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Combinatorial and Metric Graphs

Definition
A (combinatorial) graph is the set of vertices V and edges &, G4 = (V, €).

For u,v € V we shall write u ~ v if there is e, , € £ connecting v and v.
The function deg: V — Z>1 U {oco} defined by

deg: vi> #{ueV|u~v}=#E,

is called the (combinatorial) degree, where &, := {e,, € £|u ~ v}.
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Combinatorial and Metric Graphs

Definition
A (combinatorial) graph is the set of vertices V and edges &, G4 = (V, &),

For u,v € V we shall write u ~ v if there is e, , € £ connecting v and v.
The function deg: V — Z>1 U {oco} defined by

deg: vi> #{ueV|u~v}=#E,
is called the (combinatorial) degree, where &, := {e,, € £|u ~ v}.

@ V and & are at most countable
@ Gy is connected and locally finite (deg(v) < oo for all v € V)

@ No loops or multiple edges

If every edge e € € is assigned with a length |e| € (0,00), then G = (V,E,|-|) is

called a metric graph
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Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e]) and hence introduce the Hilbert space

L2(g) = @ L2(6) = {f = {fe}e€S| fe € Lz(e)a Z er‘|i2(e) < OO}

ecf ecf
Next equip G with a Schrodinger-type operator Hmax := @ ¢ He, Where:

d2

He = ——,
¢ dx?

dom(H.) = H?(e).
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Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e]) and hence introduce the Hilbert space

12(9) = @ 12(e) = {F = {f}ecs| fo € L2(e), D Ella(ey < o0}
eef eef
Next equip G with a Schrodinger-type operator Hmax := @ ¢ He, Where:
d2

He = ——,
¢ dx?

dom(H.) = H?(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.
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Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e]) and hence introduce the Hilbert space

L2(G) = P L3(e) = {f = {fetece| o € L2(e), D IIfellfoe) < 00}

ec& ecé

Next equip G with a Schrodinger-type operator Hmax := @ ¢ He, Where:

d2

He = ——,
¢ dx?

dom(H.) = H?(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.
Kirchhoff conditions: For all v € V

f is continuous at v,
Zeegv fe,(v) = 0.
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Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e]) and hence introduce the Hilbert space

L2(g) = @ Lz(e) = {f = {fe}e65| fe € Lz(e)’ Z “feHiz(e) < OO}

ecé ecé

Next equip G with a Schrodinger-type operator Hmax := @ He, Where:

d2

He = ——,
c dxg

dom(H,) = H?(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.

Definition

A quantum graph is a metric graph equipped with the operator H acting
as the negative second order derivative along edges and accompanied by
Kirchhoff vertex conditions
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Infinite Graphs (#V, #& = o)

@ Gy is connected and locally finite (deg(v) < oo for all v € V)
@ No loops or multiple edges
@ No inessential edges (deg(v) # 2 for all v € V)
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Infinite Graphs (#V, #& = o)

@ Gy is connected and locally finite (deg(v) < oo for all v € V)
@ No loops or multiple edges

@ No inessential edges (deg(v) # 2 for all v € V)

0 (*(€) :=supece €] < o0

However,

Theorem (M. Solomyak'2003)

If £*(€) = oo, then
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Infinite Graphs (#V, #& = o)

@ Gy is connected and locally finite (deg(v) < oo for all v € V)
@ No loops or multiple edges

@ No inessential edges (deg(v) # 2 for all v € V)

0 (*(€) :=supecs €] < o0

PROBLEM #1:

The (minimal) operator H is symmetric, however, in contrast to the case
of finite graphs, it is not necessarily self-adjoint!
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Infinite Graphs: Self-adjointness

For p: £ — (0,00), define a path metric g, on V w.r.t. G by

op(u,v) = inf Zp(ew_hw)-
k

P={v0,....,Va}: U=vy, V=V,

The infimum is taken over all paths connecting v and v.
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Infinite Graphs: Self-adjointness

For p: £ — (0,00), define a path metric g, on V w.r.t. G by

op(u,v) = inf ZP(er_LVk)-
k

P={v0,...,Vn}: u=vo, vV=vp

The infimum is taken over all paths connecting v and v.

o Natural path metric oo with po: e — |e|.

e Star metric o, with py: ey — m(u) + m(v) and m(v) := >

ecé,

el.
v

Theorem 1 (Exner—-AK—-Malamud-Neidhardt)

If (V, om) is complete as a metric space, then H is self-adjoint.
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For p: £ — (0,00), define a path metric g, on V w.r.t. G by

op(u,v) = inf ZP(er_LVk)'
k

P={v0,...,Vn}: u=vo, vV=vp
The infimum is taken over all paths connecting v and v.

o Natural path metric oo with po: e — |e|.
e Star metric o, with py: ey — m(u) + m(v) and m(v) := >

el.
v

ecé,

Theorem 1 (Exner—-AK—-Malamud-Neidhardt)

If (V, om) is complete as a metric space, then H is self-adjoint.
In particular, H is self-adjoint if inf,cy m(v) = inf ey > oo |e[ > 0.

