ., +at, and = = z, — at,, and
also the initial velocities ¥ (z) on the interval [z, — ato,zo + ats] between
these points. Knowing ¢(x) and ¢ (z) beyond the interval [z, — ato, 2o + ato)
is not needed. Therefore the interval [z, — ato, o + ato] is called the region
of dependence of the Cauchy problem (1.2.1)—(1.2.2) for the point (z.,%,).

Remark 1.3.3. Now we can explain precisely when we can treat the string
as infinite: When the point under consideration z, is located at a distance
larger than at, from the endpoints of the string, where ¢, is the moment
of time that we are interested at.

For the graphical representation of the region of dependence of the solution
we draw from (z.,t,) the two characteristics of the d’Alembert equation
until their intersection with the axis Ou:

Figure 1.16:
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The intersection of these characteristics with the axis Oz are the points
To —ato and x, + ato, and the interval of the axis Ox between these points
is the region of dependence of the solution w at the point (z.,t,). Let us
check this. The equations of the characteristics are

x—at=c1; x4+ at=co. (1.3.8)

Since the point (z.,t,) lies on these characteristics, z, — at, = ¢; and
To + at, = co. To find the intersection of the characteristics with the axis
Oz, we need to set t =0 in (1.3.8), getting

T =c1 =T — ato and X = C2 = X, + ato. (1.3.9)

Propagation of waves

Problem 1.3.5. We know that ¢(z) =¢(z) =0 for x & [2,5].

Find the region where the solution u(z,t) to the problem (1.2.1)—(1.2.2)
is equal to zero for t > 0.

N\ 4

\\
o N\ \ //(xo, 1)
D /

o 1 2 3 4 5 6  x,-af

X, + at,

Figure 1.17:

Solution. From the points 2 and 5 of the Ox axis we draw the characteristics
to the left and to the right, respectively. In the triangular region bounded by
the characteristics the solution is equal to zero. Indeed, for the point (z., %)
in the region bounded by these characteristics the region of dependence
does not intersect the interval [2,5]. Therefore in this region of dependence
p(z) =¢(x) =0. Consequently, u(zo,t,) = 0.
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1.4  The method of characteristics for hyperbolic equations of the second
order with two independent variables. The Cauchy problem
Decomposition of the d'Alembert operator into factors

Let us bring the d’Alembert equation to a canonical form (1.2.20) using a
new method. For this, we rewrite it as

o? 0?
O(u) = (ﬁ - a2w>u = 0. (1.4.1)

We decompose this operator into factors:

_ /0 I\ /0 0
O(u) = (% —a%>(& +a%)U—O (1.4.2)
It is known that
0 9] 0 9]
Lican) = o Yor Ly = ot + am (1.4.3)

are the operators of differentiating along the vectors (—a,1) and (a,1),
respectively. These vectors are directed along characteristics

x +at =const and x — at = const. (1.4.4)

If we take the characteristic lines as the new coordinates, that is, to set
E=z—at; n=uz+at, (1.4.5)
then due to (1.2.17) the d’Alembert operator takes the form

LA

0= a” =
ot? Ox?

0 0 0?
=.L L = —9a—2a— = —4qa> }
(—a,1) (a,1) aas a’an a 86(977

(1.4.6)
Conclusion. The characteristics of equation (1.4.1) are the lines such that
the operators of differentiating along them, L4, 1), are the factors of the
d’Alembert operator.

Remark 1.4.1. Since the operators of differentiating along the characteristics
are the factors of the d’Alembert operator, this operator sends to zero any
function that is constant along characteristics of one of the families (in
particular, any such function that is discontinuous; see Remark 1.2.1). This
explains why the solutions to the d’Alembert equation can have discontinuities
along characteristics.
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Hyperbolic equations of the second order with constant coefficients in the plane
We consider the equation of the form

0%u 0%u 0%u
Au=a—~— +2b =0, z€R, ,t>0. 1.4.7
U= * otox +C§x2 o ( )
In this section we assume that the coefficients a, b, and ¢ are constants.
Let us try to apply the method of Section 1 to equation (1.4.7) instead
of (1.4.1). To obtain the factorization like (1.4.2), we need to decompose
into linear factors the “characteristic” quadratic form

a€,7) = ar? + 267 + c£2 = €2 (a(%)Q n 21% n c). (1.4.8)

To achieve this, we solve the characteristic equation

aX? + 20X+ ¢ =0 (1.4.9)
Its roots
b+ vbZ —
a = VP ae (1.4.10)

are real and different if the discriminant is positive:
D=V —ac>0 (1.4.11)

This is precisely the strict hyperbolicity condition for equation (1.4.7).
According to the Viett theorem,

ad? 4+ 26\ + ¢ = a(A — M)A — \2) (1.4.12)

Therefore, the quadratic form turns into

= T ) =alr— —
A7) =¢ a(f A) (5 A1) = alr = MO = Asf). (1.4.13)
Accordingly, the differential equation takes the form
0 0 0 0
Denote
0 0 0 0
L(—)\l,l) = & — )\1% and L(—A‘z,l) = & — )\2% (1415)

Analogously to (1.4.5), we set
E=z+Mt; n=z+ A\t (1.4.16)

Then
Lia§=0; Ly, né=0. (1.4.17)



Practical PDEs, Section 1.4 23

Here L(_,, 1) is the operator of differentiation along the lines & = const,
while L_,, 1) differentiates along the lines 7 = const. Hence,

o d
Loy =g i Lica) = c2p¢ . (1.4.18)

§=const n=const
It follows that (1.4.14) is equivalent to the equation

o 0

Similarly to (1.2.26), the general solution to equation (1.4.7) is given by
u=f(&) +9(n) = flx+ M) + g(z + Ast) (1.4.20)

The wave f(x + Ait) propagates along the axis x with the speed \;, while
the wave g(z + A\ot) propagates with the velocity Ae (to the left if \; > 0,
Ay > 0)

In particular, for the d’Alembert equation (1.4.1), characteristic equation
(1.4.9) takes the form A2 —a? =0, so that \; = —a, Ay = a, and (1.4.16)
turns into (1.2.4), while (1.4.20) — into (1.2.26).

With the aid of representation (1.4.20), all the conclusions of Section 1.3
about discontinuities of the solution, propagation of waves, and the regions
of dependence are easily generalized for equation (1.4.7) (see Remark 1.2.1).

Solutions of equation (1.4.7) may have singularities along the characteristics
that are defined by equations

E=xz+ Mt=const or n=x+ Aot = const (1.4.21)

This is seen from (1.4.20) when f or g are not smooth (see also Remark 1.4.1).
Cauchy problem (1.4.7) with initial data (1.2.2) has a solution

)\2@(1’ + )\1t) — )\1()0(.% + )\Qt) I 1 /I+>\2t

u(z,t) = Mo — A M — A

Y(s)ds (1.4.22)

+A1t
Problem 1.4.1. Derive formula (1.4.22).

Let us point out that for the d’Alembert equation one has A\ = —a,
A2 = a, so that (1.4.22) turns into the d’Alembert formula (1.2.32).

As seen from (1.4.22), the region of dependence for the solution u at a
point (zo,t,) is the interval [z, + Aito,Zo + Aato]) of the axis Ox. Its ends
are the intersection points of the axis Ox with characteristics (1.4.21) sent
back in time from the point (z,,t,):

Let us point out that the roots A\; and Ay could be of the same sign;
then the waves f(xz + A1t) and g(x + Aaf) run into the same direction.
Ezxample. For the equation

02 02 o2
(@ +5mmm —l—G@)u—O (1.4.23)
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x+A, t=const

x+,t=const

0] / xa+’11 to xo+ﬂ'2 m *

Figure 1.18:

the characteristic equation

M 4E5A+6=0 (1.4.24)
has the roots A\; = —2, Ay = —3, and the general solution
u= f(z—2t) + g(xz — 3t) (1.4.25)

consists of two waves propagating to the right.
Let us find the differential equation of the characteristics of equation
(1.4.7).

We note that according to (1.4.21) the tangent vector (dz, dt) to the
characteristic satisfies the equation

dx+Xdt=0, or dr+Xdt=0 (1.4.26)
Therefore, either “Cll—f = —A1 or fli—f = —M\g, that is, A = —% satisfies

characteristic equation (1.4.9):

dx\ 2 dx
a(E) — 2= +e=0. (1.4.27)

This is the differential equation for the characteristics. It can be written in

a symmetric form, as follows:

adz? — 2bdxdt + cdt? =0 (1.4.28)

Hyperbolic equations of the second order with varying coefficients in the plane
Now let the coefficients a, b, and ¢ in (1.4.7) be varying, that is, are functions
of x and t:
0%u 0%u 0%u
Au(z,t) = a(x,t)w + Qb(:v,t)m + c(x,t)w =0; z€eR, t>0
(1.4.29)
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We will try to generalize the method of Section 2 in order to bring
(1.4.29) to canonical form (1.4.19) or at least a form close to it (see [Smi66]).

In a small neighborhood of each point (z,t), we substitute equation
(1.4.29) by equation (1.4.7) with constant coefficients, equal to the values
of the coefficients of equation (1.4.29) at this particular point (z,t). This
procedure is called “the freezing of the coefficients”.

If we do so, the characteristics of the equation “frozen” at the point (z,t)
will have directions that depend on (z,t). The vectors (dx, dt) tangent to
these characteristics will satisfy equation (1.4.28) (see Fig. 1.19)

t grad ¢ (dx, dt)

&(x, t) - const

Figure 1.19:

Integral curves of equation (1.4.28) are called the characteristics of equation
(1.4.29) (see [Smi66]). Thus, due to (1.4.28), the differential equation of the
characteristics of equation (1.4.29) is given by

a(x,t) dx?® — 2b(z,t) dx dt + c(z,t) dt* = 0. (1.4.30)
Characteristic equation (1.4.30) is obtained by a formal substitution

0 0
i dzx; Era —dt. (1.4.31)

Assume that in the region of the (xz,t)-plane where we are to solve
equation (1.4.29), the strict hyperbolicity condition (1.4.11) is satisfied:

b%(z,t) — a(z,t) c(x,t) > 0. (1.4.32)

Then, dividing equation (1.4.30) by dt?> and solving the resulting quadratic
equation, we obtain two different differential equations:

2
% _ bk Vb —ac (1.4.33)
a

If the functions a, b, and ¢ are smooth, equation (1.4.33) have two corresponding
families of the integral curves. We will denote these corresponding families
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of characteristics by the signs “+” “—"  respectively. In the (z,t)-plane, we

introduce new coordinates &, 1 so that & = const on the characteristics of
the family “4” while = const on the characteristics of the family “—".
This means that the characteristics will be the new coordinate curves, and
&,m are the first integrals of equations (1.4.33), respectively.

Let us mention that the change of variables (z,t) — (£, 7) is non-degenerate
at each point where condition (1.4.32) is satisfied. Indeed, from (1.4.33) one
can see that at each point the characteristics have different directions, and since
grad ¢ and gradn are orthogonal to the corresponding characteristics, they
also have different directions. Incidentally, this means that the coordinates
£, n may be defined in a sufficiently small open neighborhood of every point.
These coordinates may not exist in the whole region under consideration.

Let us check that in the coordinates £, 1 equation (1.4.29) could be brought
to canonical form (1.4.19) up to the terms that only contains derivatives
of the first order. We first need to derive the differential equation for the
functions &(z,t),n(x,t), the so-called characteristic equation.

Since &(z,t) = const on any characteristic from the family “+”, that is,
such a characteristic is the level curve of the function £, the vector grad¢
is orthogonal to this characteristic (see Fig. 1.19):

grad§ L (dz, dt). (1.4.34)
Therefore, grad||(dt, —dx), so that g—fc % =—4 or
dt = —kdx, where k= g—i/% (1.4.35)

Substituting (1.4.35) into (1.4.30), we obtain the desired differential
equation:
23 9 0¢

a(a:,t)(§>2 + 2b(x,t)a% + c(a:,t)(?—x>2 =0 (1.4.36)

In the same fashion one derives the differential equation for 7n(z,t), and it
coincides with (1.4.36):

o\ 2 an dn AN
a(a:,t)(g) + 2b(x,t)a% + c(x,t)(a—x> =0 (1.4.37)
It is of no surprise, since (1.4.30) contains both equations from (1.4.33).

Now let us recall formulas (1.2.11)—(1.2.14) for the change of variables in a
differential equation. Substituting expressions (1.2.11)—(1.2.14) into (1.4.29),
we obtain the following differential equation for the function v(&,n) = u(z,t):

82 82 2
8—;2’ +2B(6,n) —eem + v(é,m@—;; 4o =0, (1.4.38)
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where ... stands for the terms that only contain derivatives of the first order
of v. The expressions for the coefficients o, 0 are ~ are as follows:

_(08\2 € 0§ 9EN2.
_ (OO0 0N, On\2
1=a(G) 255+ (52) (14.40)
0§ 0n o0& 0n  On o€ o0& On
B_QE§+2()<§%+E%) C%% (1441)

Denote by A the so-called characteristic polynomial of the operator A from
(1.4.29) that corresponds to the point (z,t):

A6, &) = A, 161, &) = al@, )& + 2b(2, D68 +e(@, . (1.4.42)
Then (1.4.36) and (1.4.37) are equivalent with
o= A(grad€) =0; ~= A(gradn) =0. (1.4.43)

Finally, (1.4.29) takes the form similar to (1.4.19):

2
v .o (1.4.44)

Problem 1.4.2. Prove that 5(£,n) # 0 when £ = £(x,t), n = n(x,t), if condition
(1.4.32) holds. (Use (1.4.39)—(1.4.43).)

Equation (1.4.44) could be solved approximately. In a number of cases,
when equation (1.4.44) is sufficiently simple, it is possible to find its general
solution and thus to find the general solution to equation (1.4.29).

Problem 1.4.3 (18, [Smi66]). Find the general solution to the equation
0%u 0%u 5 0%u

0
e 2sinx cos? T — cosz o = 0. (1.4.45)
x

ordy Oy? oy

Solution.  Characteristic equation (1.4.30) is obtained from (1.4.45) by
substituting & +— dy; & — —dx (see (1.4.31)):

dy? 4 2sinx dy dx — cos® v dz? = 0 (1.4.46)
or 2 J
y) . Y 2
—= 2s — —cos“x =0. 144
(dx + sing—— —cos” 0 ( 7
From here,
d
d_y = —sinz + Vsin?x + cos?z = —sinx + 1. (1.4.48)
x

Integrating, we get
y=cosztz=c (1.4.49)
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Hence the functions
clz,y) =y —cosx Fx (1.4.50)

are constant along the integral curves, that is, it is them that are the first
integrals of equations (1.4.48). Therefore,

=y —cosr —u,
{ n=y—cosz+u. (1.4.51)

We already know that equation (1.4.45) in the variables £, n has the
form (1 4.44). But we also need to know the form of the terms containing
g—g, Fn> that are not written explicitly in (1.4.44). We could use the known

formulas (1.2.11)—(1.2.14), but let us make the change of variables (1.4.51)
n (1.4.45) directly. Instead of v, we will write w:

ou __ Ou 9 Oudn __ du (g ou
= ot T 1 (sinx — 1) + $4(sinz + 1),
{ B Zgeor oo e n (1.4.52)
oy o0& on”
We then have
0? 0? ou 0
8—;;:"'+28§;77(8m2x_1)+ +8—€cosx+—zcosx (1.4.53)

Dots denote the terms containing g%? and g—n%, which, as we already know,
(see (1.4.44)), cancel out in (1.4.45). Therefore, we do not have to write
them out!

Analogously,
0%u 2u 2u
=... inr —1 i 1 e 1.4.54
20y +a§8n(smx )+8n85(51nx+ )+ (1.4.54)
Finally,
0%u 0%u
— =...+2—+... 1.4.
B + Bean + (1.4.55)
Substituting (1.4.52)—(1.4.55) into (1.4.45), we get
2
aagaun (2(sin2 z—1) - 2sing - 2sinz — 2 cos® x) +
ou  Ou ou  Ou
+<3§ )cox (85 )cosx—O.
After cancellations and collecting the terms, we obtain
Fu =0 = u=f(&+gn (1.4.56)
ean = g(n). A,

Answer. u(z,y) = f(y —cosx —x) + g(y — cosz + x).

For better understanding of the material we recommend to solve the
following problems:
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Problems 1.4.1. Find the general solution for the following equations:

9 5 5 o)
1.8—;2‘+28xgy738y3 +6“f0
2. x%—yg—+§(%7?—u):o, >0, y>0.

22 dy

3. ng; > gy“ 2y8“ =0.

3 (.,.20u 29%u
4. 8z<x 81) =7 Yz

2
5. (x—y)aigy—f—&—gz—().

6. Bzay +yaz +x8y + azyu = 0.
Problems 1.4.2. Solve the following Cauchy problems:

%u _ _ 2 ou —
1 Ty 122w 384y, ul,_o=32% Gl _, =0

2
2. 425 +2(1 - y?) fas — 5 — T (2_ - S_y) =0, ul, = ¢o(),

‘3—;; y=0 — e1().

2 2
3. (1+w2)%7(1+y2)gﬁ+xg—gfyg—z =0, u|y:O = po(x), g—Z y=0 = 1(x).

8%u 2 . 9%u _ o _
4. 8962 +2C0S$8 oy __Slnxﬁy 0, u |y=sin9c - <po(x)7 G_Z y=sinx
e1(x).
2 2
B4 5k B B 0|, J(0), B,y = Fl0).
6. x2g -2z yaxdy -3y 28 7 =0, u| = ¢o(z), %’y:l = p1(2).

Non-hyperbolic equations

Let us consider the case, when instead of the strict hyperbolicity condition
(1.4.32) the opposite inequality holds:

b (x,t) — a(z, t)c(z,t) < 0. (1.4.57)

In this case, equation (1.4.29) is called elliptic at the point (x,t). The right-
hand side of equations (1.4.33) are complex conjugates, and the integration
yields the “first integrals” £ and n = £ that are also complex conjugates. It

turns out that if one takes z; = R¢ = % and 2z, = Q¢ = 2" as the new
coordinates, then equation (1.4.29) takes the form
u  0%u
R — 1.4.58
02? * 073 * ( )

that is, its principal part coincides with the Laplace operator (see problems
N 9 and 12-17 from [Smi66]). This allows to solve such equations exactly
or approximately.
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Problem 1.4.4 (N 14, [Smi66]). Bring the equation

0%u 0?

y@ + .Ta—y2 =0, y>0, z>0 (1459)

to a canonical form.

Solution. The equation of the characteristics y dy? +x dz? = 0 takes the form
VY dy = £i/x dx, that is, the equation (1.4.59) is elliptic. Integrating, we get
y3/2 7 i23/? = ¢. Take the new coordinates z; = Re = y3/2 3/2,
Then

, 22 =Sc==

Ou _ Ou3l 1 Ou_ Ou3l

2 x/?; -
0r 0z 2 0y 0Oz 2
Differentiating the above relations in = and y, respectively, we get (in

accordance with (1.4.58), we do not write the terms with 82326“ ):
1022

(1.4.60)

Pu  0%u9  ou3 Pu 0%u9  Ou 3
cr _ v 2y 22 T 0T I 12 (1461
0z 022 433—’_ 029 433 toe oy? 022 4y+ 021 4y + (1.4.61)

Substituting this into (1.4.59), we find

O?u  0%u\9 3 Ou 1 3 Ou
—+ === Sy TV /2 =0, 4.62
(82% 525)4$y+4321xy +4822yw (1.4.62)

From here we get the canonical form:

?u 0% 1 Ou 1 Ou
- - - —— = (). 1.4.
022 023 321021 322 029 0 (1.4.63)

Now let us consider the case, when in (1.4.32) instead of “>” one has
“="_ Then equation (1.4.29) is called degenerate, or parabolic in the broad
sense, at the point (z,t). If (1.4.29) is parabolic in a certain region, then
equations (1.4.33) coincide and consequently there is only one independent
first integral £(z,t). In this case, for bringing (1.4.29) to the canonical form,
one could choose as a second variable any function so that the change of
variables x,t — &, 1 were non-degenerate. It turns out that (1.4.29) takes
the form

0%u
— +...=0. 1.4.64
St (1464)
Problem 1.4.5 (N 10, [Smi66]). Bring to the canonical form the equation
0? 02 0?
sm%a—; — 9y sing;amgy n yQa—yZ =0, O<z<m y>0.  (14.65)

Solution. The equation of the characteristics, sin®xdy? + 2ysinz dydx +
y?dz? = 0 takes the form (sinxdy + ydx)? = 0, that is, equation (1.4.65)
is parabolic. Separating the variables, we get dz/sinxz = —dy/y, hence
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Intan(z/2) = —Iny + ¢, or ytan(x/2) = c¢;. We take £ = ytan(z/2). Then,
setting n =y, we find

du
on’

ou Ou 1 ou Ou

T
9z 0€'2co?z’ oy o 2T

(1.4.66)

Differentiating, we get (omitting the terms with -2 ag B and 2 652 , in accordance
with (1.4.64)):

Pu_ou sm) w0 w1
ox? 8§y2cos3(x/2) CUoyr om2 T Oxdy O€ 2cos?(x)2)
(1.4.67)
Substituting into (1.4.65), we find
Ou  sin(x/2) ou 1 0%u
2 _sm{z/2) N I -1 o
sin x(@{ 20053(90/2)) 2y51nx8£ 2 cos?(z/2) ty on? 0. (14.68)
from where we obtain the canonical form:
0%u  Ou Esin’ x sinz 0%u  Ou 2&
an? 6_§(y220082(x/2) 7ycos2(a:/2)) o2 8_§<7172 +§2) =0. (1.4.69)

Problems 1.4.3. Bring to the canonical form the following equations:

*u 9? —
L. 8_728xgy+8y2 +Oé8x+ﬂ3y+cu70'

2. tan? xd 2ytan:1:ad +y22yu+tan g:d =0.
3. cth’z 2ycth:caa$gy—|—y28“+2 8“*0.

1.5  Semi-infinite string

Mixed problem for the d'Alembert equation

Let us consider the d’Alembert equation (1.2.1) in the region = > 0. Physically,
this corresponds to the string with one (left) end located at the origin and
the other located far away from the origin (at a distance > at):

*u 0%

W =a @, $>0, t> 0. (151)

Initial conditions (1.2.2) are also required here:

u(z,0) = p(x); 631; (x,0) = P(x), x> 0. (1.5.2)
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Besides, it is physically obvious that one needs the boundary condition at
the left end of the string (at = 0). For example, if this end is fixed, then
its displacement is equal to zero:

u(0,t) =0, t>0. (1.5.3)

Other physically sensible boundary conditions are also possible (see (1.1.14)
and (1.1.25)).

Problem (1.5.1)—(1.5.3) is called a mized problem, since it contains both
the initial data (1.5.2) and the boundary conditions (1.5.3).

Solution of the mixed problem (1.5.1)—(1.5.3). Method of the incident and
reflected waves

Let us use the d’Alembert method, that is, let us search for a solution in
the form

u(z,t) = f(x — at) + g(x + at) (1.5.4)

Substituting this decomposition into the initial data (1.5.2), we get, as in
Section 1.2, equations (1.2.27)—(1.2.32), that is, the d’Alembert formula for
u(z,t).

Question. Why do we need the boundary condition (1.5.3), if we seem to
have found the solution using only the initial data?

Answer. Equations (1.2.27)—(1.2.31) only make sense for > 0, since the initial
data (1.5.2), as opposed to (1.2.2), are only given for z > 0. Correspondingly,
the d’Alembert formula (1.2.32) only holds for x — at > 0, and not for all
x>0, t>0.

Conclusion. Solution of the mixed problem (1.5.1)—(1.5.3) is given by the
d’Alembert formula (1.2.32) for = —at > 0.

This is the region below the “principal”

characteristic z — at = 0. The character-

t istic * —at = 0 is called principal since
it comes out of the special point (corner
point) of the region z > 0, ¢ > 0 where
equation (1.5.1) is considered. Now let
us find the solution above the principal
characteristic (in the region z — at < 0).
Decomposition (1.5.4) holds everywhere
in the region = > 0, ¢ > 0. The wave
g(x + at) is found from (1.2.30) for all
x>0, t >0. On the other hand, the
wave f(xz —at) is found from (1.2.31) only
in the region x — at > 0, that is, below the principal characteristic. Thus, it
remains to find f(x — at) above the principal characteristic, for x — at < 0.

Figure 1.20:
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Let us find f(x —at) for © —at < 0. We use boundary condition (1.5.3):
f(—at) + g(at) =0, t> 0. (1.5.5)

It is this formula that relates the unknown values of the function f for
the negative values of its argument with the values of the function g for the
positive values of its argument, that are already known from (1.2.30).

Let us make the change of variables: We set

—at = z. (1.5.6)
Then (1.5.5) takes the form
f(z) =—g(-2), =z<0. (1.5.7)

Due to (1.2.30), the above relation shows that for z —at <0

at—zx
flx—at) = —g(at—x)z—w—% / w(s)ds—iz
0
0
_ w(atQ— z) +% / w(s)ds_i' (1.5.8)

Substituting (1.5.8) and (1.2.30) into (1.5.4), we find: for = > at, we get
the d’Alembert formula (1.2.32); for 0 < x < at, we get:

x+at

Thus, the solution of the mixed problem (1.5.1)—(1.5.3) is given by two
different formulas: The d’Alembert formula (1.2.32) for = > at (below the
principal characteristic) and (1.5.9) for 0 < x < at (above the principal
characteristic).

Definition 1.5.1. In the region 0 < = < at the wave g(z + at) is called an
incident wave (onto the left end, = 0), while f(x — at) is called a reflected
wave.

Let us give the graphical interpretation of constructing the solution to
problem (1.5.1)—(1.5.3).

Solution of this problem consists of two steps:

A. We substitute the d’Alembert decomposition (1.5.4) into the initial
data (1.5.2), which are specified at ¢t = 0 at the points « > 0 of the Oz axis.
Solving system (1.2.27)
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for x > 0, we find the waves f(z — at)
and g(x +at) at these same points x > 0,
t =0. Now f(z —at) is known on all
characteristics going to the right from
these points (Fig. 1.21), since f(x — at)
is constant on all such characteristics.
These characteristics fill the entire region
x —at > 0. On the other hand, the wave
g(x+at) is known everywhere. Indeed, it
is constant on the characteristics going to
the left, while such characteristics, sent
out of the points (z,t) with = > 0 and
t =0, fill the entire region « > 0, ¢ > 0. Thus, the initial data allow to
determine the solution in the region where on Fig. 1.21 that contains the
characteristics of both families, that is, below the principal characteristic.

It is transparent (see Fig. 1.21) that above the principal characteristic
the wave f(x — at) (the reflected wave) is not known yet, while the incident
wave g(x + at) is already known.

B. We substitute the d’Alembert de-

composition (1.5.4) into boundary con-
dition (1.5.3), which is specified at the !
points of the time axis Ot (¢t > 0, z = 0).
At these points the wave g(z + at) is ~
already determined from the initial data.
Therefore boundary condition (1.5.5) re-
lates the values of the wave f(x — at)
(unknown at these points) with the al- a <
ready known values of g(x + at). This
allows to determine the wave f(x — at).
But then f(z—at) (and hence u(x,t)) is
known on the characteristics going to the
right from all these points (the dashed line on Fig. 1.22), that is, in the
entire region x < at above the principal characteristic.

Figure 1.21:

Figure 1.22:

Other boundary conditions
Instead of (1.5.3) one may consider the boundary condition (1.1.12):

%(O,t) =0, t>0. (1.5.10)

Problem 1.5.1. Solve the mixed problem (1.5.1)-(1.5.2), (1.5.10).

