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Abstract. Di Francesco [Electron. J. Combin. 28.4 (2021), Paper No. 4.38] intro-
duced Aztec triangles as combinatorial objects for which their domino tilings are
equinumerous with certain sets of configurations of the twenty-vertex model that are
the main focus of his article. We generalize Di Francesco’s construction of Aztec
triangles. While we do not know whether there is again a correspondence with con-
figurations in the twenty-vertex model, we prove closed-form product formulas for the
number of domino tilings of our generalized Aztec triangles. As a special case, we
obtain a proof of Di Francesco’s conjectured formula for the number of domino tilings
of his Aztec triangles, and thus for the number of the corresponding configurations in
the twenty-vertex model.

1. Introduction

Recently Di Francesco and Guitter [DG20] uncovered interesting combinatorics re-
garding the twenty vertex (20V) model, which previously was of interest to physicists
(cf. [Bax89] or [Kel74]). The 20V model considers all orientations on the edges on some
finite portion of a triangular lattice, shown in Figure 1, such that at each vertex the
number of ingoing edges is equal to the number of outgoing edges. Since each such ver-
tex is adjacent to six edges in the triangular lattice, of which three must be ingoing and
three must be outgoing, we see that there are exactly twenty possible configurations of
edges at a vertex — hence the name twenty vertex model. The 20V model is analogous
to the six vertex (6V) model (cf. [Bax89, Ch. 8] or [CP06]), which uses a square lat-
tice (with six possible configurations of edges at a vertex). This 6V model is famously
used in a proof of the alternating sign matrix (ASM) theorem [Kup96], i.e., that the

number of n × n ASMs is given by
∏n−1

i=0
(3i+1)!
(n+i)!

. ASMs have long been of interest to

combinatorialists, with the first proof of this theorem regarding their enumeration in
[Zei96].

In [DG20], Di Francesco and Guitter show that the number of configurations of the
20V model on a square domain (with particular boundary conditions) can be counted by
(a weighted enumeration of) configurations of the 6V model on an analogous domain (in
fact, the ones from the ASM theorem). Later on, by considering 20V models on another
domain, named an Aztec triangle, an example of which is in Figure 2, Di Francesco [Di
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21] also conjectures that 20V models on these domains are counted by

2n(n−1)/2
n−1∏
i=0

(4i+ 2)!

(n+ 2i+ 1)!
, (1.1)

a formula which strikingly resembles the one from the ASM theorem. The formula has
been recently proved by Koutschan [Kou21] using Zeilberger’s holonomic Ansatz [Zei07]
for proving determinant evaluations (more or less) automatically with the help of a
computer.

In the same paper [Di 21], Di Francesco establishes that configurations of the 20V
model on this expanded domain are equal in number to domino tilings of a particular
domain, one such example shown in Figure 2. There is no combinatorial bijection
between these two sets of equal size, though. On the other hand, it is well known that
domino tilings are in bijection with families of non-intersecting paths and, by using the
Lindström–Gessel–Viennot lemma, Di Francesco proves that the number of such tilings
can be given in terms of determinants.

Theorem 1.1 ([Di 21, Theorems 3.4 and 8.2]). The number of domino tilings of the
Aztec triangle of size n equals

Zn = det
0≤i,j≤n−1

(
[uivj]

1 + u

1− v − 4uv − u2v + u2v2

)
= det

0≤i,j≤n−1

(
2i
(
i+ 2j + 1

2j + 1

)
−
(
i− 1

2j + 1

))
.

Indeed, for his proof of (1.1), Koutschan evaluated the latter determinant.
The present paper interprets these domino tilings as sequences of 2n partitions sub-

ject to certain conditions where the final partition is (n, n − 1, . . . , 1), like those seen
in [BCC17]. More generally, we construct domains, which we call generalized Aztec
triangles, for sequences where the final partition is any partition µ and the number of
partitions in the sequence is ` + 1 for ` ≥ 0. From there we provide a number of ways
to enumerate the domino tilings for our domains and we show that there is a bijection
between these domino tilings and a family of tableaux that are both super and sym-
plectic. Furthermore we provide a generalization of Di Francesco’s formula when the
final partition is µ = (k, k − 1, . . . , 1, 0n−k).

Theorem 1.2. Let ` and k be positive integers and µ = (k, k − 1, . . . , 1, 0n−k) with
n = b`/2c. Then the number of domino tilings of the generalized Aztec triangle with
final partition µ and parameter ` equals∏

j≥0

( −k+2j∏
i=−2k+4j+1

(`+ i)

2k−4j−2∏
i=k−2j

(`+ i)

)/
k−1∏
j=1

(2j + 1)k−j . (1.2)

See Theorem 4.1 for a precise statement. Di Francesco’s conjecture corresponds to
the case µ = (n, n − 1, . . . , 2, 1) and ` = 2n. Consequently, we obtain the following
corollary.

Corollary 1.3. The number of 20V configurations on an Aztec triangle of size n is

2n(n−1)/2
n−1∏
i=0

(4i+ 2)!

(n+ 2i+ 1)!
.
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There is in fact another family, namely for µ = (n − 1, n − 2, . . . , 1, 0) and ` = 2n,
which is counted by the same formula.

Theorem 1.4. Domino tilings of the generalized Aztec triangle with final partition
µ = (n, n − 1, . . . , 1) and parameter ` = 2n are equinumerous with the domino tilings
of the generalized Aztec triangle with final partition µ = (n − 1, n − 2, . . . , 1, 0) and
parameter ` = 2n+ 1.

See Theorem 4.5 for an equivalent statement. We leave it as an open problem to find
a bijection between these two families of domino tilings.

Figure 1. On the left a domain of the 20V model considered in [DG20]
is shown, in which configurations of various boundary conditions are
counted. On the right is an example of another domain of interest, which
is considered in [Di 21].

Figure 2. On the left, an example of a domain considered by
Di Francesco in [Di 21] whose domino tilings are equal in number to
20V configurations on the domain on the right in Figure 1. On the right,
a domain whose domino tilings are equinumerous with domino tilings of
the domain on the left, as in Theorem 1.4 for n = 4.
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The paper is organized as follows. In Section 2, we define all the combinatorial models
and notions. In Section 3 we define the sequences of partitions, the tableaux, and the
path systems in bijection with tilings. Subsequently, in Section 4, we state our main
(enumeration) results, namely product formulas for the number of domino tilings of our
generalized Aztec triangles; see Theorem 4.1 (which is equivalent with Theorem 1.2)
and Theorem 4.5 (which is equivalent with Theorem 1.4). While we provide a proof
of Theorem 4.5 in the same section (under the condition that Theorem 4.1 holds),
the proof of the other theorem requires considerably more work. In preparation of
this proof, which we give in Section 5, we rewrite the product formulas in a form as
needed in the latter section, and we recall the determinantal formulas from Section 3
for the domino tilings. It turns out that, to prove Theorem 4.1, we need to evaluate
two determinants of Delannoy numbers. However, we show in Theorem 4.2 that there
is a simple relation between the two determinants so that it suffices to evaluate one of
the two. This is what we do in Theorem 5.1 in Section 5. We close our paper with a
conclusion section, where we provide an overview of open questions and open ends to
be explored at these crossroads of domino tilings and 20V model configurations.

2. Preliminaries

2.1. Partitions.

Definition 2.1. A partition µ = (µ1, . . . , µn) is a sequence of non-negative integers
such that µ1 ≥ µ2 ≥ · · · ≥ µn. We call µ1, . . . , µn the parts of the partition µ, and
n the length of the partition µ. Any partition of length n can also be considered as a
partition of length m for any m ≥ n (or even m infinite) by appending 0’s at the end
of the partition.

We also define the conjugate partition of µ to be the partition µ′ of length µ1 such
that µ′i = #{µj | µj ≥ i}.

A Young diagram is a collection of boxes arranged in rows such that the rows are left
justified and non-decreasing from bottom to top. We can visualize a partition µ as a
Young diagram with rows of lengths equal to the parts of µ, as illustrated in Figure 3.

Figure 3. The Young diagram corresponding to the partition µ = (4, 3, 1, 1).

Definition 2.2. For partitions λ, µ of equal length such that λi ≥ µi for all i, we can
define the skew diagram λ/µ to be the boxes in the Young diagram of λ that are not in
the Young diagram of µ. A skew diagram λ/µ is called a horizontal strip if its Young
diagram contains at most one box in each column. Similarly, it is called a vertical strip
if λ′/µ′ is a horizontal strip, or equivalently if its Young diagram contains at most one
box in each row.

In Figure 4, we illustrate a few skew diagrams, one of which is a horizontal strip and
another a vertical strip.
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Figure 4. Three skew diagrams λ/µ where λ = (5, 3, 3, 2). On the left
we have µ = (2, 2, 1, 0). In the center, we have µ = (3, 3, 2, 1) resulting
in a horizontal strip. On the right we have µ = (4, 2, 2, 1) resulting in a
vertical strip.

2.2. Delannoy paths.

Definition 2.3. For any i, j ∈ Z the Delannoy number D(i, j) is the number of paths
from (0, 0) to (i, j) using only north, northeast, or east steps.

Remark 2.4. The Delannoy numbers D(i, j) can also be defined recursively by

(1) D(i, j) = 0 if i < 0 or j < 0;
(2) D(0, 0) = 1;
(3) D(i, j) = D(i− 1, j) +D(i, j − 1) +D(i− 1, j − 1).

We use the following standard formulas for Delannoy numbers (cf. [Com74, Ex. 21
in Ch. I] for information on Delannoy numbers; the equalities are easily derived by
standard generating function calculus):

D(i, j) = [uivj]
1

1− u− v − uv

=
i∑

`=0

(
i

`

)(
j

`

)
2` (2.1)

=
i∑

`=0

(
i+ j − `

i− `, j − `, `

)
. (2.2)

Above, and in the sequel, we use(
i

`

)
:=


i(i− 1) · · · (i− `+ 1)

`!
, if ` ≥ 0,

0, if ` < 0,
(2.3)

as definition for the binomial coefficients. In view of this, the expression in (2.1) tells
us that D(i, j) is a polynomial in j of degree i.

The Delannoy numbers will appear in the enumeration of certain tilings. For others,
we will need a slightly different family of numbers.

Definition 2.5. For i, j ∈ Z we define numbers H(i, j) by

(1) H(i, j) = 0 if i < 0 or j < 0, except for (i, j) = (0,−1):
(2) H(0,−1) = 1;
(3) H(i, j) = 2D(i− 1, j) +H(i, j − 1) = D(i, j) +D(i− 1, j).
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We can also interpret H(i, j) as number of paths — H(i, j) is the number of paths
from (0, 0) to (i, j + 1) using north, northeast, or east steps that do not pass through
(i − 1, j + 1) as shown in Figure 5. We call these H−Delannoy paths. A number of
identities exist for D and H.

(0, 0)

(i, j)

(0, 0)

(i, j)
(i, j + 1)

Figure 5. On the left, the paths counted by D(i, j) are those from (0, 0)
to (i, j) taking only north, northeast, and east steps. On the right, the
paths counted by H(i, j) are those from (0, 0) to (i, j + 1) using north,
northeast, and east steps that do not pass through the point (i−1, j+ 1)
in red.