Corollary ([EKMN])

If (G, 00) is complete as a metric space, then Hg is self-adjoint.
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Infinite Graphs: Self-adjointness

For p: £ — (0,00), define a path metric g, on V w.r.t. G by

op(u,v) = inf ZP(er_LVk)-
k

P={v0,...,Vn}: u=vo, vV=vp
The infimum is taken over all paths connecting v and v.

o Natural path metric oo with po: e — |e|.

e Star metric o, with py: ey — m(u) + m(v) and m(v) := >

el.
v

ecé,

Theorem 1 (Exner—-AK—-Malamud-Neidhardt)

If (V, om) is complete as a metric space, then H is self-adjoint.
In particular, H is self-adjoint if inf,cy m(v) = inf,cy > oo |e[ > 0.

The standard assumption for infinite QG is infecg |€] > 0!
[A M. Keller and D. Lenz// J. reine Angew. Math. 666, 189-223 (2012).
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Infinite Graphs: Self-adjointness
Example 1. { { { { {
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Example 1, (V, 0m) is complete < L:= )" _ . |e| = sm(V) = oc.
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Infinite Graphs: Self-adjointness
Example 1. [ 1 1 [ J

In

Example 1, (V, 0m) is complete < L:= 3" _ e[ = %m(V) = o0.

If m(V) < oo, then H is non-self-adjoint. I

Hence, in Example 1, ‘H is self-adjoint < (V, o) is complete!‘

Open Problem:
Does the converse to Theorem 1 hold true in general?
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Infinite Graphs (#V, #& = o)
Consider the discrete Laplacian h defined on ¢2(V; m) by
f(v)—f(u)
(7F)(v v) > , VEV.

€]
Urov u,v

where m(v) := > .o lel.
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€]
Urov u,v

where m(v) := > .o lel.

7 is the combinatorial Laplacian iff G is equilateral, i.e., [e| = 1|

(Teompf) (V) : deg Zf vev.

[@ R. Courant, K. Friedrichs & H. Lewy // Math. Ann. 100, 32-74 (1928)
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Infinite Graphs (#V, #& = o)
Consider the discrete Laplacian h defined on ¢2(V; m) by
f(v)—f(u)
(7F)(v v) > , VEV.

€]
Urov u,v

where m(v) := > .o lel.

7 is the combinatorial Laplacian iff G is equilateral, i.e., [e| = 1|

(Tcombf)( . deg Z f vev.

[@ R. Courant, K. Friedrichs & H. Lewy // Math. Ann. 100, 32-74 (1928)
ﬁ Y. Colin de Verdiére, Spectres de Graphes, SMF, Paris, 1998.

ﬁ G. Davidoff, P. Sarnak and A. Valette, Elementary Number Theory, Group
Theory and Ramanujan Graphs, Cambridge UP, 2003.

ﬁ W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Univ.
Press, Cambridge, 2000.
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Infinite Graphs (#V, #& = o)
Consider the discrete Laplacian h defined on ¢2(V; m) by
f(v)—f(u)
(tf)(v v) Z , veY,

’eUV|

where m(v) := > .o lel.

‘7’ is the combinatorial Laplacian iff G is equilateral, i.e., |[e]| =1 ‘

(Teompf) (V) : deg Zf vev.