Solution.

1. Below the principal characteristics, that is, for « > at, the d’Alembert
formula (1.2.32) is valid, and formulas (1.2.30)—(1.2.31) hold for = > 0;
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2. Above the principal characteristic, that is, for x < at, instead of (1.5.5)
we substitute (1.5.4) into (1.5.10), obtaining

f(—at) +¢'(at) =0, t>0. (1.5.11)
After the substitution —at = z, we have:
f'(z)+4'(—==z) =0, 2 <0. (1.5.12)
Integrating, we obtain
f(z) —g(—%) = c1 = const, z < 0. (1.5.13)

In view of (1.2.30), for = < at, we obtain:

at—x
flz—at) = glat—z)+c1 = %cp(atfx)Jr% / b(s) ds+§+q. (1.5.14)
0

Taking g(z + at) from the same formula (1.2.30), for = < at we obtain:

at—x x+at
0 0

(1.5.15)
The constant co, as we will now show, could be determined from the
condition that the solution u(x,t) is continuous at the characteristic
2 = at, when problem (1.5.1)—(1.5.2), (1.5.10) describes a string or a
rod.

Discontinuities of a solution along a principal characteristic. Continuity conditions

It follows that the solution to problem (1.5.1)—(1.5.2) is given by different
expressions for x —at > 0 and x — at < 0, therefore it could be discontinuous
along the line  —at = 0. It turns out that the discontinuity of any solution
to (1.5.1) along the line x — at = 0 does not depend on time.

Indeed, this could be seen from (1.5.4):

1. The wave g(x + at) is continuous when passing through the principal
characteristic, since its level curves x + at = const intersect the line
T = at.

2. The wave f(z — at) below the principal characteristic * — at = 0 has
a limit, equal to f(0+), since = — at > 0; analogously, its limit from
above is equal to f(0-). Thus,

= £(0-) — £(04). (1.5.16)
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Therefore the condition that the solution u(x,t) is continuous on the principal
characteristic has the form

f(0-) = f(0+). (1.5.17)

Problem 1.5.2. Find the condition for the solution to problem (1.5.1)—(1.5.3)
to be continuous at the principal characteristic.

Solution. As follows from (1.2.31),

f(0+) = @ - i (1.5.18)
while from (1.5.8) we have
f(0-) = —g(0) = —%O) - % (1.5.19)

)
—~
=
=
©
~
o
=

—— =" <= 0)=0. 1.5.2
=2 #(0) (15.20)
t
u=0
o () *
Figure 1.23:

Remark 1.5.1. Let us consider the region =z > 0, t > 0, where problem
(1.5.1)—(1.5.3) is being solved. On its boundary at the axis Ot the solution
is equal to zero due to (1.5.3), while at the axis Oz the solution is equal
to ¢(z). Therefore condition (1.5.20) is merely the continuity condition of
the boundary values of w(z,t) at the point (0,0). As we have seen, this
condition is necessary and sufficient for the continuity of the solution at all
the points of the principal characteristic.

Problem 1.5.3. Find the continuity condition of the solution to problem
(1.5.1)—(1.5.2), (1.5.10) at the principal characteristic.

Solution. Formula (1.5.18) is valid here, while instead of (1.5.19) we get
from (1.5.14):

f0y =29 S+ (1.5.21)



Practical PDEs, Section 1.5 37

Therefore, (1.5.17) takes the form (see (1.5.15)):

o(0) ¢ p(0) ¢ c
AT -7 _ = — — =9 =0. 1.5.22
5 o, TaT 5 T, at g =e ( )

Remark 1.5.2. A discontinuous solution to problem (1.5.1)—(1.5.2), (1.5.10)
(when c¢3 # 0) does not make a physical sense for a string or a rod, since it
implies their breaking. Yet, in Acoustics and Gas Dynamics a discontinuous
solution makes physical sense and is called a shock wave. In this case,
the value of the discontinuity, represented by co, could not be found from
equations (1.5.1)-(1.5.2), (1.5.10).

This value could be determined from additional physical or chemical
information, and this allows to pinpoint a unique solution to the problem.
For example, in the process of propagation of the detonation wave in the
hasoline wapor the value of the pressure jump at the front of the shock
wave depends on the type of the gasoline, pressure, temperature, presence
of additional substances, etc.

Mixed problem (1.5.1)—(1.5.2) with more general boundary conditions
(1.1.14) or (1.1.25) is solved similarly as in the case of boundary condition
(1.5.10), but the equation of type (1.5.11) for the boundary condition for
the reflected wave will be the differential equation of the second order,
and its solution will contain two arbitrary constants. These constants are
determined in each particular problem from the auxiliary conditions. For
example, condition (1.5.43) below means that the mass at ¢t =0 is attached
to the left end of the string and its speed is equal to 7.

Problem 1.5.4. Find a continuous solution to the problem

o%u 9% -z
WZS)@’ r>0,t>0; wu(r0)=e"
%(m, 0) = cos 5x; %(07 t) = u(0,t) +t.

Solution. At z > 3t the d’Alembert formula holds:

e—(@=3t) 4 o—(z+3t) | Sin(5(x + 3t)) - sin<5(x - 3t))

u(z,t) = 5 5 5

(1.5.23)

Therefore, for = < 3t, one needs to look for a solution in the form

e—(z+3t)  sin (5(3: + 3t))

u(z,t) = f(z —3t) + 5+ 30 . (1.5.24)

Substituting this expression into the boundary condition, we find:

3t ] e 3t gin15t
N(=3t) — S 4 2 cos 15t = f(—3t) + —

+t, t>0. (1.5.25)
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Substituting y = —3t, we obtain:

/ eV 1 eV sinby oy
-5tz = — =2 1.5.2
Fily) = 5 + g eosby = fly) + 5 0 "3 Y<O0 (1.5.26)
or .
sinby gy
F'y) = fly) = ¢” = geosby — —= =2, ¥ <0. (1.5.27)
It follows that
1
fy) = CeY + ye¥ + Acosby + Bsinby + % + 3’ y < 0. (1.5.28)

We find the constants A and B substituting f(y) into (1.5.27):

cos By _ sin Hy
6 30 °

Therefore —5A — B = % A+5B = —6, and thus —26A = —§ = A=
71—8; B=-5A+5 = —ﬁ + % Flnally, C could be found from contlnulty

condition (1.5. 17) C+A+3:=3 = C=¢-A=F-%=1

—5Asinby — Acosby + 5B cosby — Bsinby = —

(1.5.29)

Answer. For z < 3t,

2 1
u(z,t) = 1—3690*& + (z — 3t)e” 3 + g €08 5(x —3t) +

51\ . r—3t 1 e @Y sin5(x + 3t)
+(f—%)sm5(:ﬂ—3t)+ 3 +§+ 5 T 30 .

Propagation of waves

Problem 1.5.5. Stretched semi-infinite rope is initially at rest. Starting at
t =0, its left end x = 0 is moving up and down, with the displacement
being equal to sinwt. We assume a = 1. Draw the shape of the rope at
t=1, 2, 3,....

Solution. We need to solve the mixed problem (1.5.1)—(1.5.2), where
p(z) =¢(x) =0, with the boundary condition

u(0,t) =sinwt, ¢> 0. (1.5.30)

1) 2>t = wux,t)=0, since go( ) =¢(xz) =0 by the condition of
the problem. In part1cular glx+1) =
2) x <t: since g(x +t) =0

u(z,t) = f(z —1t). (1.5.31)
Substituting (1.5.31) into (1.5.30), we get

f(=t) =sinnwt, t>0. (1.5.32)
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Figure 1.24:
Substituting —t = z,
f(z) =sinm(-2), z<0. (1.5.33)
Therefore
u(z,t) = f(x —t) =sinw(t —x) = —sinw(x —t), =<t (1.5.34)

Answer. See Fig. 1.24.

Problem 1.5.6. The stretched rope is initially at rest. Starting at t =0 its
left end x = 0 is moved up and down with a given force sinwt. Assume
that a =1 and T = 1. Draw the shape of the string at t =1, 2, 3,....

Solution. We need to find the continuous solution to the mixed problem
(1.5.1)~(1.5.2) with ¢(z) =¢(xz) =0 and with the boundary condition

g—z(&t) = —sinnt, t>0, (1.5.35)

(see (1.1.14)).

1l.z2>0 = wu(x,t) =0; in particular, g(x +t) =0.

2. x <t
u(z,t) = flx —1t) (1.5.36)

Substituting (1.5.36) into (1.5.35), we get
f'(=t)=—sinwt, t>0. (1.5.37)

Substituting —¢ = z, we can write

f'(z) =sinmz, 2<0 = f(z)=— —te z< 0. (1.5.38)

Therefore
_cosm(z —t)

u(z,t) = f(x —1t) = +e¢, z<t (1.5.39)

s
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—
|
i
I

Figure 1.25:

The continuity condition at x =t requires that

1
u(t,t)=0=——+4+c¢ <= c=-— (1.5.40)
T T
Finally:
1
u(z,t) = — <— cosm(x —t) + 1), x < t. (1.5.41)
7r

Answer. See Fig. 1.25.

Problem 1.5.7. The mass m = 2 moving with the speed v = 7 clings to to the
end of the semi-infinite rod which was initially at rest. Find the displacement
of the rod for ¢t > 0, assuming that ¢ =3 in (1.5.1) and SE =5 in (1.1.25).

Solution. The mathematical setup of the problem looks as follows:

0%u 0%u ou 0%u ou
— =93 = — =0; 2-5(0,t) =5-—(0,%). 1.5.42
= 9o u(e,0)= SH(@,0)=0; 2520, =550(0,1). (15.42)
The clinging of the mass to the end of the rod gives the following conditions:
0
u(0,0+) = 0; a—?(o,m) =7 (1.5.43)

The last equality is due to the fact that the mass at the end of the rod
is only due to the newly acquired mass m. For x > 3t the d’Alembert
formula holds, so that u(z,t) =0, since the initial data are equal to zero.
For z < 3t the solution has the form u(x,t) = f(x — 3t), since g(x + 3t) = 0.
Substituting » into the boundary conditions, we find

2.9f"(=3t) =5f(=3t), t>0; f(0-)=0; —3f(0-)=7.  (1.5.44)

Hence
18f"(y) =5 (y) =0; y<0 = [f(y)=c1+coesY; ¢ +co=0;
oD o 42
20 2T Ty

Answer. u=0 for >3t and u= %2 (1 — e%(x_3t)) for =z < 3t.
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The reflection of waves

Besides the general method described above, the problem (1.5.1)—(1.5.2) with
the boundary conditions (1.5.3) or (1.5.10) could be approached using the
method of odd and even extension.

Let us first consider the method of odd extension.

The following problem describes the oscillations of a pitched string.
Problem 1.5.8. Solve the mixed problem (1.5.1)—(1.5.3) with a =1 and the
following initial data:

]——————7¢’\(x) L, w(x)=0
|
|

Figure 1.26:

Draw the shape of the string at ¢t =1, 2, 3, 4, 5.

Solution. Let us consider the solution 4(z,t) to the Cauchy problem (1.2.1)—
(1.2.2) on the entire axis, with %ﬂ(x,O) =1(x) =0 and with ¢ being the
odd extension of ¢(z) onto R:

(0,2) = @(x) = { plz), x>0, (1.5.45)

—p(z), =<O.

Figure 1.27:

Set

u(z,t) = u(x,t) (1.5.46)

120.
Obviously, u satisfies equation (1.5.1) and the initial data (1.5.2). Below,
we will see that boundary condition (1.5.3) is also satisfied, since a(z,t) is
odd in x. The region x < 0 will be called fictional, or non-physical.
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Construction of i(x,t). According to the d’Alembert formula (1.2.32),

oo Ple—t) g+t
a(z,t) = 5t =5 (1.5.47)

that is, we need to divide ¢(x) into two, shift by ¢ to the right and to the
left, and to add up the results.

U
il
6 -5 4 -3 22 7 2 /\/\
T~ ~—— __ __ 0. ;1 2 3 4 35 6
2
Figure 1.28: ¢t = 1.
U
= e
6 =l 3 2 12 /\ /\
~ S __g‘ll 73 T ¢ 7 x

Figure 1.29: ¢ = 2. Arrows indicate the direction of the motion of the humps.

Co
=N
NP
T

Figure 1.30: ¢t = 3. The left hump in the physical region x > 0 approaches
the nail at = = 0.
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Figure 1.31: ¢ = 3.5. The nail pulls the hump over.

Figure 1.32: ¢ = 4. The deviation for = € [—1,1] is identically equals zero;
arrows show the velocities of the points of the string.

Figure 1.33: ¢t = 5. The humps have parted (the arrows indicate the directions
of motion of humps).

And so on: in the physical region = > 0 the two humps move to the right
(while in the non-physical region x < 0 the two humps move to the left).

Remark 1.5.3. We see that boundary condition (1.5.3) at = 0 holds for all
t >0 since 4(z,t) is an odd function in z.
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Problem 1.5.9. Draw the shape of the string at ¢ = 3.25.

p(x)=0, , wix)

S

Figure 1.34:

Let us consider the oscillations of a piano string after being hit with a
hammer.
Problem 1.5.10. Solve the problem (1.5.1)—(1.5.3) with a =1 and the initial
data as on Figure 1.34. Plot the string at ¢t =1, 2, 3, 4, 5, and 6.

Solution. Let us set ¢(x) =0, z € R, and let us extend ¢(z) onto R so
that it is odd:

() = { Zﬁgf()’_m)“:” Zx0’< 0. (1.5.48)
Pix)

s . T
L__L___%J S *

Figure 1.35:

Consider the solution @ to the Cauchy problem (1.2.1)-(1.2.2) with the
initial data ¢ and 1. As before,

W(x,t) = p(x +1t) — p(x —t), where ¢(z)= P(s)ds: (1.5.49)
We set u(x,t) = d(x,t) " Obviously, u(x,t) satisfies (1.5.1) and (1.5.2).

As will be seen below, boundary condition (1.5.3) is also satisfied.
Construction of 4(z,t) according to forumlas (1.5.49): Figs. 1.37-1.42.