Proposition 2.6. For all non-negative integers i, j we have

D(i, j) = D(i− 1, j) +H(i, j − 1) (2.4)

=
i∑

`=0

H(`, j − 1) (2.5)

=
∑
`

(
i

`

)(
j

`

)
2` (2.6)

H(i, j) = H(i− 1, j) +H(i, j − 1) +H(i− 1, j − 1) (2.7)

= 2

j−1∑
`=0

D(`, i) (2.8)

=
∑
`

(
i− 1

`− 1

)(
j + 1

`

)
2` for i ≥ 1. (2.9)

Proof. If we consider the geometry of Definition 2.3 and the observation above, equation
(2.4) is clear. Equation (2.5) then follows by induction on i. To see equation (2.6), we
first observe that

(
i
m

)(
j
m

)
is the number of paths from (0, 0) to (i, j) using only east and

north steps that have exactly m turns consisting of an east step followed by a north
step. Then to count Delannoy paths, we obtain a factor of 2m since at each of these
turns we can instead take a northeast step.

Now equation (2.4) gives us H(i, j) = D(i, j+1)−D(i−1, j+1), and combined with
item 3. in Remark 2.4 we obtain equation (2.7). Equation (2.8) follows from induction
on i using item 3. in Definition 2.5. Finally the proof for equation (2.9) follows from
the argument for equation (2.6), noting that we are considering paths from (0, 0) to
(i, j + 1) where the east-most column must contain one of the aforementioned east to
north turns. �
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2.3. Tableaux. Given a partition µ = (µ1, . . . , µn), a tableau of shape µ is a filling of
the cells of the diagram of µ satisfying certain conditions.

We first recall classical tableau definitions.

Definition 2.7 ([Kra98; Kin76; Ham97]). A semistandard symplectic tableau of shape
µ is a filling of boxes of the Young diagram corresponding to µ with entries 1 < 1 <
2 < 2 < · · · such that:

(1) rows are weakly increasing and columns are strictly increasing;
(2) i and ı do not appear below the ith row.

The first condition is referred to as the semistandard condition, and the second
condition is the symplectic condition. Note that we can equivalently state the semi-
standard condition of weakly increasing rows and strictly increasing columns as:

(i) rows and columns are weakly increasing.
(ii) for all i, the entries i or ı form horizontal strips.

Definition 2.8 ([Kra96]). A super semistandard tableau of shape µ is a filling of boxes
of the Young diagram corresponding to µ with entries 1 < 1 < 2 < 2 < · · · such that:

(1) rows and columns are weakly increasing;
(2) for all i, the entries i form horizontal strips (i.e., there is at most one i in each

column);
(3) for all i, the entries ı form vertical strips (i.e., there is at most one ı in each

row).

2.4. Domino tilings.

Definition 2.9. Let D be a region of the Euclidean plane that is the union of unit
squares whose vertices lie in the integer lattice Z2. A domino is the union of two such
unit squares that share an edge. Then we define a domino tiling of D to be a set D of
mutually disjoint (meaning: non-overlapping) dominoes such that

⋃
d∈D = D.

Figure 6. Four types of dominoes

Definition 2.10. For a domain of unit squares as described in Definition 2.9, we number
its southwest to northeast diagonals from northwest to southeast, starting with diagonal
0. We will say that these diagonals begin on their southwestern-most square. We can
also color the squares of our domain as a chessboard such that even diagonals always
consist of light squares. It follows then that our domain is tiled by four types of
dominoes as in Figure 6. We will refer to the north or west square of a domino as its
start. Dominoes that start on an even diagonal will be called even, and dominoes that
start on an odd diagonal will be called odd, as in Figure 6.
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For a domino tiling of a connected domain, we obtain a sequence of partitions as
follows: Even dominoes are filled with holes and odd dominoes are filled with particles
(see Figure 6). The last diagonal may contain squares not in our domain, in which
case we treat those squares as the start of a domino, for example as on the right in
Figure 7. Then the ith diagonal determines the ith partition λ(i) via the following rule:

the jth part λ
(i)
j of this partition is exactly the number of holes to the southwest of the

jth-to-last particle.

Remark 2.11. Each partition here is obtained via its Maya diagram. A Young di-
agram, and hence a partition, is determined by the edges that form its southeast
boundary. In particular this will be a series of north and east steps beginning with
the southwest point of the bottom row of the Young diagram. In this way, for each
diagonal in a domino tiling of our domain D, we obtain a partition by treating holes as
east steps and particles as north steps.

Moreover on each diagonal, we can treat the infinite sequence of squares to the
southwest not in our domain as having particles, and the infinite sequence of squares
to the northeast not in our domain as having holes. See Figure 8.

diagonal 0

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

diagonal 6

diagonal 7

Figure 7. A particular domain, a domino tiling on that domain, and
a filling of that domino tiling with holes and particles. The corre-
sponding sequence of partitions is λ(0) = (0, 0, 0, 0), λ(1) = (1, 0, 0, 0),
λ(2) = (2, 0, 0, 0), λ(3) = λ(4) = λ(5) = (3, 1, 0, 0), λ(6) = (3, 2, 1, 0), λ(7) =
(3, 2, 2, 1).



DOMINO TILINGS OF GENERALIZED AZTEC TRIANGLES 9

. . . . . .

Figure 8. The Young diagram for the partition (6, 3, 3, 1) and its Maya
diagram. Its shape is completely determined by the north and east steps
in red. We can also consider this as an infinite sequence of north and east
steps by prepending the blue north steps and appending the blue east
steps.

3. Combinatorial objects related to domino tilings of generalized
Aztec triangles

In this subsection all the objects are indexed by a partition µ = (µ1, . . . , µn) into n
non-negative parts and a parameter ` such that ` = 2n or ` = 2n+ 1. We will refer to
them as Case 1 and Case 2, respectively. We will look first at sequences of partitions,
then tableaux, and finally non-intersecting paths. In the next subsection, we will give
a bijection between these objects and domino tilings of the generalized Aztec triangles.

3.1. Sequences of partitions. We now define certain sequences of partitions, with
conditions similar to those found in [BCC17; BK18]. Here we add an extra condition
on the number of parts of each partition.

Definition 3.1. Given a partition µ = (µ1, . . . , µn) and parameter ` = 2n or ` = 2n+1,
consider sequences of partitions λ(0), . . . , λ(`−1) such that:

(1) λ(0) is empty;
(2) λ(`−1) = µ;
(3) λ(2i+1)/λ(2i) is a horizontal strip;
(4) λ(2i)/λ(2i−1) is a vertical strip;
(5) λ(i) has at most d i

2
e nonzero parts.

We will refer to sequences λ(0), . . . , λ(2n−1) as Case 1, and sequences λ(0), . . . , λ(2n) as
Case 2.

3.2. Super symplectic tableaux. Here we identify a family of combinatorial objects
that are in bijection with Case 1 and Case 2 sequences. We do this by combining the
conditions of the super and symplectic tableaux from Definitions 2.7 and 2.8.

Definition 3.2. A super symplectic semistandard tableau of shape µ is a filling of boxes
of the Young diagram corresponding to µ with entries 1 < 1 < 2 < 2 < · · · such that:

(1) rows and columns are weakly increasing;
(2) for all i, the entries i form horizontal strips;
(3) for all i, the entries ı form vertical strips;
(4) i and ı do not appear below the ith row.
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Proposition 3.3. For any µ = (µ1, . . . , µn), Case 1 sequences are in bijection with
super symplectic semistandard tableaux of shape µ with entries 1 < 1 < 2 < 2 < · · · < n.

Proof. The bijection is established by putting entries i in the cells corresponding to
λ2i−1/λ2i−2, and entries ı in the cells corresponding to λ2i/λ2i−1. The restriction on the
number of nonzero parts in any λi guarantees our symplectic condition. Conversely,
given such a tableau we can recover λ2i by taking the cells of the tableaux with entries
at most ı, and we can recover λ2i+1 by taking the cells of the tableaux with entries at
most i+ 1. �

See Figure 9 for an example with µ = (5, 3, 2, 1) and ` = 7. The sequence of partitions
is λ(0) = ∅, λ(1) = (2), λ(2) = (3), λ(3) = (3, 1), λ(4) = (3, 2), λ(5) = (4, 3, 2), λ(6) =
(5, 3, 2), and λ(7) = (5, 3, 2, 1).

Remark 3.4. The rows of our super symplectic semistandard tableaux are overpar-
titions [CL04] and, without the symplectic conditions, our tableaux would be super
semi-standard tableaux [Kra96].

1 1 1 3 3

2 2 3

3 3

4

Figure 9. A domino tiling on the domain, described in Theorem 3.8,
for µ = (5, 3, 2, 1) and ` = 7, and the corresponding super symplectic
semistandard tableau.

Similarly, Case 2 sequences are in bijection with fillings of entries 1 < 1 < 2 < 2 <
· · · < n < n subject to the same conditions.

Proposition 3.5. For any µ = (µ1, . . . , µn), Case 2 sequences are in bijection with
super symplectic semistandard tableaux of shape µ with entries in 1 < 1 < 2 < 2 <
· · · < n < n.

We call these super symplectic semistandard tableaux of type 1 and 2 and shape µ =
(µ1, . . . , µn).

3.3. Non-intersecting paths. We now propose a bijection between super symplectic
semistandard tableaux of types 1 and 2 and shape µ and tuples of non-intersecting
Delannoy paths.
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Proposition 3.6. There exists a bijection between super symplectic semistandard tab-
leaux of type 1 of shape µ = (µ1, . . . , µn) and sets of non-intersecting Delannoy paths
beginning at the points uj = (−j, j) and ending at the points vj = (µj − j, n) for
j = 1, . . . , n.

Proof. Given a super symplectic semistandard tableau of shape µ = (µ1, . . . , µn), the
unbarred entries in row j of the tableau give the locations of the east steps of the
path from uj to vj, and the barred entries give the locations of the northeast steps.
Specifically if row j contains the unbarred entry i exactly m times, then the path from
uj to vj contains exactly m east steps on the line y = i. If row j contains the barred
entry ı, then that path has a northeast step that begins from a lattice point on the line
y = i. From here, there is a unique way to insert north steps to complete the paths
from {ui} to {vi}.

The conditions of a super symplectic semistandard tableau make it so that this map
is well defined — it does actually send every tableau to a set of non-intersecting paths.
Then this map is certainly injective, as well as surjective. �

Continuing the example from Figure 9, in Figure 10 we illustrate the bijection to
non-intersecting paths. We have a similar proposition for super symplectic standard
tableaux of type 2.

1 1 1 3 3

2 2 3

3 3

4
u1

u2

u3

u4
v1v2v3v4

4

3 3

2
2

3

1 1
1

3
3

Figure 10. The bijection from a super symplectic semistandard tableau
to non-intersecting paths.

Proposition 3.7. There exists a bijection between super symplectic semistandard tab-
leaux of type 2 of shape µ = (µ1, . . . , µn) and non-intersecting H-Delannoy paths be-
ginning at the points uj = (−j, j) and ending at the points vj = (µj − j, n + 1) for
j = 1, . . . , n.

Proof. The proof proceeds exactly in the same way as the one above for Proposition 3.6,
except that now we see that our paths end on the line y = n + 1. Since our super
symplectic semistandard tableaux of type 2 can contain entries up to n (and not n+1),
our paths cannot end with an east step and hence are indeed H-Delannoy paths. �

3.4. Domino tilings of generalized Aztec triangles. The goal of this subsection is
to construct domains D such that domino tilings of D are in bijection with Case 1 and
Case 2 sequences defined in Definition 3.1. These types of bijections have been studied
many times before see [BCC17; BK18], and we will use many of the same ideas.

Recall that, for any partition µ = (µ1, . . . , µn), ` = 2n, Case 1 sequences are
λ(0), . . . , λ(`−1) such that:
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(1) λ(0) is empty;
(2) λ(2n−1) = µ;
(3) λ(2i+1)/λ(2i) is a horizontal strip;
(4) λ(2i)/λ(2i−1) is a vertical strip;
(5) λ(i) has at most d i

2
e nonzero parts.

