
THE POSET OF BIPARTITIONS
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Abstract. Bipartitional relations were introduced by Foata and Zeilberger in their
characterization of relations which give rise to equidistribution of the associated inver-
sion statistic and major index. We consider the natural partial order on bipartitional
relations given by inclusion. We show that, with respect to this partial order, the bi-
partitional relations on a set of size n form a graded lattice of rank 3n− 2. Moreover,
we prove that the order complex of this lattice is homotopy equivalent to a sphere of
dimension n − 2. Each proper interval in this lattice has either a contractible order
complex, or it is isomorphic to the direct product of Boolean lattices and smaller lat-
tices of bipartitional relations. As a consequence, we obtain that the Möbius function
of every interval is 0, 1, or −1. The main tool in the proofs is discrete Morse theory as
developed by Forman, and an application of this theory to order complexes of graded
posets, designed by Babson and Hersh.

1. Introduction

The poset of partitions Πn of the set {1, 2, . . . , n}, where the order is defined by
refinement, is a classical object in combinatorics. Various aspects of this poset have
been studied in the literature (cf. [17, Ch. 3]). In particular, its Möbius function has
been computed by Schützenberger and by Frucht and Rota independently (cf. [16,
p. 359]), and the homotopy type of its order complex is a wedge of spheres. (The latter
follows from the well-known fact that Πn is a geometric lattice, and from Björner’s
result [5] that geometric lattices are shellable.)

Closely related, and more relevant to the present work, is the poset of ordered parti-
tions of {1, 2, . . . , n}. It has a much simpler structure; for example, all intervals in this
poset are isomorphic to Boolean lattices.

Bipartitional relations (bipartitions, for short) were introduced by Foata and Zeil-
berger [8], who showed that these are the relations U for which the (appropriately
generalized) major index majU and inversion number invU are equidistributed on all
rearrangement classes. Han [12, Th. 5] showed that these bipartitional relations can
be axiomatically characterized as the relations U for which U and its complement are
transitive. (Cf. [7, 14] for further work on questions of this kind.)

Bipartitional relations on {1, 2, . . . , n} carry a natural poset structure, the partial
order being defined by inclusion of relations. We denote the corresponding poset of
bipartitions by Bip({1, 2, . . . , n}). Figure 1 shows the Hasse diagram of Bip({1, 2}). The
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∅

{(1, 2), (2, 2)} {(1, 1), (2, 1)} {(2, 1), (2, 2)}{(1, 1), (1, 2)}

{(1, 1), (2, 1), (2, 2)}{(1, 1), (1, 2), (2, 2)}

{(1, 2)} {(2, 1)}

{(1, 1), (1, 2), (2, 1), (2, 2)}

Figure 1. Bip({1, 2})

poset Bip({1, 2, . . . , n}) contains the poset of ordered partitions of {1, 2, . . . , n} and its
dual as subposets, and therefore can be considered as a common extension of the two.
It turns out that the richness of the structure of the poset of bipartitions is comparable
to that of the lattice of partitions. To begin with, Bip({1, 2, . . . , n}) is a graded lattice
of total rank 3n−2 (see Theorem 4.1 and Corollary 5.3), although it is neither modular
(cf. Example 7.7) nor geometric. Furthermore, the Möbius function of each interval
is 0, 1, or −1 (see Corollaries 9.4 and 10.3, and Theorem 10.4). We show this by
proving the stronger result that the order complex of Bip({1, 2, . . . , n}) is homotopy
equivalent to a sphere (see Theorem 9.3), and each proper interval is either the direct
product of Boolean lattices and smaller lattices of bipartitions, or has a contractible
order complex (see Proposition 10.2 and Theorem 10.4). The proofs of these facts form
the most difficult part of our paper. They are essentially based on an adaptation of
the Gray code of permutations due to Johnson [13] and Trotter [19] and on work of
Babson and Hersh [1] constructing a discrete Morse function in the sense of Forman
[9, 10, 11] for the order complex of a graded poset. The former is needed to decompose
Bip({1, 2, . . . , n}) into a union of distributive lattices in a shelling-like manner. This
decomposition is then refined using the well-known EL-shelling of distributive lattices
in order to obtain an enumeration of the maximal chains of Bip({1, 2, . . . , n}) to which
the proofs of the results of Babson and Hersh apply.