Problem 1.5.11. Draw the shape of the string at ¢t = 3.5 and t = 4.5.
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Figure 1.36:
-ﬁ(/x_'_]) I
5 4.2 0 2/1\6
~~~—" | - x
A dixe1)

Figure 1.37: t = 1.

Figure 1.38: ¢t = 2.

Co
&
™

Figure 1.39: ¢t = 3.
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Figure 1.40: ¢ = 4.

Figure 1.41: ¢t =5.

Figure 1.42: ¢t = 6.
And so on: In the physical region = > 0 the trapoeoid is moving to the
right (while the trapezoid in the unphysical region is moving to the left).
Boundary condition (1.5.3) is obviously satisfied.



Practical PDEs, Section 1.5 47

Let us now consider the method of even extension.

Problem 1.5.12. Solve the mixed problem (1.5.1)—(1.5.2), (1.5.10) with a =1
and initial data (1.5.43). Draw the shape of the string at ¢t = 1; 2; 3; 3.5; 4; 4.5.

Hint. Use the even extension for ¢(z) and ¢ (z). Then boundary condition
(1.5.10) will be satisfied, since @(z,t) will be even in z.

Problem 1.5.13. Solve the mixed problem (1.5.1)—(1.5.2), (1.5.10) with @ = 1 and
initial data (1.5.49). Draw the shape of the string at t = 1,2,3; 3,5; 4; 4,5; 6.
Problem 1.5.14. For ¢ < 0, there is a deformation wave propagating to the
left along the elastic semi-infinite rod:

(2,1) = sin(x + 3t), x> —3t,
=900, 0<z< -3t t<O0.

The left end of the rod at x =0 is elastically attached (see (1.1.25)):

(1.5.50)

0= —2u(0,t) + 3%(0,0, t>0. (1.5.51)

Find wu(z,t) for t > 0.

Solution. As follows from the condition of the problem,
0%u 0%u

0
w:9w, x>0,t>0; u(z,0) = sinz; —u(CE,O)Z?)COS.%‘, x> 0.

ot
(1.5.52)
From here, for x > 3t, the d’Alembert formula yields u(z,t) = sin(z + 3t),
as in (1.5.50). For z < 3t we are looking for a solution in the form
u = f(x—3t)+sin(z + 3t). Substituting into boundary condition (1.5.51), we
get

0=—2f(—3t) — 2sin 3t + 3f'(—3t) + 3 cos 3t. (1.5.53)
The substitution y = —3t gives
3f'(y) — 2f(y) = —2siny — 3cos y. (1.5.54)

Therefore f(y) = Ce(®/3¥ 4 Acosy + Bsiny. The constants A and B are
found by substituting f(y) into (1.5.54):

—3Asiny —2Acosy + 3Bcosy — 2Asiny = —2siny — 3cos y. (1.5.55)

Therefore —3A —2B = —2; —2A+ 3B = —3, so that
2 8 5
—94A—-4A=-12; A=12/13; B=-1+-A=-1+—=——. (1.5.
9 ; /13; +3 +13 13 (1.5.56)

Finally, C' is found from continuity condition (1.5.17): C+A=0; C=—13.

Answer. For z < 3t

12 12 5
u(z,t) = fﬁe%@*f) + 1 cos(z = 3t) — T sin(z — 3t) +sin(z + 31). (15.57)
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1.6  Finite string

The d'Alembert method

Transversal oscillations of a string of length [ in the absense of external
forces are described by equation (1.5.1):

Ou(z,t) 5 0%u

For the unique determination of the motion of the string we need the
initial data
u(z,0) = p(x); w(z,0) =¢(z), 0<xz<l (1.6.2)

and the boundary conditions at the ends. For example, if the ends are fixed,
then
u(0,¢) =0;  wu(l,t) =0, t>0. (1.6.3)

Solution of the mixed problem (1.6.1)—(1.6.3) could be found by the
d’Alembert method along the lines of Section 1.5, as follows:

1) Substituting (1.5.4) into initial data (1.6.2), which are given at the
points ¢t =0, 0 < z < I, we find by formulas (1.2.30)—(1.2.31) the waves
f(z —at) and g(x + at) at these same points. This gives the solution wu(z,t)
in region I (the triangle OAB):

2) Substituting (1.5.4) into boundary
condition (1.6.3) at = 0, we find the
reflected wave f(x —at) from knowing the
incident wave g(x + at) at the poinds of
the interval OC. This gives the solution
u(z,t) in region II (the triangle OBC);

3) Substituting (1.5.4) into boundary
condition (1.6.3) for z =1, we find the
reflected wave g(x + at) fron knowing the
incident wave f(z —at) at the points of
the interval AFE.

And so on. This allows to find the solution u(x,t) in the entire semi-
strip 0 < x <[, t > 0, successively decomposing it into regions, bounded by
characteristics similar to characteristics OD, AC, and CE. In the same fasion
one can solve the mixed problem (1.6.1)—(1.6.2) with boundary conditions
more difficult than (1.6.3).

Remark 1.6.1. The asymptotic properties of solutions to problem (1.6.1)—(1.6.3)
as t — oo, and, in particular, the frequencies of oscillations, are easier to
investigate using the Fourier method, which is described in Chapter 2.

Figure 1.43:
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Method of “even” and “odd” extension

Problem  1.6.1. Solve problem
(1.6.1)—<(1.6.3) for a =1, I =6

and the initial data from Fig. 1.26. +_——/\

Plot the shape of the string for 7
t=1,2,... and find the period T
of the string oscillations.

Solution.

(=7 ‘=
—
L 2 4 6

o . fj@m .

We send a virtual hump from the left.

49
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=11 t=12: |

Figure 1.44:

Thus, the process is periodic, with the period being equal to 7 =12 = 2,

a

Problem 1.6.2 (The piano string). Solve the problem (1.6.1)—(1.6.3) with a =1
and the initial data from Fig. 1.34, [ = 6. Plot the shape of the string at
t=1,2,... and find the period of oscillations.

Problem 1.6.3. Solve the problem (1.6.1)—(1.6.2) with the boundary conditions

ou ou
%(O,t) =0, %(l,t) =0, t>0. (1.6.4)

Hint. One should apply the method of “even” reflections, that is, send
reflected virtual humps (see Fig. 1.44) with the same “polarization” as the
incedent ones (not with the opposite).

1.7  The wave equation with many independent variables

Plane waves, characteristics, discontinuities

A multidimensional analog of the d’Alembert equation (1.1.1) is the wave
equation
Pu  P*u  O%u

9r2 T 9.2 T 9.2
Ox{ Ox5 Ozj

0%u

e a’Au(z,t) = a2(

), t>0, x=(x1,20,23) €R?,

(1.7.1)
where a > 0. This equation describes the air pressure p(x,t) (the sound
wave in Acoustics), the potentials ¢(z,t) and A(x,t) of the electromagnetic
field in Electrodynamics, etc.
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Let us try to find solutions to equation (1.7.1) in the form
u(w,t) = f(&ot + 11 + Eoxp + &33) = f(fot + (gx>) (1.7.2)

where £ = (61,62,6) #0;  (E.2) = &30 + Eowa + Gy,
Remark 1.7.1. Such a function is called a plane wave. This is related with
the following:

A) At fixed ¢ =t,, the level surfaces u(z,t,) = const are represented by
the planes

Lt +(§ ) =c (1.7.3)

orthogonal to the vector E,

B) For different t = t,,¢1, the function w(t;,x) differs from wu(t.,x) by
the shift by the vector

n/‘r\rl

7|—2§O(t1 — ). (1.7.4)

a4y

Indeed,

u(x + ==&t — to),to) = f(foto + (€ o+ iﬁo(tl - to)>) =

€12

£t — to)) - f(fotl € m)) = u(ty,z). (1.7.5)

Thus, (1.7.2) is a wave moving along the direction of the vector —E with
the speed

v= é;i (1.7.6)

Then

:1|’“¢

We denote the unit vector in the direction —5 by & = —

—

& = v|a; £= —d|¢| and, therefore, (1.7.2) could be written as

—

u(e,t) = f (vt — @ 2)I]) = £t = @,2)IE]) = g(vt = @.2)), @7.7)

where ¢(z) = f(m|5|>, o] = 1.

After these preliminary remarks let us proceed to finding the solution to
equation (1.7.1) in the form (1.7.2). We substitute (1.7.2) into (1.7.1), and,
using the Chain Rule, we get:

F(Eot + (€, 2))E2 = a® " (Eot + (€, 2)) (€} + €3 + €2). (1.7.8)
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S
T ’ Assuming that f”(z) #Z 0, we get from

.. here the characteristic equation

€2 = a?|¢]?. (1.7.9)

£ Solutions _of this equation are vectors

0,//7_2 £ = (&,€) € RY,) lying on the (three-

| P dimensional) cone @ in R*, whose base is

! ’ a two-dimensional sphere || = 1, ¢ =1
(Fig. 1.45).

Conversely, for any ¢ € R* satisfying
(1.7.9), the plane wave (1.7.2) with any
function f(z) is a solution to equation (1.7.1).

In particular, f(z) could be taken discontinuous (or rapidly changing)
at some point, for example, at z = 2 (see Fig. 1.14). Then the solution
(1.7.2) will have the same discontinuity (or rapid change) along the entire
hyperplane in R}, (if £ # 0):

Figure 1.45:

Eot + (€, z) = 2. (1.7.10)

For fixed ¢ this discontinuity is located on the plane in R3 described by
equation (1.7.10). As the time increases, this plane moves in the direction
of its normal, represented by —&, with the speed v = % =a (see (1.7.9)).
Definition 1.7.1. The vector £ = (&,&1,&2,&3) € RY, € # 0 satisfying (1.7.9)
is called a characteristic normal of the wave equation (1.7.1).

The hyperplane ¢+ = {(t,x) eER*: £t + (f_: ) = const}, orthogonal to a
particular characteristic normal ¢, is called a characteristic hyperplane (or
simply a characteristic) of the wave equation (1.7.1).

The hypersurface in R* is called a characteristic hyperplane if the tangent
hyperplane at each point is characteristic.

Remark 1.7.2. Due to characteristic equation (1.7.6) the speed of propagation
of all the plane waves that satisfy the wave equation (1.7.1) is equal to a:

€2
v = 22 =a% (1.7.11)
€I

Conclusion.  Any characteristic hyperplane could be a surface of the
discontinuity of solutions to equation (1.7.1) (see Remark 1.2.1).

All the plane waves satisfying equation (1.7.1) propagate with the speed

It is the formula (1.7.11) that the discovery of the electromagnetic nature
of light and the special theory of relativity is connected with. From the
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equations of Electrodynamics Maxwell derived that the potentials of the
electromagnetic field satisfy the wave equation (1.7.1) with the coefficient
9 1

= . 1.7.12
= ( )

Here ¢, and p, are the electric and magnetic permeability of vacuum, respec-
tively, are found experimentally from purely electromagnetic measurements.
When Maxwell computed the speed of propagation of the electromagnetic
waves, it turned out that this speed with the great accuracy coincided with

the speed of light:

1 k
o= ~ 2099762 (1.7.13)
Eollo h

This led Maxwell to the conclusion that the light also has an electromagnetic
nature!

Another great discovery related with furmulas (1.7.11), (1.7.12), was the
special theory of relativity. The question naturally arises: In what reference

. . 1 .
frame the value of the speed of light is actually equal to m? It is known

that all the laws of Mechanics are the same in any inertial reference frame.
Thus, it is natural to assume that the laws of Electrodynamics also hold in
any inertial reference frame. But the, according to (1.7.12), the speed of
light should also be the same in all such systems! Such a property of the
velocity, though, contradicts Newton’s Mechanics. It follows that either the
Maxwell equations are only valid in a particular reference frame, related to
the stationary “ether”, or the Newton laws of Mechanics are not exact. It
is for settling this question that Michelson and Morley built their famous
experiment to justify that the speed of light is the same in different inertial
reference frames, and, consequently, the absence of the statinary “ether”
and inexactness of Newton’s Mechanics (at high speeds). The necessary
refinement of the Mechanics laws was later given by A. Einstein.

The region of dependence. The Kirchhoff formula

Let us try to find the region of dependence for equation (1.7.1) with the
aid of characteristics, as in Section 1.4 (Fig. 1.18). That is, let us consider
the Cauchy problem for equation (1.7.1) with initial conditions at t = 0:

= p(z), Oul - _ Y(z), xR’ (1.7.14)

t=0 ot |,_o

u

Let us draw through a particular point (z.,t,) € R* ¢, > 0 all the
characteristics (characteristic hyperplances) of equation (1.7.1) (Fig. 1.46).
On Fig. 1.46, & and & are the characteristic normals, while & and &
are orthogonal to them characteristic hyperplanes that pass through (z.,t,).
These characteristics intersect the “initial” hyperplane t = 0 along the planes
P[ and P[[.
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Figure 1.46:

Hypothesis. The region of dependence of the solution u at the point (z.,t,)
is the region of the hyperplane ¢ = 0 bounded by all the hyperplanes P,
Py, ... (this is in the analorgy with Fig. 1.18).

This region is a ball of radius at centered at z,. To see this, one should
notice the following: The normals &, &1 belong to the cone ) described by
equation (1.7.9), while all the hyperplanes &, &% are tangent to the cone
K(z,t,) orthogonal to the cone @ (see Fig. 1.46). Therefore the hyperplanes
Py, Prp,... are tangent to the base of the cone K, . ), that is, the sphere
S(z0,t,), Which is bounded by all these hyperplanes.

Remark 1.7.3. The cone K, ;) is called the characteristic cone of equation
(1.7.1) at the point (zo,t,). It is the characteristic hypersurface.

As seen on Fig. 1.46, a + = 7. As follows from (1.7.9),

—

€
€l

Therefore the cone K, ;. is given by

1
tana = =—- = tanf=a. (1.7.15)
a

| — 6| = alt — to|. (1.7.16)
When ¢ =0, one gets the equation of a sphere:

S(aorte) = {2 ER® : |z — x| = ato} (1.7.17)
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Thus, our hypothesis is that the region of dependence of u at the point
(2o,t5) is a ball of radius at, centered at z,. This hypothesis is equivalent
to saying that all the solutions of equation (1.7.1) propagate with the speed
a. Let us point out that we already proved this for the plane waves.

Our hypothesis is correct indeed. Moreover, it turns out that the region
of dependence is smaller than a ball: It only consists of the sphere S, ;.-
Obviously, this follows from the Kirchhoff formula for the solution to the
Cauchy problem (1.7.1), (1.7.14) (for the derivation of this formula, see
[Pet91]):

o) = o [ WS+ g (mm [ ewas,). @z

ly—z|=at ly—=z|=at

Distribution of waves. The Huygens principle

Problem 1.7.1. Given: a =1, p(z) =¢(z) =0 at |z| > 1; Find where (for
certain) u(z,t) =0 at t =1,2,3,4.

Solution. First, assume that a is arbitrary. Then u(x,t) =0 if the region

x3
‘. at
S —
e 4 ) )
xZ

Figure 1.47:

of integration in (1.7.18), that is, the sphere |y — x| = at, does not intersect
the region |y| <1 where ¢(y) and v¢(y) are supported. See Figure 1.47.

Clearly, this condition is equivalent to
the following (see Fig. 1.47):

1+ at < |z, (1.7.19)
4alD i or, another possibility,

o 7
at >1=|z|. (1.7.20)
xz
when the sphere |y — 2| = at contains the

ball |y| <1 (see Fig. 1.48).

Figure 1.48:
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Condition (1.7.19) at a =1 yields the
identity u(z,t) = 0 in the following regions:

t=1 = |z|>2;
t=2 = |z|>3;
t=3 = |z|>4
t=4 = |z|>5.

(1.7.21)

Condition (1.7.20) at a =1 yields the identity w(z,t) =0 in the following
regions:

{ t=1 = z€b;, t=2 = |z|< (1.7.22)

t=3 = |z/<2; t=4 = |z <3

Therefore, u(z,t) has the form of the spherical wave contained in the spherical
layer of thickness 2:

t=1 = |z/<2; t=2 = 1<|z|/<3;

t=3 = 2<|z|<4; t=4 = 3<|z|<5b. (1.7.23)
t-1 t=2 =5
Figure 1.49:

Answer. u(x,t) for certain is equal to zero outside the spherical layers (1.7.23)
(although it could also be equal to zero somewhere inside these layers).

Conclusion. As seen from (1.7.23), the front of the spherical wave propagates
with the speed 1. In the case of an arbitrary a, it is seen from (1.7.19)
and (1.7.20) that the solution u(z,t) could only be different from zero in a
spherical layer

at—1<|z|<at+1 (1.7.24)

of thickness 2. This wave has two fronts: the forward front |z| = at+1 and
the rear front |xz| = at — 1, both propagating with the speed a.

Problem 1.7.2. Given: a =1, p(z) =9(z) =0 at |z|] <2 or |z|] >4 (as on
Fig. 1.49 for ¢t = 3). Where u(z,t) =0 for t =1,2,3,4,5?7



Practical PDEs, Section 1.7

57

Solution. There are three possibilities, I, II, and III (see Fig. 1.50), of the
location of the sphere |y — 2| =t so that we would have u(x,t) =0.

For location I, analogously to (1.7.19), in the case of a general value of
a, 4+ at < |z|. For location II, analogously to (1.7.20), at > 4 + |z|.

~1
7

t +
~ 7

Figure 1.50:

Finally, for location III, |z| + at < 2.

Since we are given a = 1, we get
the following: 1) At ¢ = 1 the
sphere |y — x| =t is of radius 1
and locations I and III are possible,
while IT is not. As a result, we
see that u(x, 1) is supported in the
layer 1 < |z| <5 (see Fig. 1.51).

Figure 1.52:

Figure 1.51:

Let us point out that this result
seriously differs from Fig. 1.49 at
t =4; 2) At t = 2 the radius of the
sphere of integration is equal to 2,
therefore, only location I is possible.
Therefore, the wave occupies the
ball |z| < 6;
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3) At t =3 it is also only location
I that is possible (the sphere of
integration is of radius 3), therefore
the wave occupies the ball |z| < 7;

Figure 1.54:

5) Finally, at ¢t =5, in addition to
location I, location II also becomes
possible (the sphere of integration
is of radius 5), et cetera.

We now see that u(z,t) for ¢t >4
is a spherical wave that occupies
the spherical layer of thickness 8.

Section 1.7

Figure 1.53:

4) The same happens for t = 4:
the ball |z| < 8§;

Figure 1.55:
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The Huygens principle is the rule that allows to build the forward front
F; of the wave at the moment ¢ if it is known at ¢t = 0. This rule follows

from the Kirchhoff formula (1.7.18) and consists of the following: Let u‘ .
t=

Figure 1.56:

and be equal to zero outside of the dashed region on Fig. 1.56, with

the smt()(?th boundary F,. Then u(z,t) =0 outside the region bounded by
the surface F;. The front F; is constructed as follows: For each z,, z, € F,
we consider the sphere S,;(x,) of radius at centered at z.; the sphere F} is
the envelope of all such spheres.

Let us assume that there is a unique point where the front F; touches
the sphere S,:(z,), and denote this point by x;. It is easy to see that
the interval [zo,2;] L Fy, if F; is a smooth surface. One can also check
that [zo,2:] L F, (problem). Consequently, the front F; could also be
constructed in the following way: From each point z, € F, we draw an
interval [r.,x¢] L Fo of length at. The front F} is then the set of all such
points z;. The intervals [z,,x:] are called the light rays. Therefore, the
Huygens principle means that the waves “propagate along the rays”.

Diffusion of waves in two dimensions. The Poisson formula
The wave equation in the plane,

2
aaTg(m,t) = a’Aqu = a2(

0?u  0%u

a2 a_x%)’ zeR: t>0 (1.7.25)
is obtained from (1.7.1) when w(z1,x2,23,t) does not depend on x3. This
is the case when neither the initial data nor the external sources (such as
the current or charges in Electrodynamics or the sound sources in Acoustics)
depend on z3. For example, the potentials of the magnetic field generated by
the current in a straight wire and acoustic field of a long straight autobahn
satisfy equation (1.7.25). The waves u(x1,x2,t) that do not depend on 3
are called cylindrical.
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In this case, the initial data ¢ and v also do not depend on z3:

“L:O = ¢(2); ﬂ‘t:O =y(x); zeR? (1.7.26)

Solution to the problem (1.7.25)—(1.7.26) is given by the Poisson formula

alrt) = —— Y(y) dy L1 6( ply) dy )

2ma (at)? —Jy—af? 2madt (at)? =Ty —aP?
ly—z|<at ly—z|<at

(1.7.27)

These integrals are evaluated over the disc |y — x| < at and not over its

boundary; this is different from the Kirchhoff formula (1.7.18). Consequently,

the propagation of the cylindrical waves (or simply “the plane waves”) is
different from that of the spherical waves.

Problem 1.7.3. Given: a =1 and o(z) = ¢(z) =0 at |z| > 1, € R2. Where
u(z,t) =0 for t =1,2,3,4,5 7

Answer. t=1 = |z[>2; t=2 = |z[>3 t=3 = |z|>
4;, t=4 = |z]>5.

Remark 1.7.4. In this problem the cylindrical wave has the forward front but
does not have the rear front, contrary to the spherical waves in two previous
problems. This phenomenon is called the diffusion of waves. It turns out
that for all odd n > 3 the wave equation with n spatial variables x1,...,x,
has both the forward and rear fronts, while for all even n > 2 (and for n =1
as welll) there is the forward front but no rear front.

Remark 1.7.5. If in the last problem the functions ¢ and ¢ that enter (1.7.26)
are bounded, then the solution converges to zero: u(z,t) — 0 for t — oo,
Vx € R?. This is seen from (1.7.27). (Prove this!)

Remark 1.7.6 (“The method of descent” from n =3 to n = 2). One can obtain
the Poisson formula (1.7.27) from the kirchhoff formula (1.7.18) using the
independence of ¢ and ¢ from x3 (see [Pet91]):

1.8  General hyperbolic equations. Examples of nonhyperbolic equations

General hyperbolic equations with constant coefficients

Let us first consider the equation Au = 0 where A is homogeneous differential
operator, that is an operator such that all the terms are the partial derivatives
of the same total order m:

Au(z) = Z anOgu(x) =0; x=(x1,...,2,) € R™ (1.8.1)
|a]=m
Here o= (a1,...,ap); || =a1+ - -4+ an; a =0,1,2,..,
la|
o 0 (1.8.2)

- Ozrt ... 0z
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Let us look for the solutions of the type of the plane waves:

u(z) = f((&x) = f(Eazr + ...+ &an); @ €RT, (1.8.3)

where f is some function of one variable. Substituting (1.8.3) into (1.8.1)
we get, analogously to (1.7.8),

> aa (G a)) =0, =g (1.8.4)

|o|=m

From here, assuming that f("™)(z) # 0, we get, analogously to (1.7.9), the
algebraic equation ot the characteristics (compare with (1.4.43)):

A= ) a.tr =0 (1.8.5)
la|=m
This equatino defines the cone @ in R", that is,

(e = tEeq; Vvt € R. (1.8.6)

Thus, we see from (1.8.4) that the plane wave (1.8.3) for an arbitrary
function f satisfies the differential equation (1.8.1) if and only if the “wave”
vector ¢ satisfies the algebraic equation (1.8.5).

Definition 1.8.1. 1. A vector £ € R", £ # 0 satisfying (1.8.5) is called a
characteristic normal of the differential equation (1.8.1);

2. The hyperplane ¢+ = {z € R" : (£,2) = const} orthogonal to some
characteristic normal is called a characteristic of the differential equation
(1.8.1);

3. The hypersurface in R"” is called a characteristic hypersurface of equation
(1.8.1) if at all its points the tangent hyperplanes are characteristics.

Definition 1.8.2. Equation (1.8.1) is called (strictly) hyperbolic in the
direction of the axis Oz if equation (1.8.5) on & for any fixed

&= (&, 6n) ER™INO (18.7)
has exactly m different real roots dk) =€), k=1,....m
M) << An(E) (1.8.8)

Geometrically, condition (1.8.8) means that the cone @ has exactly m
different compartments.

Ezample. For the wave equation (1.7.1) its order is m = 2 and equation
(1.8.5), equivalent to (1.7.9), has 2 roots & = +al|; hence,

A = —alé] < Ay =alé]; €€ R\ 0. (1.8.9)
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%
Q
-
!
A I (€,.6,.8)
Figure 1.57:

Accordingly, the cone @ has two compartments. Therefore the wave equation
is hyperbolic in the direction of the axis Ot.

Ezxample. For the equation

(L -a) (2 —oa)u@n=0: ze®, 150 (110
the order is m = 4; the characteristic equation (1.8.5) has the form
(€2 — €*)(€2 = 9lgl*) = 0. (1.8.11)
It has 4 roots: & = £|¢| and & = +3|¢|, and hence
A=-3E <=l <A =[El <M =3¢, €eRP\O. (1.8.12)

Therefore the cone @) has four compartments (see Fig. 1.58).

Figure 1.58:

Question. How is the strict hyperbolicity condition related with condition
(1.4.11)?



Practical PDEs, Section 1.8 63

Answer. For the second order equations with two independent variables they
are equivalent. Indeed, in the case of equation (1.4.7), equation (1.8.5) has
the form

A(&o,&1) = a&l + 2686y + €1 =0 (1.8.13)
Under condition (1.4.11), its roots
b+vD
fo=——4 (1.8.14)

are real and different.

Taking in (1.8.3) a discontinuous function f(z), we see that the solution
to equation (1.8.1) could have a discontinuity along any given characteristic
hyperplane (see Remark 1.2.1).

Remark 1.8.1. Let us take the direction of the characteristic normal £ as
a new coordinate axis, so that the plane y; = 0 coincides with &+, while
other coordinate axes yo,...,y, are chosen arbitrarily, as long as it is a
linear nondegenerate change of variables. Then, as turns out (problem!),

m

equation (1.8.1) in the new coordinates contains the term b(m,oy___yo)gy—,ff with
1

the following coefficient (compare with (1.4.39)—(1.4.40), (1.4.42):
b(m,0,...0) = Algrad y1) = CA(¢) (1.8.15)

But in view of (1.8.5) this coefficient is equal to zero. Therefore equation
(1.8.1) takes the form

> ba05u(y) = 0. (1.8.16)

la]=m,a; <m—1

This property of the vector £ is usually taken as the definition of the
characteristic normal (see [V1a79, Ole76, Pet91, TS90]). It is transparent
from (1.8.16) why solutions to equation (1.8.1) could have discontinuities
along the hyperplane ¢+. This is because each term in equation (1.8.16)
contains at least one derivative with respect to ys,...,y,. Consequently,
any function of y; satisfies equations (1.8.16) and (1.8.1); in particular, any
discontinuous function of y; (compare with Remark 1.4.1).

Now let us consider the equation Au =0 where A is a general nonho-
mogeneous operator:

Z a,0%u(x) =0; ze€R™ (1.8.17)

lor|<m

We no longer know the solutions to this equation in the form of the
plane waves. But, by the definition, it is accepted that the characteristic
equation for (1.8.17) is (1.8.5), that is, we omit the lower order terms.

We know that solutions to equation (1.8.1) could have discontinuities
along any given characteristic hyperplane. It turns out that this is also the
case for equation (1.8.17) if it is strictly hyperbolic. The following example
shows that, if the hyperbolicity condition is not satisfied, this may no longer
be the case!
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Examples of nonhyperbolic equations
Degenerate or parabolic heat equation (see Appendix):

ou