Theorem 3.8. The domain D whose domino tilings are in bijection with Case 1 se-
quences for a given µ = (µ1, . . . , µn) and ` = 2n can be constructed by its diagonals as
follows:

(i) Diagonal 0 is of length µ1.
(ii) The length of each odd diagonal 2i+1 is one more than the length of the previous

diagonal 2i. The first (i.e., left-most) square of diagonal 2i+1 lies directly below
the first square of diagonal 2i.

(iii) Each even diagonal 2i has length equal to the length of the previous diagonal
2i − 1. The first square of diagonal 2i lies directly below the first square of
diagonal 2i− 1.

(iv) The last diagonal 2n − 1 follows (ii) above, but consists of squares in D and
squares not in D: convert the partition µ into its sequence of holes and particles.
Then any hole corresponds to a square in D and a particle corresponds to a
square not in D.

Figure 11 shows examples of (iv) in Theorem 3.8, and Figure 12 illustrates Theo-
rem 3.8 for a particular µ.

Figure 11. On the left, the last diagonal for partition µ = (3, 2, 1). In
the center µ = (3, 2, 1, 0), and on the right µ = (4, 1, 1, 0, 0). The resulting
southeast boundaries are also drawn.

Proof. We begin by showing that our domain D as defined satisfies our conditions (1)–
(5) above. Given that diagonal 0 contains only the start (i.e., the north or west square)
of dominoes, it is clear that (1) must be true. Furthermore, due to condition (iv) and
since the squares on diagonal 2n − 1 that are in D are not starts (i.e., only south or
east squares) of dominoes, it is clear that (2) must also be true. It can also be seen by
induction that each diagonal i has n holes and d i

2
e particles, hence we have (5).

Now consider condition (4). Given the configuration of holes and particles on a
diagonal 2i−1, the configuration of holes and particles on diagonal 2i is determined by
whether the dominoes starting on the previous diagonal are vertical or horizontal. We
see that any such vertical domino keeps the particle at the same place from diagonal
2i − 1 to diagonal 2i, and any horizontal domino moves the particle one square later



DOMINO TILINGS OF GENERALIZED AZTEC TRIANGLES 13

diagonal 0

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

diagonal 6

diagonal 7

Figure 12. The domain D for the partition µ = (3, 2, 1, 0) and ` = 6.

in the next diagonal. Moreover, the restrictions of the domino tiling imply that a
horizontal domino requires that any particles immediately following it must also be the
start of a horizontal domino. In terms of the corresponding partition this means that,
going from λ(2i−1) to λ(2i), each part can increase by at most one with the additional
condition that, for parts of equal size, if one of these parts increases by one then the
earlier parts of equal size must also increase by one. This is exactly the condition that
λ(2i)/λ(2i−1) is a vertical strip.

For condition (3) we proceed similarly as for condition (4). In this case we see that
the configuration of particles on diagonal 2i+1 is determined by whether the dominoes
starting on diagonal 2i are vertical or horizontal. However, since dominoes starting on
diagonal 2i contain holes instead of the particles when proving condition (4), we now
require

λ′
(2i+1)

/λ′
(2i)

is a vertical strip =⇒ λ(2i+1)/λ(2i) is a horizontal strip.

Note that, since the length of diagonal 2i+ 1 is greater than the length of diagonal 2i,

we are permitted to increase the length of λ
(2i)
n .

Hence we have shown that any domino tiling gives us a sequence of partitions as
desired. In fact the same argument shows that any sequence of partitions satisfying (1)–
(5) must give us a domino tiling of D. In particular conditions (3) and (4) guarantee
that we get a domino tiling of some domain D′. Then condition (5) tells us that
the length of each diagonal in this domain D′ is the same as in our domain D, and
conditions (1) and (2) guarantee that the first and last rows of D′ agree with D. This
completely determines the shape of D′. �

The domain on which domino tilings are in bijection with Case 2 sequences can be
constructed similarly to that of Case 1 sequences.

Theorem 3.9. The domain D whose domino tilings are in bijection with Case 2 se-
quences for a given µ = (µ1, . . . , µn), and ` = 2n+ 1 can be constructed by its diagonals
as follows:

(i) Diagonal 0 is of length µ1.
(ii) The length of each odd diagonal 2i+1 is one more than the length of the previous

diagonal 2i. The diagonal starts so that the first square of diagonal 2i + 1 is
directly below the first square of diagonal. 2i
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(iii) Each even diagonal 2i has length equal to the length of the previous diagonal
2i − 1. The first square of diagonal 2i lies directly below the first square of
diagonal 2i− 1.

(iv) The last diagonal 2n consists of squares in D and squares not in D. Convert the
partition µ into its sequence of holes and particles. Then any particle corresponds
to a square in D and a hole corresponds to a square not in D.

We illustrate Theorem 3.9 with an example in Figure 13. Theorem 3.9 differs from
Theorem 3.8 only by (iv), and its proof proceeds similarly.

As mentioned previously, the Aztec triangles in [Di 21] are exactly the Case 1 domains
corresponding to the partition µ = (n, n− 1, . . . , 1) and ` = 2n. Hence we will refer to
these domains, both Cases 1 and 2, as generalized Aztec triangles of types 1 and 2.

diagonal 0

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

diagonal 6

Figure 13. The domain D for the partition µ = (3, 2, 1) and ` = 7.

Remark 3.10. The non-intersecting paths of Subsection 3.3 can also be obtained from
a domino tiling, as in [DG20], by assigning to each type of domino a step in a path.
Figure 14 shows this assignment based on the orientation and parity of the domino. One
can check that this gives exactly the non-intersecting paths of Propositions 3.6 and 3.7
up to some rotation and reflection. See Figure 15 for an example of the non-intersecting
paths obtained from a domino tiling of a generalized Aztec triangle.

Figure 14. For each domino, the path is indicated in red. A parity
argument explains why dominoes of the second type do not permit a path.

3.5. Enumeration. We can now put the objects together.

Theorem 3.11. Given a partition µ = (µ1, . . . , µn), there exists a bijection between:

1. Case 1 sequences of partitions with final partition µ and ` = 2n defined in
Definition 3.1.

2. Super symplectic semistandard tableaux of shape µ and entries less than n.
3. Tuples of non-intersecting Delannoy paths where the starting points are (−i, i)

for 1 ≤ i ≤ n and ending points are (µi − i, n) for 1 ≤ i ≤ n.
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u4

u3

u2

u1

v4

v3

v2

v1

Figure 15. A particular domino tiling of the domain for Case 1 with
µ = (3, 2, 2, 1) and ` = 8

4. Domino tilings of the generalized Aztec triangle of type 1 corresponding to µ as
defined in Theorem 3.8.

The Lindström–Gessel–Viennot lemma [GV85] has the following consequence.

Corollary 3.12. The number of Case 1 sequences of partitions with final partition
µ = (µ1, . . . , µn) is equal to the determinant of the n × n matrix A1 = (Ai,j)0≤i,j≤n−1
whose (i, j)-entry is

D(µi+1 − i+ j, n− j).

Similarly, we get the following result.

Theorem 3.13. Given a partition µ = (µ1, . . . , µn), there exists a bijection between:

1. Case 2 sequences of partitions with final partition µ and ` = 2n + 1 defined in
Definition 3.1.

2. Super symplectic semistandard tableaux of shape µ and entries less than n+ 1.
3. Tuples of non-intersecting H-Delannoy paths where the starting points are (−i, i)

for 1 ≤ i ≤ n and ending points are (µi − i, n+ 1) for 1 ≤ i ≤ n.
4. Domino tilings of the generalized Aztec triangle of type 2 corresponding to µ as

defined in Theorem 3.9.

Corollary 3.14. The number of Case 2 sequences of partitions with final partition
µ = (µ1, . . . , µn) is equal to the determinant of the n × n matrix A2 = (Ai,j)0≤i,j≤n−1
whose (i, j)-entry is

H(µi+1 − i+ j, n− j).

The proofs are similar to the proof in Section 4 of [Di 21].

4. Product formulas

In this section we present product formulas to enumerate the Case 1 and Case 2
sequences for the partition µ = (k, k − 1, . . . , 1, 0n−k). Equivalently, these formulas
count domino tilings of some generalized Aztec triangles, as illustrated in Figure 16.
The following theorem restates Theorem 1.2 from the introduction ç1in a more explicit
form.
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Figure 16. Case 1 (left) and Case 2 (right) domains for µ =
(3, 2, 1, 0, 0, 0), the type of partitions found in Section 4. By Theorem 4.5,
these two generalized Aztec triangles have the same number of domino
tilings.

Theorem 4.1. For µ = (k, k − 1, . . . , 1, 0n−k) and ` = 2n, the number of Case 1
sequences is given by

∏
i≥0

(
−k+2i∏

s=−2k+4i+1

(2n+ s)
2k−4i−2∏
s=k−2i

(2n+ s)

)/
k−1∏
i=1

(2i+ 1)k−i . (4.1)

For µ = (k, k− 1, . . . , 1, 0n−k) and ` = 2n+ 1, the number of Case 2 sequences is given
by

∏
i≥0

(
−k+2i∏

s=−2k+4i+1

(2n+ s+ 1)
2k−4i−2∏
s=k−2i

(2n+ s+ 1)

)/
k−1∏
i=1

(2i+ 1)k−i . (4.2)
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There are two formulas to prove, namely (4.1) and (4.2). We shall prove (4.1) in
Theorem 5.1, however not in the form (4.1). We need to note that

∏
i≥0

(
−k+2i∏

s=−2k+4i+1

(2n+ s)
2k−4i−2∏
s=k−2i

(2n+ s)

)/
k−1∏
i=1

(2i+ 1)k−i

=

b k−1
2
c∏

i=0

−k+2i∏
s=−2k+4i+1

(2n+ s) ·
b k−2

2
c∏

i=0

2k−4i−2∏
s=k−2i

(2n+ s) ·
k∏
i=1

(2(i− 1))!!

(2i− 1)!

= 2(k+1
2 )
b k−1

2
c∏

i=0

−k+2i+2∏
s=−2k+4i+3

(
n+ s

2
− 1
)
·
b k−2

2
c∏

i=0

2k−4i∏
s=k−2i+2

(
n+ s

2
− 1
)

· 2(k
2)

k∏
i=1

(i− 1)!

(2i− 1)!