Theorem (E. B. Davies'1992)

h is bounded iff the weighted degree Deg is bounded on V,

Z 1 _ Zeesv 1/lel
| Zeeé‘v |e|

Note that Deg is bounded on V if £, (&) := infece |e| > 0.
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Connections between H and h

The kernel £ = ker (Hmax) consists of piecewise linear functions on G.
Every f € L can be identified with its values {f(e;), f(eo)}ecs on V
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The kernel £ = ker (Hmax) consists of piecewise linear functions on G.
Every f € L can be identified with its values {f(e;), f(e5)}ece on V and

Hf-H%Q(g) _ Z ’e’ |f(el)| + Re(f(elgf(eo)*) + |f(e0)| )

ecé
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Connections between H and h

The kernel £ = ker (Hmax) consists of piecewise linear functions on G.
Every f € L can be identified with its values {f(e;), f(e5)}ece on V and

11226y = Z’e’|f(ei)| + Re (F(er)f(e0)") + |f(eo)®

ecé 3

Now restrict ourselves to the subspace Lcont = LN Cc(G). Clearly,

Yo lel(F ()P +1f(e)?) = D IFWIP D lel = I lZqm)

ecf vey ecé,
N——

=m(v)

defines an equivalent norm on Lcont
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Connections between H and h

The kernel £ = ker (Hmax) consists of piecewise linear functions on G.
Every f € L can be identified with its values {f(e;), f(e5)}ece on V and

e)l? e(f(e)f(e,)* Bk
171220 = Z!e!w )" + Re(f(ei)f(e0)”) +[f(eo)|”

ecé 3

Now restrict ourselves to the subspace Lconr = LN Cc(G). Clearly,

S lel(f (e + 1F(e)P) = S IFMIP D el = 112 (pim)
ee&

vey ecé,
——
=m(v)
defines an equivalent norm on Lon:. Moreover, for £ € Loont

_ 2
Hf f L2 ©) = Z/'f, Xe ’2dXe Z |f(eo f e,)‘

ecEVE

ecf
1 |f(v) = ()P
B SR i )
u,vey ’
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Connections between H and h

For f € Lcont = ker (Hmax) N Cc(G),
(Hf, f)Lz(g) = (hf, f)ﬁ(v;m)
and

Hf\lgz(w < [fllixg) < Hf“Z?(Vm)
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Connections between H and h

For f € Lcont = ker (Hmax) N Cc(G),
(Hf, f)Lz(g) = (hf, f)ﬁ(v;m)
and

HfHez(Vm < [fllixg) < HfHZQ(Vm)

Rayleigh's quotient

. . (Hf,f) . (Hf,f)
)\o(H) = mfo(H) = 'nffeH}(g) W/_Z(g) < mffeﬁmt ﬂ< 6)\0(}1).
f#0

12(9) 0 If Ii2(q)
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Connections between H and h

For f € Lecont = ker (Hmax) N Cc(G),
(Hf, f)Lz(g) = (hf, f)e2(v;m)

and

Hpr(vm < I fllzzg) < Hf“ZQ(Vm)

Rayleigh's quotient
. . (Hf,f) (Hf,f)
Mo(H) := inf o(H) = infrep(q) g, 2 < infresen i,
££0 12(9) f#0 L2(g)

1. =
[
©
IN

< 6Xo(h).

Theorem (von Below'1987,..., Cattaneo'1997,..., Pankrashkin'2012)

Let G be equilateral (Je| =1 for all e € £) and op := {(7n)?}nen. Then

oj(H)\ op = {\ ¢ op| 1 — cos(VA) € o;(h)}, Jj € {p,ess,ac,sc}
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Connections between H and h

For f € Lecont = ker (Hmax) N Cc(G),
(Hf. f)2(g) = (bf,f)

22(V;m)
and
Hpr(vm < |Ifll2(g) < Hszz(v m)
Rayleigh's quotient

. . (Hf,f) . (Hf,f)
)\o(H) = InfO'(H) = |nff€Hg(g) WLZ(Q) < mffe[;mt &< 6)\0(}1)
f#0

12(9) 0 If Ii2(q)

Corollary
Let G be equilateral. Then A\g(H) =1 — cos(4/Ao(h)). In particular,

N

l
4

2X0(h) < Ao(H) < —Ao(h)
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Connections between H and h

For f € Lecont = ker (Hmax) N Cc(G),
(Hf. f)2(g) = (bf,f)

22(V;m)
and
Hpr(vm < |Ifll2(g) < Hf“z2(v m)
Rayleigh's quotient

. . (Hf,f) . (Hf,f)
)\o(H) = InfO'(H) = |nff€Hg(g) WLZ(Q) < Inffe[:mnt &< 6)\0(}1)
f#0

12(9) 0 If Ii2(q)

Theorem 2 (Exner—AK—Malamud—Neidhardt)

)\Q(H) >0 < )\o(h) >0

However, ‘there is no nice formula like in the equilateral case! ‘
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Estimates for \o(H)

A huge literature in the case of finite graphs.