EZ:waLﬂ;xeRi t>0. (1.8.18)

For this equation the characteristic equation (1.8.5) has the form
0=d’¢]? <<= €=0. (1.8.19)

It does not have the roots &(£) for & # 0, hence, the heat equation is
not hyperbolic in ¢ (it is called parabplic instead). The cone @ consists of
vectors parallel to the axis Ot:

Q ={(£,0,0,0)}, (1.8.20)

where ¢, is arbitrary.
The  characteristic = hyper-
planes are given by equa-

(1,0,00) tions ¢t = const and are
b orthogonal to the axis Ot
(Fig. 1.59).

Question. Is it true that equa-

: Xy Xy Xy . . .
tion (1.8.18) has solutions with
discontinuities along the planes

. t = const?
Figure 1.59:

Answer. No, it is not true. This

is because equation (1.8.18) is not
hyperbolic and because we neglected the term % when writing the characteristic
equation (1.8.19).

As the matter of fact, all solutions to the heat equation are smooth. On
the other hand, it has solutions that are smooth on the characteristic planes
t = const but not analytic.

Ezample. The function

2

x|

S S €
E(x,t)={ @t . >0 (1.8.21)
0, t<0 zeR3

1. satisfies the heat equation (1.8.18) everywhere in R*, except for the
point t =0, z = 0;

2. For t #0 or = # 0 it is smooth;

3. At t =0, z #0 it is not analytic.
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Problem 1.8.1. Prove the statements 1), 2), 3) formulated above.

Let us point out that if we remove the term % from equation (1.8.18),
the resulting equation 0 = Awu, obviously, has solutions discontinuous on
any given characteristic hyperplane t = const; for example, we could take
functions of the form wu(z,t) = f(t), where f(t) is piecewise continuous.
Therefore, contrary to the case of nondegenerate equations, the properties
of solutions to degenerate equations strongly depend on lower order terms.
Question. Is it possible to find the region of dependence for a general
equation (1.8.17) with the aid of characteristics, as in Section 1.47 In other

words, is the hypothesis from Section 1.7 holds for this equation?

Answer. This hypothesis is true indeed for a strictly hyperbolic equation
(just as for the wave equation from Section 1.7). See [BJST9].

Remark 1.8.2. In a certain sense, this hypothesis is also true for the heat
equation (1.8.18). Namely, let us consider the Cauchy problem for equation
(1.8.18) with the initial data

u = (). (1.8.22)
t=0

For any point (2.,t,), o € R3 t, > 0 the characteristic hyperplane
passing through it as unique and given by ¢t = t,. It does not intersect
the hyperplane ¢ =0 at all, or instead one can think that they intersect at
infinity. The region contained “inside” the intersections of the characteristics
with plane ¢t = 0 is the entire hyperplane ¢ = 0. Indeed, this is precisely
the region of dependence for the heat equation. This can be seen from the
Poisson formula for the solution to the Cauchy problem (1.8.18), (1.8.22)
(see [V1a84, Pet91, TS90]):

1 _lz—y|?
R3

This means that the speed of propagation of perturbations for the heat
equation is equal to infinity.

Ezample. The Laplace equation (it is elliptic, see Appendix):

0%u  O%u 82_u

=0; z€R’ (1.8.24)
It is obtained from the wave equation (1.7.1) and from the heat equation
(1.8.18) when u does not depend on ¢. These are so-called stationary
solutions. Physically, they describe the stationary states of (1.7.1) or the
limiting temperature distributions ¢ — +o0o for solutions of equation (1.8.18)
and are of particular interest in applications.
For (1.8.24), let us find the plane wave solutions:

u(z) = f({€,2)) = f(&az1 + Eoxa + &a3), =R (1.8.25)
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Substituting into (1.8.24), we obtain, as above,

F'(& a)&E + (& 2)& + (6, 2))EF = 0, (1.8.26)
getting the characteristic equation
g+&E+eE=0 (1.8.27)
It follows that
§1=86=E§=0 (1.8.28)

Conclusion. Equation (1.8.24) is not hyperbolic (in either variable).

Question. Does this mean that the Laplace equation has no solutions similar
to the plane waves?

Answer. No, it does not. Let us consider the complex solutions to (1.8.27),

for example,
& =0\/& +E5; (62,6) €R% (1.8.29)

But then the function f(z) in (1.8.25) should be determined for complex
values of z. Moreover, in the first term in (1.8.26), f”({{,z)) is the derivative
of f in the direction of the imaginary axis, while in the second and the third
— in the direction of the real axis! Therefore, to cancel f” out of (1.8.26)
and to get (1.8.27), we need f(z) to have the same values of the derivatives
in the directions of the real and imaginary axes at each point. But, as
known from the theory of functions of complex variable, this means that
f(2) is analytic! Consequently, u(z) = f({¢,z)) is also an analytic function
of real variables =i, x2, x3 and can not be discontinuous. For example,

u(z) = (&) = (x1iV/&3 + & + Lowa + Ega3)®.

Corollary 1.8.1. All solutions to the Laplace equation (1.8.24) that are
similar to the plane waves are analytic and, consequently, are smooth. Let
us point out, though, that these are compler-valued solutions and their level
surfaces are complex hypersurfaces in C3.

It turns out that all the solutions to the Laplace equation are analytic
[Ole76, Pet91].

The shock waves and the Vavilov-Cherenkov radiation

Let us consider the electromagnetic field of a charge that is moving steadily
in a certain substance. If its velocity is equal to v and it moves in the
positive direction of the axis Oz, then its electromagnetic field is described
by four potentials, each of them having the form

o(x,t) = u(zy — vt,x9,23) (1.8.30)
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and satisfies the wave equation (1.7.1) everywhere away from the point
(1 —vt,0,0) =0 where the charge is located. The value of @ in (1.7.1) is
given by a = ¢,, where ¢, is the speed of light in the substance. Let us
point out that ¢, < ¢, where ¢ is the speed of light in the vacuum, while v
could be greater or smaller than ¢, (but less than c).

Substituting (1.8.30) into (1.7.1), we get the equation

0%u %u  0%u  O%*u

2 2

v B—x%(xl —vt, x2,x3) = Cb(a—x% 3—x§ 8—x§)’ x # x(t), (1.8.31)
from where, denoting x; — vt = y;, we get the following equation for
u(y, 2, 3):

(2 —0?) Pu (62u 0%u

5 TG 5—.76%—’—3—1'%

o ) =0, (y1,20,23) 0. (1.8.32)

Characteristic equation (1.8.5) that corresponds to (1.8.32) is given by
(ch — vp)&F + (&5 +63) = 0. (1.8.33)

From here, we see that 1) when v < ¢, equation (1.8.32) does not have
(real) characteristics (the same is true for the Laplace equation). It is of the
elliptic type (see Appendix). It turns out that all its solutions are smooth,
that is, the electromagnetic field does not have singularities for z # z(t);
2) when v > ¢, equation (1.8.32) is hyperbolic in y;, and, consequently, has
discontinuous solutions similar to the plane waves. For the characteristic cone
Q represented by equation (1.8.33), as we know from Section 1.7, there is a
corresponding “orthogonal” characteristic cone K described by the equation

e} + () —v*)(a3 +3) = 0 (1.8:34)

It turns out that the considered solution

u will be infinite in the part of a cone

K (1.8.34) where y; < 0. From (1.8.34)

we get the equation of the surface of
singularities of potential (1.8.30):

&,

£,.%,

cp(r —vt)? = (v* — ) (a3 + 25),

x1 — vt < 0. (1.8.35)

For each fixed t this surface in R3 is
a cone with a vertex at the point x(t)
where the charge is located (see Fig. 1.61).
Along this surface the potentials and the
field intensity are infinite, and the molecules of the matter at the points
of the cone become exited and emit the light. This is the selebrated
Vavilov-Cherenkov radiation.

Figure 1.60:
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The same situation arises when one x
is to find the sound generated by the
body moving through the air: there are
no pressure jumps for v < csound, but the
jumps appear for v > csounq- This is why
behind the supersonic plane there is the
shock wave located on the cone (1.8.35),
that is, the pressure is discontinuous at !
the points of the cone (Fig. 1.62).

Figure 1.61:

p=1000lar

Figure 1.62:

We hear a bang when the pressure
front passes our ear (see Fig. 1.62). The conic front of this shock wave is
called the Mach cone.



Chapter 2

The Fourier Method

2.1  Derivation of the heat equation

We consider a straight homogeneous metal rod of length . We choose the
axis = along the rod, and let x = 0 be the left end of the rod, so that =z =1
is its right end. Denote by wu(x,t) the temperature of the rod at a point
x at the moment t > 0. It turns out that w(z,t) satisfies the differential
equation called the heat equation,
2
% = aQ%(x,t) +bf(z,t) (2.1.1)
where f(z,t) is the density of the external heat source at the point = at
the moment ¢. This means that the piece [z,z + Azx] of the rod during the
time interval from ¢ until ¢+ At receives from the outside the amout of heat
equal to
Qexternal = f(x,t)AxAt. (2.1.2)

Let us derive (2.1.1). For this, we write down the equation of the heat
balance for the piece of the rod [z,z + Az] during the time interval from ¢
until ¢+ At:

emAT = Q (2.1.3)

Here c is the specific heat capacity of the material of the rod,
m(mass) = pAx, AT ~u(z,t+ At) — u(x,t), (2.1.4)

Q = Qezte'r‘nal + Ql + Qr7 (215)

where (Q is the amount of heat received by the piece under consideration
from the external sources, ); is the amount of heat received from the left
(that is, through the section of the rod at the point z), while @, is the
amount of heat received from the right (that is, through the section of the
rod at the point x + Ax). See Fig. 2.1.

69
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u
u(xt
Q, Q|
0 x Ji X
Figure 2.1:

According to the Fourier law of heating,

Q= —)\S%(Q:,t)At; Q, = )\S%
where A is the heat transfer coefficient and S is the cross-section area of
the rod. Roughly speaking, law (2.1.4) means that the rate of the heat
transfer through the cross-section of the rod at the point z is proportional to
the rate of change of the temperature, g—g(x,t). Signs in (2.1.6) are chosen
so that the heat would be transferred from warmer bodies to cooler ones
(the Second Law of Thermodynamics). For example, for u(z,t) on Fig. 2.1,
Q; <0; Q. >0, while g—g > 0 everywhere, hence the signs in the left- and
right-hand sides of (2.1.6) coincide. For other cases (other choices of wu(z,t))
the signs in (2.1.6) are checked in the same fasion.

Substituting (2.1.6) and (2.1.2) into (2.1.5), and then (2.1.5) and (2.1.4)
into (2.1.3), we get

(x 4+ Az, t)At (2.1.6)

cuAz (u(x, t+ At) — u(z, t)) ~

ou ou
~ f(z,t)AzAt + )\S<%(:ﬂ + Aa,t) - o

From here, dividing by AzAt and considering the limit Az — 0 and At — 0,
we get

(z, t))At. (2.1.7)

Ou 0%u

hgy = )\Sw + f(x,t). (2.1.8)

Then (2.1.1) follows.

2.2 The mixed problem for the heat equation. The operator form of the

problem. The idea of the Fourier method

For the unique determination of the temperature of the rod, besides equation
(2.1.1), one needs to specify the initial temperature

u(z,0) =p(x), 0<z<l (2.2.1)
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and the boundary conditions. For example, if the ends of the rod are
submerged into the melting ice, then their temperature will be equal to zero
(0° C):

u(0,t) =0, wu(l,t)=0, t>0. (2.2.2)

The problem (2.1.1), (2.2.1)—(2.2.2) is called the mixed problem for the
heat equation.
Let us write it in the operator form:

da 2 £
qat =a AU( ) + f(t)ﬂ t> 03 223
{ a(0) = ¢. (223)
Here A = %22; f(t) = f(z,t); a(t) = u(x,t); ¢ =¢(x). As follows from the
boundary conditions (2.2.2), a(t) € C2[0,1] for all ¢ > 0, where
C210,1) = {u(z) € C?[0,1] : u(0) = u(l) = 0}. (2.2.4)

Thus, the operator A is equal to —%, with the domain D(A) = c2[0,1].
The idea of the Fourier method consists of the following. For f = 0,
one tries to find the solution to problem (2.2.3) in the form of the sum of
particular solutions to the first equation of this problem that have the form
T(t) - X ().
Let us illustrate this idea on an example of the system of n ordinary

differental equations with n unknown functions, also written in the vector
form (2.2.3) (with f=0):

{ WO _ Aut), alt) = (ﬁl(t), . ,ﬁn(t)> ER™, t>0, (225)
w(0) = ¢ = (P1,...,Pn) €R",

where A is a matrix of size n x n.

Assume that there is a basis of the eigenvectors eq,...,e, of the matrix
A:

Aek = )\kek, k= 1, ey n. (226)

Then the solution #(t) we are looking for, as well as the initial vector ¢,
could be represented as

at) =D Te(t)er, ¢=>_ prex. (2.2.7)
1
Substituting into (2.2.5) we get
di n n
Z MTe(ter, > Te(0)ex = > orex, (2.2.8)
1 1
hence ITW (s
k() _ MeTe(t), t>0, Ti(0) = pp. (2.2.9)

dt
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We see that Ty(t) = pre*?, and, therefore,

n
a(t) =) ene™" e (2.2.10)
1
In what follows we will obtain the analogs of formulas (2.2.6)—(2.2.10)
for the operator A = —%.

2.3 The Sturm-Liouville problem and its solution

The Sturm-Liouville problem

Let us find in D(A) = C2[0,1] the eigenvectors X;(z),..., Xg(z),... of the
operator A:

AXy = M X3
{ Xy, € D(4), Xj #0. (2.3.1)
Relation (2.3.1) means that
{ Xil(x) = M Xp(z), 0<z<l, (2.3.2)
Xr(0) = X(1) =0, Xg(z)#0. e

Remark 2.3.1. We will show below in Section 2.5 that in the basis X1,..., Xk, ...
of the eigenvectors of the operator A the solution to problem (2.2.3) with
f(z,t) =0 has the form analogous to (2.2.10):

u(z,t) = Ze“QA’“t@ka(x), (2.3.3)
1

where ¢, are the coordinates ¢ in the basis {Xj}.

Let us point out that in view of (2.3.1) each term in series (2.3.3) satisfies
the operator equation (2.2.3). Therefore any finite (partial) sum of this series
also satisfies (2.2.3). The entire series (2.3.3) satisfies equation (2.2.3) if it
allows termwise differentiation: once in ¢ and twice in x, that is, if the series
converges sufficiently fast.

We introduce the notation
l
(u,v) = / u(x)v(z)dr for Vu, v € Ly[0,l]. (2.3.4)
0

Lemma 2.3.1. The operator % with the domain D(A) = C2[0,1] is symmetric
and negative, that is,

d? d?
<d—;2t,v> = <u, d—;2)> , Yu,v € D(A), (2.3.5)

d*u
< >u <0, YueD(A), u(x)#0. (2.3.6)

dz2
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Proof. 1) Equality (2.3.5) means that

/ o (2) o(x) dz = / (@) v () dz. (2.3.7)

0 0

To prove it, we integrate by parts:

!
!
W (z)v(x)de =u'v| — [ W (2)v(z)dx, (2.3.8)
’ 0/

w(z) v (z) de = uv’

S O

1
. —O/U (z)v'(x) de. (2.3.9)

The substitution into (2.3.8) yields zero since v(0) = v(l) = 0, while the
substitution into (2.3.9) gives zero since u(0) = u(l) = 0. Thus relation (2.3.7)
is proved;

2) When u = v, it follows from (2.3.8) that

<%,u> - /Ol ' (z)u(z)do = — /Ol («/())* da < 0. (2.3.10)

This proves (2.3.6). Indeed, if

!
/ (u'(x))? da =0, (2.3.11)
0
then v/(z) =0 = wu(z) = const. But
uw0)=u(l)=0 = wu(z)=0, (2.3.12)
contradicting the condition u(x) # 0 in (2.3.6). O

Corollary 2.3.1. 1. All the eigenvalues of the operator A = d?/dx® are
negative. Indeed, as follows from (2.3.6),

42X
0> ( —=F X0 ) = (X, Xe). (2.3.13)
dx?

2. The eigenvectors Xy, X,, with different eigenvalues \, # \,, are orthogonal:
l

/ X () Xo(2) dz = 0. (2.3.14)
0

Indeed, it follows from (2.3.5) that

<AXk,Xn> = <Xk,AXn> = /\k<Xk7Xn> = )\n<Xk7Xn> =
()\k — >\n) <Xk,Xn> =0 = <Xk,Xn> =0.
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Solution the Sturm-Liouville problem (2.3.1)

From equation (2.3.2) we get
Xp(x) = Ay eV T 4 Bre VAT, (2.3.15)
Substituting this into the boundary conditions (2.3.2), we get

Ap+ B =0,
{ Ap eVl 4 Brem Vil = 0. (2:3.16)
The matrix of this system should be degenerate, or else Ay = By =0 and
Xi(z) =0, contradicting (2.3.2). Thus, )\, satisfy the so-called characteristic
equation

1 1
det, |:{ eml e_ml :| = €_ml — e\/A—kl =0. (2317)

It then follows that

VARl — VAL

e VARl = 1, (2.3.18)

Therefore, 24/ Axl = 2kmi, keZ =

2

V=t = (M) (2.3.19)

Here we may assume that k£ > 0. As one might have expected, A\ < 0.

Thus, the eigenvalues A, are found. Now let us find the eigenfunctions
Xk(x). For this, we take into account that system (2.3.16) is degenerate.
Therefore, its equations are proportional to one another, and it suffices to
consider only the first one: By = —Aj. Hence, from (2.3.15) and in view of
(2.3.19), we get:

kn

Xk(l‘) = Ak(e l

i i k
T _ o ) = A42isin %x (2.3.20)

Here we applied the Euler formula
e — e % = 2jsin . (2.3.21)
Since the eigenfunctions X are defined up to a factor, we can finally set

k
X () :sin%; k=1,2,.... (2.3.22)
Here we can assume that k > 0, since for k =0 we have Xy(z) =0.

Answer.

k2 k
e =1, Xp(z) = sin#, k=1,2,.... (2.3.23)
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Properties of solutions to the Sturm-Liouville problem

1. Xy(z) form a complete system in L5(0,1) (this property is known from
the theory of the Fourier series).
2. Orthogonality:

!
(Xpy X)) = /Xk(x)Xn(x) dr =0 for k#n. (2.3.24)
0
3. Asymptotics: A\ ~ —k? for k — oco. That is, there exists a limit

A
Jlim ZE s (2.3.25)

Problem 2.3.1. Check directly the orthogonality property (2.3.24) for Xj.
Solution. Since k # n,

l
/, kmx . nmx
sin — sin — dx =
l l
0

l

o) ()
0

. (k—n)rz l
1 —
B Sin i 0
0

- § (k—n)m
J
Problem 2.3.2. Find the norm of X in L»(0,1).

l (k4+n)mx
l

sin
o (k+n)mw
l

Solution.
l 1 L
1l = [ xpwa = [ -
0 0
l 2k ! s 2kma |l
/l_cos%d [a-2 L (2320)
= - 5, T = 5 ar — ke - 3 N
0 2 0 2 22T 0o 2
Problem 2.3.3. Plot the graph of Xj(z).
Solution.

Problem 2.3.4. Solve the Sturm-Liouville problem, that is, find the eigenfunctions
2

of the operator A = % on the interval [0,!] but at the different boundary

conditions:

X1(0) = X (1) =0, (2.3.28)

X5(0) = Xi,(1) =0, (2.3.27)
) = Xk
X1(0) = X(1) = 0. (2.3.29)
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Figure 2.2:

Problem 2.3.5. For each of the boundary conditions (2.3.27)-(2.3.29) repeat
the last three exercises.

Answer.

For (2.3.27), see Fig. 2.3.

l 0 Tl X
2 O
X, () :Sinm ) I N

I ' X, X
k=0,1,2,....

)\kf,((k—F%)ﬂ){ |

Figure 2.3:

For (2.3.28), see Fig. 2.4.

oml : Ak:—((ki%)w)i
1
4 _w Xy (z) = cos (k + 3)mz

X, 1 l ’
k=0,1,2,....

Figure 2.4:



Practical PDEs, Section 2.3

For (2.3.29), see Fig. 2.5:

oz (T

XO
i \ ; |
l )27 XI |

’ T\ M !
Xk(x)zcosg, gl >~

k=0,1,2,....

Figure 2.5:

7
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One can also consider arbitrary boundary conditions of the form

a0 X},(0) + Go X1 (0) = 0;
OélX];(l) + ﬁle(l) =0, (2330)

where ap 1 and 1 are real numbers such that of + 32 # 0 and of + 37 # 0.

Problem 2.3.6. Prove that the operator % with the boundary conditions
(2.3.30) is symmetric.

Remark 2.3.2. The eigenfunctions and the eigenvalues of the problems (2.3.27)-
(2.3.29) possess all the properties 1, 2, 3 of problem (2.3.1) (completeness,
orthogonality, the asymptotics of the eigenvalues). See [V1a84, Mik78, Pet91,
SD64, TS90.

Multidimentional problem on the eigenvalues

Let us consider an arbitrary bounded region 2 C R with a smooth boundary
0N) and the problem of finding the eigenfunctions of the Laplace operator
in Q with the Dirichlet boundary conditions:

X, =0 (2.3.32)
o0

It turns out that its eigenfunctions that correspond to different \j are
also orthogonal in Ly(2), while its eigenvalues A\, are negative.

Problem 2.3.7. Prove that:

1. The Laplace operator with the boundary conditions (2.3.32) is symmetric
and negative, and

2. If instead of (2.3.32) one uses the Newmann boundary conditions,

00Xy,

(here n is the normal to 92), then the Laplace operator is symmetric and
non-positive; A = 0 is the eigenvalue corresponding to the eigenfunction
Xo(z) = 1.

2.4  Decomposition over the eigenvalues of the Sturm-Liouville problem

As we already pointed out, the eigenfunctions sin @, k=1,2,... form a
complete system in Ly(0,7). Therefore they make up an orthogonal basis in
L5(0,1) and, consequently, any function ¢(x) € L2(0,1) could be decomposed

over this basis: -
p(x) =D prXi(@). (24.1)
1
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Let us find the formula for the coefficients . This is accomplished with
the aid of the orthogonality conditions (2.3.24): we multiply (2.4.1) by Xj(x)
and integrate from 0 to [. Then we get

/I@( x)de = Zsak/Xk z)dz = gon/X2 z,  (2.4.2)
0

since all the terms in the summation in (2.4.2) with numbers k # n are
equal to zero! Termwise integration of the series in (2.4.2) is justified since
the series in (2.4.1) converges in L2(0,1), while the scalar product in L.(0,1)
is continuous in each of the two arguments.

Finally, let us take into account (2.3.26). Then from (2.4.2) we get the
desired expression:

l
J p(2) X, (x) dx l
pn=2ro—— = % / . (2.4.3)
fX2 0

Problem 2.4.1. Find the conditions on the function ¢(x) so that the following
is true:
1. Series (2.4.1) converges uniformly on the interval [0,];

2. Series (2.4.1) is termwise differentiable two times.

Solution. 1) It is sufficient (but not necessary) that

o0
> Jenl < co. (2.4.4)
1

For this inequality to hold, it suffices to require that
p(z) € CH0,1;  ¢(0) = (1) = 0. (2.4.5)

Let us derive (2.4.4) from (2.4.5). Integrating by parts, we get:

! l
P = %/w(x)sm IWTx dr = %/@(w)% dr = (2.4.6)
0 o 1
l
% —p(x) cos @ ; + / @' () cos IMTI dz| . (2.4.7)

Above, the boundary term is equal to zero due to the boundary conditions in

1
(2.4.5). Therefore ¢, = 2}, where ¢} = J@’(m) cos M7 dz. But {cos Tz}
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l
is the orthogonal system in L.(0,1), and g‘coﬁ@clx = £, hence, due to
the Bessel inequality,

l

S 2
> lehl” < 7 / ' ()| dar < oo (2.4.8)

1 0

Therefore, from the Cauchy-Bunyakovsky inequality, we get:

ilo: |0 < H lekl ) (2.4.9)

2) For series (2.4.1) to be twice differentiable, it suffices that the series for
¢"(x) to be convergent uniformy in z. This, in turn, is satisfied if

> kx| < oo (2.4.10)
1

For this, we require that in addition to (2.4.5) we also have
o(x) € C3[0,1] and ¢"(0) = ¢"(I) = 0. (2.4.11)

Let us derive (2.4.10) from (2.4.11), (2.4.5). For this, we remart that,
due to (2.4.5), (4.5")

l
21 (cos Erz)
R S
A l
212 krx |

!
—/go”’(m)coskﬂTxda: . (2.4.12)

The boundary term vanishes due to the boundary conditions (2.4.11).

/1

Therefore o = (kﬂ)g oy, where ¢} = f(p’” coskﬂdx But ¢ € L?(0,1),
thus (see (2.4.8)):

o0

1
S Jgy %/| & ()2 d < 00, (2.4.13)
0

1

and, similarly to (4.6'),

> 202 4 1
k2 <N ey 2.4.14
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Problem 2.4.2. For a function ¢(z) € CN)[0,1] the estimates
C

., k=1,2,... 2.4.15
kY (2419

lor| <

are satisfied if and only if

0(0) =) =0; ¢"(0)=¢"(1)=0,...;0*(0) =¢*"(1) =0  (2.4.16)
for all 2n < N -2, n=0,1,2,....

Let us point out that the boundary conditions (4.10’) are satisfied, in
particular, for all the eigenfunctions sin k’lr—m On the other hand, under
condition (2.4.15) series (2.4.1) is convergent on the interval [0,!] uniformly
together with its derivatives up to the order N — 2. Therefore, since the
homogeneous boundary conditions (4.10’) are satisfied for the eigenfunctions
sin ’“lr—‘”, it follows that the same boundary conditions are also satisfied for
the sum of series (2.4.1). This proves the necessity of conditions (2.4.16) for

(2.4.15).

Remark 2.4.1. Similarly, let us consider the decomposition of the function
p(z) over a system of eigenfunctions Xy (z) that corresponds to different
boundary conditions ((2.3.27)—(2.3.29)). For estimate (2.4.15) for the Fourier
coefficients ¢y, of this decomposition to be true, it is necessary that ¢(x)
satisfies the same homogeneous boundary conditions as the eigenfunctions
X (z) and their derivatives up to the order N —2. When ¢ € C(M)0,1],
it is easy to check that these conditions are not only necessary but also
sufficient for (2.4.15).

Problem 2.4.3. Solve the previous problem for the decomposition over the
eigenfunctions of the Sturm-Liouville problem with the boundary conditions
(2.3.27)—(2.3.29).

Problems 2.4.1. Decompose over the system sin klﬂ, k=1,2,... the following
functions:
] o(x)
|
1. plx)=1, 0<ax<l. 0 1 ¥
Figure 2.6:
Solution.

l

sin —dr = ——

l [k

Pr =

~| N

l
/ kmx 2 cos @
0
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= % [1—(-1)"]. (2.4.17)

out that now condition (2.4.4) is not satisfied. This is

Let us point
because ¢(z) = 1 is not equal to zero at the ends of the interval

(Fig. 2.6).

o(x)

2. plx)y=2z, 0<zx<l. a

Figure 2.7:

Solution.

!
k ) kTr:c
Z/xsmﬂdx—T/ B dx:...z—kiﬂ_l(—l)k.
0

(2.4.18)

Here |¢)| ~ § because ¢(l) # 0 (see (2.4.15)—(4.10') and Fig. 2.7).

P(x)
3 p(x) = (Il —x). Is it true that . . .
Tk =0(L), or O(%), or O(%),...2 I 4
Figure 2.8:

Problem 2.4.4. Decompose the functions ¢(z) = 1, z, 22, #(l — x) over the

eigenfunctions of the Sturm-Liouville problem (2.3.27)—(2.3.29). In each of
these cases, find the asymptotics:
1 1
= — _— ?
Pk O(k)’ O<k2)’ (2.4.19)

Hint. Use Remark 2.4.1.
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2.5  The Fourier method for solving mixed problem (2.2.3) for the heat equation

So, let us solve problem (2.2.3). For simplicity, let us first assume that
f(x,t) =0. Then the problem takes the form

ou 5 0%u
E =a @, U(Oﬂf) = u(l,t) = O7 t > O7 (251)
u(z,0) = ¢(z), O0<z<l (2.5.2)

The general case f(x,t) # 0 is considered in Section 2.7 below.
Let us look for the solution to problem (2.5.1)—(2.5.2) in the form of the

series

u(z,t) = ZTk(t)Xk(x); Xk (z) = sin Ime (2.5.3)

One can write in this form any function u(zx,t) as long as u(x,t) € L2(0,1)
for each fixed t. The completeness property of the eigenfunctions sin k% in