This paper is organized as follows. The next two sections are of preliminary nature.
Namely, Section 2 reviews basic facts on bipartitional relations, while Section 3 outlines
the basic ideas of the construction of Babson and Hersh. Here we observe that the
proofs of their main results are actually applicable to a larger class of enumerations of
maximal chains, which we call “enumerations growing by creating skipped intervals.”
In Section 4, we provide the proof that Bip({1, 2, . . . , n}) is a lattice, and we show that
it is graded and compute its rank function in Section 5. The purpose of Section 6 is
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to show that Bip({1, 2, . . . , n}) may be written as union of n! distributive lattices, each
indexed by a permutation, where the proof of distributivity is deferred to Section 7. We
begin Section 8 by reviewing the Johnson–Trotter algorithm and an easy generalization
to enumerating all elements in a direct product of symmetric groups. We continue by
using these enumerations to decompose the order complex of Bip({1, 2, . . . , n}), and
the order complex of certain intervals in it, in a shelling-like manner. Section 9 forms
the core of our article. Here we construct an enumeration of the maximal chains of
Bip({1, 2, . . . , n}) that refines the “J–T decomposition” introduced in Section 8, and to
which the results of Babson and Hersh are adaptable, as reviewed in Section 3. Finally,
in Section 10, we outline how the argument of the preceding section may be modified
to handle the case of proper intervals of Bip({1, 2, . . . , n}) as well.

2. Definition and elementary properties of bipartitional relations

In Definition 2.1 below, we formally introduce bipartitional relations. This definition
is (essentially) taken from Han [12]. Subsequently, we shall provide a different way
to see bipartitional relations, namely in terms of ordered bipartitions. Historically,
bipartitional relations were originally defined by Foata and Zeilberger in [8, Def. 1] in
the latter way, and Han showed in [12, Th. 5] the equivalence with a condition which, in
its turn, is equivalent to the transitivity condition that we use for defining bipartitional
relations as given below.

Definition 2.1. A relation U ⊆ X ×X on a finite set X is a bipartitional relation, if
both U and (X × X) \ U are transitive. We denote the set of bipartitional relations on
X by Bip(X).

Note that, by definition, the complement of a bipartitional relation is also a bipar-
titional relation. Following [12], we say that x, y ∈ X are incomparable, if either both
(x, y) and (y, x) belong to U , or none of them does. We will use the notation x ∼U y
for such pairs.

Lemma 2.2 (Han). The incomparability relation ∼U is an equivalence relation.

This is [12, Lemme 4], which may be easily verified directly, using Definition 2.1.
As it was first observed by Han in [12], every bipartitional relation U induces a linear

order <U on the U -incomparability classes as follows. For x 6∼U y we set x <U y if and
only if (x, y) ∈ U but (y, x) 6∈ U . The U -incomparability classes form a set partition
of X and we may order them by <U to obtain an ordered partition of X. An ordered
partition (B1, B2, . . . , Bk) of X is an ordered list of pairwise disjoint nonempty subsets
Bi ⊂ X, such that X is the union of the sets Bi. Every bipartitional relation may be
represented by a unique pair of an ordered partition (B1, B2, . . . , Bk) of X and a vector
(ε1, ε2, . . . , εk) ∈ {0, 1}k (cf. [12, Th. 5]), as follows. We set

(x, y) ∈ U ⇐⇒






x ∈ Bi and y ∈ Bj for some i < j,
or

x, y ∈ Bi for some i satisfying εi = 1.
(2.1)

In fact, the Bi’s must be the ∼U -equivalence classes, numbered in such a way that i < j
if and only if x <U y for every x ∈ Bi and y ∈ Bj. We must set εi = 1 if and only if
(x, x) ∈ U for all x ∈ Bi.
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For example, the bipartitional relation U = {(1, 2), (1, 3), (2, 3), (3, 2)} has two U -
equivalence classes: {1} and {2, 3}. Since 1 <U 2 and 1 <U 3, we must have B1 = {1}
and B2 = {2, 3}. Moreover, (1, 1) 6∈ U implies ε1 = 0, whereas (2, 2) ∈ U and (3, 3) ∈ U
imply ε2 = 1.

Following [8], we call the ordered partition (B1, B2, . . . , Bk) together with the vec-
tor (ε1, ε2, . . . , εk) an ordered bipartition, and we write it as (Bε1

1 , Bε2

2 , . . . , Bεk

k ). We
call the blocks Bi satisfying εi = 1 underlined (and, consequently, we call the blocks
Bi satisfying εi = 0 nonunderlined). Furthermore, we call the ordered bipartition
(Bε1

1 , Bε2

2 , . . . , Bεk

k ) defining U via (2.1) the ordered bipartition representation of U .
On the other hand, every relation U defined by an ordered bipartition representation
(Bε1

1 , Bε2

2 , . . . , Bεk

k ) in the way above is bipartitional: the transitivity of U is clear, and
the transitivity of (X × X) \ U is evident from the following trivial observation.

Lemma 2.3. If U ⊆ X×X is represented by the ordered bipartition (Bε1

1 , Bε2

2 , . . . , Bεk

k )

of X, then U c := (X×X)\U is represented by the ordered bipartition (B
1−εk−1

k , B
1−εk−1

k−1 ,

. . . , B1−ε1

1 ).