= 2k
2

k∏
i=1

1

(i)i
·
b k−1

2
c∏

i=0

−k+2i+2∏
s=−2k+4i+3

(
n+ s

2
− 1
)
·
b k−2

2
c∏

i=0

2k−4i∏
s=k−2i+2

(
n+ s

2
− 1
)
, (4.3)

where i!! is the product of all integers from 1 to i with the same parity as i and (x)i is

the shifted factorial (x)i =
∏i−1

α=0(x+ α). For even k we further evaluate

b k−1
2
c∏

i=0

−k+2i+2∏
s=−2k+4i+3

(
n+ s

2
− 1
)
·
b k−2

2
c∏

i=0

2k−4i∏
s=k−2i+2

(
n+ s

2
− 1
)

=

k−2
2∏
i=0

− k
2
+i+1∏

s=−k+2i+2

(n+ s− 1) ·
k−2
2∏
i=0

− k
2
+i∏

s=−k+2i+1

(n+ s− 1
2
)

·
k−2
2∏
i=0

k−2i∏
s= k

2
−i+1

(n+ s− 1) ·
k−2
2∏
i=0

k−2i−1∏
s= k

2
−i+1

(n+ s− 1
2
)

=
k−2∏
s=0

(n− s− 1)min{b(k−s)/2c,b(s+2)/2c}

·
k−1∏
s=0

(n− s− 1
2
)min{b(k−s+1)/2c,b(s+1)/2c}

·
k−2∏
s=0

(n+ k − s− 1)min{b(k−s)/2c,b(s+2)/2c}

·
k−2∏
s=0

(n+ k − s− 1
2
)min{b(k−s−1)/2c,b(s+1)/2c}. (4.4)
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On the other hand, for odd k we have

b k−1
2
c∏

i=0

−k+2i+2∏
s=−2k+4i+3

(
n+ s

2
− 1
)
·
b k−2

2
c∏

i=0

2k−4i∏
s=k−2i+2

(
n+ s

2
− 1
)

=

k−1
2∏
i=0

− k
2
+i+1∏

s=−k+2i+2

(n+ s− 1) ·
k−1
2∏
i=0

− k
2
+i∏

s=−k+2i+1

(n+ s− 1
2
)

·
k−3
2∏
i=0

k−2i∏
s= k

2
−i+1

(n+ s− 1) ·
k−3
2∏
i=0

k−2i−1∏
s= k

2
−i+1

(n+ s− 1
2
)

=
k−2∏
s=0

(n− s− 1)min{b(k−s)/2c,b(s+1)/2c}

·
k−1∏
s=0

(n− s− 1
2
)min{b(k−s+1)/2c,b(s+2)/2c}

·
k−2∏
s=0

(n+ k − s− 1)min{b(k−s−1)/2c,b(s+2)/2c}

·
k−2∏
s=0

(n+ k − s− 1
2
)min{b(k−s)/2c,b(s+1)/2c}. (4.5)

By (4.3)–(4.5), we see that the right-hand side in (5.1) agrees with (4.1).
We now argue that it is sufficient to prove one of (4.1) and (4.2). In order to see

this, we observe that the formula (4.2) for Case 2 sequences can be obtained from that
of Case 1 sequences, namely (4.1), by replacing n in (4.1) by n+ 1

2
.

In order to complete the argument that it suffices to prove one of (4.1) and (4.2),
we now show that a similar relation holds when computing the determinants from
Corollaries 3.12 and 3.14, which provide formulas for the Case 1 and Case 2 sequences
in Theorem 4.1. More precisely, in the case of µ = (k, . . . , 1, 0n−k), Corollary 3.12 gives
us the n× n matrix

A1 = (D(µn−j+1 + j − i, i− 1))1≤i,j≤n ,

whose determinant is determined by its bottom right k × k entries

D1 = (D(2j − i, i+ n− k − 1))1≤i,j≤k . (4.6)

Similarly, for the same choice of µ, Corollary 3.14 gives us the n× n matrix

A2 = (H(µn−j+1 + j − i, i− 1))1≤i,j≤n ,

whose determinant is again determined by the bottom right k × k entries

D2 = (H(2j − i, i+ n− k − 1))1≤i,j≤k .

In particular D1 and D2 depend only on k and n, so we can define D1(k;n) and D2(k;n)
to be the k× k matrices above. These two determinants satisfy a relation analogous to
the one observed for the product formulas in (4.1) and (4.2).
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Theorem 4.2. For n, k ∈ Z≥0, we have

det(D1(k;n+ 1
2
)) = det(D2(k;n)). (4.7)

In order to make sense of this theorem — more precisely: of the left-hand side
of (4.7) — we must recall that via (2.1) the Delannoy number D(i, j) can be viewed
as a polynomial in j of degree i. In this sense, the substitution of n by n + 1

2
, a non-

integer, in (4.6) is well-defined. The reader should recall that our binomial coefficients
are defined according to the convention in (2.3).

Proof of Theorem 4.2. Our claim follows from Proposition 4.4 below, where we show
that, for i, j ∈ Z≥−1, we have

D(i, j + 1
2
) =

di/2e∑
l=0

(−1)l
(
−1

2

l

)
H(i− 2l, j).

Then our definitions of D1 and D2 give us that D1(k;n+ 1
2
) can be obtained by column

operations from D2(k;n), hence proving that their determinants are equal. �

Lemma 4.3. For all i ∈ Z and j ∈ R we have

D(i, j) = D(i− 1, j) +D(i− 1, j − 1) +D(i, j − 1),

where D(i, j) is defined by

D(i, j) =
i∑

m=0

(
i

m

)(
j

m

)
2m.

Proof. This is part of Remark 2.4, but as we cannot use our combinatorial definition of
D(i, j) we compute directly using the classical recurrence for binomial coefficients:

D(i, j) =
i∑

m=0

(
i

m

)(
j

m

)
2m

=
i−1∑
m=0

(
i− 1

m

)(
j

m

)
2m +

i∑
m=1

(
i− 1

m− 1

)(
j

m

)
2m

= D(i− 1, j) + 2
i∑

m=1

(
i− 1

m− 1

)(
j − 1

m− 1

)
2m−1

i∑
m=1

(
i− 1

m− 1

)(
j − 1

m

)
2m

= D(i− 1, j) +D(i− 1, j − 1) +
i∑

m=1

(
i− 1

m− 1

)(
j − 1

m

)
2m

+
i−1∑
m=0

(
i− 1

m

)(
j − 1

m

)
2m

= D(i− 1, j) +D(i− 1, j − 1) +D(i, j − 1),

noting that (
i

m

)
=

(
i− 1

m− 1

)
+

(
i− 1

m

)
still holds for i ∈ R. �
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Proposition 4.4. For i, j ∈ Z≥−1, we have

D(i, j + 1
2
) =

di/2e∑
`=0

(−1)l
(
−1

2

`

)
H(i− 2`, j),

where D(i, j) is defined by

D(i, j) =
i∑

m=0

(
i

m

)(
j

m

)
2m.

Proof. We do an induction on i and j. For the inductive step, we use Lemma 4.3 to
find for i, j ≥ 0 that

D(i, j + 1
2
) = D(i− 1, j + 1

2
) +D(i− 1, j − 1

2
) +D(i, j − 1

2
)

=

d(i−1)/2e∑
l=0

(−1)l
(
−1

2

l

)
H(i− 1− 2l, j)

+

d(i−1)/2e∑
l=0

(−1)l
(
−1

2

l

)
H(i− 1− 2l, j − 1)

+

di/2e∑
l=0

(−1)l
(
−1

2

l

)
H(i− 2l, j − 1)

=

di/2e∑
l=0

(−1)l
(
−1

2

l

)
H(i− 2l, j),

noting that H(i, j) = 0 for i < 0 and all j. Now, for the base case, when i = −1 we
have

D(−1, j + 1
2
) = 0 = H(−1, j)

for all j, as desired.
It remains to be seen that the case j = −1 holds, that is

D(i,−1
2
) =

di/2e∑
l=0

(−1)l
(
−1

2

l

)
H(i− 2l,−1)

for all i ≥ 0. Now

H(i,−1) =

{
1, if i = 0,

0, otherwise,

so we wish to show

D(i,−1
2
) =

i∑
m=0

(
i

m

)(
−1

2

m

)
2m =


0, if i is odd,∣∣∣∣(−1

2
i
2

)∣∣∣∣ , if i is even.
(4.8)

Using the notation of hypergeometric series (cf. [Sla66]), we have

i∑
m=0

(
i

m

)(
−1

2

m

)
2m

i∑
m=0

(
i

i−m

)(
−1

2

i−m

)
2i−m =

(
1
2
− i
)
i
2i

i! 2
F1

[
−i,−i
1
2
− i ;

1

2

]
.
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The FF1-series can be evaluated by means of Gauß’s second summation theorem (see
[Sla66, Eq. (1.7.1.9), Appendix (III.6)])

2F1

[
2a, 2b

1
2

+ a+ b
;
1

2

]
=

Γ(1
2
) Γ(1

2
+ a+ b)

Γ(1
2

+ a) Γ(1
2

+ b)
.

Thus, after simplification using the well-known facts that Γ(1
2
) =
√
π and Γ(x)Γ(1−x) =

π/ sin(πx), we obtain

i∑
m=0

(
i

m

)(
−1

2

m

)
2m =

2iΓ2
(
i+1
2

)
sin2

(
1−i
2

)
π · i!

.

Here we see that the sine vanishes for odd i. On the other hand, if i is even, then we
have

2iΓ2
(
i+1
2

)
sin2

(
1−i
2

)
π i!

=
2i
(
i−1
2

)2 ( i−3
2

)2 · · · (1
2

)2
Γ2
(
1
2

)
π i!

=

(
i−1
2

) (
i−3
2

)
· · ·
(
1
2

)(
i
2

)
!

,

which is equal to the second alternative on the right-hand side of (4.8). This concludes
the base case of our induction on j and we have our result. �

Next we restate — and prove, conditional on the truth of Theorem 1.2 — Theorem 1.4
from the introduction.

Theorem 4.5. The number of Case 1 sequences for the partition µ = (k + 1, k, . . . , 1)
with ` = 2k + 2 is equal to the number of Case 2 sequences for the partition µ =
(k, k − 1, . . . , 1, 0) with ` = 2k + 3.

Figure 16 shows two generalized Aztec triangles that, according to Theorem 4.5, must
have an equal number of domino tilings.

Proof of Theorem 4.5. Using our formulas from Theorem 4.1 we wish to show that

b k
2
c∏

i=0

−k+2i−1∏
s=−2k+4i−1

(2k + s+ 2) ·
b k−1

2
c∏

i=0

2k−4i∏
s=k−2i+1

(2k + s+ 2)

/
k∏
i=1

(2i+ 1)k+1−i

=

b k−1
2
c∏

i=0

−k+2i∏
s=−2k+4i+1

(2k + s+ 3) ·
b k−2

2
c∏

i=0

2k−4i−2∏
s=k−2i

(2k + s+ 3)

/
k−1∏
i=1

(2i+ 1)k−i .

This is an equality of two fractions; we bring both numerators to the left-hand side and
both denominators to the right-hand side:∏b k

2
c

i=0

∏−k+2i−1
s=−2k+4i−1(2k + s+ 2)∏b k−1

2
c

i=0

∏−k+2i+1
s=−2k+4i+2(2k + s+ 2)

·
∏b k−1

2
c

i=0

∏2k−4i
s=k−2i+1(2k + s+ 2)∏b k−2

2
c

i=0

∏2k−4i−1
s=k−2i+1(2k + s+ 2)

=
k∏
i=1

(2i+ 1).

If k is even this results in

(2k + 1)

k
2
−1∏
i=0

(4i+ 1)(4i+ 2)(4i+ 3)(4k − 4i+ 2)

(k + 2i+ 2)(k + 2i+ 2)
=

k∏
i=1

(2i+ 1),



22 SYLVIE CORTEEL, FREDERICK HUANG, AND CHRISTIAN KRATTENTHALER

or, after cancellation,
k
2
−1∏
i=0

(4i+ 2)(4k − 4i+ 2)

(k + 2i+ 2)(k + 2i+ 3)
= 1.

Similarly, if k is odd we have

2k + 4

2k + 4

k−1
2∏
i=0

(4i+ 1)(4i+ 2)(4i+ 3)(4k − 4i+ 2)

(k + 2i+ 2)(k + 2i+ 3)
=

k∏
i=1

(2i+ 1),

or, after cancellation,
k−1
2∏
i=0

(4i+ 2)(4k − 4i+ 2)

(k + 2i+ 2)(k + 2i+ 3)
= 1.

We can verify that both of these identities do hold true. For even k the product on the
left-hand side expands as

2 · 6 · · · (2k − 2) · (2k + 6)(2k + 10) · · · (4k + 2)

(k + 2)(k + 3) · · · (2k + 1)
=

2k/2(k − 1)!! 2k/2 (2k+1)!!
(k+1)!!