L>(0,1) is important here. The choice of the basis {sin 72} is determined
by boundary conditions that enter (2.5.1). Namely, each term of series
(2.5.3) satisfies these boundary conditions since sin ’“l”‘ satisfy the boundary
conditions in (2.3.2).

To find the solution wu(z,t), it remains to determine so-called “temporal”
functions Ty(t) (while sin 72 are called the spatial functions). Tj(t) are

found substituting series (2.5.3) into equations (2.5.1) and (2.5.2).

Remark 2.5.1. Equalities (2.5.1) for the function u(x,t) from (2.5.3) are
formally satisfied since they are satisfied for each term of series (2.5.3).
Writing the solution in the form as in (2.5.3) explains the name of the
method of “separation of variables” (and also "eigenfunctions").

Determining the temporal functions

A. We substitute series (2.5.3) into equation (2.5.1): For ¢ > 0,
= k = km\? .k
3 Ti(t)sin o = —a? ZTk(t)(l) sin 2L 0<az<l.  (25.4)
- l - l l

Here we interchanged the operators of differentiation, % and 83—; with the
summation of the series. We will return below to discussing why this
interchange is allowed. It is the validity of this interchange that serves the
justification of the Fourier method.
In (2.5.4) we also used the identity
? .k km\? .k
S sin % - —(Tﬂ) sin$ (2.5.5)
for the eigenfunctions the Sturm-Liouville problem (2.3.1)—(2.3.2). Let us
point out that the boundary conditions for the Sturm-Liouville problem have
already been used (see Remark 2.5.1).
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Further, if the series in (2.5.4) converge in L5(0,1), then due to the
orthogonality of the basis {sin @} we get the equality of the coefficients of
these series:

TL(t) = —aQ(kT”)sz(t) - —(akT”ka(t), t>0, k=1,2,.... (2.5.6)

This is a homogeneous linear differential equation with constant coefficients.
Let us write its characteristic equation:

A= _(akTw)Q (2.5.7)
then the general solution is
Th(t) = Cpe~ ()7 (2.5.8)
Substituting into (2.5.3), we get
u(z,t) = i Cpe~ ()t gin Ime (2.5.9)
1

B. The unknown constants Cj in (2.5.9) are found from the initial
conditions (2.5.2). Namely, substituting series (2.5.3) into (2.5.2), we find:

- k
ZTk(O) sin %x =px), O0<z<l. (2.5.10)
1

Hence, Ty (0) coincide with the Fourier coefficients of the decomposition of
krx

the function o(z) over the system sin 7% (see (2.4.3)):

l

% /go(x) sin # dx (2.5.11)
0

Ty (0) = oy

Substituting here (2.5.8), we find
Ck = ¢k- (2.5.12)
Thus, from (2.5.9) we get

i akmw kﬂ'.%‘
t) = — (2% gy ST 2.5.13
u(z,t) El:goke sin 7 ( )
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Checking validity of solution (2.5.13)

Is series (2.5.13) indeed the to the problem (2.5.1)-(2.5.2)7
A. For ¢t > 0, series (2.5.13) converge for each x € [0,l]. For example, let

o(x) € Ly(0,1). (2.5.14)

Then series (2.5.10) converge in the same space L3(0,1). Indeed, from the
Cauchy-Bunyakovsky inequality,

! ! l
2 2 3 3
lok| < 7 / lo(z)] de < 7(/ da;) ’ </ ©* () dx) * < const. (2.5.15)
0 0 0
Therefore, series (2.5.13) for each fixed ¢ > 0 is dominated by the series
const - Z e~ ()t — const - Z ek (2.5.16)
1 1

where € = (%)Qt > 0, which converge fast. Hence, according to the Weierstrass
theorem, functional series (2.5.13) converges uniformly on [0,[] for V¢ > 0 to
a function that is continuous in z.

Corollary 2.5.1. Series (2.5.13) satisfies the boundary conditions (2.2.2).

B. Series (2.5.13) is a differentiable function in z € [0,] for Vt > 0.
Indeed, according to the theorem about the termwise differentiation of a
series, for Vt > 0,

oo

ou akm 2 kmx\ km
Lty = e (—cos ) T 25.1
aw(m,t) 1 ore ( coS 7 ) T (2.5.17)

if the series in the right-hand side converges uniformly in z on [0,!]. But the
last condition is satisfied since series (2.5.17) is dominated by the convergent
series

™ ad _ck?
const - T Zl:ke < 0. (2.5.18)
C. Series (2.5.13) has derivatives in z and in ¢ of all orders for ¢t > 0
This is proved similarly to B.

Corollary 2.5.2. All termwise differentiations of series in (2.5.4) are justified,
hence series (2.5.13) satisfies the heat equation (2.1.1).

Finally, for ¢t = 0 series (2.5.13) satisfies the initial condition (2.2.1) in
view of (2.5.10), (2.5.11) in the following sense (prove this!):

[|u(t,z) —o@)||1y00) — 0 for t—0+. (2.5.19)
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Remark 2.5.2. Condition (2.5.14) allows that the function ¢(z) has discon-
tinuities: For example, let ¢(z) =0 for x < i, w(z) =1 for z < L. Then
the function u(z,0) = ¢(x) will be discontinuous. At the same time, the
solution u(x,t) for V¢t > 0 will be a smooth function on [0,I]! It is said that,
the heat equation (2.1.1) “smoothens” the initial data.

Problem 2.5.1. Find the solution to the mixed problem
9u —9%u(p 1), 0<a<5, t>0,
u(0,t) = u(5,t) =0,
u(z,0) = 1.

Solution. According to (2.5.13),

- x k
t) = ngke_(:ﬂg ’*t sin ﬂ, (2.5.20)
1

where ¢}, are found using (2.5.11):

Pr =

(G20 )

5
. kmx 2 k
/Sm - dr = y 1-(-1)7]. (2.5.21)
0

Problem 2.5.2. Find the limit of solution (2.5.20) for ¢ — oc.

Solution.

us k
lim u(zx,t) lim Zcpke (%52)%t g5 =

t——+o0 t4>+oo
x k -
= Z L, ligl e~ (5t gin ﬂ Z (2.5.22)
1 1

Problem 2.5.3. Justify the interchange of taking the limit with the summation
n (2.5.22).

Problem 2.5.4. Find the solution to the mixed problem

up(x,t) = dug,(z,t), 0<xz <3, t>0,
, ) =0, wug(3,t)=0, (2.5.23)

Solution. Here the solution should be decomposed over the eigenfunctions of
the Sturm-Liouville problem (2.3.27) (see Fig. 2.3):

1
Z Ty (t) sin %)WE (2.5.24)
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Substituting this series into (2.5.23), we obtain
- (Rt rr N (k4 p)mN2 - (k+ )
/ 277 (=27 A
%Tk(t) sin 3 4% ( 3 ) Ty (t) sin 3 . (2.5.25)

From this relation, for V& =0,1,2,...,

2
2(k + %)ﬂ' Q(H%)") t

Té(t):7<T)2Tk(t) = Tk(t):C’ke_( ; (2.5.26)

Substituting (2.5.24) into the initial condition of problem (2.5.23), we get

ZTk(O)SinM N
0

3
9 [ (k+d)
Tk(O):§ /xsin%dmz
0
5 )X 3 3 5 )T . 5 )X 3

2 fcos—(kt,%) 2 cos—(k+§) de — 0 251117(]“_:,%) B
T 3T Gerbr ) Grhr =013 kebr\2|

3 0 0 3 (T) 0
~ Esin(k+Hr 2 (-nFo 6(-1)"
= =3 = ~

1 2 2 :
((k+3§)7f) (k+3) 2  (k+4)'n?

Since Cj = T (0), in (2.5.26), substituting T (t) into (2.5.24), we find

> 6(—1)F _an?ei b2 (k4 i)me
ulz,t) =) ——— e o sin ——=—. (2.5.27)
20: (k+ 3)%m? 3

Problem 2.5.5. Find the solution to the mixed problem

ug(x,t) = 16ug(z,t), 0<xz <3, ¢>0,
Um(oa t) = Uz(gv t) =0,
u(z,0) = x.
Problem 2.5.6. Find the limit ¢ — oo of the solution of the previous problem.
3
: _1 19 _ 3
Answer. tlirglou: Yo = §‘Ofxdl': 35 = 5

2.6 Mixed problem for the d'Alembert equation

Let us solve the mixed problem
up (7, 1) = a®uge(2,), 0<ax<l, t>0, (2.6.1)
u(0,t) =0, wu(l,t) =0, (2.6.2)
w(,0) = p(x),  ui(x,0) = p(x). (2.6.3)
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Similarly to (2.2.3), it is written in the operator form as

P4(t) = a2 Ad(t), t>0,
{ 5(0) =, 220)=9. (2.6.4)

Solution to the problem (2.6.1)—(2.6.3)
We will look for the solution in the form of series (2.5.3):
ZTk sm— (2.6.5)

A. Substituting (2.6.5) into (2.6.1), we formally get

iT,g’(t)s' L azi ( ) smk?lr—x. (2.6.6)
1 1

From here, if these series converge in L2(0,1), we find the equations for the
temporal functions (compare with (2 5.6)):

akm
(1) = (7

The general solution is (compare with (2.5.8)):

) Te(t), Vk=1,2,.... (2.6.7)

k k
Th(t) = Ay cos “T”t + By, sin “T”t. (2.6.8)

B. The unknown constants A, and Bj are found from the initial conditions
(2.6.3):

u(z,0) = >0 T(0)sin £272 = o(z) = T3(0) = ¢x (see(2 5.11)),
wy(z,0) = S 07 T4(0) sin 222 = op(z) = T}(0) = oy = %fl/)k ) sin £72 dy.

Substituting (2.6.8) in the above relation, we find:

Tx(0) = Ax=px,
, akm Vi,
1;,(0) = BkT =¢r = Bp= (2" (2.6.9)
1
Therefore, according to (2.6.8),
km k
Ty (t) = @ cos Ty Vi sin 25704, (2.6.10)

[ (k) T

Finally, substituting (2.6.9) into (2.6.5), we get

_ > akm Yr . akm N\ . kmx
u(z,t) = zlz(gok cos Tt + (k) sin Tt> sin Tt. (2.6.11)

Question. While deriving (2.6.7) we again interchanged differentiation in x
and t with the summation. Is this justified?
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Checking the validity of solution (2.6.11)

A. Does series (2.6.11) converge? It is dominated by the series

S [l
const - 21:(|gok| + 5. (2.6.12)
For the convergence of this series, it suffices that
o(x) € C10,1], ©(0) = (1) = 0;
{ ¥(x) € C0,1]. (2.6.13)

This is proved similarly to the derivation of (2.4.4) from (2.4.5).
B. We need that series (2.6.5) could be differentiated twice in z and once
in ¢t. For this, the convergence of the following series suffices:

Z(k2|wk| + k:|<pk\) < . (2.6.14)

1

For the convergence of this series, it is sufficient that

{ p(x) € 03[073} 1)=0

, , //(O) — ”(l) =0;
¥(z) € C2[0,1], 0. v 14 (2.6.15)

=
=
I
< 6
I

This is proved analogously to the derivation of (2.4.10) from (2.4.11).
Conclusion. Series (2.6.11) is a solution of problem (2.6.1)—(2.6.3), if the
functions ¢ and v satisfy conditions (2.6.15).

Remark 2.6.1. More precise (less restrictive) conditions on ¢, 1 are given
in terms of the Sobolev spaces (see [Mik78, Ole76], and also in Section 2.7).

Problem 2.6.1. Find the solution of the mixed problem

up = Mge(z,t), 0<axz<4, >0, (2.6.16)
uy(0,t) =0, wu(4,t) =0, (2.6.17)
u(z,0) =0, u(x,0) =16 — 22 (2.6.18)

Solution. One needs to decompose the solution over the eigenfunctions of
the Sturm-Liouville problem (2.3.28) (see Fig. 2.4):

(k+ 3)mz

u(x,t) =y Tk(t) cos —— (2.6.19)
0

Substitution into (2.6.16) gives, similarly to (2.6.7),

Lyri2
T/ (t) = —9(%) Ty (t). (2.6.20)
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The initial conditions (2.6.18) give

T,(0) = ¢, =0,

4
(k+ L 43(=1)F

T;.(0 = /167x cos +42)7mdx* (=1) (2.6.21)

0

; b+ D
Let us point out that here ¢ =0, while ¢(z) satisfies conditions similar
to (2.6.15): (z) = 16 — 22 € C2[0,4]; '(0) = 1(4) = 0, that is, ¥(z)
satisfies the same homogeneous boundary conditions as the eigenfunctions
Xi(z) = COSW do, and ¢ < C/k®, due to Remark 2.4.1. Therefore
estimate (2.6.14) takes place.

Therefore from (2.6.20)—(2.6.21) we find, similarly to (2.6.8)—(2.6.9), that

by, sin 3(k+%)m
Th(t) = =T (2.6.22)
1
Answer.
o'} k 1
- 3(k+ 5)mt k+ 5
u(x,t) = Z 256(=1) 7 sin *3)m cos (k+ 5)me (2.6.23)

2.7  Generalization of the Fourier method for nonhomogeneous equations

The heat equation

A. Let us consider the mixed problem for the nonhomogeneous heat equa-
tion with the homogeneous boundary conditions (nonhomogeneous boundary
conditions will be the next step in developing the Fourier method):

a“7a26“+f(xt) 0<zx<l,

0(0,) =0, ul.t) =0, (2.7.1)
u(z,0) = p(x).

Again, we look for solution of this problem in the form (2.5.3), (2.6.5):
. kmx
u(x,t) = Ti(t)sin ——. (2.7.2)

The new step will be the decomposition of f(x,t) over the eigenfunctions
of the Sturm-Liouville problem:

l

ka sm%; = f/f x,t) sm—d (2.7.3)

0

[\
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This decomposition is possible doe to the completeness of the family of
eigenfunctions sin #7% in the space L»(0,l) as long as f(z,t) € Ly(0,1) for
each fixed ¢t > 0.

B. For finding the temporal functions T} (t) we substitute decompositions
(2.7.2), (2.7.3) into (2.7.1):

kmc 5 [k kT . kmx
ZTk )sin — = —a Zl: (T) T3, (¢) sin - + 21: fr(t)sin - (2.7.4)

From here, due to the orthogonality of the family of eigenfunctions, we get

(1) = 7<ak7r 2

T) Te(t) + fu(t), t>0, k=1,2,.... (2.7.5)

Thus, the differential equation for the temporal functions is obtained. To
determine these functions uniquely, one needs to take into account the initial
condition from (2.7.1):

oo
kmx

!
Z T3.(0) sin - = o) = Ti0) = % / ) sin kT dx. (2.7.6)
! 0

Let us point out that the boundary conditions in (2.7.1) are automatically
satisfied due to decomposition (2.7.2) (since they are satisfied for the

eigenfunctions sin 72 ) if Ty (t) = O( %
C. Let us apply this scheme for solving problems.
Problem 2.7.1. Solve the mixed problem
up = 16ug, +2, 0<zx <7, t>0,

ug(0,t) = u(7,t) =0, (2.7.7)
u(z,0) = 0.

Solution. As follows from the boundary conditions, the solution should be
decomposed over the eigenfunctions of the Sturm-Liouville problem (2.3.28)
(see Fig. 2.4):

(k+3
Z T (t) cos % (2.7.8)

Substituting this series into (2.7.7), we get the equation similar to (2.7.5):

4k + Hymy?
Té(t)z—(#) Te+ fo, t>0, k=1,2,.... (2.7.9)
where
7 . k+l)7rm 7 k
2 (k+ LHyra 4 sin ¥z (-1)
=2 [ocos 2 2T Ty T (2710
=7 ! 7 7 (G (k+ D (2.7.10)
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As follows from the initial condition of the problem,
T3.(0) = 0. (2.7.11)

Let us solve the problem (2.7.9), (2.7.11). The general solution to equation
(2.7.9) has the following form:

Ti(t) = TP (t) + T (1), (2.7.12)

where T} is the general solution to the homogeneous equation:

4(k+%)7r)2t

TR(t) = Cke*( 7 (2.7.13)

The particular solution is a constant: T} (t) = Ag. Substituting into
(2.7.9), we get

0 = f(w)uﬁfk .
7
49, 49(—1)*

Ay = = - (2.7.14)
16((k+3)m)"  4((k+5)7)

Substituting (2.7.13) and (2.7.14) into (2.7.12), we get

S T N 49(—1)"

Ti(t) = e ("7 _9=) (2.7.15)
1o+ )
Now we need to take into account (2.7.11):
49(—1)" 49(—1)"
O:C;H—g(i)g Cy = —9(—)3. (2.7.16)
4((k + 3)7) 4((k + 3)m)
Finally, substituting (2.7.15) into (2.7.8), we get
0 4 a(kt L E+1
u(z,t) = Z (—l)k—g3 —e (T 4 1| cos M (2.7.17)
g 4((k + 3)m)

Problem 2.7.2. Find the limit of the solution to problem (2.7.7) as t — +o0.

Solution. Taking the limit ¢ — oo in each term in series (2.7.17), we get
(justify!)

:i ) WO G Vi) (2.7.18)
0

H((k+ Sym) 7
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Let us compute the sum of this series. For this, we notice that

oo k: 1
7T (- k+ 3
ZZ . sin . 72)m, (2.7.19)
0 2 7T)
> k 1
Z ( to)re 1 (2.7.20)
5 4(k 2 7r 7 8
where the last equality follows from decomposition (see (2.7.10))
i 4(— (k: + )T (2.7.21)
1 . 7.
— (k+ L)r 7
Integrating twice identity (2.7.20), we get
1
UOO(QT) 16( $ + Cll' + CQ) (2.7.22)
To find C; and Cs, we notice that due to (2.7.18) and (2.7.19)
Use(7) =0, u.(0) = 0. (2.7.23)
Substituting here (2.7.22), we find C; =0, Cp=49:
1
Uoo(X) = 16 — (49 — 2?). (2.7.24)

Remark 2.7.1. We could obtain wu., directly from (2.7.7), without using the
nonstationary solution (2.7.17), substituting u; by 0 and solving the problem

— 11
{ 0=16u2(z)+2, 0<z<T, (2.7.25)

ule(0) =0, wux(7)=0.

Remark 2.7.2. The fundamental property of the heat equation is that under
stationary external conditions (that is, when the nonhomogeneous terms of
the equation and the boundary conditions do not depend explicitly on t),
the solution u(z,t) stabilizes as ¢ — 400 :

u(z,t) = uso(x), t— —+o0. (2.7.26)

The limit function ue(x) is the solution to the corresponding stationary
problem.

Problem 2.7.3. Find the limit as ¢ — 4oo of the solution to the mixed
problem
up = 25Upy (z,t) + 322, 0 < <6,
w(0,8) =0, /(6,t) =1, (2.7.27)
u(z,0) = sinz.



94 Practical PDEs, Section 2.7

Solution. As we said above, we get from (2.7.27), (7.25") the boundary value
problem for u.(z) = limy_, o u(z,t)

0= 25u” (z) + 322, 0<uxz <6,
Uso(0) =0;  ul (6) =1.

Integrating this equation, we get uoo(x) = +Clx+02 From the boundary

~ 100
conditions we get Cy =0, 25 +C;=1.

4
Answer. us(z) = -5 + 2w

The wave equation

Let us consider the nonhomogeneous wave equation.
Problem 2.7.4. Solve the mixed problem (w > 0):

gt (2, 1) = 25Uy, +sin(wt)z(3—2), 0<xz <3, t>0,
u(0,t) = u(3,t) =0, (2.7.28)
u(z,0) =0, wu(x,0)=0.

Solution. A. In view of the boundary conditions in (2.7.28), we are looking
for the solution u in form of the decomposition over the eigenfunctions of
the Sturm-Liouville problem (2.3.1):

Z T;(t) sin k”—x (2.7.29)

For this, the function sin(wt)z(3 — ) in equation (2.7.28) is also decomposed
in the series over the system sink’TT“?

oo

sin(wt)x(3 — z) = sin(wt) Z g sin

kmx

—_ 2.7.
= (27.30)

3
T k
where g, = 2 Jm(S—x)ska dw = k )3 (1—(=1)").
B. Finding the temporal functions Tx(t). Substituting decomposition
(2.7.29) and (2.7.30) into equation (2.7.28) and using the orthogonality of

the family sin kgw, we get, similarly to (2.6.7),

5k
T (1) = (5

Substituting series (2.7.29) into the initial conditions (2.7.28), we get, clearly,

) Ty (t) + gr sin(wt). (2.7.31)

T (0) =0, T5(0)=0. (2.7.32)

The Cauchy problem (2.7.31)—(2.7.32) uniquely determines the temporal
functions Ty (¢).
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It is known that the general solution to equation (2.7.31) has the form

Te(t) = T2(t) + T (1), (2.7.33)

where T(t) is the general solution of the corresponding homogeneous equation

T?(t) = Ay cos (%Tﬂt) + By sin (E)k?ﬂt), (2.7.34)

while T} (t) is a particular solution to the nonhomogeneous equation (2.7.31).
When finding the particular solution, one needs to distinguish two cases;

namely, the resonant and non-resonant cases.
1. Non-resonant case: For all k € N,

5k
w# Tﬂ (2.7.35)
Then T7(t) are to be looked for in the form
TP (t) = Asin(wt). (2.7.36)
Substitution into (2.7.31) gives
Skm\ 2
—w? Asin(wt) = — (Tﬂ-) Asin(wt) + g sin(wt), (2.7.37)
from where, in view of (2.7.35),
_ 9k
A= o (2.7.38)
3
Then (2.7.33) takes the form
5k 5k in(wt
Ti(t) = Ag cos(—wt) + By, sin(—ﬂt) &2(“}) (2.7.39)
3 3 (516_77) — W2
3
Finally, the initial conditions (2.7.32) yield
S5km grw grw
Ak:O, Bk—‘i-ﬂ_i:o = Bp=- - - .
C (2
(2.7.40)
Thus, in the case when (2.7.35) is satisfied for all k =1,2,..., we have

N 9k w . Okm . . kmx
u(x,t)—z = (—(%Tﬂ) sin( 3 t)+51n(wt)) sin ——. (2.7.41)

5k 2
T (3F) -
2. Resonant case: For some m € N,

_ Smm

w= " (2.7.42)

3
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In this case,
TP (t) = t(Acoswt + Bsinwt). (2.7.43)
Taking k = m and substituting into (2.7.31), we get
2(—Awsin(wt) + Bw cos(wt)) + t(—Aw® cos(wt) — Bw® sin(wt)) =
)
- (%)%(A cos(wt) + Bsin(wt)) + g, sin(wt). (2.7.44)
Here in the left-hand side we used the Leibniz formula for computing
d2
p7e] [t (Acos(wt) + B sm(wt))} . (2.7.45)

Taking into account (2.7.42) and collecting the terms in (2.7.44), we get
2(—Awsin(wt) + Bw cos(wt)) + g, sin(wt). (2.7.46)

We compare the coefficients at cos(wt) and sin(wt) on the left and on
the right:

2Bw =0, —2Aw = gp,. (2.7.47)
Since w > 0,
9m
B = A=—"—. 2.7.4
0 I (2.7.48)
Thus,
TP (t) = —tg—z cos(wt). (2.7.49)
Therefore
5k 5k m
Tn(t) = Ay, cos(Tﬂt) + B,, sin(Tﬂ-t) — tg_w cos(wt). (2.7.50)

Substituting into the initial conditions (2.7.32), we get

Smm 9m 3gm
An=0; By, _gmo_ B,, = . 2.7.51
0 3 2w 0= 10mmw (2.7.51)
Therefore,
3¢m . ,Dkm Im
TP () = Tomme sm(Tt) - t? cos(wt). (2.7.52)

Thus, if for some m € N condition (2.7.42) is satisfied, we get (compare
with (2.7.41)):

u(x,t) = Z %ngk_ (_ (%) sin(%Tﬂ-t) + sin(wt)) sin ]WTT.'L‘ +

39m . dmm 9m ) . mnx
t) —t=— . 2.7.
+ ( Tomes sin 2 ) —t " cos(wt) ) sin 3 (2.7.53)
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Remark 2.7.3. In the non-resonant case, all the terms in series (2.7.41) are
bounded functions of z, ¢, while in the resonant case (2.7.42) one of the
terms in (2.7.53) is unbounded when ¢ — +o00. Therefore, for large ¢, the
solution will be represented mainly by the last term in (2.7.53). For very
large t, the solution will become considerably large. If it were a string, it
will get torn. As the matter of fact, when the solution becomes large, it is
no longer described by the linear wave equation, and formula (2.7.53) is no
longer valid.

Problem 2.7.5. Find the solution to the mixed problem

tt 7):16u77+51n7{r_0w, O<17<57 t>07
U(O»t) =0, UI(57t) =0,
u(0,2) =0, wu(0,2)=0.

2.8  Generalization of the Fourier method to the case of non-homogeneous
boundary conditions

Up to now, we were using the Fourier method only for problems with

homogeneous boundary conditions It turns out that the problem with

non-homogeneous boundary conditions is easily reduced to a problem with
homogeneous boundary conditions.

The heat equation

Problem 2.8.1. Find the solution to the mixed problem

U = Ny, O0<x<4, t>0,

u(0,t) = f(t), u(4,t)=g(t), (2.8.1)
u(z,0) = 0.

Solution. Let us find an auxiliary function v(z,t) that satisfies the given
boundary conditions:

v(0,t) = f(t), wv(4,t)=g(t), t>0. (2.8.2)
Such a function can easily be found, for example, using a linear interpolation

4—x

ola,t) = 7900 + =

4

f@). (2.8.3)
Denote w = u—w. Then w satisfies the homogeneous boundary conditions
w(0,t) =0, w(4,t)=0, t>0. (2.8.4)

Question. What equation and boundary conditions does the function w
satisfy?
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Answer. We substitute u =w + v into (2.8.1), then

wy + v = N Wes + Vaz ),

{ w(z,0) + v(z,0) = 0. (2:8.5)
Then ( )
wt:9wzz+9 Vgz — Vt),

{ w(z,0) = —v(z,0). (2:8.6)

Thus, unlike u, w satisfies the nonhomogeneous heat equation! But the
boundary conditions (2.8.4) are now homogeneous, hence w cound be found
using the method of Section 2.7; then uw = w + v is the solution to problem
(2.8.1). Thus, we sent the nonhomogeneity from the boundary conditions
into the differential equation (2.8.1) and into the initial condition.

The wave equation
Problem 2.8.2. Solve the mixed problem
Ut = ].6’be93, << 5, t> 0,
u(0,t) =0, wuy(5,t) = sin(wt), (2.8.7)
u(z,0) =0 wuy(z,0) =0.
Solution. A. The auxiliary function
v(z,t) = xsin(wt) (2.8.8)
satisfies the required boundary conditions. For w = u —v we have

Uy = 16Uy, + w?wsin(wt), 0<z <5, t>0,
w(0,8) =0, wy(5,1) =0, (2.8.9)
w(z,0) = —v(x,0) =0 w(z,0) = —v(x,0) = —aw.

B. Following the method of Section 2.7, we are looking for w in the form

w(x,t) = ZTk(t) sin @ (2.8.10)
0
For this, we expand the right-hand side of equation (2.8.9):
w2z sin(wt) = w?sin(wt) - Zxk sin ﬂ7 (2.8.11)
5 5
where
2 ; (k + YHynx 2 5 (k+ Dmz
. 2 2
T = g/(ESlan.’E:—gm/a'EdCOS?:
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5
_ ) (k+ Dyma 5 (k+ Yme -
= 7(k+%)ﬂ{xcos 52 ‘OO/COSTde]
o 2.5 Sin(k+%)7rx5_ 10 o
a ((k-I—%)w)z 5 ’o B ((k+%)7r)2 (=", (2.8.12)

B. Substituting (2.8.10)—(2.8.12) B equation (2.8.9), we find the equations
for the temporal functions T} (t):

(k+3)m

2
- )Tk(t)+w2sin(wt)~xk, k=0,1,2,.... (2.8.13)

T/ (t) = —16(

From initial conditions (2.8.9) we find Tj(0) = 0, and, taking into account
(2.8.12), we get:

5
, 2 (k4 Dy 10- (—1)"
T = W= xsm—dx: —wW—. 28 4
1(0) 50/ : (t D)’ (2.8.14)

The problem (2.8.13)—(2.8.14) could be solved in the same way as in Section 2.7,
Again, two cases are possible: resonant and non-resonant.
Complete the solution of problem (2.8.1) and write the answer.

Remark 2.8.1. For problems (2.8.9) the condition analogous to (2.6.15) is not
satisfied. Still, the new function w(x,t) satisfies the initial and boundary
conditions in the usual sense. It is only the first equation (2.8.9) that is
satisfied in the sense of the theory of distributions (see Chapter 3).

Problem 2.8.3. Find the resonance condition in problem (2.8.7).

Answer. For some m=0,1,2,.. .,

1
w= T )T (2.8.15)

2.9  The Fourier method for the Laplace equation

Boundary value problems in a rectangle
A. Let us consider the boundary value problem in the rectangle @ = [0, a] x [0, b]:
Au(x,y)z%Jrg%;:O O<z<a, 0<y<b;

u(0,y) =0, wu(a,y) = 0; (2.9.1)
u(z,0) = f(z), wul(z,b) = g(zx).



100 Practical PDEs, Section 2.9

v This is the boundary value problem, or

gA( x)

the Dirichlet problem, when the function u
is given at the boundary of the considered
region.

Solution. Problem (2.9.1) can be solved
: 2 by the method of Section 2.7, where the
f(x) role of the variable ¢ is now played by
the wvariable y, as could be seen from
comparing problems (2.9.1) and (2.7.1).
We are looking for the solution in the
following form:

Figure 2.9:

k
Z Yi(y) sin ﬂ (2.9.2)

Then the boundary conditions at z = 0 and z = a in (2.9.1) are automatically
satisfied. We substitute (2.9.2) into equation (2.9.1). This gives equations
for Yi(y):
k 2
f(f) Yily) + Y{(y) =0, 0<y<b. (2.9.3)

)
Substitution into boundary conditions (2.9.1) at y =0 and y = b yields

Y5(0) = fr = 2 [ f(z)sin E22 4z,
% (2.9.4)
Yi(b) = gr = 2 [ g(z) sin ¥2 da.
0
The general solution to equation (2.9.3) has the form
Yk(y) = AkekTﬂy + Bke_kTwy. (295)

The constants Aj and By are found from boundary conditions (2.9.4):
Ay + Bk = f, Ake%b + Bke_l%rb = gk- (2.9.6)
Solving this system, we find

Ap = e (e — fre™ 2 Y),

- aﬂ (fre'@? = gr). (297

By = -
Thus, the solution of problem (2.9.1) is given by (2.9.2), (2.9.5), (2.9.7).

Let us check the validity of solution (2.9.2). We need to justify the
possibility of the termwise differentiation of series (2.9.2). If f(z) and g(x)
are summable functions, then f(z) and g(x) are bounded:

5 <2 [1r@lde, ol <2 [ lg(o)] da,
0 0
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But then from (2.9.7) we see that

C
k )
eal

|Ag| <

| Bi| < const.

Therefore, it follows from (2.9.5) that

As a consequence, for 0 <e<y<b—e¢

knm

Yi(y)| < ce” e,

and series (2.9.2) for these values of y is dominated by the convergent series

oo

_kx
g ce” af.
1

It is easy to see that the derivatives of the second order in z and in y
of series (2.9.2) are dominated by the series

oo

> ke, (2.9.8)

1

which is also convergent. In the same way one proceeds with the derivatives
of any order in z and y.

Conclusion. Solution of the Dirichlet problem (2.9.1) is a smooth function
inside the rectangle 2. Let us assume that, as in (2.4.5), f(z), g(z) €
C2[0,a]. Then, analogously to (2.4.4), fx, gr = O(k%) and, consequently,
|Ye(y)l < 5%, y €[0,b]. Therefore, series (2.9.2) converges uniformly in the