We will use the notation1 U(Bε1

1 , Bε2

2 , . . . , Bεk

k ) to denote the bipartitional relation
defined by its ordered bipartition representation (Bε1

1 , Bε2

2 , . . . , Bεk

k ). For example, the
bipartitional relation U = {(1, 2), (1, 3), (2, 3), (3, 2)} from above may also be given as
U({1}0, {2, 3}1).

Frequently, we shall write this ordered bipartition in a suggestive manner, where
we physically underline the elements of underlined blocks. For example, the above
bipartitional relation will also be written in the form U({1}, {2, 3}).

3. Discrete Morse matching via chain enumeration

Discrete Morse Theory, developed by Forman [9, 10, 11], is a combinatorial theory
that helps to determine the homotopy type of a simplicial complex. Roughly speaking,
in this theory a Morse function on the faces of a simplicial complex induces a Morse
matching, which in its turn enables one to “contract” parts of the complex which have
no contribution to the homotopy type of the complex, and which leaves over only
certain faces, called critical cells, from which the homotopy type of the complex can
(hopefully) be read off. In our paper, we shall not need to know exact definitions of
all these ingredients. For our purpose it will suffice to keep in mind that one of the
primary goals is to identify the critical cells. For a detailed description of the theory
we refer the reader to the above cited sources.

In this paper we will adapt a method developed by Babson and Hersh [1], designed

to find the homotopy type of the order complex △(P \ {0̂, 1̂}) of a graded partially

ordered set P with minimum element 0̂ and maximum element 1̂. Recall that the order
complex of a partially ordered set Q is the simplicial complex whose vertices are the
elements of Q and whose faces are the chains of Q. Babson and Hersh [1] find a Morse

matching on the Hasse diagram of the poset of faces of △(P \{0̂, 1̂}), the order relation
being defined by inclusion, by fixing an enumeration of the maximal chains of P , which
they call poset lexicographic order, defined as follows.

1The letter U has no specific significance here, but we selected it in tribute to the ubiquitous letter
U in Foata and Zeilberger’s article [8].
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Definition 3.1. A poset lexicographic order of a graded poset P is a total ordering
c1, . . . , cN of its maximal chains with the following property: assume that for some i < j
two maximal chains ci and cj contain the same elements x1, . . . , xk at ranks 1, 2, . . . , k,
but at rank k+1 the element x′

k+1 ∈ ci is different from the element x′′
k+1 ∈ cj. Then any

maximal chain containing {x1, . . . , xk, x
′
k+1} comes before any maximal chain containing

{x1, . . . , xk, x
′′
k+1} in the total ordering.

The above definition is an exact rephrasing of [1, Def. 1.2] and, in this form, it is
easily seen to be equivalent to the definition of a chain-edge labelling with the first atom
property, as defined by Billera and Hetyei [3, Def. 9]. Every graded poset has a poset
lexicographic order: we may draw the Hasse diagram of the poset in the plane and
enumerate its maximal chains in such a way that, for any pair of maximal chains c′ and
c′′ which contain the same elements at ranks 1, 2, . . . , k but have different elements at
rank k + 1, the chain c′ comes before the chain c′′ in the enumeration if the element of
c′ at rank k +1 is to the left of the element of c′′ at rank k +1. Such an enumeration of
maximal chains was considered in [2]. The enumeration of maximal chains induced by
a CL-labelling, as defined by Björner and Wachs [6], is also a poset lexicographic order.
The key property of a poset lexicographic order that is used in all proofs of Babson and
Hersh in [1] (and also suffices to prove the linear inequalities shown in [2] and [3]) is
that the enumeration of maximal chains considered grows by creating skipped intervals,
a notion (implicitly) introduced in [1, Remark 2.1]). It is not difficult to see that this
notion is equivalent to the following.

Definition 3.2. Let P be a graded poset of rank n+1 with a unique minimum element
0̂ and a unique maximum element 1̂. An enumeration c1, . . . , cN of all maximal chains
of P grows by creating skipped intervals if for every maximal chain ci there is a family
of intervals I(ci) with elements [a, b] = {a, a + 1, . . . , b} ⊆ {1, 2, . . . , n}, none of the
intervals contained in another, with the following property: a chain c contained in a
maximal chain ci is also contained in a a maximal chain cj for some j < i if and only
if the set of ranks of c is disjoint from at least one interval in I(ci).

Babson and Hersh [1] state their main results for poset lexicographic orders only.
However, a careful inspection shows that their proofs also apply to the larger class of
enumerations of maximal chains growing by creating skipped intervals. This is what
we need for our purposes since we shall consider an enumeration of maximal chains of
Bip({1, 2, . . . , n}) which is not a poset lexicographic order (see Example 9.1) but still
has the property defined in Definition 3.2 (as shown in Lemma 9.2).

The following theorem presents the corresponding obvious generalization of
[1, Th. 2.2].