(2k+1)!
(k+1)!

=
2k(k − 1)!! (k + 1)!

(k + 1)!!
· (2k + 1)!!

(2k + 1)!

= 2kk! · 1

(2k)!!
= 1,

where again we use the double factorial to indicate a product of integers with the same
parity. Similarly, for odd k we have

2 · 6 · · · (2k) · (2k + 4)(2k + 8) · · · (4k + 2)

(k + 2)(k + 3) · · · (2k + 2)
=

2(k+1)/2k!! 2(k+1)/2 (2k+1)!!
k!!

(2k+2)!
(k+1)!

= 2k+1(k + 1)! · (2k + 1)!!

(2k + 2)!
= 1. �

Remark 4.6. Finally let us verify that Theorem 4.1 is indeed a generalization of
Di Francesco’s conjectured formula (cf. [Di 21, Conj. 8.1])

F (n) := 2n(n−1)/2
n−1∏
i=0

(4i+ 2)!

(n+ 2i+ 1)!
.

Indeed, if µ = (n, n − 1, . . . , 1), Theorem 4.1 gives us that the number of Case 1
sequences is equal to

G(n) :=
∏
i≥0

(
−n+2i∏

s=−2n+4i+1

(2n+ s)
2n−4i−2∏
s=n−2i

(2n+ s)

)/
n−1∏
i=1

(2i+ 1)n−i

=
∏
i≥0

(
n+2i∏
s=4i+1

s

4n−4i−2∏
s=3n−2i

s

)/
n−1∏
i=1

(2i+ 1)n−i .
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Now we compute for n ≥ 1

F (n+ 1)

F (n)
= 2n · (4n+ 2)!

(3n+ 2)!

n−1∏
i=0

(n+ 2i+ 1)!

(n+ 2i+ 2)!
= 2n · (4n+ 2)!

(3n+ 2)!

n−1∏
i=0

1

n+ 2i+ 2

=
2n(4n+ 2)!n!!

(3n+ 2)!(3n)!!
.

Now we compute G(n+1)
G(n)

for all n ≥ 1. We first note that for even n we have

G(n) =

n−2
2∏
i=0

n+2i∏
s=4i+1

s ·
n−2
2∏
i=0

4n−4i−2∏
s=3n−2i

s

/n−1∏
i=1

(2i+ 1)n−i ,

and for odd n we have

G(n) =

n−1
2∏
i=0

n+2i∏
s=4i+1

s ·
n−3
2∏
i=0

4n−4i−2∏
s=3n−2i

s

/n−1∏
i=1

(2i+ 1)n−i .

Then, if n is odd, we have

G(n+ 1)

G(n)
=

∏n−1
2

i=0

∏n+2i+1
s=4i+1 s ·

∏n−1
2

i=0

∏4n−4i+2
s=3n−2i+3 s∏n−1

2
i=0

∏n+2i
s=4i+1 s ·

∏n−3
2

i=0

∏4n−4i−2
s=3n−2i s

/(∏n
i=0(2i+ 1)n+1−i∏n−1
i=0 (2i+ 1)n−i

)

=

n−1
2∏
i=0

(n+ 2i+ 1) · (2n+ 4)!

(2n+ 3)!
·

n−3
2∏
i=0

(4n− 4i− 1) · · · (4n− 4i+ 2)

(3n− 2i) · · · (3n− 2i+ 2)

/
(2n+ 1)!!

=
(2n)!!

(n− 1)!!
· (2n+ 4)!

(2n+ 3)!
·

(4n+2)!
(2n+4)!

(3n+2)!
(2n+3)!

· (3n)!!
(2n+1)!!

· 1

(2n+ 1)!!

=
2nn!(4n+ 2)!

(n− 1)!!(3n+ 2)!(3n)!!
=

2n(4n+ 2)!n!!

(3n+ 2)!(3n)!!
.

On the other hand, if n is even, we have

G(n+ 1)

G(n)
=

∏n
2
i=0

∏n+2i+1
s=4i+1 s ·

∏n−2
2

i=0

∏4n−4i+2
s=3n−2i+3 s∏n−2

2
i=0

∏n+2i
s=4i+1 s ·

∏n−2
2

i=0

∏4n−4i−2
s=3n−2i s

/(∏n
i=0(2i+ 1)n+1−i∏n−1
i=0 (2i+ 1)n−i

)

= (2n+ 1) ·
n−2
2∏
i=0

(
(n+ 2i+ 1)

(4n− 4i− 1) · · · (4n− 4i+ 2)

(3n− 2i) · · · (3n− 2i+ 2)

)/
(2n+ 1)!!

= (2n+ 1) · (2n− 1)!!

(n− 1)!!
·

(4n+2)!
(2n+2)!

(3n+2)!
(2n+2)!

· (3n)!!
(2n)!!

· 1

(2n+ 1)!!

=
2n(4n+ 2)!n!!

(3n+ 2)!(3n)!!
.

Along with the fact that F (1) = G(1) = 1, we conclude that F (n) = G(n) for all n ≥ 1.
Hence indeed, Di Francesco’s conjectured formula [Di 21, Conj. 8.1] results as a special
case from Theorem 4.1.
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5. Proof of Theorem 4.1

We have shown in the previous section (see Theorem 4.2) that, for a proof of Theo-
rem 4.1, it suffices to prove one of (4.1) and (4.2). In the theorem below we prove (4.1).
More precisely, we show that detD1(k;n), with the matrix D1(k;n) defined in (4.6),
equals the product in (4.1). For convenience, we reverse the order of rows and columns
of D1(k;n) and denote the arising matrix by D̄1(k;n). To be precise, in (4.6) we do the
replacements i 7→ k − j, j 7→ k − i, to obtain

D̄1(k;n) :=
(
D(k − 2i+ j, n− j − 1)

)
0≤i,j≤k−1.

Theorem 5.1. For all non-negative integers k and arbitrary n, we have

det D̄1(k;n) := det
0≤i,j≤k−1

(
D(k − 2i+ j, n− j − 1)

)
= 2k

2
k∏
i=1

1

(i)i

k−2∏
s=0

(n− s− 1)min{b(s+1+χ(k even))/2c,b(k−s)/2c}

·
k−1∏
s=0

(n− s− 1
2
)min{b(s+1+χ(k odd))/2c,b(k−s+1)/2c}

·
k−2∏
s=0

(n+ k − s− 1)min{b(s+2)/2c,b(k−s−χ(k odd))/2c}

·
k−2∏
s=1

(n+ k − s− 1
2
)min{b(s+1)/2c,b(k−s−χ(k even))/2c}. (5.1)

Here, χ(S) = 1 if S is true and χ(S) = 0 otherwise.

Remark 5.2. It should be recalled that by (4.3)–(4.5) the right-hand side of (5.1)
indeed agrees with (4.1).

Proof of Theorem 5.1. We apply the identification of factors method as described in
[Kra99, Sec. 2.4]. An outline is as follows. In Steps 1–4 we show that the products
over s in (5.1) are indeed factors of det D̄1(k;n) as a polynomial in n. In Step 5 we
prove that the degree of det D̄1(k;n) as a polynomial in n is at most

(
k+1
2

)
. Since the

total number of factors provided by the products over s in (5.1) is exactly
(
k+1
2

)
, the

two sides in (5.1) must be the same up to a multiplicative constant. This constant is
then computed by determining the leading coefficient of det D̄1(k;n).

Step 1: The term (n− s− 1)min{b(s+1+χ(k even))/2c,b(k−s)/2c} is a factor of det D̄1(k;n) as
a polynomial in n. We claim that, for 0 ≤ a ≤ s, k ≥ 2s − a + 2, and k ≡ a (mod 2),
we have

2s−a+1∑
j=a

(
2s− 2a+ 1

j − a

)
·
(
column j of D̄1(k; s+ 1)

)
= 0. (5.2)

The validity of these linear relations does indeed imply that the mentioned power of
(n − s − 1) divides det D̄1(k;n) as a polynomial in n. For, with varying a, all these
linear relations are linearly independent of each other since all of them start with a
different column. Hence, the number of these linear relations — that is, the num-
ber of different a’s satisfying the above conditions — gives (a lower bound of) the
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exponent of (n − s − 1) (cf. [Kra99, p. 13]). Now, on the one hand, the condition
0 ≤ a ≤ s together with the restriction k ≡ a (mod 2) implies that there are at most
b(s+ 1 + χ(k even))/2c such a’s. On the other hand, the conditions k ≥ 2s − a + 2
and a ≤ s together with the restriction k ≡ a (mod 2) imply that there are at most
b(k − s)/2c such a’s. Consequently, the minimum of the two is (a lower bound for) the
exponent.

Since there will be a very similar claim to prove in Step 2, we start the required
computation at a more general level than needed for the current step. Namely, we
compute the entry in row i of

a+b∑
j=a

(
b

j − a

)
·
(
column j of D̄1(k;n)

)
, (5.3)

with the understanding that, here, we need the case where b = 2s−2a+1 and n− 1 = s.
Indeed, using the expression (2.2) for D(k, n− 1), the entry in row i of (5.3) equals

a+b∑
j=a

(
b

j − a

) k−2i+j∑
`=0

(
n− 1 + k − 2i− `

n− 1− j − `, k − 2i+ j − `, `

)

=
k−2i+a+b∑

`=0

(
n− 1 + k − 2i− `

`

) a+b∑
j=a

(
b

a+ b− j

)(
n− 1 + k − 2i− 2`

k − 2i+ j − `

)

=
k−2i+a+b∑

`=0

(
n− 1 + k − 2i− `

`

)(
n− 1 + k + b− 2i− 2`

k + a+ b− 2i− `

)
. (5.4)

We now substitute n− 1 = s and b = 2s+ 1− 2a with 0 ≤ a ≤ s in (5.4). We see that
the entry in row i of (5.2) is given by

k−2i+2s−a+1∑
`=0

(
s+ k − 2i− `

`

)(
k + 3s− 2a+ 1− 2i− 2`

k + 2s− a+ 1− 2i− `

)
. (5.5)

We reverse the order of summation, and obtain that it is also given by

k−2i+2s−a+1∑
`=0

(
−s+ a− 1 + `

k − 2i+ 2s− a+ 1− `

)(
−k − s− 1 + 2i+ 2`

`

)

=
k−2i+2s−a+1∑

`=0

(−1)k−2i+2s−a+1−`
(
k + 3s− 2a− 2i− 2`+ 1

k − 2i+ 2s− a+ 1− `

)
(−1)`

(
k + s− 2i− `

`

)
.

Since we assumed that k ≡ a (mod 2), the sum in (5.5) vanishes, proving our claim.

Step 2: The term (n− s− 1
2
)min{b(s+1+χ(k odd))/2c,b(k−s+1)/2c} is a factor of det D̄1(k;n)

as a polynomial in n. We claim that, for 0 ≤ a ≤ s, k ≥ 2s− a+ 1, and k 6≡ a (mod 2),
we have

2s−a∑
j=a

(
2s− 2a

j − a

)
·
(
column j of D̄1(k; s+ 1

2
)
)

= 0. (5.6)
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We (re)use the earlier computation and let n− 1 = s− 1
2
, b = 2s− 2a with 0 ≤ a ≤ s

in (5.4). We see that the entry in row i of (5.6) is given by

k−2i+2s−a∑
`=0

(
s− 1

2
+ k − 2i− `
`

)(
k + 3s− 2a− 1

2
− 2i− 2`

k + 2s− a− 2i− `

)
. (5.7)

We reverse the order of summation, and obtain that it is also given by

k−2i+2s−a∑
`=0

(
−s− 1

2
+ a+ `

k − 2i+ 2s− a− `

)(
−k − s− 1

2
+ 2i+ 2`

`

)

=
k−2i+2s−a∑

`=0

(−1)k−2i+2s−a−`
(
k − 2i+ 3s− 2a− 2`− 1

2

k − 2i+ 2s− a− `

)
(−1)`

(
k + s− 2i− `− 1

2

`

)
.