rectangle Q = [0,a] x [0,b], and its sum is a function that is continuous in
this rectangle and satisfies boundary conditions in (2.9.1).

B. More general boundary value problem of the Dirichlet type in the
rectangle
Au(z,y) =0, O0<z<a, 0<y<b;
u(0,y) = ¢(y), ula,y) =) (2.9.9)
u(z,0) = f(z), u(z,b)=g().

could be solved by decomposing the solution u into two terms:
u = uy + us. (2.9.10)
Here u; solves problem (2.9.1), while uy solves the problem
NAus =0, 0<zx<a, 0<y<b

uz(0,9) = ¢(y), wua2la,y) =¥(y); (2.9.11)
ug(2,0) =0, wus(z,b) =0.
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This problem takes the same form as (2.9.1) if one interchanges z and
y. Therefore us should be tried in the form (compare with (2.9.2)):

k
Z X (@) sin iy (2.9.12)

If f, g€ CZ[0,a], while ¢, 1 € C2[0,b], then, according to what we
said above, u; and wuo, and, consequently, u are continuous functions in
and satisfies the required boundary conditions.

In the general case, for the continuity of u(x,y) in Q, the following
compatibility conditions are obviously required:

f(0) =(0), »(b) =9(0), gla) =), ¢(0)=f(a) (2.9.13)

Problem 2.9.1. Prove that problem (2.9.9) has a solution that is continuous
in Q if f, g€ C?0,a], p, v € C?0,b], and the compatibility condition
(2.9.13) is satisfied.

Hint. Try to find the solution to equation Av =0 in Q that coincide with
the boundary values given by functions f,g,¢ and ¢ at the corner points of

the region 2. Then the difference u —v could be found using decomposition
(2.9.10) described above.

C. Consider the nonhomogeneous Laplace equation (the Poisson equation).

Problem 2.9.2. Solve the boundary value problem

Au(z,y) =2y, 0<x<a, 0<y<b

u(0,y) =0, wu(a,y) = 0; (2.9.14)
u(z,0) =0, g;(x b) =0.

Let us point out that here at +t =0, x =a and y = 0 one has the
boundary value of the Dirichlet type, while at y = b one has the boundary
value of the Neumann type (that is, one is given the derivative of the solution
in the normal direction).

Solution. Homogeneous boundary conditions at x = 0, and = = a allow to
write the solution in the form of the series over the eigenfunctions of the
corresponding Sturm-Liouville problem:

Z Yi(z sm — (2.9.15)

We also decompose over these functions the right-hand side:

a
o0

kmy 2 k
?y=y- gk Sin L gk = — /x2 sin . dg. (2.9.16)
a a a
0
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Substituting these decompositions into (2.9.14), we get for Vk =1,2,...

*(%ﬂ) Yi(y) + Y (y) = ygr, 0<y<b; Yi(0)=Y/(b)=0. (2.9.17)

Then i i

L L Bre St 4 yf’“ . (2.9.18)
—(5)

The constants A and By could be found after substituting this solution

into the boundary conditions in (2.9.17):

{ A+ B =0,

Yi(y) = Age

Ak%’re%b—FBk(—%”)e_kT"b—k _(fﬁ)z =0. (2.9.19)

Solving this algebraic system, we find A and Bj.
Answer. solution is given by formulas (2.9.15), (2.9.18).

Boundary value problems in the annulus and in the disc

A. Let us solve the boundary value problem of the Dirichlet type in the
annulus between the circles of radii »; and 7ro:
Dula,y) =0, 13 <a®+y? < rd
u|w2+y2:rf = f1<tp), 0 < o < 2m, (2920)
u|w2+y2:r§ = f2<90)7 0<p<2m.

Here f1 and f, are given funcions of the angular variable ¢.
Solution. Let us convert to polar coordinates r, :

r=+z2+y?% tany=y/x. (2.9.21)

Problem 2.9.3. Prove that in these coordinates problem (2.9.20) takes the
form

ulr=r, = fi(p), 0<¢ <2m; (2.9.22)

(¢
ulr=r, = f2(p).
This is a problem in a rectangle
[0, 27] X [r1,72] (Fig. 2.10). The boundary
conditions are given in the lower and the
upper sides of the rectangle.
Question. Are there the boundary con-
ditions at the left and right sides of the
rectangle?

Answer. Yes, it is the periodicity condition
in the variable ¢

= u(2 Figure 2.10:
{ %gom) u(af’r)’ (2.9.23)
%(0,7’) = %(27T7T)'
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that follows from representing the points of the (z,y)-plane in the polar
coordinates (0,7) and (2m,r). Analogous periodicity conditions in ¢ also

2 3 . . .
hold for %, %, gT?,... — for all the derivatives of u in r and ¢.

Problem 2.9.4. Show that conditions (2.9.23) together with the equation

(2.9.22) guarantee the periodicity in ¢ of all the derivatives of u in r and
w, if u(p,r) is a smooth function in the rectangle [0,27] x [r1,r2].

The Sturm-Liouville problem that corresponds to homogeneous boundary
conditions (2.9.23) has the form

{ TIE — Ab(p), 0<¢<2m, (2.9.24)
®(0) = ®(27), @'(0) = &' (27).

Solving this problem, we find:
e = —k%, k=0,1,2,... ®n(p) = Ay cos(ky) + By sin(kyp). (2.9.25)

Therefore, for each k # 0 there are two linearly independent eigenfunctions:
cos(ky) and sin(ke), while for k£ = 0 there is only one eigenfunction: ®4(p) = 1.

As is known from the Fourier series theory, these eigenfunctions form a
complete system in Lo(0,27), and are mutually orthogonal:

2 2

J @3(p)dp = [ dp=2m,
gﬂ' 0 27 (2926)
[ cos?(kp)dp = [ sin®(kg)dp =m, k#0.
0 0

The Fourier method for problem (2.9.22) in the annulus consists in finding
the solution in the form of a series over the eigenfunctions of problem (2.9.24):

u(p,r) = Z Ry (r) cos(kp) + Z S, (r) sin? (ky). (2.9.27)
0 1

Substituting this series into equation (2.9.22), we get the following equations
for the “radial” functions Rg(r):

1 1
R! + ;R;C + T_2Rk(_k2) =0, rm<r<mr, k=0,1,2... (2.9.28)
and the same equations for Sj:
1 1
Sy + ;S,’C + 725’“(_]“2) =0, m<r<ry, k=0,1,2,... (2.9.29)

Let us solve the eradial equations (2.9.28)—(2.9.29). These are the Euler
equations (see [Phi79]). Substituting into (2.9.28) Ry =%, we get

AA =12 A2 — 22 =, (2.9.30)
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and the following characteristic equation follows:
M-k =0 \=+k. (2.9.31)

If k& # 0, then the roots are simple, and the general solution (2.9.28) has

the form:
Ry =Apr* + Bpr %, k=1,2,3,... (2.9.32)

Analogously, for (2.9.29):
Sp=Cpr* + Dpr=% k=1,2,3,... (2.9.33)
For k =0, the root of the equation A =0 has multiplicity 2, hence
= Ryg= Ao+ Bglnr. (2.9.34)
Substituting (2.9.32)—(2.9.34) into (2.9.27), we get the general solution

of a homogeneous Laplace equation in the annulus:

u(p,r)=Ag + Bolnr+ Z(Akrk + Bir ") cos(ky)
1

+ Y (Crr* + Dyr ) sin(ky). (2.9.35)
1

Remark 2.9.1. This is a general form of a harmonic function in the annulus.

Arbitrary constants in (2.9.35) are found from boundary conditions (2.9.22):

Ao+ Bolnry + Y77 (Akrl + Byr{ k) cos(ky)+
+ Zl (Ckrl + Dyry )51n(k<»0) 1(4/)) 0 < ¢ < 2m;
Ag + Bolnry + 21 (Akr’QC + Bkr2 )co (kp)+
fa(

+37 (Crr + Dyry )sm(kcp) ©),0 < ¢ < 2.

(2.9.36)

Taking now into account the orthogonality of the eigenfunctions of the
Sturm-Liouville problem (2.9.24) and relations (2.9.26), we get

2

AO +BO 1n1“1 = i f fl(gﬁ) d(p,
9 (2.9.37)

27

A0+Boln’l"2 = i f f2((p)d(p,
0

and, similarly, for Vk =1,2,3,...,

Aprk + Bkrfk = % () cos(kyp) dep,

f
(2.9.38)
f

Aprk + Bm‘{k = % () cos(kp) dep;
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Cpr¥ + Dkrfk =

3

f1(p) sin(ke) dp,
(2.9.39)
Cyrk + Dk.'r;k =

3=

S po— W

fa(p) sin(ke) dip.
We find A and B from system (2.9.37) and Ay, Bj from (2.9.38). C} and
Dy, are found from (2.9.39). Problem (2.9.20) is solved.

Problem 2.9.5. Prove that solution (2.9.35) of problem (2.9.20) is infinitely
differentiable in the interior of the annulus.

Problem 2.9.6. Solve the Dirichlet problem in the annulus

{ Au(z,y) =0, 4<a?+y%<9;

(2.9.40)
Ulg2py2=a = T,  Ulg24y2-9 = .

Solution. Here 71 =2, ry =3, so that

f1(p) = 2cos g, fa(p) = 3sinp. (2.9.41)

Therefore the right-hand sides in (2.9.37) are equal to zero and Ag = By = 0.
Analogously, the right-hand sides of systems (2.9.38) and (2.9.39) are equal
to zero for all k # 1. Therefore,

A, =B,=0, Co,=Dy=0 for k#1. (2.9.42)
Hence, series (2.9.35) contains only two terms:
u= (Ayr + Byr~ ) cos g + (Cir + Dyr~ ') sin . (2.9.43)
The remaining coefficients are obtained from the systems of equations

{ A2+ Bt =2, { Ci2+ Dt =0,

iz 7
A13+31§=0, Cl3+D1§ =3,

(2.9.44)

that are derived directly from (2.9.41). Namely, (2.9.44) is obtained by
substituting (2.9.41) into (2.9.36) and comparing the Fourier coefficients in
both sides of the relations, instead of evaluating integrals in (2.9.38)—(2.9.39).
From (2.9.44) we find

B, =% Dy =-3
; ’ 2.9.45
thh {an 284
Finally, from (2.9.43) and (2.9.45) we find the answer:

U= (—gr + ?r‘l) cosp + (gr - 35—67“_1) sin . (2.9.46)

B. Now let us consider the Dirichlet problem in the disc of radius R?:

{ Au(z,y) =0, 2% +y? < R%

Uulg2y2_pre = f(p), 0<p<2m (2.947)
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Solution of this problem also has the form (2.9.35), since the disc
2% +y? < R? contains the (degenerate) annulus 0 < x? +y? < R%. But the
disc also contains the point (0,0), where the solution has to be finite:

|u(0,0)| < oo. (2.9.48)

It can be shown [TS90] that (2.9.48) holds if and only if all the terms
that have the singularity at (0,0) of the form In7 and r—* are absent from
(2.9.35). This means that By = B, = D, =0, k=1,2,3,.... Thus, (2.9.35)
takes the form

u(x,y) = Ao+ Y _ ¥ (A cos(ke) + Ci sin(kp)). (2.9.49)
1

This is the analog of the Taylor series for a harmonic function in a disc.
The coefficients of series (2.9.49) are found from the boundary condition

of problem (2.9.47).
Problem 2.9.7. Let us solve the Dirichlet problem in the disc
_ 2 2 )
{ Au(z,y) = 072 x4y < 4 (2.9.50)
u|x2+y2:4 =x".

Solution. We are looking for the solution « in the form as in (2.9.49). The
substitution of this series into the boundary condition gives:

Ao + Z 2k (A, cos(ky) + Cy sin(kyp)) = 2 + 2 cos(2¢), (2.9.51)
1

since

1+ cos(2¢)
2

Comparing the Fourier coefficients in the left- and right-hand sides of (2.9.51),
we see that all Ay and Cj with £ # 0 and k # 2 are equal to zero, and

Ay =2
{ =2 Oy, (2.9.53)

xQ‘TZQ = (2cosp)® =4cos?p =4 =24 2cos(2¢p). (2.9.52)

This gives As = 3, and formula (2.9.49) yields the answer:
1 2 2 _ .2
w= 24727 cos(2p) = 2+ %(COSQ o —sintg) =242 . Y (2.9.54)
Problem 2.9.8. Solve the Dirichlet problem in the annulus
_ .2 2,2 )
{ Au(x,y) =2%, 9<z®+y* <16 (2.9.55)
u|12+y2:9 = 0, u|12+y2:16 =0.
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Hint. Here the solution that we are looking for and the right-hand side of the
equation are to be decomposed into the series of form (2.9.27). Equations for
the radial functions Ry and Sj will be the nonhomogeneous Euler equations.

Problem 2.9.9. Solve the Neumann problem in the disc

_ 2 2 .
{ Du(z,y) =0, 2% +y> <9; (2.9.56)

ou _
g lz2ry2=0 = .

Hint. Solution is to be looked for in the form of series (2.9.49); moreover,

. . du __ Bu
in the polar coordinates one has 3. = 3.

Conclusion. The heat equation, the wave equation, and the Laplace equation
possess different properties. As follows from the results of Chapter 2, solutions
of the homogeneous Laplace equation and the heat equation are smooth
inside the regions where they are considered, even if the boundary values are
discontinuous. At the same time, solutions of the homogeneous wave equation
could be discontinuous if, for example, the initial data are discontinuous
functions.



Chapter 3

Distributions on the line.
Green’s functions for boundary
problems on an interval

3.1 Different ways of defining a function

Continuous functions u(x) € C(R) could be defined using the following three
ways.
1. The continuous function could be uniquely defined by its values

{u(z)}, =zeR. (3.1.1)

2. Tt could be defined using its Fourier coefficients (if it is 2w-periodic):

u(z) = Z ugpee, (3.1.2)

kez

Here
1 2m
uk = o /efik"” u(z) dx. (3.1.3)
0
The sequence
{ur, k ez}, (3.1.4)

. . . P(x)
uniquely defines a continuous (periodic)

function by formula (3.1.2). -4 o 4
3. Let us introduce the space of

so-called test functions. Let C§°(R) be

the space of smooth functions with the

compact support, that is, Figure 3.1:

109
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1. plz) € C=(R);
2. p(x) =0 for |z| > A,, where A >0 depends on ¢ (Fig. 3.1).

For any continuous function u(z) define the scalar product with ¢ € C*°(R):

o0

(u(z),o(x)) = /u(m)gp(m) dx. (3.1.5)

— 00

This integral converges, since p(z) =0 for |z| > A:
A
(u(a),pla)) = [ uahpla)da. (3.1.6)
A

For a particular continuous function u(x) consider the set of values

{(u, 0),0 € C5°(R)}. (3.1.7)

Question. Is the function u(x) uniquely defined by this set of values?
Answer. Yes. (Prove this!)

Question. Can the formula be written for restoring the continuous function
u(z) from the set of values (3.1.7)7

Answer. Yes:

u(w) = lim 2 [ (" )uly) do = lim (e (1), u(o) (3.1.8)

Here ¢I(y) = to(*Z%) € C&(R).

€

The function ¢ € C§°(R) satisfies
the following conditions:

x 1. p(y) =0 for |y| > 1,

o(y)dy =1 (Fig. 3.2).

o
L%H

Figure 3.2:

Let us prove (3.1.8). We change the variable of integration: *—¥ = z.

Then (3.1.8) takes the form

u(z) = lim /gp(z)u(:c —ez)dz. (3.1.9)
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In this form, this formula follows from the continuity of u at the point z:
1

lim [ p(z)u(x —ez)dz = /go(z) lim u(z —ez)dz =

e—0 e—0
-1

— /1 o(2)u(z) dz = u(z) /1 0(2) dz = u(z).

Question. What is the essential difference of the three ways of defining a
function w(zx) which we described above?

Answer.

1. The set of numbers {u(z),z € R} could be more or less arbitrary: at
any finite set of points zj € R the values u(xy) could be arbitrary.

2. The set of numbers {uy,k € Z} could be arbitrary, as long as |ug|
decay for |k| — oo so that, for example,

> Jugoc. (3.1.10)
— o0
3. The values {(u,¢),p € C°(R)} are not arbitrary: As could be seen

from (3.1.5), they are connected by algebraic relations

<u7§01 + @2> = <u7901> + <u7 902>> (3'1'11)

for all o1, 92 € C5°(R)

Conclusion. For the abstract set of numbers {l, o € C§°(R)}, to correspond
to some function u(z) € C(R) such that

ly = (u, ), Vo € C5°(R), (3.1.12)
it is necessary that this set satisfies the compatibility conditions (3.1.11):

l801+502 = ltpl + lipza V1,02 € Cgo (R) (3-1-13)

-
Definition 3.1.1. The convergence ¢,, —— ¢ means the following:

1. @n(x) converges to ¢(z) uniformly in z € R, and the same is true for
derivatives of any order: Vk =0,1,2,...

PP (@) =" (), zER as n— 0. (3.1.14)
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2. All ¢, “have the common support” [-A,A]: FA>0, VYn=1,23,...

on(z) =0 for |x] > A. (3.1.15)

Question. Are the compatibility conditions (3.1.13) sufficient for the existence
of a function u(z) € C(R) that correspond to the set {l,} in the sense of
identity (3.1.12)?

Answer. No, they are not. One also needs the continuity conditions:

(U, on) — (w0, i pnp for n— oo (3.1.16)

Under the conditions (3.1.14)—(3.1.15), convergence (3.1.16) follows from
the theorem about the interchanging the integration and taking the limit:

A A
(u, pn) = / u(x)on(x) de — u(z)pr) de = (u, ), (3.1.17)
Y

n—oo

—A

since u(x)pn(z)—u(z)p(z) as = € [-A, 4], n— oco.

Thus, for the existence of a function w(z) € C(R) that corresponds to
the set {l,} in the sense of (3.1.12), the following condition is necessary
(besides (3.1.13):

l, as gn o (3.1.18)

lo, —
Question. Are conditions (3.1.13) and (3.1.18) suffice for the existence of
u(z) € C(R) that gives representation (3.1.12)7

Answer. No.

Problem 3.1.1. Give the example of the set {l,} that satisfies conditions
(3.1.13) and (3.1.18), but such that there is no corresponding function
u(z) € C(R) (see [V1a81, p. 97]).

Answer.
l, =¢(0), Ve¢eC°(R) (3.1.19)

Conclusion. The set of values {l,} defines a function u(z) € C(R) satisfying
identity (3.1.12) uniquely only if such function w(z) exists, although it may
not exist for the set {l,}. Conditions (3.1.13), (3.1.18) are necessary for the
existence of a continuous function U(x), but not sufficient.
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3.2 Distributions

Definition 3.2.1. A distribution is a set | = {l,, ¢ € C§°(R)} that satisfies
conditions (3.1.13) and (3.1.18).

For brevity, we denote
D = D(R) = C§°(R). (3.2.1)

Remark 3.2.1. From the Functional Analysis point of view, The set {l.}
satisfying conditions (3.1.13), (3.1.18) (that is, a distribution) is a continuous
linear functional on D(R), that is, the element of the dual space D'(R):

I={l,} € D'(R): I(¢)=1l,, VyeD(R) (3.2.2)

Thus, D'(R) is the space of distributions.

Notation 3.2.1. For a distribution {l,} the value {l, of the distribution [
on a test function ¢ will be denoted by both () and (I(z),p(x)), and will
be called the scalar product of the distribution [(z) with the test function

p(x):
lo =U(p) = (I, ) = (I(z),(x)) (32.3)

Let us point out that [(x) is not the value of the function ! at the point
xz, but merely a symbol.

Ezample. Distribution (3.1.19) is called the Dirac §-function:

5, = 3(0) = (6(2), () = p(0), Vo € D(R). (3.2.4)

Remark 3.2.2. Formula (3.1.5) assigns a distribution to each continuous function
u(z) € C(R):

u(z) = {(u(@), p(x)), ¢ <€ DR)}. (3.2.5)

According to (3.1.8), this mapping is injective:
C(R) C D'(R). (3.2.6)

But not every distribution could be represented by (3.1.5) using some
continuous function (for example, §(z) could not be represented in this way).

Let us consider examples of distributions.

L (0k(x), 0(2)) = ™ (0), Ve € D(R) (3.2.7)
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Check that d,(z) € D'(R) (that is,
0(x) check conditions (3.1.13), (3.1.16)). 2.
] The Heaviside function (Fig. 3.3).

1,2 >0,
O(z) = { 0. 2<0: (3.2.8)

Figure 3.3: s 00

Check that ©(x) € D'(R).

3.3  Operations on distributions

Addition of distributions

Let us first notice that for the continuous functions us(x), us(z) and their
sum uq(z) + uz(x) we have, due to (3.1.15),

(ur(z) + uz(x), p(2)) = (u1, ) + (u2, ), Vy € D(R) (3.3.1)
Definition 3.3.1. For [!,/2 € D'(R) we set

(" +1%), =1, +12, VoeDR). (3.3.2)

Remark 3.3.1. Under such definition, the addition of continuous functions

ur(x), uz(z) coincides with the addition of the corresponding distributions.
This is seen from (3.3.1) and (3.3.2).

Problem 3.3.1. Check that I! + (% € D'(R).

Multiplication of a distribution by a scalar

Let us notice that for u(z) € C(R) and « € R, due to (3.1.5), we have
(au(z), ¢) = alu,p), Ve € D(R) (3.3.3)
Definition 3.3.2. For i(z) € D'(R) and o € R we set

(ad(z),0) = afl, ), Vo€ D(R). (3.3.4)
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Multiplication of a distribution by a smooth function

Take g(z) € C°(R). If u(z) € C(R), then, as seen from (3.1.5),

(9()u(z), p) = (ug(z)p(x)), VYo € D(R)

Definition 3.3.3. For i(z) € D'(R), we set

(9(@)l(z), p) = (I, g(z)p(x)), Yo € D(R)

Remark 3.3.2. The right-hand side of (3.3.6) makes sense, since

g(x)p(z) € D(R)!
Problems 3.3.1. 1. Verify that g(x)l(z) € D'(R)
2. Compute zd(x).

3. Prove that

“Shift” of the distributions

For u(x) € C(R) and a € (R),

/ u(z — a)p(x) dz = / w(y)ply +a)dy, Ve € D(R).

Definition 3.3.4. For I(z) € D'(R), we set

{(z = a),p(x)) = (l(y), p(y + a)).

FExample.
(6(z —a),o(x)) = (0(y), o(y + a)) = ¢(a).

“Change of scale” in the argument of the distributions
For u(xz) € C(R) and k#0

+oo

+oo
[ wtkarete) e = o [ utwre() an

Definition 3.3.5. For f(x) € D(R) we set for k # 0

). o) = (1w e().
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(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)
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Problem 3.3.2. Prove that

1

d(kx) = m

5(z), k#0 (3.3.14)

In particular, prove that ¢ is even:
d(—z) = 0(x). (3.3.15)
Remark 3.3.3. From definition (3.3.11) we get:

(6(y — ), 0(y)) = ¢(x). (3.3.16)

This means that d(y — ) is the integral kernel of the unit operator Iy = .
In the linear algebra the matrix of the unit operator is the Kronecker
0-symbol, ¢;;. It is due to this analogue that Dirac called functional (3.2.4)
the J-function.

Problem 3.3.3. Write the formula of a general change of variable z = g(y) in
a distribution, where ¢g: R — R is a smooth diffeomorphism.

Convergence of distributions

Definition 3.3.6. Distributions u,(z) € D'(R) converge (weakly) to u(x) €
D'(R) when n — oo if for Vo(z) € C*(R) = D(R)

(un, ) = (u, ) when n — oo (3.3.17)

There is the following notation: un(x)D—(,R)u(x) as n — oo.

Examples of convergent series of distributions:
—_— D'(R)
1. If uy(z) € C(R) and U, (z)—u(z) as n — oo, then u,, — 'u as n — oo.
(Prove this!)

2. If up(z) € Le(R) and w, — uw in Ly(R) as n — oo, then unD—(/R)u.

(Prove!)

3. sin k:cD—(,R)O as k — oo. Indeed, integrating by parts, we obtain:

(sinkz, p(z)) = / Cozkxap'(x) dr — 0 as k — oo (3.3.18)

(R)

4. Analogously, k?sin k"800 as k — oo.

Remark 3.3.4. Sequences of functions sin kx and k2 sin kx do not converge
neither in the space C(R), nor in the space Lo(R), but they do converge
in D'(R).
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5. “0-like” sequences. Consider Steklov step-functions

_ [ ozelo ],
un(x) = { 0, ¢, g]’ — (3.3.19)
—+oo
Obviously, [ wun(z)dz =1, VYn=1,2,3,....
Problem 3.3.4. Prove that
un(x)D—(/R)é(x) as n — oo (3.3.20)
+oo
Hint. Apply the mean value theorem to the integral [ wu,(z)¢(x)dx.
Analogously, the Gauss distributions
:n2
€ P E5() as o — 04 (3.3.21)
210

converge weakly. (Prove this!)

Differentiation of distributions

For u(z) € C'(R), integrating by parts, we get (¢(z) =0 for |z| > A):

+oo A +oo
/ v (z)p(z) de = ug0|i‘A— / u(x)y' (x) doe = — / u(z)' (x)dr, (3.3.22)
—o0 —A —o0

since ¢(A) = p(—A) =0, so that the boundary term is equal to zero.
Definition 3.3.7. For u(x) € D'(R) we set

(u'(2), p(x)) = —(u(z),¢'(x)), Yy € DR). (3.3.23)
Problem 3.3.5. Prove that /() € D'(R).

Thus, any distribution has a derivative (which is also a distribution), and
hence derivatives of all orders!
Let us consider examples of derivatives of distributions.

1. (sinz) = cosz.
2. Let us find ©'(z) (see (3.2.8)—(3.2.9)). According to definition (3.3.23),

“+ o0

= —p(@)]; = 0(0) = (3(2), ¢(x))- (33.24)
From here, we see that ©'(z) = d(x).
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Continuity of the differentiation with respect to convergence of distributions
Lemma 3.3.1. The operator - : D'(R) — D'(R) is continuous.

Proof. Let un(x)D—(/R)u(x). Then for Yy € D(R)

(un(2), p(x)) = —(un(2), ¢'(2)) — — (u(z), ¢'(x)) = (W' (2), p(x)) (3.3.25)

!/

Consequently, un(ac)DﬂQ ! (z) according to definition (3.3.17). d
Problem 3.3.6. Prove that for Vu(z) € D'(R)

u(z +¢) — u(x) D’(R)u,

. (z) as e—0. (3.3.26)

3.4  Differentiation of piecewise smooth functions and the product rule

Differentiation of piecewise smooth functions

Lemma 3.4.1. Let u(z) € C' for x < a and for x > a, while at the point
x = a it has the discontinuity of type one that is, there are one-sided limits
u(a £0) (for simplicity, we assume that u'(a =0) also exist). See Fig. 3.4.

u(x)
I
a X
Figure 3.4:
Then the following formula is valid:
' (x) ={u ()} +h-6(x—a); h=ula+0)—ula—D0). (3.4.1)

The function u/(z) in the left-hand side of (3.4.1) is a generalized derivative
of the distribution u(x), while {«/(z)} in the right-hand side is a function
continuous for = # a, which is equal to a derivative of the function u(x) at
the points where this derivative exists. The distribution given for {u’(z)} by
formula (3.1.5) is called the regular part of the generalized derivative u'(z).
Ezample. For u(z) = O(x), we have: a =0,{0'(z)} =0, since ©'(xz) =0 for
z#0, h=0(0+)—0(0—)=1. Therefore, formula (3.4.1) gives

®'(z) = §(z), (3.4.2)
in agreement with (3.3.24).
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Problem 3.4.1. Compute |z|”.
Solution. According to formula (3.4.1),

1, x>0,

r ’ ) _ _
|z|" = {]z|'} +0-(x) =sgnx = { 1z <o (3.4.3)
Again, using the same formula,
2" = (sgnz)’ = {sgnz} + 2 6(x) = 26(x). (3.4.4)
Answer. |z|" = 26(x).
Problem 3.4.2. Prove formula (3.4.1).
Solution. For ¢ € C5°(R),
a +o0
a—0 00
(W) = —(u,¢')=— / ugp' d — / up' de = —up|”_—up|, .+

+ / W'pdz = —u(a)p(a — 0) + u(@)p(a+0) + ({u'}, @),
#a

which is equivalent to (3.4.1).

Product rule

For g(z) € C*°(R) and u(z) € D'(R), the product g(z)u(x) is defined (see
definition (3.3.6)). It turns out that the following common formula is valid:

(9(@)u())" = ¢'(z)ulx) + g(a)u (). (3.4.5)
Problem 3.4.3. Prove formula (3.4.5
Problem 3.4.4. Using formula (3.4.5

( ) 2)e ). (3.4.6)
4.5) and (3.3.8),

)-
)

, compute the following;:

Solution. According to formulas (3.

%(e‘”@(x)) = A MO(x) + e MO () =

= - MO(x) + d(z). (3.4.7)
Adding \O(z)e~** to both sides, we see that (3.4.6) is equal to J(x):

(% + /\> (O(z)e ™) = (). (3.4.8)
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Problem 3.4.5. Compute (for w # 0):
2 .
(d— + w2) (0(z) ) =2 (3.4.9)

dx? w

Solution. According to formulae (3.4.5) and (3.3.8),

sin wx

O'(z) = coswzx - O(z). (3.4.10)

%(Sinwx )

Using the same formulae, we get

@(x)) = coswr - O(x) +

w w

d? /sinwz d '
W( w '@(@):%(Coswfv-@(fc))——wsmwx-@(a:)+

+coswr - O (z) = —wsinwz - O(z) + 6(x). (3.4.11)

Substituting w?0(x)SMYZ  we get §(z):

w

(d—Q + w2) (O(z)

= = §(x). (3.4.12)

sin wx
—)

Problem 3.4.6. Prove (3.4.8) and (3.4.12) using formula (3.4.1) instead of
(3.4.5).

Solution.
Let us prove (3.4.8). We plot
; O(z)e** (Fig. 3.5). According to
O(x)e™ formula (3.4.1) (a=0 and h=1),
0 X
%(@(m)e”‘”) = O(z)(—N)e M+d(x).
(3.4.13)

Adding A\O(z)e **, we get (3.4.8).
Figure 3.5: e (@) we get ( )

Let us prove (3.4.12). The plot
O(z)™** is on Fig. 3.6.

According to formula (3.4.1) (a=0 A g x jSin0x
and h =0), A
| N4
% (@(x) Slnwwx) = O(z) coswr.
(3.4.14)