Theorem 3.3 (Babson–Hersh). Let P be a graded poset of rank n + 1 with 0̂ and

1̂, and let c1, . . . , cN be an enumeration of its maximal chains that grows by creating
skipped intervals. Then, in the Morse matching constructed by Babson and Hersh in [1,
paragraphs above Th. 2.1], each maximal chain ck contributes at most one critical cell.
The chain ck contributes a critical cell exactly when the union of all intervals listed in
I(ck) equals {1, 2, . . . , n}.

If the maximal chain ck contributes a critical cell, its dimension may be found by
finding the J-intervals J(ck) associated to the family of intervals I(ck). The process of
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finding the system of J-intervals is given in [1, p. 516] and may be extended without
any change to enumerations of maximal chains that grow by creating skipped intervals
as follows.

Definition 3.4. Consider an enumeration of all maximal chains of a graded poset of
rank n + 1 with 0̂ and 1̂ that grows by creating skipped intervals. Let ck be a maximal
chain whose associated interval system I(ck) satisfies

⋃

[u,v]∈I(ck)

[u, v] = {1, 2, . . . , n}.

We define the associated J-intervals J(ck) as the output of the following process:

(0) Initialize by setting I = I(ck) and J = ∅.
(1) Let [u, v] be the interval in I whose left end point u is the least. Add [u, v] to J ,

and remove it from I.
(2) Replace each interval [x, y] in I by the intersection [x, y]∩ [v + 1, n]. Define the

“new” I to be the resulting new family of intervals.
(3) Delete from I those intervals which are not minimal with respect to inclusion.
(4) Repeat steps (1)–(3) until I = {∅}. The output of the algorithm is J .

Our wording differs slightly from the one used by Babson and Hersh, since they
consider the families I(ck) and J(ck) as families of subsets of ck, whereas we consider
them as families of subsets of {1, . . . , n}.

The dimension of the critical cell contributed by a maximal chain ck is given in
[1, Cor. 2.1] and remains valid for the enumerations of maximal chains that grow by
creating skipped intervals. We state the result below for the convenience of the reader.

Theorem 3.5 (Babson–Hersh). If a maximal chain ck contributes a critical cell, then
the dimension of this critical cell is one less than the number of intervals listed in J(ck).

We will use the above result in combination with the main theorem of Discrete Morse
Theory due to Forman [9, first (unnumbered) corollary], [10, Th. 0.1], [11, Th. 2.5].

Theorem 3.6. Suppose △ is a simplicial complex with a discrete Morse function. Then
△ is homotopy equivalent to a CW complex with exactly one cell of dimension p for
each critical cell of dimension p. In particular, if there is no critical cell then △ is
contractible.

4. The lattice of bipartitional relations

In this section, we formally define the order relation on the set of bipartitional rela-
tions, and we prove that the so defined poset is a lattice (see Theorem 4.1). At the end
of this section, we record an auxiliary result concerning the lattice structure of Bip(X)
in Lemma 4.4, which will be needed later in Section 6 in the proof of Lemma 6.2.

Let U and V be two bipartitional relations in Bip(X). We define U ≤ V if and only
if U ⊆ V as subsets of X ×X. In this manner, Bip(X) becomes a partially ordered set.

Theorem 4.1. For any finite set X, the poset Bip(X) is a lattice.

Proof. By [17, Prop. 3.3.1], it is sufficient to show that every pair of bipartitional
relations has a join. This will be done in Proposition 4.2 below. �
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We remind the reader that a pair (x, y) belongs to the transitive closure of a relation
W ⊆ X × X if there exists a chain x0, x1, . . . xn ∈ X with n > 0 such that x0 = x,
xn = y and (xi, xi+1) ∈ W for i = 0, 1, . . . , n − 1.

Proposition 4.2. For every U, V ∈ Bip(X) there exists the join U ∨ V (a smallest
bipartitional relation with respect to inclusion containing both U and V ), and it is given
by the transitive closure of U ∪ V .

Proof. Let W denote the transitive closure of U ∪ V . Every bipartitional relation
containing both U and V contains also W by transitivity. We only need to show that
W is bipartitional. It is clearly transitive, only the transitivity of (X ×X)\W remains
to be seen.