Since we assumed that k 6≡ a (mod 2), the sum in (5.7) vanishes, proving our claim.

Step 3: The term (n+k−s−1)min{b(s+2)/2c,b(k−s−χ(k odd))/2c} is a factor of det D̄1(k;n)
as a polynomial in n. We claim that, for 0 ≤ 2a ≤ s and k ≥ 2s− 2a+ 2, we have

s+1−a∑
i=a

(−1)i
(
s+ 1− 2a

i− a

)
·
(
row i of D̄1(k;−k + s+ 1)

)
−

k−1∑
i=s+1−a

22s+2−4a
(
i− a− 1

s− 2a

)
·
(
row i of D̄1(k;−k + s+ 1)

)
= 0. (5.8)

Here we use a contour integral expression for D(k, n− 1). Namely, by (2.1), we have

D(k, n− 1) =
k∑
`=0

(
k

`

)(
n− 1

`

)
2`

=
1

(2πi)2

∫
Cx

∫
Cy

∑
`≥0

2`
(1 + x)k(1 + y)n−1

(xy)`+1
dx dy

=
1

(2πi)2

∫
Cx

∫
Cy

(1 + x)k(1 + y)n−1

xy − 2
dx dy. (5.9)

In order that the geometric series in the next-to-last line be convergent, we need to
have |xy| > 2. Furthermore, since later we want to use this integral expression also for
negative values of n− 1, which causes a singularity of the integrand at y = −1, the
contour Cy must not contain −1 in its interior. Thus, a valid choice is1

Cx = {5eit : 0 ≤ t ≤ 2π} and Cy = {0.5eiw : 0 ≤ w ≤ 2π}. (5.10)

1This choice affords actually two wanted properties: (1) as mentioned, it interprets D(k, n− 1) as a
polynomial in n; (2) it vanishes if k is a negative integer. To see the latter, suppose that k is a negative
integer. Then the numerator of the integrand in (5.9) does not contain x, while the denominator is
a polynomial in x of degree at least 2. Taking recourse to a classical argument, we now blow up the
contour Cx to λCx with λ → ∞. The integrand being of the order O(x−2), we see that, in the limit,
the integral vanishes. However, since (at λ = 1) we started with a circle of radius 5, we encounter no
singularities when performing this blowup, showing that the original integral vanishes.
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Next we compute the entry in column j of the first sum in (5.8):

s+1−a∑
i=a

(−1)i
(
s+ 1− 2a

i− a

)
D(k − 2i+ j,−k + s− j)

=
s+1−a∑
i=a

(−1)i
(
s+ 1− 2a

i− a

)
1

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2i+j(1 + y)−k+s−j

xy − 2
dx dy

=
1

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2a+j(1 + y)−k+s−j

xy − 2

(
1− 1

(1 + x)2

)s+1−2a

dx dy

=
1

(2πi)2

∫
Cx

∫
Cy

(x(2 + x))s+1−2a(1 + x)k+2a+j−2s−2(1 + y)−k+s−j

xy − 2
dx dy.

We apply the residue theorem with respect to y. There is only one singularity inside
the contour Cy, namely y = 2/x. (Recall that we chose Cy so that it does not contain
−1 in its interior.) Therefore, the above integral equals

1

2πi

∫
Cx

(x(2 + x))s+1−2a(1 + x)k+2a+j−2s−2(1 + 2
x
)−k+s−j

x
dx

=
1

2πi

∫
Cx
xk−2a+j(2 + x)1−2a−k+2s−j(1 + x)k+2a+j−2s−2 dx. (5.11)

The entry in column j of the second sum in (5.8) is given by

k−1∑
i=s+1−a

22s+2−4a
(
i− a− 1

s− 2a

)
D(k − 2i+ j,−k + s− j)

=
∑

i≥s+1−a

22s+2−4a
(
i− a− 1

s− 2a

)
1

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2i+j(1 + y)−k+s−j

xy − 2
dx dy

=
22s+2−4a

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2s−2+2a+j(1 + y)−k+s−j

xy − 2

(
1− 1

(1 + x)2

)−s+2a−1

dx dy

=
22s+2−4a

(2πi)2

∫
Cx

∫
Cy

(x(2 + x))−s+2a−1(1 + x)k−2a+j(1 + y)−k+s−j

xy − 2
dx dy.

Also here, we apply the residue theorem with respect to y. Again, the value y = 2/x is
the only singularity inside the contour Cy. Therefore, the above integral equals

22s+2−4a

2πi

∫
Cx

(x(2 + x))−s+2a−1(1 + x)k−2a+j(1 + 2
x
)−k+s−j

x
dx

=
22s+2−4a

2πi

∫
Cx
xk−2s+j+2a−2(2 + x)−k−j+2a−1(1 + x)k−2a+j dx.

We perform the substitution x 7→ −2(1+x)
2+x

. This transforms the above integral into

−22s+2−4a

2πi

∫
C′x

2−2s+4a−2(2 + x)−k+2s−j−2a+1(1 + x)k−2s+j+2a−2xk−2a+j dx,
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where the contour C ′x is given by

C ′x =
{
−2(1+5eit)

2+5eit
: 0 ≤ t ≤ 2π

}
.

This contour encircles −2, the only singularity of the integrand (x = −1 is not a
singularity since k−2s+2a−2 ≥ 0 by assumption), in negative direction. Consequently,
we see that the above expression is equal to (5.11). This means that the two sums
in (5.8) cancel each other, as desired.

Step 4: The term (n+k−s− 1
2
)min{b(s+1)/2c,b(k−s−χ(k even))/2c} is a factor of det D̄1(k;n)

as a polynomial in n. We claim that, for 0 ≤ a < s and k ≥ 4s− 2a− 1, we have

k−1∑
i=a

c1(s− a, i− a) ·
(
row i of D̄1(k;−k + 2s− 1

2
)
)

= 0 (5.12)

and, for 0 ≤ a < s and k ≥ 4s− 2a+ 1, we have

k−1∑
i=a

c2(s− a, i− a) ·
(
row i of D̄1(k;−k + 2s+ 1

2
)
)

= 0, (5.13)

where

c1(s, l) = −
(4l − 4s+ 1) (−1)s−1(1− l)s−1 (1

2
)s (1

2
)l−s

(2l − 4s+ 1) l! (s− 1)!

− (4l − 4s+ 1)
s∑
r=1

24r−3(2r − 1
2
)s−r (2r − 1

2
)l−s−r

(s− r)! (l − s− r + 1)!

and

c2(s, l) =
(4l − 4s− 1) (−1)s−1(1− l)s−1 (1

2
)s+1 (1

2
)l−s−1

(2l − 4s− 1) l! (s− 1)!

− (4l − 4s− 1)
s∑
r=1

24r−1(2r + 1
2
)s−r (2r + 1

2
)l−s−r−1

(s− r)! (l − s− r)!
.

We begin with the proof of (5.12). We must show that, for all integers k, j, s, a with
0 ≤ a < s, k ≥ 4s− 2a− 1 and j ≥ 0, we have

k−1∑
i=a

c1(s− a, i− a) ·D(k − 2i+ j,−k + 2s− 3
2
− j) = 0. (5.14)

Working towards a simplification, we observe that it suffices to prove (5.14) for j = 0.
Furthermore, after the replacements s 7→ s+ a, i 7→ i+ a and k 7→ k + 2a, we see that
to prove (5.14) for j = 0 is equivalent with showing that, for all integers k and s with
0 < s and k ≥ 4s− 1, we have

k−1∑
i=0

c1(s, i) ·D(k − 2i,−k + 2s− 3
2
) = 0. (5.15)
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Explicitly, using the definition of c1(s, i) and the formula (2.1) for D(k, n− 1), this
means to prove the identity

k−1∑
i=0

k−2i∑
`=0

(4i− 4s+ 1) (−1)s−1(1− i)s−1 (1
2
)s (1

2
)i−s

(2i− 4s+ 1) i! (s− 1)!

(
k − 2i

`

)(
−k + 2s− 3

2

`

)
2`

+
k−1∑
i=0

(4i− 4s+ 1)
s∑
r=1

24r−3(2r − 1
2
)s−r (2r − 1

2
)i−s−r

(s− r)! (i− s− r + 1)!
D(k − 2i,−k + 2s− 3

2
) = 0,

(5.16)

for all integers k and s with 0 < s and k ≥ 4s − 1. Here, given the formula (2.1) for
D(k − 2i,−k + 2s− 3

2
), the second sum is a triple sum. We are going to simplify that

sum to a double sum. Namely, using the contour integral representation (5.9) with the
contours again as in (5.10), we have

k−1∑
i=0

(4i− 4s+ 1)
(2r − 1

2
)i−s−r

(i− s− r + 1)!
D(k − 2i,−k + 2s− 3

2
)

=
∑

i≥s+r−1

(4i− 4s+ 1)
(2r − 1

2
)i−s−r

(i− s− r + 1)!

1

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2i(1 + y)−k+2s− 3
2

xy − 2
dx dy

=
∑
i≥s+r

4 (2r − 1
2
)i−s−r

(i− s− r)!
1

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2i(1 + y)−k+2s− 3
2

xy − 2
dx dy

+
∑

i≥s+r−1

2 (2r − 3
2
)i−s−r+1

(i− s− r + 1)!

1

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2i(1 + y)−k+2s− 3
2

xy − 2
dx dy

=
4

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2s−2r(1 + y)−k+2s− 3
2

xy − 2

(
1− 1

(1 + x)2

)−2r+ 1
2

dx dy

+
2

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2s−2r+2(1 + y)−k+2s− 3
2

xy − 2

(
1− 1

(1 + x)2

)−2r+ 3
2

dx dy

=
4

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2s+2r−1(x(2 + x)
)−2r+ 1

2 (1 + y)−k+2s− 3
2

xy − 2
dx dy

+
2

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2s+2r−1(x(2 + x)
)−2r+ 3

2 (1 + y)−k+2s− 3
2

xy − 2
dx dy.

Here we used Property (2) in Footnote 1 in order to be allowed to sum over all i (instead
of stopping at i = k − 1).

Now we apply the residue theorem with respect to y. With our choice of the con-
tour Cy, the value −1 is outside the contour, making y = 2/x the only singularity
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inside Cy. Hence, the above expression is equal to

4

2πi

∫
Cx

(1 + x)k−2s+2r−1(x(2 + x)
)−2r+ 1

2 (1 + 2
x
)−k+2s− 3

2

x
dx

+
2

2πi

∫
Cx

(1 + x)k−2s+2r−1(x(2 + x)
)−2r+ 3

2 (1 + 2
x
)−k+2s− 3

2

x
dx

=
4

2πi

∫
Cx
xk−2r−2s+1(1 + x)k−2s+2r−1(2 + x)−k−2r+2s−1 dx

+
2

2πi

∫
Cx
xk−2r−2s+2(1 + x)k−2s+2r−1(2 + x)−k−2r+2s dx.