Aleksey Kostenko Quantum Graphs 16 / 28



Estimates for \o(H)

A huge literature in the case of finite graphs. However, most of the
estimates lead to trivial bounds in the case of infinite graphs (i.e., infinite
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Estimates for \o(H)

A huge literature in the case of finite graphs. However, most of the
estimates lead to trivial bounds in the case of infinite graphs (i.e., infinite
length, infinitely many vertices etc.)

One can use volume growth estimates, aka Brooks-type bounds, since
tu[-] = (H-,-)2 is a regular local Dirichlet form and gq is intrinsic:

[@ K.-T. Sturm, Analysis on local Dirichlet spaces I. Recurrence,
conservativeness and LP-Liuoville properties, J. reine Angew. Math.
456, 173-196 (1994).
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Cheeger-type estimates for Ag(H)

Let Kg be the set of all finite, connected subgraphs of G.
For G € Kg, the boundary of G (w.r.t.G) is

9gG = {v eV degs(v) < degg(v)}.
For a given finite subgraph G C G we then set

deg( agg Z degg
veodg

The Cheeger (or isoperimetric) constant of a metric graph G is defined by

. deg(3g9)
= inf SSBL%Y)
9) g~!€nICg mes(G)

where mes(G) denotes the Lebesgue measure of G, mes(G) := Y eczlel
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Cheeger-type estimates for Ag(H)

Let g be the set of all finite, connected subgraphs of G.
For G € Kg, the boundary of G (w.r.t.G) is

9gG = {v eV degs(v) < degg(v)}.
For a given finite subgraph G C G we then set

deg( agg Z degg
veds
The Cheeger (or isoperimetric) constant of a metric graph G is defined by

. deg(0g9)
= inf =
9) 52@ mes(G)

)

where mes(G) denotes the Lebesgue measure of G, mes(G) := D eci el

Theorem 3 (AK-Nicolussi)
o(H) > 3a(9)?
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Cheeger-type estimates for Ag(H)

The Cheeger inequality for finite graphs was proved in
[ S. Nicaise, Spectre des réseaux topologiques finis, Bull. Sci. Math., II.
Sér., 111, 401-413 (1987).

However, the isoperimetric constant is defined (for finite graphs) by

0% min(|U], [U<])°

U is open

a(G) =
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Cheeger-type estimates for Ag(H)

The Cheeger inequality for finite graphs was proved in

[ S. Nicaise, Spectre des réseaux topologiques finis, Bull. Sci. Math., II.
Sér., 111, 401-413 (1987).

However, the isoperimetric constant is defined (for finite graphs) by

N . U
= f — .
o(9) Ucg  min(|U], [U<])
U is open

In fact, for infinite graphs (having infinite total length)

a(g) = o(G)
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Cheeger-type estimates for Ag(H)

The discrete isoperimetric constant for h was introduced in

ﬁ F. Bauer, M. Keller, and R. K. Wojciechowski, Cheeger inequalities for
unbounded graph Laplacians, J. Eur. Math. Soc. 17, 259-271 (2015).

#({e € &| e connects X and V\X})

aqg(V) = inf
X)iggfi]n)ite 2vex m(v)
and
1
Ao(h) > §Oéd(V)2
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The discrete isoperimetric constant for h was introduced in

ﬁ F. Bauer, M. Keller, and R. K. Wojciechowski, Cheeger inequalities for
unbounded graph Laplacians, J. Eur. Math. Soc. 17, 259-271 (2015).

ag(V) = inf #({e € &| e connects X and V\X})
ey 2vex m(v)
Is finite

and

Lemma (AK—-Nicolussi)
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Cheeger-type estimates for Ag(H)

The discrete isoperimetric constant for h was introduced in

ﬁ F. Bauer, M. Keller, and R. K. Wojciechowski, Cheeger inequalities for
unbounded graph Laplacians, J. Eur. Math. Soc. 17, 259-271 (2015).

ag(V) = inf #({e € &| e connects X and V\X})
ey 2vex m(v)
Is finite

and

Lemma (AK—-Nicolussi)
1 2 1

) = @) = agmy 1)

In particular, this implies A\o(H) > 0 if ag(V) > 0.