Assume by way of contradiction that (x, y) and (y, z) belong to the complement of
W but (x, z) ∈ W for some x, y, z ∈ X. By the definition of W , there exists a sequence
x0, x1, . . . , xn ∈ X such that n > 0, x0 = x, xn = z, and for every i ∈ {0, 1, . . . , n − 1}
we have (xi, xi+1) ∈ U or (xi, xi+1) ∈ V . Without loss of generality we may assume
that we have (xn−1, z) ∈ U . We cannot have n = 1 since this implies (x, z) ∈ U , in
contradiction with (x, y) 6∈ U ⊆ W , (y, z) 6∈ U ⊆ W , and the transitivity of U c (where,
as before, U c denotes the complement (X × X) \ U). By induction on i, we see that
(x, xi) belongs to W , for i = 1, 2, . . . , n − 1. In particular, we have (x, xn−1) ∈ W .
The pair (xn−1, y) cannot belong to U , otherwise we have (xn−1, y) ∈ W and, by the
transitivity of W , also (x, y) ∈ W . On the other hand, by the transitivity of the relation
U c, we obtain from (xn−1, y) 6∈ U and (y, z) 6∈ U that (xn−1, z) 6∈ U , in contradiction
with our assumption. �

We may represent any relation R ⊆ X × X as a directed graph on the vertex set
X by drawing an edge x → y exactly when (x, y) ∈ R. If we represent U ∪ V as a
directed graph, we obtain that (x, y) ∈ U ∨ V if and only if there is a directed path
x = x0 → x1 → . . . → xm = y such that each edge belongs to the graph representing
U∪V . By the transitivity of U and V , a shortest such path is necessarily UV -alternating
in the sense that every second edge belongs to U , the other edges belonging to V . There
is no bound on the minimum length of such a shortest path, as is shown in the following
example.

Example 4.3. Let X = {1, 2, . . . , n} and consider the bipartitional relation

U = U({n, n − 1}, {n − 2, n − 3}, . . .),

where each block has two elements, except possibly for the rightmost block, which is a
singleton if n is odd. Consider also

V = U({n}, {n − 1, n − 2}, {n − 3, n − 4}, . . .),

where each block has two elements, except for the leftmost block, which is always a
singleton, and possibly for the rightmost block which is a singleton if n is even. It is
easy to verify that

U ∨ V = ({1, 2, . . . , n}).

The shortest UV -alternating path from 1 to n is 1 → 2 → · · · → n, since (i, j) 6∈ U ∪V
if j − i ≥ 2.
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On the other hand, if only (x, y) belongs to U ∨ V but (y, x) does not, then the
shortest UV -alternating path from x to y has length 1.

Lemma 4.4. Let U and V be bipartitional relations on X. If for some x, y ∈ X we
have (x, y) ∈ U ∨ V and (y, x) 6∈ U ∨ V then (x, y) already belongs to U ∪ V .

Proof. Assume, by way of contradiction, that the shortest UV -alternating path x =
x0 → x1 → . . . → xm = y from x to y satisfies m > 1. Then, because of m > 1,
(x, y) belongs to U c and V c. Since (y, x) 6∈ U ∨ V , the pair (y, x) also belongs to U c

and V c. Thus x ∼U y and x ∼V y. We claim that we may replace x0 = x with y and
xn = y with x in the UV -alternating path x = x0 → x1 → . . . → xm = y and obtain
a UV -alternating path y → x1 → . . . → x. Indeed, x ∼U y and (x, y) 6∈ U imply that
x and y belong to the same nonunderlined block of U . Hence, if (x0, x1) ∈ U , then x1

belongs to a block of U to the “right” of the block containing x, whence (y, x1) ∈ U .
Similarly, if (x0, x1) ∈ V , then x ∼V y and (x, y) 6∈ V yield (y, x1) ∈ V . The proof that
xn may be replaced with x is analogous. We obtain that there is a UV -alternating path
from y to x, implying (y, x) ∈ U ∨V , in contradiction to our assumption. Therefore we
must have m = 1. �

5. Cover relations and rank function

In this section we describe the cover relations in the bipartition lattice Bip(X). This
description will allow us to show that Bip(X) is a graded poset, and to give an explicit
formula for the rank function.

Theorem 5.1. Let U, V ∈ Bip(X) be bipartitional relations. Then V covers U if and
only if its ordered bipartition representation may be obtained from the ordered bipartition
representation of U in one of the three following ways:

(i) join two adjacent underlined blocks of U ,
(ii) separate a nonunderlined block of U into two adjacent nonunderlined blocks, or
(iii) change a nonunderlined singleton block of U into an underlined singleton block.

Moreover, Bip(X) is a graded poset, with rank function

rk(U(Bε1

1 , Bε2

2 , . . . , Bεk

k )) = 3 ·
∑

i:εi=1

|Bi| + |{i : εi = 0}| − |{i : εi = 1}| − 1. (5.1)

Example 5.2. The cover relations in Bip({1, 2}) are represented in Figure 1. The cover
relations in a subset of Bip({1, 2, 3}) are represented in Figure 2. (The fact that
the cover relations in the latter subposet are also cover relations in the entire poset
Bip({1, 2, 3}) is shown in Proposition 7.8.)