Here we apply the residue theorem with respect to x. Since r ≤ s and k ≥ 4s − 1 by
assumption, we have k − 2s − 2r + 1 ≥ k − 4s + 1 ≥ 0. Hence, the only singularity is
x = −2. Consequently, by the shift x 7→ x− 2, we obtain

4
〈
xk+2r−2s〉 (x− 2)k−2r−2s+1(x− 1)k+2r−2s−1

+ 2
〈
xk+2r−2s−1〉 (x− 2)k−2r−2s+2(x− 1)k+2r−2s−1

= (−1)k
k−2r−2s+1∑

`=0

2k−2r−2s+3−`
(
k − 2r − 2s+ 1

`

)(
k + 2r − 2s− 1

`− 1

)

+ (−1)k
k−2r−2s+2∑

`=0

2k−2r−2s+3−`
(
k − 2r − 2s+ 2

`

)(
k + 2r − 2s− 1

`

)

= (−1)k
k−2r−2s+2∑

`=0

2k−2r−2s+3−` (k − 2r − 2s+ 1)! (k + 2r − 2s− 1)!

`!2 (k − 2r − 2s+ 2− `)! (k + 2r − 2s− `)!

· (−`2 + 2k + k2 + 4r − 4r2 − 4s− 4ks+ 4s2).

If we substitute this back in (5.16), then we see that we have to prove the double sum
identity

k−1∑
i=0

k−2i∑
`=0

(4i− 4s+ 1) (−1)s−1(1− i)s−1 (1
2
)s (1

2
)i−s

(2i− 4s+ 1) i! (s− 1)!

(
k − 2i

`

)(
−k + 2s− 3

2

`

)
2`

+
s∑
r=1

k−2r−2s+2∑
`=0

(−1)k2k−2r−2s+3−`2
4r−3(2r − 1

2
)s−r

(s− r)!

· (k − 2r − 2s+ 1)! (k + 2r − 2s− 1)!

`!2 (k − 2r − 2s+ 2− `)! (k + 2r − 2s− `)!
· (−`2 + 2k + k2 + 4r − 4r2 − 4s− 4ks+ 4s2) = 0, (5.17)

for all integers k and s with 0 < s and k ≥ 4s − 1. With the help of Koutschan’s
Mathematica package HolonomicFunctions [Kou09], this is a routine task. The short
version is that it allows us to find a linear recurrence in k (with polynomial coef-
ficients) of order 6 (with non-vanishing leading coefficient in the relevant domain)
that is satisfied by both double sums. Thus, the identity would be proved if we are
able to confirm it for six initial values, that is, for k = 4s − 1, 4s, 4s + 1, 4s + 2,
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4s+ 3, 4s+ 4. For each of these six values of k, the package HolonomicFunctions may
again be used to find a linear recurrence in s (with polynomial coefficients) of order 5
that is satisfied by both (specialized) double sums. Now we are down to verifying the
identity for all pairs (k, s) in

{(4s+ a, s) : −1 ≤ a ≤ 4 and 1 ≤ s ≤ 5},

which is straightforward to do. More details are described in the appendix.

We turn to the proof of (5.13). We must show that, for all integers k, j, s, a with
0 ≤ a < s, k ≥ 4s− 2a+ 1 and j ≥ 0, we have

k−1∑
i=a

c2(s− a, i− a) ·D(k − 2i+ j,−k + 2s− 1
2
− j) = 0. (5.18)

Working towards a simplification, we observe that it suffices to prove (5.18) for j = 0.
Furthermore, after the replacements s 7→ s+ a, i 7→ i+ a and k 7→ k + 2a, we see that
to prove (5.18) for j = 0 is equivalent with showing that, for all integers k and s with
0 < s and k ≥ 4s+ 1, we have

k−1∑
i=0

c2(s, i) ·D(k − 2i,−k + 2s− 1
2
) = 0. (5.19)

Explicitly, using the definition of c2(s, i) and the formula (2.1) for D(k, n− 1), this
means to prove the identity

k−1∑
i=0

k−2i∑
`=0

(4i− 4s− 1) (−1)s−1(1− i)s−1 (1
2
)s+1 (1

2
)i−s−1

(2i− 4s− 1) i! (s− 1)!

(
k − 2i

`

)(
−k + 2s− 1

2

`

)
2`

−
k−1∑
i=0

(4i− 4s− 1)
s∑
r=1

24r−1(2r + 1
2
)s−r (2r + 1

2
)i−s−r−1

(s− r)! (i− s− r)!
D(k − 2i,−k + 2s− 1

2
) = 0,

(5.20)

for all integers k and s with 0 < s and k ≥ 4s + 1. Here, given the formula (2.1) for
D(k − 2i,−k + 2s− 1

2
), the second sum is a triple sum. We are going to simplify that

sum to a double sum. Namely, using the contour integral representation (5.9) with the



32 SYLVIE CORTEEL, FREDERICK HUANG, AND CHRISTIAN KRATTENTHALER

contours again as in (5.10), we have

k−1∑
i=0

(4i− 4s− 1)
(2r + 1

2
)i−s−r−1

(i− s− r)!
D(k − 2i,−k + 2s− 1

2
)

=
∑
i≥s+r

(4i− 4s− 1)
(2r + 1

2
)i−s−r−1

(i− s− r)!
1

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2i(1 + y)−k+2s− 1
2

xy − 2
dx dy

=
∑

i≥s+r+1

4 (2r + 1
2
)i−s−r−1

(i− s− r − 1)!

1

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2i(1 + y)−k+2s− 1
2

xy − 2
dx dy

+
∑
i≥s+r

2 (2r − 1
2
)i−s−r

(i− s− r)!
1

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2i(1 + y)−k+2s− 1
2

xy − 2
dx dy

=
4

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2s−2r−2(1 + y)−k+2s− 1
2

xy − 2

(
1− 1

(1 + x)2

)−2r− 1
2

dx dy

+
2

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2s−2r(1 + y)−k+2s− 1
2

xy − 2

(
1− 1

(1 + x)2

)−2r+ 1
2

dx dy

=
4

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2s+2r−1(x(2 + x)
)−2r− 1

2 (1 + y)−k+2s− 1
2

xy − 2
dx dy

+
2

(2πi)2

∫
Cx

∫
Cy

(1 + x)k−2s+2r−1(x(2 + x)
)−2r+ 1

2 (1 + y)−k+2s− 1
2

xy − 2
dx dy.

Now we apply the residue theorem with respect to y. With our choice of the contour Cy,
the value −1 is outside the contour, making y = 2/x the only singularity inside Cy.
Hence, the above expression is equal to

4

2πi

∫
Cx

(1 + x)k−2s+2r−1(x(2 + x)
)−2r− 1

2 (1 + 2
x
)−k+2s− 1

2

x
dx

+
2

2πi

∫
Cx

(1 + x)k−2s+2r−1(x(2 + x)
)−2r+ 1

2 (1 + 2
x
)−k+2s− 1

2

x
dx

=
4

2πi

∫
Cx
xk−2r−2s−1(1 + x)k−2s+2r−1(2 + x)−k−2r+2s−1 dx

+
2

2πi

∫
Cx
xk−2r−2s(1 + x)k−2s+2r−1(2 + x)−k−2r+2s dx.

Here we apply the residue theorem with respect to x. Since r ≤ s and k ≥ 4s + 1 by
assumption, we have k − 2s− 2r ≥ k − 4s > 0. Hence, the only singularity is x = −2.
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Consequently, by the shift x 7→ x− 2, we obtain

4
〈
xk+2r−2s〉 (x− 2)k−2r−2s−1(x− 1)k+2r−2s−1

+ 2
〈
xk+2r−2s−1〉 (x− 2)k−2r−2s(x− 1)k+2r−2s−1

= (−1)k
k−2r−2s−1∑

`=0

2k−2r−2s+1−`
(
k − 2r − 2s− 1

`

)(
k + 2r − 2s− 1

`− 1

)

+ (−1)k
k−2r−2s∑
`=0

2k−2r−2s+1−`
(
k − 2r − 2s

`

)(
k + 2r − 2s− 1

`

)

= (−1)k
k−2r−2s∑
`=0

2k−2r−2s+1−` (k − 2r − 2s− 1)! (k + 2r − 2s− 1)!

`!2 (k − 2r − 2s− `)! (k + 2r − 2s− `)!

· (−`2 + k2 − 4r2 − 4ks+ 4s2).

If we substitute this back in (5.20), then we see that we have to prove the double sum
identity

k−1∑
i=0

k−2i∑
`=0

(4i− 4s− 1) (−1)s−1(1− i)s−1 (1
2
)s+1 (1

2
)i−s−1

(2i− 4s− 1) i! (s− 1)!

(
k − 2i

`

)(
−k + 2s− 1

2

`

)
2`

+
s∑
r=1

k−2r−2s∑
`=0

(−1)k−12k−2r−2s+1−`2
4r−1(2r + 1

2
)s−r

(s− r)!

· (k − 2r − 2s− 1)! (k + 2r − 2s− 1)!

`!2 (k − 2r − 2s− `)! (k + 2r − 2s− `)!
· (−`2 + k2 − 4r2 − 4ks+ 4s2) = 0, (5.21)

for all integers k and s with 0 < s and k ≥ 4s+1. This identity can be proved in the same
way as (5.17), again using Koutschan’s Mathematica package HolonomicFunctions.

Step 5: The determinant det D̄1(k;n) is a polynomial in n of degree at most
(
k+1
2

)
.

From (2.1), we see that D(k, n− 1) is a polynomial in n of degree k. The expansion of
the determinant according to its definition implies that the degree of det D̄1(k;n) is at
most

max
σ∈Sk

(
k−1∑
i=0

(k − 2i+ σ(i))

)
= max

σ∈Sk

(
k2 −

k−1∑
i=0

i

)
=
k(k + 1)

2
.

Step 6: The coefficient of nk(k+1)/2 in det D̄1(k;n) is 2k
2∏k

i=1
1

(i)i
. The argument of

Step 5 shows that we obtain the leading coefficient of det D̄1(k;n) — the coefficient of
nk(k+1)/2 — if we compute the determinant of leading coefficients of the entries. That
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is, we must compute

det
0≤i,j≤k−1

(
2k−2i+j

(k − 2i+ j)!

)
= 2(k+1

2 )
k−1∏
i=0

1

(2k − 2i− 1)!
det

0≤i,j≤k−1

(
(k − 2i+ j + 1)k−j−1

)
= 2(k+1

2 )
k−1∏
i=0

1

(2k − 2i− 1)!
det

0≤i,j≤k−1

(
(−2i)k−j−1

)
= 2(k+1

2 )
k−1∏
i=0

1

(2k − 2i− 1)!

∏
0≤i<j≤k−1

((−2i)− (−2j))

= 2(k+1
2 )+(k

2)
k−1∏
i=0

i!

(2k − 2i− 1)!

= 2k
2

k∏
i=1

1

(i)i
,

where in the step from the first to the second line we used elementary column operations,
and the subsequent step is just the Vandermonde determinant evaluation. �

6. Conclusion

In [Di 21], Di Francesco initially introduces Aztec triangles as a combinatorial object
for which there exists a bijection to a certain set of configurations of the 20V model,
though the explicit bijection has not been found yet. Now we have generalized this
construction of the Aztec triangle, as well as established a bijection to several other
combinatorial objects. A natural question now is how these generalized Aztec triangles
relate back to the 20V model, and if that explicit bijection can be found.

In particular, does there exist a domain on which 20V model configurations are in
bijection with domino tilings of these generalized Aztec triangles? Of note in [Di 21]
Di Francesco has an additional conjecture that equates the number domino tilings of
the Aztec triangle with the first k− 1 rows (consistent with Di Francesco’s definition of
Tn,n−k) removed is equal to 20V model configurations on particular pentagonal domains.
In fact, he proves (see Section 7) this conjecture for k = 2, 3 through combinatorial
means (with k = 1 being the entire Aztec triangle). Larger values of k remain open,
and combinatorial proofs in these cases seem much more complicated.