Aleksey Kostenko Quantum Graphs
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Cheeger-type estimates for Ag(H)

The combinatorial isoperimetric constant of a graph G4 was introduced in

ﬁ J. Dodziuk and W. S. Kendall, Combinatorial Laplacians and isoperimetric
inequality, in: K. D. Elworthy (ed.), “From local times to global geometry,
control and physics”, pp. 68-74, 1986.

teoms(G) = inf #({e € £| e connects X and V\X})

XC d
X is?igite ZVEX eg(V)
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Cheeger-type estimates for Ag(H)

The combinatorial isoperimetric constant of a graph G4 was introduced in

ﬁ J. Dodziuk and W. S. Kendall, Combinatorial Laplacians and isoperimetric
inequality, in: K. D. Elworthy (ed.), “From local times to global geometry,
control and physics”, pp. 68-74, 1986.

teoms(G) = inf #({e € £| e connects X and V\X})

XC d
X is?igite ZVEX eg(V)

It is easy to see that

acomb(v)
(9)

Xcomb (V)

<ag(V) < 7.()
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Cheeger-type estimates for Ag(H)

The combinatorial isoperimetric constant of a graph G4 was introduced in

ﬁ J. Dodziuk and W. S. Kendall, Combinatorial Laplacians and isoperimetric
inequality, in: K. D. Elworthy (ed.), “From local times to global geometry,
control and physics”, pp. 68-74, 1986.

teoms(G) = inf #({e € £| e connects X and V\X})

XC d ’
X is?igite ZVEX eg(V)

It is easy to see that

acomb(v) acomb(v)
e@ ="M=
and hence
2 acomb(v) 2 acomb(V)

FO+ o 0)) = Y= T00)
In particular, this implies A\g(H) > 0 if acomp (V) > 0 and £7(G) < oo.
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Buser-type estimates for Ao(H)

Bounds from above via isoperimetric constants:
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Buser-type estimates for Ao(H)

Bounds from above via isoperimetric constants:

Theorem 4 (AK-Nicolussi)

72

Ao(H) < ma(g)

This estimate becomes trivial if £,(£) = inf |e| = 0.
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Buser-type estimates for Ao(H)

Bounds from above via isoperimetric constants:

Theorem 4 (AK-Nicolussi)

72

Ao(H) < 9)

2.

This estimate becomes trivial if £,(£) = inf |e| = 0.

Corollary (AK-Nicolussi)

If £(£) =suple| < oo and ¢,(€) = inf |e| > 0, then

MH) >0 & oG)>0 < acomp(G) >0
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Examples: Trees

A connected graph without cycles is called a tree.
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Examples: Trees

A connected graph without cycles is called a tree.

P

Bethe lattice (Cayley tree or regular tree T3)
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Examples: Trees

A connected graph without cycles is called a tree.

Spanning tree for the hyperbolic (4,5)-tessellation
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Examples: Trees

A connected graph without cycles is called a tree. Define

l:s(G) = limsup |e|,

ecf
_ deg,(V) -2 _ degt®*(V) 2
K9~ e vy -1 Kol = degm) 1

ess

where deg, (V) := inf,cp deg(v) and deg>(V) := liminf, ¢y deg(v).
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Examples: Trees

A connected graph without cycles is called a tree. Define

l:s(G) = limsup |e|,

ec&
_ deg, (V) -2  degi®(V) -2
K9~ g1 Kol = Gegem(v) 1

where deg, (V) := inf,cp deg(v) and deg>(V) := liminf, ¢y deg(v).
Theorem 5 (AK-Nicolussi)

Assume G is a rooted tree without loose ends. Then

K(g)2 Kess(g)2
= 3@ S 10

A (H)
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Examples: Trees

A connected graph without cycles is called a tree. Define

l:s(G) = limsup |e|,
ec&
deg, (V) - 2 degi==(V) — 2
K = Kess = )
9= Gee.) -1 9= deg=0) 1

where deg, (V) := inf,cp deg(v) and deg>(V) := liminf, ¢y deg(v).
Theorem 5 (AK-Nicolussi)
Assume G is a rooted tree without loose ends. Then
K(g)2 Kess(g)2
Mo(H) > —=——, Z T (ae
o= 29y 415,07
In particular, A\g(H) > 0 if and only if £*(G) < oo and
the spectrum of H is purely discrete if and only if £5(G) = 0.

€ss

A (H)
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Examples: Trees

A connected graph without cycles is called a tree. Define

l:s(G) = limsup |e|,
ec&
deg, (V) - 2 degi==(V) — 2
K = Kess = )
9= Gee.) -1 9= deg=0) 1

where deg, (V) := inf,cp deg(v) and deg>(V) := liminf, ¢y deg(v).
Theorem 5 (AK-Nicolussi)
Assume G is a rooted tree without loose ends. Then
K(g)2 Kess(g)2
Mo(H) > —=——, Z T (ae
o= 29y 415,07
In particular, A\g(H) > 0 if and only if £*(G) < oo and
the spectrum of H is purely discrete if and only if £5(G) = 0.