Proof of Theorem 5.1. First we show that the ordered bipartition representation of
V must come from the ordered bipartition representation of U in one of the three
ways mentioned in the statement. For that purpose, assume that V covers U =
U(Bε1

1 , Bε2

2 , . . . , Bεk

k ). Let us compare the restrictions of V and U to every block Bi.
Note that the restriction of a bipartitional relation on X to a subset of X is also bipar-
titional.
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Case 1. V |Bi
properly contains U |Bi

for some i. In this case we must have εi = 0.
The relation W given by

(x, y) ∈ W if and only if






(x, y) ∈ U ,
or

x, y ∈ Bi and (x, y) ∈ V ,

is a bipartitional relation, properly containing U , and contained in V . In fact, its ordered
bipartition representation may be obtained from (Bε1

1 , Bε2

2 , . . . , Bεk

k ) by replacing Bεi

i =
B0

i with the ordered bipartition representation of V |Bi
. Since V covers U , we must

have V = W .
If V |Bi

contains no underlined block then merging two adjacent blocks of V |Bi
yields

a bipartitional relation U ′ on Bi satisfying U |Bi
⊆ U ′ $ V |Bi

. Since V covers U and,
hence, V |Bi

covers U |Bi
, we must have U ′ = U |Bi

. Therefore V is obtained from U
by an operation of type (ii).

If V |Bi
contains an underlined block, then by changing this block to nonunderlined

we may obtain a bipartional relation properly contained in V and still containing U .
Hence V |Bi

must be Bi ×Bi. The only case when there is no bipartition on Bi strictly
between ∅ and Bi × Bi is when |Bi| = 1, and V is obtained from U by an operation of
type (iii).

Case 2. V |Bi
= U |Bi

for all i. In this case every ∼U -equivalence class is contained
in some ∼V -equivalence class, and this containment is proper for at least one of the
Bi’s, since otherwise we must have V = U . Hence the situation of Case 1 applies
to at least one of the blocks of V c and U c. (Clearly, U c must cover V c). Thus, by
the already proven case, the ordered bipartition representation of U c must be obtained
from the ordered bipartition representation of V c by an operation of type (ii) or (iii).
Here we may exclude an operation of type (iii), since we are not allowed to have the
∼U -equivalence classes (which are the same as the ∼Uc-equivalence classes) to coincide
with the ∼V -equivalence classes. Therefore U c is obtained from V c by an operation of
type (ii), which by Lemma 2.3 is equivalent to saying that V is obtained from U by an
operation of type (i).

It is easy to see that the function rk given in (5.1) assigns zero to the empty bipar-
titional relation U(X0), and increases by exactly one every time we perform one of the
operations (i), (ii), or (iii). By the already established part of the statement, rk increases
by one on every cover relation, and so Bip(X) is a graded poset with rank function rk.
On the other hand, every operation of type (i), (ii), or (iii) on a bipartitional relation U
must yield a bipartitional relation V covering U , since the rank function has increased
by exactly one. �

Corollary 5.3. If |X| = n then Bip(X) has rank 3n − 2.

6. π-compatible bipartitions

The purpose of this section is to introduce the notion of compatibility of bipartitional
relations with a given ordered partition (the latter having been defined in the paragraph
after Lemma 2.2). This notion will be of crucial importance for the subsequent struc-
tural analysis of Bip(X) in the subsequent sections. As a first application, we use it
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in Proposition 6.4 to give a criterion to decide U ⊆ V when U and V are bipartitional
relations given by their ordered bipartition representations.

Definition 6.1. We call an ordered partition π = (C1, . . . , Ck) compatible with the
bipartitional relation U , if for every x, y ∈ X we have

x ∈ Ci, y ∈ Cj, (x, y) ∈ U, (y, x) 6∈ U imply i < j.

Equivalently, if U = U(Bε1

1 , Bε2

2 , . . . , Bεl

l ), then every Bi is the union of consecutively
indexed Cj’s. A particular case arises if π consists of singleton blocks only. In this
case, given that X = {x1, x2, . . . , xn}, there is a permutation ρ of the elements of X
such that π = ({ρ(x1)}, {ρ(x2)}, . . . , {ρ(xn)}). By abuse of terminology, we shall often
say in this case that “the ordered partition π is a permutation,” and the bipartitional
relation U is compatible with such an ordered partition π if and only if the elements of
B1, B2, . . . , Bl may be listed in such an order that placing these lists one after the other
in increasing order of blocks gives the left-to-right reading of the permutation π. For
any ordered partition π, we denote the subposet of π-compatible bipartitions in Bip(X)
by Bipπ(X). The Hasse diagram of Bip({1},{2},{3})({1, 2, 3}) is shown in Figure 2.

U({1, 2}, {3}})

U({1}, {2, 3}})

U({1, 2}, {3}) U({1}, {2}, {3}) U({1}, {2, 3}})

U({1}, {2}, {3}) U({1}, {2}, {3}) U({1}, {2}, {3}})

U({1}, {2}, {3}) U({1}, {2}, {3}) U({1}, {2}, {3}})

U({1, 2, 3})

U({1, 2}, {3})

U({1}, {2, 3}) U({1}, {2}, {3}) U({1, 2}, {3}})

U({1, 2, 3})

U({1}, {2, 3})

Figure 2. Bip({1},{2},{3})({1, 2, 3})

The next lemma shows that this subposet is also a sublattice.