We can think of Tn,n−k — the Aztec triangle with k− 1 rows removed — as an Aztec
triangle where the first k − 1 rows are forced to have horizontal dominoes. Then in
terms of the sequences of partitions, domino tilings of Tn,n−k correspond to sequences
as described in Definition 3.1 with µ = (n, n − 1, . . . , 1) and the additional condition

that λ
(i)
j ≤ n− (k − 1) + b i

2
c for all i, j. So while we can also interpret domino tilings

of Tn,n−k as sequences of partitions, they are not directly addressed in this paper.
Furthermore we can also reformulate this in terms of tableaux: domino tilings of
Tn,n−k are in bijection with super symplectic semistandard tableaux of shape (n, n −
1, . . . , 1) with entries 1 < 1 < 2 < 2 < · · · < n with the additional condition that the
entries i and i− 1 do not appear past the (n − k + i)th column. An example of this
bijection is shown in Figure 17.
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Another question to be investigated is the topic of other classes of sequences of
partitions, tableaux, non-intersecting paths, and domino tilings. If we impose additional
restrictions on the sequences of partitions, for example as done above with Tn,n−k, how
can we establish the analogous bijections, and perhaps more importantly can we still
prove a formula for their enumeration? With sequences of partitions as defined in this
paper, we were not able to find other choices of µ that resulted in a “nice” product
formula, but the possibility of an even more generalized formula remains open.

1 1 2 3 5

2 4 4 4

3 4 5

4 5

5

Figure 17. A domino tiling of T5,1 and its correponding super symplectic
semistandard tableau.
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7. Appendix

7.1. Proof of identity (5.17). We denote the summand of the first sum by U(k, s, i, `),
and the summand of the second sum by V (k, s, r, `), so that, for all integers k and s
with 0 < s and k ≥ 4s− 1, we have to prove

k−1∑
i=0

k−2i∑
`=0

U(k, s, i, `) +
s∑
r=1

k−2r−2s+2∑
`=0

V (k, s, r, `) = 0. (A.1)

In order to achieve this, we use Koutschan’s Mathematica package
HolonomicFunctions [Kou09] to find a recurrence relation that is satisfied by both
double sums. In the following, we let Sk denote the shift operator in k, that is,
Sk
(
g(k)

)
:= g(k + 1), and similarly we shall use the shift operators Si, Sr, S` in the

variables i, r, `, respectively.
Applying the command

CreativeTelescoping[Annihilator[U(k, s, i, `),{Sk,Si,S`}],S` − 1,{Sk,Si}]

we find operators Aj(k, s, i, Sk, Si) and Bj(k, s, i, `, Sk, Si, S`), j = 1, 2, where Aj is a
polynomial in the given terms and Bj is in Q(k, s, i, `)[Sk, Si, S`], such that

Aj(k, s, i, Sk, Si)U(k, s, i, `) + (S` − 1)Bj(k, s, i, `, Sk, Si, S`)U(k, s, i, `) = 0,

for j = 1, 2.

This relation is then summed over ` in the range 0 ≤ ` ≤ k − 2i. Since this range has
natural boundaries — in the sense that we could equally well sum over all integers `
because the boundaries are caused by the binomial coefficient

(
k−2i
`

)
— the sum over `

of the second term is a telescoping sum, which drops out. Thus we arrive at

Aj(k, s, i, Sk, Si)
k−2i∑
`=0

U(k, s, i, `) = 0, for j = 1, 2.

Next we use the command

CreativeTelescoping[{A1(k, s, i, Sk, Si), A2(k, s, i, Sk, Si)},Si − 1,{Sk}]

to find operators C(k, s, Sk) and D(k, s, i, Sk, Si), where C is a polynomial in the given
terms and D is in Q(k, s, i)[Sk, Si], such that

C(k, s, Sk) + (Si − 1)D(k, s, i, Sk, Si)

http://www.combinatorics.org/Volume_3/Abstracts/v3i2r13.html
http://www.combinatorics.org/Volume_3/Abstracts/v3i2r13.html
https://doi.org/10.1007/s00026-007-0317-y
https://doi.org/10.1007/s00026-007-0317-y
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lies in the left ideal generated by A1(k, s, i, Sk, Si) and A2(k, s, i, Sk, Si) in
Q(k, s, i)[Sk, Si]. In particular, we have

C(k, s, Sk)
k−2i∑
`=0

U(k, s, i, `) + (Si − 1)D(k, s, i, Sk, Si)
k−2i∑
`=0

U(k, s, i, `) = 0.

If we sum this relation over all i in the range 0 ≤ i ≤ k − 1 — which is again a range
with natural boundaries in the above sense — then we obtain

C(k, s, Sk)
k−1∑
i=0

k−2i∑
`=0

U(k, s, i, `) = 0, (A.2)

where the operator C(k, s, Sk) has the form

C(k, s, Sk) =
6∑
l=0

γl(k, s)S
l
k,

with leading coefficient

γ6(k, s) = (k + 6)(k − 4s+ 7)(2k − 4s+ 7)(2k − 4s+ 11)(2k − 4s+ 13)

× (k − 2s+ 3)(k − 2s+ 4)(k − 2s+ 6)(425613 + 518672k + 230896k2

+ 44800k3 + 3200k4 − 1084280s− 946880ks− 272128k2s

− 25600k3s+ 1048112s2 + 590336ks2 + 82432k2s2 − 387328s3

− 96256ks3 + 4096k2s3 − 44288s4 − 45056ks4

− 4096k2s4 + 67584s5 + 16384ks5 − 12288s6). (A.3)

We observe that γ6(k, s) is non-zero for k ≥ 4s− 1 since the larger irreducible factor is
visibly an odd integer and thus non-zero.

Now we turn to the second double sum in (A.1). The arguments will be more involved
here since the sum over r has no natural lower boundary. Still, we start in the same
manner. We apply the command

CreativeTelescoping[Annihilator[V (k, s, r, `),{Sk,Sr,S`}],S` − 1,{Sk,Sr}]

to find operators Ej(k, s, r, Sk, Sr) and Fj(k, s, r, `, Sk, Sr, S`), j = 1, 2, where Ej is a
polynomial in the given terms and Fj is in Q(k, s, r, `)[Sk, Sr, S`], such that

Ej(k, s, r, Sk, Sr)V (k, s, r, `) + (S` − 1)Fj(k, s, r, `, Sk, Sr, S`)V (k, s, i, `) = 0,

for j = 1, 2.

Subsequently, we sum this relation over `. The summation over ` does have natural
boundaries due to the terms `! and (k−2r−2s+2−`)! in the denominator of V (k, s, r, `).
Hence, we obtain

Ej(k, s, r, Sk, Sr)
k−2r−2s+2∑

`=0

V (k, s, r, `) = 0, for j = 1, 2.

Next we use the command

CreativeTelescoping[E(k, s, r, Sk, Sr),Sr − 1,{Sk}]
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to find operators G(k, s, Sk) and H(k, s, r, Sk, Sr), where G is a polynomial in the given
terms and H is in Q(k, s, r)[Sk, Sr], such that

G(k, s, Sk) + (Sr − 1)H(k, s, r, Sk, Sr)

lies in the left ideal generated by E1(k, s, r, Sk, Sr) and E2(k, s, i, Sk, Si) in
Q(k, s, r)[Sk, Sr]. In particular, we have

G(k, s, Sk)
k−2r−2s+2∑

`=0

V (k, s, r, `) + (Sr − 1)H(k, s, r, Sk, Sr)
k−2r−2s+2∑

`=0

V (k, s, r, `) = 0.

(A.4)
If we sum this relation over all r in the range 1 ≤ r ≤ s, then only the upper boundary
is natural due to the term (s − r)! in the denominator of V (k, s, r, `). On the other
hand, the sum over r of the second term in (A.4) is still a telescoping sum. Even if it
does not vanish entirely, it is only a term for r = 1 (with a negative sign) that survives.
More precisely, we obtain

G(k, s, Sk)
s∑
r=1

k−2r−2s+2∑
`=0

V (k, s, r, `)−
k−2s∑
`=0

H(k, s, 1, Sk, Sr)V (k, s, 1, `) = 0. (A.5)

One simplifies H(k, s, 1, Sk, Sr)V (k, s, 1, `) to

H(k, s, 1, Sk, Sr)V (k, s, 1, `) =
(−1)k22−`+k−2s(k − 2s+ 3)2(4s− 1)2Pol(k, s, `)

(2k − 4s+ 1)(2k − 4s+ 3)(k − 2s+ 1)2

×
(k − 2s− 1)! (k − 2s+ 1)! (3

2
)s−1

`!2 (k − 2s− `)! (k − 2s− `+ 4)!(s− 1)!
, (A.6)

where Pol(k, s, `) is a huge polynomial in k, s, `. In principle, the sum over ` of this
expression can be evaluated by means of Chu–Vandermonde summation. However, it
is more effective to use again Koutschan’s HolonomicFunctions in the form

CreativeTelescoping[Annihilator[W (k, s, `),{Sk,S`}],S` − 1,{Sk}]

where W (k, s, `) is the right-hand side in (A.6), to find operators I(k, s, Sk) and
J(k, s, `, Sk, S`) such that

I(k, s, Sk)W (k, s, `) + (S` − 1)J(k, s, `, Sk, S`)W (k, s, `) = 0.

Summing this over `, we obtain

I(k, s, Sk)
k−2s∑
`=0

W (k, s, `) = 0.

Consequently, if we apply the operator I(k, s, Sk) on both sides of (A.5), we arrive at
the desired recurrence for the second double sum in (A.1),

I(k, s, Sk)G(k, s, Sk)
s∑
r=1

k−2r−2s+2∑
`=0

V (k, s, r, `) = 0. (A.7)
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Using the command OreTimes of the package HolonomicFunctions, one finally sees
that

I(k, s, Sk)G(k, s, Sk) = (18237 + 21392k + 9328k2 + 1792k3 + 128k4 − 45944s

− 39104ks− 11008k2s− 1024k3s+ 34352s2 + 18944ks2 + 2560k2s2

+ 42752s3 + 26624ks3 + 4096k2s3 − 105728s4 − 45056ks4

− 4096k2s4 + 67584s5 + 16384ks5 − 12288s6)

× (50877 + 45936k + 15472k2 + 2304k3 + 128k4 − 97080s− 64192ks

− 14080k2s− 1024k3s+ 55856s2 + 24064ks2 + 2560k2s2

+ 73472s3 + 34816ks3 + 4096k2s3 − 154880s4 − 53248ks4

− 4096k2s4 + 83968s5 + 16384ks5 − 12288s6)× C(k, s, Sk),

so that I(k, s, Sk)G(k, s, Sk) is a multiple of the recurrence operator for the first double
sum in (A.1). However, the multiplicative factor is visibly an odd integer and can thus
be cancelled in (A.7). We have therefore proved that both double sums in (A.1) satisfy
the same recurrence relation in k (of order 6) for k > 4s− 1, namely

6∑
l=0

γl(k, s)F (k + l, s) = 0,

with the coefficients γl(k, s) being defined in (5.19).

For verifying (5.17) for k = 4s − 1, 4s, 4s + 1, 4s + 2, 4s + 3, 4s + 4, one proceeds in
exactly the same way. The only difference is that, now, one searches for recurrences
in s. Hence, in the corresponding computations that closely follow those of the previous
paragraphs, instead of Sk one has to put Ss everywhere, together with a few other small
modifications. It turns out that, for each of the above specializations of k, both double
sums in (5.17) satisfy a linear recurrence of order 5 (obviously, a different one in each
case).
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