€ss

A (H)

For radial trees this was proved by M. Solomyak in 2004.
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Examples: Antitrees

Figure: Example of an antitree with s, = n+ 1.

Sh is the n-th combinatorial sphere, and
Sp = #5,, is the number of vertices in S,,.
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Examples: Antitrees

Set £y :=SUp,cs, ues, ., |€uv| for all n € Z>o, and

S
Ko :=1, Kn—|—1 =1-"= , nheg ZZO‘
Sn+2
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Examples: Antitrees

Set £y :=SUp,cs, ues, ., |€uv| for all n € Z>o, and

Ko :=1, Kpp1:=1- 5 , nheg Zzo.

Sp+2
Theorem 6 (AK-Nicolussi)
Let G = A be an antitree. Then
1 1
Ao(H) > ZK(A)Z, AoT(H) > ZKess(A)z-

where
K(A) == infao %2 and  K*5(A) := liminf, o Ko,
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Examples: Antitrees

Set £y :=SUp,cs, ues, ., |€uv| for all n € Z>o, and

S
Ko :=1, Kpp1:=1- n , nheg Zzo.
Sn+-2

Theorem 6 (AK-Nicolussi)
Let G = A be an antitree. Then

Mo(H) > “K(A)?, ASS(H) > %KGSS(A)Z.

&=

where
K(A) :=infozo 52 and  K®5(A) := liminf, o0 52,
In particular, if inf, K, > 0, then:
(i) Ao(H) > 0 if and only if £*(G) < oo,
(ii) the spectrum of H is purely discrete if and only if £ (G) = 0.

€SS
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Examples: An antitree with acomp, = 0 and £, =0

Consider a particular example: fix g € Z>; and s € R>g and set
sn=(n+1)9, leuv| =(n+1)"°, (u,v) € Sy x Spy1.

Denote the corresponding Hamiltonian by Hg s.
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Examples: An antitree with acomp, = 0 and £, =0

Consider a particular example: fix g € Z>; and s € R>g and set

sn=(n+1)9, leuv| =(n+1)"°, (u,v) € Sy x Spy1.

Denote the corresponding Hamiltonian by Hg s.
Notice that K,, — 0 as n — oc.
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Examples: An antitree with aeomp, = 0 and £, =0

Consider a particular example: fix g € Z>; and s € R>g and set
sn=(n+1)9, leuv| =(n+1)"°, (u,v) € Sy x Spy1.

Denote the corresponding Hamiltonian by Hg s.
Notice that K,, — 0 as n — oc.

Theorem 7 (AK-Nicolussi)
Let G = Ags. Then:
(i)

)\O(H%S) = Agss(Hq,S) =0
if and only if s € [0, 1).
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Examples: An antitree with aeomp, = 0 and £, =0

Consider a particular example: fix g € Z>; and s € R>g and set
sn=(n+1)9, leuv| =(n+1)"°, (u,v) € Sy x Spy1.

Denote the corresponding Hamiltonian by Hg s.
Notice that K,, — 0 as n — oc.

Theorem 7 (AK-Nicolussi)
Let G = Ags. Then:
(i)
)\O(Hq,s) = ASSS(HCI,S) =0
if and only if s € [0, 1).
(ii) If s > 1, then the operator H s is uniformly positive and
s=1,

2
q°,
< Xo(Hgs) < 7%, A5®(Hg,s) =
= 0( Q,S)— 0( q,s) {—i-OO? g

&=
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Further examples
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http://arxiv.org/abs/1705.01831
http://arxiv.org/abs/1711.02428

Further examples

Cayley graphs of finitely generated (infinite) groups.
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http://arxiv.org/abs/1705.01831
http://arxiv.org/abs/1711.02428

Further examples

Cayley graphs of finitely generated (infinite) groups.

Locally finite tilings in the plane (in progress...)
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http://arxiv.org/abs/1705.01831
http://arxiv.org/abs/1711.02428

Further examples

Cayley graphs of finitely generated (infinite) groups.

Locally finite tilings in the plane (in progress...)

ﬁ P. Exner, A. Kostenko, M. Malamud, and H. Neidhardt, Spectral
theory of infinite quantum graphs, preprint, arXiv:1705.01831 (2017).

[@ A. Kostenko and N. Nicolussi, Spectral estimates for infinite quantum
graphs, preprint, arXiv:1711.02428 (2017).

Thank you for your attention!
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