Lemma 6.2. Let π be an ordered partition of X. If U ⊆ X × X and V ⊆ X × X are
π-compatible bipartitional relations then so are U ∧ V and U ∨ V .

Proof. Let π = (C1, . . . , Ck) and assume (x, y) ∈ U ∨ V but (y, x) 6∈ U ∨ V for some
x ∈ Ci and y ∈ Cj. By Lemma 4.4, we have (x, y) ∈ U ∪ V . Without loss of gen-
erality we may assume (x, y) ∈ U . Since U is π-compatible, we obtain i < j. Hence
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U ∨ V is also π-compatible. The other half of the statement follows by duality, since
any bipartitional relation is (C1, . . . , Ck)-compatible if and only if its complement is
(Ck, . . . , C1)-compatible. �

Using Theorem 5.1 we may deduce the following fact.

Proposition 6.3. Let c : ∅ = U0 ⊂ U1 ⊂ · · · ⊂ U3n−2 = X × X be a maximal chain in
Bip(X), where n = |X|. Then there is a unique ordered partition πc which is compatible
with all elements of the chain. This ordered partition is a permutation.

Proof. For n = 1 the statement is trivially true. Assume n ≥ 2 and let x and y be two
different elements of X. Consider the smallest i for which Ui contains at least one of
(x, y) and (y, x). Such an i exists since U3n−2 = X ×X, and it is positive since U0 = ∅.
We claim that exactly one of (x, y) and (y, x) will belong to Ui. In fact, Ui−1 does not
contain any of them, so x and y belong to the same nonunderlined ∼Ui−1

-equivalence
class. Ui is obtained from Ui−1 by one of the operations described in Theorem 5.1. Since
at least one of (x, y) and (y, x) was added, this operation can only be the separation of
the ∼Ui−1

-equivalence class of x and y into two nonunderlined blocks. Such an operation
adds exactly one of (x, y) and (y, x). Let us set x <c y if (x, y) ∈ Ui and (y, x) 6∈ Ui,
respectively y <c x if (y, x) ∈ Ui and (x, y) 6∈ Ui.

We want to construct an ordered partition πc which is compatible with all Ui’s. If
x <c y, this implies that x belongs to an earlier block of πc than y. There is at most
one such ordered partition: the permutation, induced by the relation <c, provided that
<c is a linear order.

We are left to show that <c is indeed a linear order. Clearly, for distinct x and y
exactly one of x <c y and y <c x holds. We only need to show the transitivity of the
relation <c. Assume by way of contradiction that x <c y, y <c z and z <c x hold for
some {x, y, z} ⊆ X. Then we have

(x, y) ∈ Ui, (y, x) /∈ Ui,
(y, z) ∈ Uj, (z, y) /∈ Uj,
(z, x) ∈ Uk, (x, z) /∈ Uk,

for some i, j, k. By the cyclic symmetry of the list (x, y, z) we may assume that either
i ≤ j ≤ k or k ≤ j ≤ i.

If i ≤ j ≤ k, then, since (x, y) ∈ Ui ⊆ Uj and (y, z) ∈ Uj, the transitivity of the
relation Uj implies (x, z) ∈ Uj ⊆ Uk, which is in contradiction with (x, z) /∈ Uk.

On the other hand, if k ≤ j ≤ i, then since (y, z) ∈ Uj and (z, x) ∈ Uk ⊆ Uj, the
transitivity of the relation Uj implies (y, x) ∈ Uj ⊆ Ui, which is in contradiction with
(y, x) /∈ Ui. �

Proposition 6.3 allows us to characterize U ⊆ V when U and V are bipartitional
relations given by their ordered bipartition representation.

Proposition 6.4. Let U, V ∈ Bip(X) be bipartitional relations represented as U =
U(Bε1

1 , Bε2

2 , . . . , Bεk

k ) and V = U(Cη1

1 , Cη2

2 , . . . , Cηl

l ). Then U is contained in V if and
only if the following three conditions are satisfied:

(i) there is an ordered partition π = ({π1}, {π2}, . . . , {πn}) that is also a permuta-
tion which is compatible with both U and V ,
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(ii) every underlined Bi is contained in some underlined Cj,
(iii) every nonunderlined Ci is contained in some nonunderlined Bj.

Proof. Assume first that U is contained in V . Then there is a maximal chain c in
Bip(X) containing both U and V . By Proposition 6.3 there is an ordered partition
πc compatible with every element of c, and this ordered partition is a permutation, so
condition (i) is satisfied. Consider an underlined block Bi. For every x, y ∈ Bi we have
(x, y) ∈ U and so (x, y) ∈ V since U ⊆ V . Hence Bi is contained in some Cj. The proof
of condition (iii) is analogous.