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The graph of O(z)coswz is plotted

on Fig. 3.7. We use formula (3.4.1)
I=U(x) cos wx s (a=0 and h=1):
NS d? sin wax d

@(@(x) )= %(@(x) coswr) =
= O(z)(sinwz)(—w) + §(x). (3.4.15)

Figure 3.7: Adding w?O(z)¥2eL we get (3.4.12).

Remark 3.4.1. We have equality (3.4.8) since the function ©(x)e=** for x # 0
satisfies the homogeneous equation

(% + )\) (@(m)e‘”) =0 for x#0, (3.4.16)

while its jump is h = 1. Analogously, we have equality (3.4.12) since the
function y(z) = O(z)*=2* for x # 0 satisfies the homogeneous equation

(d_2 n w2) (@(x) sinwx) =0 for z#0. (3.4.17)

dx? w

Besides, the function y(z) is continuous at z = 0, while its first derivative
y' () = O(z) coswz has a jump equal to 1:

(0_) = (0+>7
{ z’(0+) =yy'(o—)+1_ (3.4.18)

Thus, the regular parts in (3.4.8) and (3.4.12) cancel out due to identities
(3.4.16) and (3.4.17), respectively.

3.5  Fundamental solutions of ordinary differential equations

Fundamental solutions of ordinary equations

Let us consider a linear differential operator of order m with constant

coefficients:
d < i

d
A:A(%) :Zakw, am # 0. (3.5.1)

k=0
Using the chain rule, we get:

d* )
w(u(m —y))=u(zr—y), zeR. (3.5.2)
Therefore, J
A(—)(u(z —y)) = (Au)(z —y), z€R. (3.5.3)
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Definition 3.5.1. The fundamental solution of the operator A is a function
(distribution) e(z) x € D'(R) such that

A(%)e(x) =d(x), xeR, (3.5.4)

where the derivatives are understood in the sense of distributions.

Remark 3.5.1. As follows from (3.5.3),

A(dix)e(xfy) =d(zx—y), ze€R (3.5.5)

Ezamples.
L A=2: e(2)=0(z) (see (3.4.2)).
2. A= L. e(x)=Llz| (see (3.4.4)).
3. A= 4 X1 e(z)=0(2)e ™ (see (3.4.8)).
4. A=L 102 ex) = O(z) 8T (see (3.4.12)).

Let us point out that for a fixed operator A there could be infinitely
many fundamental solutions.

Question. Why does one need fundamental solutions?

Answer. To solve nonhomogeneous equations

A(%)u(x) — f@), zeR. (3.5.6)

A particular solution could be found using the formula

400 +oo
ulz) = / ez — ) f(y) dy = (e * )(z) = / W)z —y)dy,  (35.7)

if f(x) =0 for |x| > const, and f(z) € C(R) (the operation * in (3.5.7) is
called a convolution of e with f).

Verification. for the case f(z) € C™(R): For function (3.5.7) we get from
(3.5.4), for z € R:

Ezamples.
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1. For the equation

%u(x) = f(z), z€R (3.5.9)

formula (3.5.7) gives a particular solution

—+oo xT
u(z) = / Oz — y)f(y) dy = / f)dy, R (35.10)

which is well-known from Calculus.

2. For the equation
d2
da?

formula (3.5.7) gives a particular solution

u(z) = f(z), zeR (3.5.11)

+oo
u(x) = / %\x —y|f(y)dy, x€R (3.5.12)

— 00

which is analogous to the Cauchy formula for double integrals.

The method of construction of the fundamental solutions for an arbitrary operator

A(%) of form (3.5.1)

Let us consider the function wug(z) for z > 0, which is a solution to the
Cauchy problem

up(0) = 0,
.g;”‘2>(0) i (3.5.13)
w1 (0) = 24
Then the function
. { 870(527 =0 (3.5.14)

is the fundamental solution of the operator A.
Problem 3.5.1. Prove (3.5.4) for function (3.5.14) using formula (3.4.1).
Problem 3.5.2. Find the solution to the equation

3u"(z) —u'(z) =6(x), zeR (3.5.15)
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Solution. 3)2 -\ =0 <— )\1:0,)\2:% =

uo(z) = 1 + cpes. (3.5.16)
The initial conditions (3.5.13) yield
c1+c=0 =1
{ Ly = { o (3.5.17)
Answer.
u(z) = O(z)(ed —1). (3.5.18)

Problem 3.5.3. Find the formula for the particular solution to the equation
u’(z) — 3u/ (z) + 2u(z) = f(z), z€R (3.5.19)

where f(z) € C(R), f(x)=0 for |z| = const.

Solution. Let us find the fundamental solution:
e’ (x) — 3e'(z) + 2e(x) = §(x). (3.5.20)
For this, we find the roots of the characteristic equation
M2 42=0 = \=1, =2 = (3.5.21)
e(z) = O(z)(cre” + ce®). (3.5.22)

Initial conditions (3.5.13) yield

c1+co =0, co =1,
{ S = { (3.5.23)

Answer. According to formula (3.5.7),

+oo
e f(x) = / O — y)(e2=V — ==V f(y) dy =

x

_ / (20 _ m ) £ (y) dy. (3.5.24)

— 00
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3.6 The Green function for the boundary value problems on an interval

The Green function

Let us find the solution to the boundary value problem (w # 0)

{U”() w2i

x)=f(z), O0<z<l,
() = u(D) = 0. (3.6.1)
The Green function of this boundary value problem is a function G(x,y) on
[0,1] x [0,1], smooth for = # y and satisfying the equations
(%‘WQ)G(LZJ):(S(QU—?J% 0<J?<l, 3.6.2
e 362

Here y plays the role of a parameter, y € (0,1). We could say that
the Green function is the fundamental solution that satisfies the boundary
conditions.

Having the Green function, one can find the solution to the boundary
value problem (3.6.1) using the formula

l
=/Gmmﬂm@. (36.3)
0

Verification. The boundary conditions (3.6.1) follow from boundary conditions
(3.6.2): At =0,

1
- / G(0.1)f(y) dy = 0 (3.6.4)
0
and similarly at = =1[. Equation (3.6.1) could be checked formally:
1 1
& d ) d
(£ -t = [ (2 - atw sy = [ s~ s)ay = )
0 0
(3.6.5)

Remark 3.6.1. Formula (3.6.3) means that the Green function G(z,y) is the

integral kernel of the operator G that is inverse to the operator A = j—; —w?

of the boundary value problem (3.6.1):
A d2 2 . 2
= oW C5lo0,1] — C10,1] (3.6.6)
Here CZ[0,1] is the space of functions u(x) € C?[0,] that satisfy the boundary
conditions u(0) = u(l) = 0.



126 Practical PDEs, Section 3.6

Remark 3.6.2. Operator (3.6.6) is symmetric in L2(0,1), as is shown in (2.3.7).
Hence, the operator G = A~! is also symmetric in L(0,1). Tt is here that
the important symmetry property of the Green function is coming from:

G(z,y) = Gy, z), Vz,y€[0,1]. (3.6.7)

The method of constructing the Green function for the boundary value problems
on an interval

The differential equation (3.6.2) is homogeneous for = # y, since é(z —y) =0
for x —y # 0. Therefore, analogously to (3.4.17),

d2
(@ - wQ)G(w,y) =0 forx #y. (3.6.8)
Therefore,
| Ae** + Be™v", x <y,
6o ={ fo pod 53V (369)
For determining the constants A, B, C,
and D, we have two boundary conditions
(3.6.2) and two matching conditions at
x =y (see Fig. 3.8). Similarly to (3.4.18), ) /
0 | x
{ Gy —0,y) = G(y +0,y), G(x,)
Goly+0,y) =GLy—0,y) + 1.
(3.6.10)
These four equations determine A, B, C,
and D uniquely. Figure 3.8:
Problem 3.6.1. Derive (3.6.2) from (3.6.8)
and (3.6.10).

Hint. Apply formula (3.4.1) (twice) for computing (;%G(x,y).

We point out that one could take into account the boundary conditions
(3.6.2) looking for the Green function in the form

Ashwz, x <y,

Glz,y) = { Bshw(z —1), z>uy. (3.6.11)

Then (3.6.9) is also satisfied. It remains to take into account matching
conditions (3.6.10):

Ashwy = Bshw(y — 1),
Solving this system, we find
_ shw(y=10)
{ o am (3.6.13)
B = sh wy )
wshwl
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Finally, from (3.6.11) we find the Green function for problem (3.6.1):

shw(y—I)shwz <y
G(SC, y) = shw;ssﬁl:f(lzfl) (3614)
— wshwl 0 T2Y

Substituting into (3.6.3), we find the solution of the boundary value
problem (3.6.1):

T l
U(I)Z/Mﬂy) dw/wﬂm, (3.6.15)

wshwl wsh wl
0 x

The Green function (3.6.14) is symmetric in complete agreement with
Remark 3.6.2

Problem 3.6.2. Let w # 0. Find the solution to the boundary value problem

(6o st = o 0<x < -
Solution. We find the Green function G(z,y) for Vy € [0,1]:
(a2 ot o
Substituting in (3.6.8) the sign " —” by " +” we get, analogously to (3.6.11),
the following:
6@ ={ Bamate -1 e @619

Substituting G into the matching conditions (3.6.10), we get, analogously to
(3.6.13), that for sinwl # 0

%Jnsmwl ’ (3619)
B = :si:gl'

{ A= sinw.(yfl)

From here, similarly to (3.6.14),

sinw(y—-l) sin wz T <y
G(l’, y) = sinwz;‘gséx—l) (3620)
w sin wl T >Y.

Finally, we get the solution to problem (3.6.16):

T l
u(z) = / smwys?lw(ac—l) ) dy_'_/smw(yfl) smwxf(y) dy. (3.621)
w sin wl w sin wl
0 T

Let us point out that Green’s function (3.6.20) is also symmetric.
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Problem 3.6.3. Find the solution to

u(2) —w?u(x) = f(z), 0<z<l,
{u@ﬂuﬂ)g (3.6.22)
Problem 3.6.4. Find the solution to
u'(z) + w?u(z) = f(z), 0<az<l,
{U%ﬂzwwza (3.6.23)

Problems 3.6.1. Construct the Green functions and write the solution formulas
for the following boundary value problems:

1. v (z) = f(x), 0 <z <1; «(0)=u(0), u(1)=—u(l).

2. v (z) +u(x) = f(z), 0<z<1; o/(0)=u(0), u(1)=3u(l).

3. 2 (@) + 2zu/ (z) = f(z), 1<z <2 o/(1)=0, u(2)+5u(2)=0
4. B+ M) (z) 4+ 2zu/ (z) = f(z), 0 <z <1; u(0) =u(0), u(l)=0.

3.7  Well-posedness of the boundary value problems

Let us point out that formula (3.6.21) for the solution of problem (3.6.16)
and the Green function (3.6.20) do not make sense for wl = kw, k € Z,
since then sinwl = 0.

Question. Could we forsee this without solving problem (3.6.16)7

Answer. Yes. The thing is that when wl = kn, problem (3.6.16) has a

nonzero solution ug(z) for f(z)=0: ug(x) = sin &7%,

(d722+w2)u (x)=0, 0<xz<l,
{u&mudgo (3.7.1)

Therefore, the operator A = £, 4 w2 : C2[0,1] — C[0,1] is not invertible!
Therefore the (left) inverse G does not exist, and neither does its integral
kernel G(z,y).

We point out, though, that the absense of the inverse operator to A does
not mean that problem (3.6.16) does not have solutions for a single f(x)!
Question. Under which conditions on f(x) does problem (3.6.16) have solution
u(z), and how could this solution be found?

To answer this question, we need to take a detour into the Linear Algebra.
The thing is, the similar question arises when solving the system

Au = f, (3.7.2)

where A is an n x n matrix and f € R™. System (3.7.2) has a (unique)
solution u = A~1f if det A # 0. If instead det A = 0, then system (3.7.2)
may not have solutions.



Practical PDEs, Section 3.7 129

The necessary and sufficient condition on f so that system (3.7.2) has a
solution is the following orthogonality condition (see [CH53]):

f L Ker A* (3.7.3)

Here Ker A* is the subspace in 8 R™ that consists of solutions to the
adjoint homogeneous system:

heKerA* «<— A*h=0 (3.7.4)
Thus, (3.7.3) means that
(f,h) =0, VheKerA* (3.7.5)

Let us prove the necessity of conditions (3.7.3), (3.7.5). If for a given
vector f € R™ there is a solution u to system (3.7.2), then for each vector
h € Ker A*

(f,h) = (Au, h) = (u, A*h) = (u,0) = 0. (3.7.6)
Problem 3.7.1. Prove the sufficiency of conditions (3.7.3), (3.7.5) for the
well-posedness of system (3.7.2).

Due to the form of condition (3.7.3) we say that system (3.7.2) is
“normally” well-posed.

It turns out that for the well-posedness of problem (3.6.16) the necessary
and sufficient condition is the one of form (3.7.3)! We will prove this below.

Let us find Ker A* for the operator of problem (3.6.16). Since A* = A
(see Lemma 2.3.1) from Section 2.3),

Ker A* = Ker A. (3.7.7)

This means that Ker A* coincides with the space of solutions of problem
(3.7.1), that is,

Ker A* = {C'sin kﬂ-Tm, C € R}. (3.7.8)

Thus, the orthogonality condition (3.7.6) takes the following form:

(f(z),sin @ /f sm T e = 0. (3.7.9)

Problem 3.7.2. Prove the necessity of condition (3.7.9) for the well-posedness

of problem (3.6.16) when w = £T.

Solution. Analogously to (3.7.6) and in view of (2.3.7), we have:

<f($)asmkﬂ> <(dd722 +w2)u(a:) blnkﬂTx> =

- <u(x), (% +w?) sin k#> = (u(z),0)=0.  (3.7.10)
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Problem 3.7.3. Prove the sufficiency of condition (3.7.9).

Solution. Let us take w — % but w # %T. Then problem (3.6.16) has
solution (3.6.21). It turns out that, firstly, function (3.6.21) under condition
(3.7.9) has a limit as w — kT’T, and, secondly, this limit is the solution to
problem (3.6.16).

Let us prove the first statement. By formula (3.6.21),

T l
1 . . . .
u(x) = Semul [/ sinwysinw(z — 1) f(y) dy + /smw(y — D sinwz f(y) dy|.
0 T
(3.7.11)
When w = kT“, the integrands in both integrals have the same form. We use

the identities

sinwy - sinw(z — 1) = sinwy - sin(wz — kr) = (—1)" sinwy - sinwz,

sinw(y — 1) - sinwz = sin(wy — k7) - sinwz = (—1)" sinwy - sinwz.
(3.7.12)

Then the expression in the square brackets in (3.7.11) takes the form

1
(-1)* sinwx/sinwyf(y) dy. (3.7.13)
0
But when w = kT” integral (3.7.13) is equal to zero due to the orthogonality
condition (3.7.9)! Therefore, when w — kT”, both the numerator and the

denominator of expression (3.7.11) tend to 0, and we obtain an indefinite

expression of the form J.

Problem 3.7.4. Find the limit of expression (3.7.11) as w — kT“ (Apply the
IHospital Rule.)

Answer.
1
uz) = wl sin kw{
/[ycoswy sinw(z — 1) +sinwy (z — ) cosw(z — )] f(y) dy +
0

1
+ /[(y — ) cosw(y — 1) sinwz + sinw(y — 1) x coswz] f(y) dy}. (3.7.14)

x

Problem 3.7.5. Prove that function (3.7.14) is a solution to problem (3.6.16)

(for w =% and under condition (3.7.9)!).
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Question. The solution to problem (3.6.16) for w = kT” is not defined uniquely,

since one could add to it C - sin’“{—”’ with any value of C. How does the

solution given by formula (3.7.14) stand out of all other solutions?

Answer. Formula (3.7.14) gives a solution to problem (3.6.16) that satisfies
the condition

<u(x),sin @> = 0. (3.7.15)

Problem 3.7.6. Find the well-posedness condition and the solution formula
1y
for problem (3.6.23) with w = M,k =0,1,2,....

3.8  Sobolev functional spaces

Let Q2 be some region in R”, and s=0,1,2,....

Definition 3.8.1. The space H,(Q2) consists of all functions u(x) € Lo(2),
that satisfy
Ogu(x) € La(82), for |af <s, (3.8.1)

where the derivatives are understood in the sense of distributions.
The Sobolev norm |jul|s in the space Hq(Q2) is defined by

ull2= > llosu(@) 7,0 = Y /\agu(x)Fdx (3.8.2)

laf<s la|<s g
Remark 3.8.1. Hy(f2) = L2(Q2), and, obviously, C5°(2) C H ().
Definition 3.8.2. H?(Q) is the closure of C$°(f) in the space H ().

Let us list the most important properties of the Sobolev spaces.

I. Hy(Q) is the complete Hilbert space. Later we will always assume
that Q is a bounded region in R™ (with a compact closure) and the smooth
boundary 0f2. Let us formulate the most significant Sobolev embedding
theorems.

II. Hy,(Q) C C(Q) for s > 2.

III. For s; > so, the inclusion Hy, () C H,, () is a compact mapping.

Proofs of properties I-III are in [Mik78, Ole76, Pet91, SD64]. Let us
consider examples of the Sobolev spaces. Let n =1 and Q = (0,1), where
{ > 0. Then

1. Hy((0,1)) = L2(0,1), and, decomposing u(z) € L3(0,1) into the Fourier

T

series u(z) = >1° ug sin kl and applying the Bessel identity, we get:

Z o0
lelly = 57 fu (38
1
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2. The space H;(0,l) consists of functions u(z) € L(0,l) that satisfy

l

l
)3 z/u2(x)dx+/|u’(x)|2dx< 00 (3.8.4)
0

0

3. The space HY((0,1)) consists of functions u(z) € C[0,!] such that norm
(3.8.4) is finite, and, moreover, u(0) = u(l) = 0. (Prove this!)

Problem 3.8.1. Prove that, analogously to (3.8.3), for u € HY((0,1))
ol 2 T2 2
[[ulli = 5 Z |uk|” + 5 Z’f |ukl” (3.8.5)
1 1

Hint. First prove (3.8.5) for u(z) € C§°(0,1).

Corollary 3.8.1. For u € HY((0,1)) the norm ||u\|? is equivalent with
el = K fuxl? (3.8.6)
1

Problem 3.8.2. Prove that (3.8.5) is not valid for u(x) € H1((0,1))\ HY((0,1)).
Problem 3.8.3. Prove the Friedrichs inequality: For u(z) € HY((0,1)),

l

!
/u2(x) dr < C/ |/ (z)]? da, (3.8.7)
0

0
where ¢ > 0 does not depend on wu.

Hint. Express the integrals in (3.8.7) via the Fourier coefficients wj with
respect to the basis {sin £72}.

Problem 3.8.4. Prove that there is no constant C > 0 such that inequality
(3.8.7) holds for all u € H((0,1)).

Problem 3.8.5. Prove that H?Y((0,1)) C C[0,l], using th finiteness of norm
(3.8.5) and decomposition of u(z) into the Fourier series.

Problem 3.8.6. Prove the compactness of the embedding HY(0,1) C Hy((0,1)),
using (3.8.5) and (3.8.3).

Problem 3.8.7. Let Q be a ball || <1 B R". For which a € R

2|® € Hy(Q)? (sin|z))® € Hi(Q)? (In|z))* € Hi(Q)? (3.8.8)
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3.9  Well-posedness of the mixed problem for the wave equation in Sobolev

spaces

Consider the problem (2.6.1)—(2.6.3) from Chapter 2 and formula (2.6.11)
for its solution. Assume that

o(x) € HY((0,1)) and (x) € Ho((0,1)) = Ly(0,1) (3.9.1)

Let us verify that formula (2.6.11) gives a solution to the problem
(2.6.1)—(2.6.3) under conditions (3.9.1).
Problems 3.9.1. 1. Prove that equation (2.6.1) is satisfied in the sense of
distributions, D’((0,1) x R).
2. Prove that for vt € R

u(z,t) € HY = HY((0,1)) and a(z,t) € H® = Hy((0,1))  (3.9.2)

3. Prove that the mapping ¢ — u(z,t) is continuous from R into HY((0,1)),
while ¢ — 4(z,t) is continuous from R to Hy((0,1)), and, moreover,
that

HY 5 Hy
u(-,t)—(-) and a(-,t)—>¢() as t—0. (3.9.3)

4. Prove the uniqueness of the solution to the problem (2.6.1)—(2.6.3)
in the class of functions u(x,t) that possess properties formulated in
Problems 1-3.

For t € R, denote by S; the mapping
0, — (u(-,t),u(-,t)) (3.9.4)

according to formula (2.6.11). According to the statement of Problem
2, the mapping S; maps the space E = HY((0,1)) x Hy((0,1)) into itself.

5. Prove that for all £ € R the mapping S;: E — E is continuous.

6. Prove that the mappings S; defined above form a group: S;S, =
St+77 Vt, T € R.

7. Prove the energy conservation for solution (2.6.11):
H= /Hu(a:,t)|2 + |/ (2, )] dw = const, t € R,

Remark 3.9.1. The solutions written in (2.6.11) under assumptions (3.9.1) are
precisely the finite energy solutions. It is for justification of the well-posedness
of problems of the form (2.6.1)—(2.6.3) in the class of the finite energy functions
that S.L. Sobolev introduced the functional spaces H,.
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Chapter 4

Fundamental solutions and the
Green function for the partial
differential equations

4.1  Fundamental solutions of the Laplace operator in R"”

Distributions of several variables x1,...,x, and operations with them are
defined similarly to the case n =1 (see Sections 3.2, 3.3). For example,

(O(ny (@), 0(2)) = 9(0), Vo € C3°(R"); (4.1.1)
for each distribution u(x) € D’'(R™)

ou Op >

(8—x2,<p(x)> = —(u, prk Yo € C°(R™). (4.1.2)

Denote

0? 0?
= 6'—:10% +...+ 5—99%
Usually A, is simply denoted by A.
Problem 4.1.1. Find the fundamental solution of the operator /3, that is,
the function e(x) € D'(R®) such that

Aze(z) =d3)(z), z€R? (4.1.4)

An (4.1.3)

For this, we approximate J(3)-function by the step-functions d,(x), analogous
to the Steklov step-functions (3.3.19):

& for |z| < p,

_) 9
dp(x) = { 0 for |a| > p, (4.1.5)

where (2, = %7‘&'/)3 is the volume of a ball of radius p > 0.

135
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Problem 4.1.2. Prove that (analogously to (3.3.20))

5p(x)Dﬂ>)6(3) (x) as p—0+. (4.1.6)

We find the solution to equation (4.1.4) as the limit as p — 0+ of solutions
e, to the equation
Nzey(z) =6,(x), =R (4.1.7)

It is natural to look for the solution to this equation in the form e,(z) = E,(r),
where r = |z|. To accomplish this, we introduce the spherical coordinates in
(4.1.7).

Problem 4.1.3. Prove that
O*E, 20E, 10°

YANY ) = - = E,-r). 4.1.
3B,(r) or? + r or 1"5'7’2( o) (4.1.8)
Corollary 4.1.1. As follows from equation (4.1.7),

1(E r) =6,(r) for r>0, (4.1.9)

where

L for 0<r<p,
5@(7”)5{ (‘)plfor > p.

This equation is readily solved by integrating twice:

1
Ep-r:{ 6Qp+01+027‘ for 0<r<p (4.1.10)

C3+4 Cyr for r>p.
It remains to find constants C1,...,CYy.

We take into account that, according to (4.1.9), r- E, and (r-E,)" are
continuous at p = (this follows from formula (3.4.1)):

p3 1 —
22 L 4 ¢+ Cyp=Cs+ Cap,
{ g o, T AT P =R T hAl (4.1.11)

2
1 _
%Q—p+02—04.

The constant C} is arbitrary, since one can add an arbitrary constant to
a solution of equation (4.1.7) (and (4.1.4)). So let us set Cy = 0.

2

Then we obtain from (4.1.11) that C = —g- = —505, and
1 3 1
Cs = Ci——=0C—-— 4.1.12
7 8 ta 8T YT ( )
We choose € so that E,(0) < oo, that is, C; =0. Then C3 = —4-, and

according to formulas (4.1.11) we get

- — = for 0<r<p,
{i_ for v > p P (4.1.13)
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Remark 4.1.1. The condition F,(0) < oo led to e,(z) = E,(|z|) being a smooth
function in the ball |z| < p:

2 2 2
z1+m2+r3 - i
ep(z) = 8p? s forfzl<p, (4.1.14)
~ Tl for |z| > p.

Thus, it satisfies equation (4.1.7) not only for z € R3\ 0, as follows from
(4.1.9), but also in an open neighborhood of the point z =0, and hence for
all x € R3.
Problem 4.1.4. Prove that, in the sense of (weak) convergence of distributions
in D'(R?),

D’ (R?) 1

Ep(x) —

— 0+. 4.1.15
T PO (4.1.15)

See Fig. 4.1.

Corollary 4.1.2. As follows from (4.1.15),
1

N

( 47 ||

Indeed, from (4.1.15), due to the con-
tinuity of the operator A B D'(R3) (see
Lemma 331), Ixl=p

) =6@ (), z€R® (4.1.16)

X;, Xy, X

o

D'(R%) 1 f———
A — A (- 0+.

ep(x) ( 47T|ZL'|) as ;0 - + Ep(/x/) | :

(4.1.17)

But, on the other hand, from (4.1.7)

and (4.1.6) we also see that 1

" Arxixi

D'(R®
Ney(x) =6,() & )(5(3)(x) as p— 0+.

(4.1.18) Figure 4.1:
Relation (4.1.16) follows from (4.1.17) and
(4.1.18).
Thus, the fundamental solution for Ajs is a so-called “Coulomb” (or
“Newton”) potential

1
= . 4.1.19
@) = 7 (4.1.19)
Answer. )
e(z) = Py In|z|, z¢cR2% (4.1.20)

Problem 4.1.5. Prove that if C; # 0 in (4.1.10), then the function E,(|x|) is
not a solution to equation (4.1.7).

Hint. Use (4.1.16).

Problem 4.1.6. Find the fundamental solutions for the operator As.

Problem 4.1.7. Find the fundamental solutions for the operators A,, n > 3;
for A £ k2, where k > 0.
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4.2  Potentials and their properties

Volume potentials

Once one knows the fundamental solutions to the Laplace equation (4.1.19)
and (4.1.20), one can also find solutions to the nonhomogeneous Laplace
equation in R™ for n = 2 and n = 3. For example, the solution to the
equation

Nou(z) = f(x), z € R? (4.2.1)
is the function
1
u(w) = 5 [ nfe~ ylf) dy, (422)
RQ

if f(r) € C(R?), f(z)=0 for || > const. In the same fasion, a solution
to the equation

Asu(z) = f(x), z€R3 (4.2.3)
is given by
1 1
u(z) = _E/ P y|f(y) dy. (4.2.4)
R3

Remark 4.2.1. Integrals of form (4.2.4) are called the Coulomb (or Newton)
volume potentials. As the matter of fact, in Electrostatics, integral (4.2.4)
up to a scalar factor (that depends on the choice of units) and up to the
sign represents the potential of the electric field of the charge with the
volume density f(z). Equation (4.2.3) for the electric potential is called the
Poisson equation. It takes form (4.2.1) in a particular case when the charge
distribution f(x) does not depend on the coordinate z3. For example, the
potential of a uniformly charged straight infinite wire satisfies (4.2.1).

It follows that the fundamental solution —ﬁﬁ from (4.1.19) is the
potential of a point charge +1 located at the point x = 0, since in this case
the charge distribution is given by the Dirac delta-function, f(z) = d(z).

Problem 4.2.1. Compute the potential of a uniform distribution of charges
with the density p in a spherical layer R; < |z| < Rs.
Solution. The potential we are looking for could be converted to a form

Ro

1 pdy  _
u(z) = pp / =g /u,(x) dr. (4.2.5)
Ri<|y|<R2 Ry

Here u,(z) is the potential of the same form as in (4.2.13), obtained
according to formula (4.2.15) (see selow):

— P < )
1 pdS(y) { pr, |zl <r (4.2.6)

u,.(x):—ﬂ |z — y - - =l >

ly|=r



Practical PDEs, Section 4.2 139

We consider the three cases:

I BB
1) |z| < Ry = u(x)= [ (—pr)dr= —p(? - 7), (4.2.7)
Ry
|z| 9 Ro
pr
2) Ri<|z| <Ry = u(x)= /(—m)dr—i— /(—pr) dr = (4.2.8)
Ry |z|
3 3 2 2
o ol R Rl
~ W ) G ) (4-29)
T p (R} R
3) |a| > Ro —> u(x) = /(_W) ar =~ (3 -5 4210)
Ry
u
RI RZ
|
Figure 4.2:

The graph of potential (4.2.5) is plotted on Fig. 4.2.

Remark 4.2.2. For |z| > Ry potential (4.2.10) is equal to the Coulomb potential
of a point charge, of the value equal to the total charge of the spherical
layer:

1 %TFRS’ - %WR?

4.2.11
47 |z ( )

u(z) = —

The surface potentials

A. The simple-layer potential is a potential of the charge distributed over a
surface:

1 1
u(z) = ES/ oo y|a(y) dS(y). (4.2.12)

Here S is a smooth compact surface in R? and o(y) is the surface charge
density.
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Problem 4.2.2. Compute the potential of the uniform distribution of charge
on a sphere |z| = R, with the surface density o.

Solution.

T 27

u(z) = 1 / odS 1 // o R?sin ©dOdy (4.2.13)
T 4r T T im . (42
7T\ylzR = =l "0 \/RQ+|$|2—QR|x|cos@

Above, O, ¢ are the spherical coordi-
nates of the point y, counted from the
vector x, with ¢ being the longtitude
and O being the altitude. By the Cosine
theorem,

2 2 2
e —y|®” = |z|"+ |y —2]z| - |y| - cos© =
= \I|2+R2 — 2|z|R cos ©.

Figure 4.3:

Integral (4.2.13) is readily evaluated:

2 _
u(z) :_O'R 27r/ dcos © _
5 \/R2+ |z|* — 2R|x| cos ¢

o / _dt _oR? VB el 2Rl
20 R 4ol —2Rlalt —2R|z !
cR

2 2
- _m(\/Rz + |z|* + 2R|z| — \/32 + |z]” — 2R|z|) =

_ R

= _2‘m| (|R+ |lz|| — |R — ‘x”)

] —oR, [z[ <R,

D S 4.2.14
{ —7E 2 > R. (4.2.14)

Let us point out that for |x| > R potential (4.2.15) coincides with the
Coulomb potential ug of the point charge of magnitude @ = 47R%0 equal
to the charge of the sphere:

1rQ -1 A R%o oR

=Y — _ = ——. 4.2.16
Q) = =T T T ol 27| (42.16)

Remark 4.2.3. The simple-layer potential (4.2.15) is continuous on the sphere
|| = R, while its normal derivative is discontinuous, with

ou  _ou
on 2| =R+0 on

oR2
- 2
lo)=r-0 |7

= 0. (4.2.17)
|z|=R
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u
Answer. o R "
70Ra ‘$| S Ra i -
w-{ B LT
x|’ :
(4.2.15)
See the plot on Fig. 4.4.
Figure 4.4:

Besides, one can easily see from (4.2.15) that
Au(x)=0 for |z|#R. (4.2.18)

It turns out that these properties of the simple-layer potential are common
for integrals of form (4.2.12).

Properties of the simple-layer potential:
1) If o(y) is a continuous function, then so is u(x) for all x € R3, including
x €S,
2) If o(y) has a continuous derivative, then
0 0
a—Z(m—I—O-n)—a—Z(gﬁ—O-n):U(m), (4.2.19)
where n is the direction of the normal to S at the point z € S;
3) For = ¢ S, the potential is a harmonic function:

Nzu(z) =0 for xR\ S (4.2.20)

B. The double-layer potential is a potential of
the surface distribution of dipoles. For starters,

let us compute the potential of one dipole. A P

dipole in Electrostatics is a pair of point charges £

(di-pole) +2 and —Z at an “infinitely small” 2

distance ¢ from one another. K 1Z1=1
&

The quantity p (the vector pé, see Fig. 4.5)
is called the dipole moment.

The dipole potential is equal to Figure 4.5:
1 _r p

= lim(—— 2 £ =
’LL(LE) Ellr(l)( 47T(|$—$0| + |J3—$0—€€|))
D .. 1( 1 1 )

= —— [1Im — — =

dre—0e Mo —x9 — €] |z — o]
d 1 1 —
SR N [ S— P ————— cos(x — x9, €). (4.2.21)

dm de|_ |z — 0 — €€] :_E\x—x(ﬂ
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So,
p 1 —
u(z) = —-— 5 cos(z — g, €). (4.2.22)

AT |z — 20|

Figure 4.6:

The sign of expression (4.2.21) is determined by considering the case
when the directions of the vectors x — x¢ and € coincide.

Now let us find the double-layer potential on the surface S in R3 with
the dipole density p(y), with the moments in the direction of the normal n,
to the surface at every y € S:

L[ ply)cos(z = y,n,) dS(y)

— b
2 |z -y

u(z) = (4.2.23)

Remark 4.2.4. Potential (4.2.23) could be represented as the derivative in ¢
at € = 0 of the simple-layer potential on the surface S. with the density
p(x)jgi ((:”m)). Here S. is the surface S, “shifted” by ¢ along the field of the
field of normals (see Fig. 4.7).

Problem 4.2.3. Compute the potential of the double-layer potential for a
sphere with the constant dipole density p.

Solution. We consider the simple-layer
potential for the spheres of radii R+ ¢
and R with the charge density 2= and
—2, respectively (Fig. 4.8).

The density p. could be determined
from the fact that the total charge of the
spheres is equal to zero:

Pe an(R+e)? - LanR? =0, (4.2.24)
13 g

Figure 4.7: since the sum of charges in each dipole
equals zero! Hence,
RQ
Pe =D (4225)

(R+¢)*
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Figure 4.8:

Using formula (4.2.15), we obtain the desired double-layer potential:

—E2(R+¢e)+ER, |z|<R,
u(z) ~ S (Ricy? | oEa 4.2.26)
() {ps(:?:l) ZE)%P z| > R+e. (
For ¢ — 0 we obtain the exact formula
_dig (R+€)p€7 |33| < R7
u(z) = e=0 (4.2.27)
2
—ﬁd% pe(R+¢)°, |z| > R.
e=0
Answer.
_ [ |7l <R,
u(z) = { 0. |z|> R (4.2.28)

Properties of the double-layer potential:

1. The double-layer potential (4.2.23) is a function that is discontinuous
at the points of the surface S:

wx+0-ny) —ulz—0-n,) = —plx), z€8 (4.2.29)
(if the function u(x) is differentiable at the point x);
2. Beyond the surface S, the potential u(z) is a harmonic function:

Nzu(z) =0, for zcR3\S. (4.2.30)

Ezample. Potential (4.2.28) agrees with (4.2.29), (4.2.30).
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4.3  Computing the potentials with the aid of the Ostrogradsky-Gauss formula

Since Au = divgradu, the Poisson equation (4.2.3) could be written in the
form
divgrad u(x) = f(z). (4.3.1)

Integrating this relation over an arbitrary domain Q C R®, and using the
Ostrogradsky-Gauss theorem, we obtain:

/ erad u(x) - ny dS(x) = / div grad u(z) dz = / F(z) da. (4.3.2)
Q Q

o0

In Electrostatics, gradu(z) = E(x) (up to a sign) is the intensity vector
of the electric field at the point z, while Q(Q) = [ f(z)dz is the total charge
Q

of the region . Hence, (4.3.2) could be rewritten in the form

/ E(z) - ny dS(z) = Q(Q). (4.3.3)

o0

This identity is valid for any region Q C R®.

Let us compute potential (4.2.13) by the Ostrogradsky-Gauss method.
The charge density in (4.2.13) is spherically symmetric, hence the potential
u(x) also possesses this property. Therefore,

u(z) = ug (Jz)). (4.3.4)
Thus, the field E(z) = gradu(x) is radial:

x
]

Applying to this field identity (4.3.3) for the ball {|z| < r} =, we get:

BE(z) = —u(|Jz)). (4.3.5)

2_ [0, [z]<R,
E(2)| - 4rle] _{ P L I (4.3.6)

According to (4.3.5), |E(z)| = |u}(]z])|, and we get from (4.3.6):

0, r<R,
uf(r) - dmr? = { iR » SR (4.3.7)
Hence,
0, <R
r)y= ) ’ 4.3.8
Ul(’l") { P;Zo” r> R ( )

Integrating, we get:

Cl, r <R,
(U5} (’l“) = { R2o + 02 > R. (439)

r
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Problem 4.3.1. Derive from (4.3.9) formula (4.2.15).

Hint. Constants C7 and Cy are determined from the continuity condition at
r = R and equality
lim w(z) =0, (4.3.10)
|1:‘—>OO

which obviously follows from (4.2.13).

Problem 4.3.2. Using the Ostrogradsky-Gauss method, compute potential
(4.2.5).

4.4  Solution of the boundary value problems for the Laplace equation in
three-dimensional domains.  Constructing the Green functions by the

method of reflections

The Dirichlet problem with zero boundary conditions is solved by the method
of odd reflections, while the Neumann problem is solved by the method of
even reflections. This is analogous to the situation with the wave equation
(see Chapter T).

Solution of the Dirichlet problem in the half-space R? = {z € R?®: z3 > 0}

Agu(.’t) = f($17x271'3)7 T3 > 07

w(ry,22,0) =0, —oo<xy, zz<400; u(x)l ‘—> 0. (4.4.1)
Here f(z) is a given function in R%, f(z) € C(R3), f(x) =0 for |z| > const.

Let us find the Green function G(z,y) for problem (4.4.1). By definition
(compare with (3.6.2)), G is a solution to the problem

{ AmG(xay) = 5(1’ - y), T3 > Ov

G((z1,22,0),y) =0; G(z,y) — 0 aslz| — oo, (4.4.2)

smooth for = # y.

Here y is an arbitrary fixed point from R?%. Denote by § = (y1,y2, —¥3)
the point symmetric to y with respect to the boundary z3 = 0 of the
half-space R3:

Then the solution to problem (4.4.2) is given by the function

1 1 n 1 1
A |x —y| 4wz —g|

G(z,y) = (4.4.3)

According to (4.1.16), A,G(z,y) =6(x —y) — 6(xz — §). This yields the first
equation in (4.4.2), since

0(x—g)=0 for =z3>0. (4.4.4)
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Figure 4.9:

Indeed, 6(x — ¢) is a distribution located at the point § of the lower
half-space!

Let us verify the boundary condition in (4.4.2): If x3 = 0, then the distances
| —y| and |(z — g)| are equal, as one sees from Fig. 4.9. Therefore from
(4.4.3) one sees that G(x,y) =0. Finally, it is obvious that G(z,y) — 0.

|| — o0
Solution (in the sense of distributions) to the boundary value problem
(4.4.1) is given by the integral

dm e —y| |z -]
y3>0

ulx) = / Glasy) () dy = — / (L Lty (a45)
RS

Indeed, formally,

Agulz) = / £.G(e, ) fy) dy = / Sa—yfwdy=f(z).  (446)
R3 R3

The boundary condition is readily verified:

- / Gz, y)
13:0 g
RY

u

fly)dy=0 and wu(z) — 0. (4.4.7)
z3=0

|z|—o00

Electrostatic interpretation of problems (4.4.1), (4.4.2). The method of reflected
charges

In the Electrostatics, the solution u(z) to the boundary value problem (4.4.1),
up to a sign and a factor that depends on the metric system, is the potential
of the electrostatic field generated by the charge density f(z) in the upper
half-plane R, located above the conducting surface z3 = 0 (this could be, for
example, the surface of the Earth or the flat tin roof). Electrostatically, the
Green function G(z,y) from (4.4.2) could be viewed as the potential of the
point charge of magnitude +1, located at the point y above the conducting
plane x3 = 0. The field of the point charge redistributes the charges in the
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Figure 4.10:

plane z3 = 0: It attracts negative charges while detracting positive charges
(and they go to infinity):

It is known that, thereafter, the field lines (the integral curves) E(x) =
grad u(z) (see Fig. 4.10) are orthogonal to the conducting surface (the Earth),
or else the free charges in the conductor would start moving along the
surface. It follows that the surface of a conductor is the level surface of the
potential u(z) (equipotential surface in Electrostatics).

It is this property of the field lines that
allows to find the field E(z). For this,
let us recall the plot of the field curves
of the field of two point charges of the
same magnitude and opposite sign (see
Fig. 4.11). As follows from the symmetry
of the field curves with respect to the
plane of symmetry of the charges, the
field curves are orthogonal to this plane.
Therefore the field above the plane of
symmetry coincides with the field we are
looking for. This yields formula (4.4.3).

Figure 4.11:

The Dirichlet problem in the quarter-space

The quarter of the space Ri 4 is the

angular domain with the angle of magnitude 90° (see Fig. 4.12). Let
f(z) € C(R3,), f(z)=0 for « > const. Consider the Dirichlet problem in
RL,

Au(irlvavxS) = f(x1,$27$3),
1 >0, x9>0, z3€R; (4.4.8)
=0 =0, Ulgo=0=0; wu(z)—0 as |z|— oo.

The Green function G(z,y) of problem
(4.4.8) by definition is a solution of the
boundary value problem

Figure 4.12:
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AwG(xay) = 5(.%‘ - y)v T e Rl}‘,—-}-y
G|x1=0 = 07 G‘x2=0 = 0;
G(z,y) = 0 as |z] — oo.
(4.4.9)
Here y € R, is a parameter.
This Green function is also found by
the method of (0odd) reflections (Fig. 4.13).

Figure 4.13:

Let 4 = (y1,—y2,y3) be the reflection of the point y in the plane x5 = 0,
¥ = (—y1,¥2,y3) be te reflection in the plane z1 =0, and § = (—y1, —y2,y3)
be the composition of these maps. We put the charges of magnitude +1
into the points y and ¢, and the charges of magnitude —1 into the points
y and gy. Then their electrostatic field is represented by the potential

LU S S S N 11
Am|e —y|  Amle -yl Awle—g|  dmfr—g|

G(z,y) = (4.4.10)

Let us verify that this function indeed satisfies equation (4.4.9). First of
all, for z € R% |,

2oG(a,y) = 8(z — y) - 8la — §) — 8(x — §) + 6a — §) = 3z —y), (4.4.11)

since 6(z—4), d(z—y) and §(z—7) are equal to zero for z € R ! Therefore
the first equation in (4.4.9) is satisfied.

Further, let us verify the boundary conditions from (4.4.9): A) When
x1 = 0, the point z is equidistant from y and g, and also from 7y and ¢
(see Fig. 4.13). Therefore in the right-hand side of (4.4.10) the first and
the third term cancel out, and so do the second one with the fourth one;
B) When x5 = 0, the point z is equidistant from y and 7, and also from §
and § (see Fig. 4.13). Therefore, in the right-hand side of (4.4.10) the first
and the second terms cancel out, and so do the third and the fourth ones.
It is also obvious that G(z,y) — 0 as |z| — oo.
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Thus, the boundary conditions in (4.4.9) are also satisfied.

Therefore, G(z,y) from (4.4.10) is the Green function of the Dirichlet
problem (4.4.8). Hence the solution of the latter could be written in the
form

1 / 1 1 1 1
- — — — 4 - dy. (4.4.12
ey = g g @ G412

R3

Problem 4.4.1. Find the Green function and write the formula for the solution
to the boundary value problem in a quadrant of the space (under the same
conditions on f(z) as in (4.4.8)):

Au(x) = f(x), x>0, 23>0, —o0<z3<00;

" P (4.4.13)

612

=0; wu(x)—0 as [z]— oo

:L’1:0 ZQIO

Hint. One should apply the method of even reflection in x; and the method
of odd reflection in 5.

Problem 4.4.2. Find the Green functino and write the formula for the solution
to the Dirichlet problem in the following domains:

s

1. In the angular domain, with the angle of magnitude o = 7,

3,4,5,... (above, this was done for n = 1,2);

n =

2. In the octant of the three-dimensional space: 1 >0, x5 >0, x3>0;

3. In the layer: 0 < 23 < a, —o0 < x1, w2 < +oo (investigate the
convergence of the obtained series);

4. In a “half” of the layer: 0 < z3 <a, —-oco<uz1 <00, xg>0;
5. In a “quarter” of the layer: 0 < x3 <a, x1 >0, z3>0.

Remark 4.4.1. In the previous problem, instead of the Dirichlet condition

u|F =0 one can consider the Neumann condition g—z =0 at certain parts
r

of the boundary, as in problem (4.4.13). For solutions of such problems one
has to use the method of even reflection at these parts of the boundary.

Problem 4.4.3. Find the Green function of the Dirichlet problem in the
following domains:

1. In the ball |z| < R. Hint. Look for the Green function in the form

of the sum of the fundamental solution — ;- \ziyl and the potential of
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the “reflected” charge ﬁﬁ of certain magnitude ¢ > 0, located at

the point y*, “symmetric” to the point y with respect to a sphere:

Y =—3y (4.4.14)

2. In a semiball |z|] < R, x5 > 0. Hint: Use the method of odd reflection
with respect to the plane x3 to reduce the problem to the ball.

3. In a quarter of the ball |z| < R, 23>0, x3>0.

4.5  Solution of boundary value problems in two dimensions by the method

of the Green function. Application of conformal mappings

The Dirichlet problem in half-plane R = {z € R? : 2, > 0}

w5

+i v
—
iy

Figure 4.14:

Au(xy,xe) = f(x1,22), 22 >0, —o0 <z < O00;

u =0, u(x)—0 as |z] — oo, (4.5.1)

1‘2:()
where f(z) € C’(R_i)7 f(x)=0 for |x|> const. (4.5.2)
The Green function G(z,y) of this problem satisfies the equation

NGz, y) =6(x —y), zeR3;

G’ =0, G(z,y)—0 as |z|— oo, (4.5.3)

ZEQZO

where y € R%. Similarly to (4.4.3), this function is found by the method of
odd reflection applied to the fundamental solution (4.1.20) of the Laplace
operator in the plane:

1 ~ _
G(z,y) = g(ln |l —y| —In|z —g|), where 7= (y1,—y2). (4.5.4)
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Thus, the solution to problem (4.5.1) has the form

1 |z — y|

u(z) = / Gy f@Wdy =~ [In

2 |z — g

fly) dy. (4.5.5)

2
R

The Green function for two-dimensional domains

Unlike in the case of three-dimensional boundary value problems, the Green
function for many simply connected two-dimensional domains could be found
with the aid of conformal mappings. This is because the Green function
G(z,y) is harmonic in x for x # y, while the conformal mappings map
harmonic functions again into harmonic ones.

Let us illustrate the relation of the Green functions to the conformal
mappings on a particular example of the boundary value problem (4.5.1).
For this, we rewrite formula (4.5.4) in the following form:

1o Jz—yl, 1
G =—1 =1
(@,y) 2m n(|x*3ﬂ) o

(4.5.6)

r—=y

x—y’

Remark 4.5.1. The last equality in (4.5.6) holds under the condition that
i%g is understood in the sense of the division of the complex numbers:

T—y x1+ixe — Y1 —iyo

T—§ w1 tize—yi+iys (45.7)
Here y = y; —iy2 turns out to be the complex conjugate to y.
Let us point out that
1) For each fixed y € R% the map
z—z=0y(2) = i : g (4.5.8)

maps the upper half-plane, x5 > 0, conformally into the unit disc |z] < 1;
2) under the mapping (4.5.8), the point y is sent to O:

y— ®,(y) = 0. (4.5.9)

Now let us consider a more general case of the Dirichlet problem in the
flat simply connected region 2 C R? with a piecewise-smooth boundary 0%,
that contains at least two points:

Au(x) = f(z), =€

u =0u(z) =0 |u(z)] — o0, z€€ (4.5.10)

€N

where f(z) € C(Q), f(x)=0 |z| > const(y).
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Figure 4.15:

The Green function of this problem by definition satisfies the conditions

u =0G(z,y) = 0 |u(z)] - 00, x€
€0

(45.11)

Here y is a parameter, y € Q. It is known from the theory of functions of
a complex variable (the Riemann theorem, see [Sha85]) that for any simply
connected region  C R? with the boundary 0 that contains at least two
points there exists a conformal mapping of the region €2 onto the unit disc.
Moreover, any a priori fixed point y is mapped to zero. Let ®,(x) be such
a map (see Fig. 4.16).

Figure 4.16:

It turns out [CH53| that the Green function (4.5.11) has the form (4.5.6):
1

Gla,y) = 5 In|®y(2)|- (4.5.12)
7

Then we get the solution to the Dirichlet problem (4.5.10):

2w
Q

u(z) = S /ln |®y, ()] f(y) dy. (4.5.13)

Problem 4.5.1. Check that function (4.5.12) is the solution to problem (4.5.11).
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Hints.

A. In|®,(z)| = RIn®,(x) is a harmonic function if ®,(x) # 0, that is, for
T #Y;

B. In|®,(z)| at « =y allows the decomposition

In|®,(x) =ln|z -yl +0(1), z—uy; (4.5.14)

C. Use the theorem about a removable singularity to prove that O(1) in
(4.5.14) is a harmonic function at x = y;

D. The boundary condition G =0 is obviously satisfied, since

€02

|=1. (4.5.15)
eI

Problem 4.5.2. Let us find the Green function and the formqla for the solution
of the Dirichlet problem in the strip Q (for f(z) € C(Q), f(x) =0 for
|z| > const):

Au(z) = f(z), 0<z2<a, —o00<x1 <00
:07

) (4.5.16)

z2=0,a

u(z) = 0 when |z| — oo.

Solution. Let us map conformally the strip into a disc (see Fig. 4.17).

Figure 4.17:

Ty

The point y is mapped into the origin: w=-e¢7 ,

T Ty
= (4.5.17)
€a —ea
Now, according to (4.5.12),
1 e —ea
G(z,y) = — In|— — (4.5.18)
27T €a —ea
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and using (4.5.13), the solution of problem (4.5.16) is given by

too a Tz Ty
1 ea —ea
s € a —E€a
—o0 0
Let us mention that
es = ea(@mtim) — 7ot (cos EIQ + isin Z:172). (4.5.20)
a a
)C2 xZ
PE— a —
@) X, @] 1 %
Figure 4.18: Figure 4.19:

Problem 4.5.3. Find the Green function and write the formula for the solution
of the Dirichlet problem in the following regions:

1. Angle of magnitude « (see Fig. 4.18);
2. Disc: |x| <1 (one gets the classical Poisson formula);

3. Half of a disc: |z| <1, 2 >0 (use the method of the odd reflection
with resect to z2 to reduce to Problem 2);

4. Sector of a disc: |z| <1, 0<argz <a (see Fig. 4.19).

Remark 4.5.2. It turns out that, knowing the Green function of the Dirichlet
problem in the region 2, one can solve the homogeneous equations Au(z) = 0

in Q with non-homogeneous boundary conditions u| = f(z): if 99 is of

09
class C? and f € C?(99)), then (see the details in [Vla81, p. 429]; [Ole76,
p. 48]):

0G(x,y
utr) = [ 248Dy, (@5.21)
Ty
o0
where % is the differentiation in the direction of the external normal to

the boundary at the point y € 0f). This holds for the region € of any
dimension: Q C R?, Q C R3, et cetera.
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Problem 4.5.4. Let us find the formula for the solution of the Dirichlet
problem in the half-plane

Au(xy,m2) =0, x2>0; wu(z1,0)=f(r1); wu(r) — 0, (4.5.22)

|z]— o0

where f(z1) € C(R), f(x1) =0 for |z1| > const.
Solution. The Green function for the half-plane is given by (4.5.4):

Glay) = % In \/(Il — 1) + (2 — 92)° — % n \/(Il — )+ (22 + 1) =
- % (21— y1)” + (w2 — y2)") — %((Il — 1)+ (22 +12)7).

Taking into account that the external normal n, to the half-plane x5 >0
is represented by the vector (0,—1), we get:

(S| - (2 o)

any Y2 :0_ Fy2 y2=0
1 2%2 1 2.%2 1 To

Jr .
Am (zy —y)? + 23 AT (a1 —y)’ + 23 T (v —y)? + a3

Answer.

u(ry,x9) =

+oo
2 fyr) dy
[

. :
T x1—y1)” + a3

4.6  Solutions to the hyperbolic equations in the sense of distributions

Let us remind (see Section 1.2), that the solution to the homogeneous
d’Alembert equation
O*u(x,t) 5 0%u(x,t)
a2 7 ax2
can be written as in (3.2.3):

(4.6.1)

u(z,t) = f(x — at) + g(x + at). (4.6.2)

If the functions f(z) and g(x) are C? (have two continuous derivatives),
then wu(z,t) from (4.6.2) also possesses the same property. If, instead, f(x)
or g(x) are discontinuous, then u(zx,t) is also going to be discontinuous. Let
us show that in this case the function u(x,t) in (4.6.2) is still going to be a
solution of equation (4.6.1) if one considers the derivatives in both sides of
(4.6.1) in the sense of distributions (see Remark 1.2.1 of Chapter I). This
means that

0u 0u
(G wen) = (Fhplen). YeeOr®). (463
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To prove identity (4.6.3), let us remind that, according to the definition
of the derivatives of the distributions,

{ (G#,0) = (3, %) = (u, 58), (4.6.4)
(5. 0) = —(58, 58) = {u, 58,
Therefore identity (4.6.3) is equivalent to

<u7 %27;0> _ 2 <u %>7 (4.6.5)
or

< (?)2? B 2%> _o. (4.6.6)

Identity (4.6.6) in the coordinates £ = x —at, n = x+ at takes the form
(see (1.2.9))

// & m) 8{8 =0. (4.6.7)
Decomposition (4.6.2) means that
u(§,m) = f(&) +9(n). (4.6.8)

Substituting (4.6.8) into (4.6.7), we get

/ f& / ey 1) 6+ / / sy €) =0 (469)

But this identity is obvious, since

N P e
14 _ oy _
— o n=—o0
+oo §=+oo
R Dy

due to the compact support of ¢(¢,n). Thus, equality (4.6.3) is proved.
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0.1  Appendix: Classification of the second order linear partial differential

equations with constant coefficients

Differential equations with constant coefficients

Let us consider the following equation in R™:
- 0%u " Ou
Z aijm + ;aia_xi + aou(x) = 07 X € Rn; Qi5 = Q- (011)

Let us bring it to the canonical form, that is, to the form so that a;; =0
for ¢ # j. To accomplish this, consider the linear change of variables:

Y1 = C11%1 + ... + C1nZnp,
(0.1.2)

Yn = Cn1%1 + ... + CunTn,

or, in the vector form,
y=Cuzx. (0.1.3)

: Ou __ n ou Oyr __ n - Ou
In the coordinates y, we have 52t =37, | g5 =571 Crig-, and also

2 2 : . .
#&sj = ki=1 C;ﬂ-Clj%. Substituting into (0.1.1), we get

0?u
Z a;jCriCljm—F—+... =0, (0.1.4)
i,5,k,l aykayl

where dots denote terms that contain lower order derivatives of the function
u. We can write (0.1.4) as follows:

3 bklﬁ+... —0, (0.1.5)
k=1 YOy
where
b = ZamCMClj. (0.1.6)
%]

In the matrix form, b = CaC*, where @ is the matrix (a;;), while C* is
the transpose of C. This formula resembles the transformation law for the
matrix of the quadratic form

n

(a€,&) = Z a;;6:&; (0.1.7)

ij=1
Namely, if one makes the change of variables

E=dn, d=(dij)ij=1,.n (0.1.8)
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then, taking d* = C, one gets

(a&,€) = (adn,dn) = (d*adn,n) = (CaC"n,n) = (bn,n). (0.1.9)

Therefore, if the change of variables (0.1.8) brings the quadratic form to
the diagonal form (a,&) = > ] byni (we know from the Linear Algebra that
such a change of variables exists), then the change of variables (0.1.3) with
the matrix C' = d* brings the differential equation (0.1.1) to form (0.1.5)
with the same diagonal matrix b:

n 2
Zbka—ZJr... —0. (0.1.10)

After this is accomplished, one the following is possible:
I. det a # 0. Then equation (0.1.1) is called nondegenerage, and all by in
(0.1.10) could be made equal to +1. Then there are three possibilities:

A. All the coefficients by are of the same sign (all are equal to +1 or
instead all are equal to —1), then equation (0.1.10) has the form

‘327? + ...+ ng + ... =0 and is called elliptic. An example is the

Laplace equati%n (1.8.24);

B. All the coefficients b, but one are of the same sign, so that (0.1.10)
takes the form

0%y 0%y 9%u

= =0 0.1.11
dy? dyr . Oy? ( )

and is called hyperbolic. An example is the wave equation (1.7.1);

C. Some of the coefficients b, (more than one) are positive, while others
(also more than one) are negative; then (0.1.10) has the form

0%u  O%u 0%u 0%u

e S I 0.1.12
oy7  Oy3 dyr . Oy2 ( )

and is called ultrahyperbolic. This is only possible if n > 4.

II. det a = 0. Then equation (0.1.1) is called degenerate, or parabolic in the
general sense. An example is the heat equation (1.8.18).

Problem 0.1.1. Find the canonical form and the change of variables (0.1.2)
for the equation

Pu_ o

ox? 021029 Ox2
Solution. Compose the quadratic form (0.1.7) and bring it to the diagonal
form:

€2 44616 — 362 = (&1 +26)° — 462 — 362 = — 3 — 3. (0.1.14)

— 0. (0.1.13)
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Therefore, equation (0.1.13) is of hyperbolic type, as in (0.1.11). The change
of variables (0.1.8), or, rather, the inverse to it, has the form

m =& + 26,
N2 = 282, (0.1.15)
N3 = &3.

To bring these relations to the form as in (0.1.8), one needs to solve equations
(0.1.15):

L=

3 =13,

§o=m =28 =m—n.

From here we get the matrix d:

1 -1 0
d=(0 % 0
0 0 1
and, consequently,
1 00
C=d"=( -1 5 0
0 0 1

Therefore, substitution (0.1.2) has the form

Y1 = I,
Yo = —Tq + %IQ, (0116)
Ys = T3.

According to (0.1.14), the canonical form of equation (0.1.13) is as follows:

0%u  O%u 9%u
— = — —3— = 0. 0.1.1
oy O0y3 " oy3 (0.L.17)

Problem 0.1.2. Find the canonical form and the change of variables (0.1.2)
for equations

0%u 0%u 0*u
= .1.].
8x18z2 * 893231’3 * 65638331 0 (0 8)
2 2 2
Pu % u_ _ (0.1.19)

a—xf B 0x10x2 + 689618963

Equations with variable coefficients

Now we assume that the coefficients in (0.1.1) are varying:

n ) B
ZZ: 8%8% +...=0. (0.1.20)
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Then for each fixed zy € R™ one can consider the equation with the constant
coefficients, obtained from the variable coefficients “frozen” at the point zg:

" 0?u(x)
> ai(z0) gopt ... = 0. (0.1.21)
ig=1 81‘i81‘j

The type of this equation is called the type of equation (0.1.20) at the

point zy5. The example is the Tricomi equation
u  0%u

— 4+ = =0 0.1.22

Yoz T oy ( )

which is elliptic in the half-plane y > 0, hyperbolic in the half-plane y < 0,
and degenerate on the line y = 0.
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