We are left to show that whenever U is not contained in V , at least one of the given
conditions is violated. Assume U 6⊆ V and consider an ordered pair (x, y) ∈ U \ V .
If (y, x) ∈ U holds as well then x and y are contained in the same underlined block
in the representation of U . Thus condition (ii) is violated since (x, y) 6∈ V . Similarly
(y, x) 6∈ V implies a violation of condition (iii). We are left with the case where
(x, y) ∈ U , (y, x) 6∈ U , (x, y) 6∈ V , and (y, x) ∈ V . Now condition (i) is violated.
Indeed, let π = ({π1}, {π2}, . . . , {πn}) be an arbitrary ordered partition that is also a
permutation, satisfying x = πi and y = πj. By definition, if π is compatible with U then
we must have i < j while compatibility with V requires just the opposite, j < i. �

7. The distributivity of the sublattice of π-compatible bipartitions

In this section we introduce a representation of all π-compatible bipartitions, where
π is an arbitrary fixed permutation. We will use this representation to show that
Bipπ(X) is a distributive lattice, for all ordered partitions π. Without loss of generality,
we may assume X = {1, 2, . . . , n} and, for the moment, we may even assume that
π = ({1}, {2}, . . . , {n}). The analogous results for an arbitrary finite set X and an
arbitrary permutation π may be obtained by renaming the elements.

Definition 7.1. Let U be a ({1}, {2}, . . . , {n})-compatible bipartitional relation, repre-
sented as U = U(Bε1

1 , Bε2

2 , . . . , Bεk

k ), such that the elements in each block are listed in
increasing order. We define the code of U as the vector (u1, . . . , un) where each ui is
an element of the set {±1,±3}, given by the following rule:

ui =






−1 if i is listed as the first element in a nonunderlined block;

−3 if i is in a nonunderlined block, but not listed first;

1 if i is listed as the last element in an underlined block;

3 if i is in an underlined block, but not listed last.

For example, the code of the bipartitional relation U({1, 2}, {3}, {4, 5}, {6}) is (3, 1,
−1,−1,−3, 1). Evidently, the ordered bipartition representing U may be uniquely
reconstructed from its code, we only need to determine which vectors are valid codes
of bipartitional relations.

The definition of the code of U is inspired by formula (5.1) giving the rank of U .
According to this formula, we may compute rk(U) of a ({1}, {2}, . . . , {n})-compatible
bipartional relation U as follows. We take the ordered bipartition representation of U ,
where we list the elements in increasing order. For the first element in each nonun-
derlined block we increase rk(U) by 1, and we associate no contribution to the other
elements in nonunderlined blocks. For the last element in each underlined block we
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increase rk(U) by 2, and for each other element of an underlined block we increase
rk(U) by 3. Thus we could equivalently define a code where the ordered list of weights
(−1,−3, 1, 3) is replaced by the list (1, 0, 2, 3). The rank of U is the sum of the co-
ordinates in this “simpler code.” The list of weights (−1,−3, 1, 3) is obtained from
(1, 0, 2, 3) by the linear transformation x 7→ 2x − 3. Thus, even for the code we have
chosen, rk(U) is a linear function of the sum of the coordinates in its code. Our choice
of code has two “advantages” over the “more obvious” code described above:

– The description of a valid code in Corollary 7.3 below involves very simple linear
inequalities with integer bounds.

– For our code, the code of U c is obtained by simply taking the negative of the
code of U .

In the end, it is only a matter of taste whether one prefers the list of weights
(−1,−3, 1, 3) or the list (1, 0, 2, 3), and the results below may be easily transformed
to fit the reader’s preference.

Lemma 7.2. A vector (u1, . . . , un) ∈ {±1,±3}n is the code of a ({1}, {2}, . . . , {n})-
compatible bipartitional relation if and only if the following conditions are satisfied:

(i) u1 6= −3;
(ii) un 6= 3;
(iii) if ui = −3 for some i > 1 then ui−1 < 0;
(iv) if ui = 3 for some i < n then ui+1 > 0.

Proof. The necessity of the conditions above is obvious.
Conversely, given a vector (u1, . . . , un) ∈ {±1,±3}n satisfying the conditions above,

we may find a unique ordered bipartition (Bε1

1 , Bε2

2 , . . . , Bεk

k ) representing a relation
whose code is (u1, . . . , un), as follows:

(a) Start the first block with 1 if u1 = −1 and with 1 if u1 > 0. Continue reading
the ui’s, left to right.

(b) For 1 < i < n, if ui = −1, start a new nonunderlined block with i. Note
that rule (iv) prevents us from starting a nonunderlined block without ending a
preceding underlined block.

(c) For 1 < i ≤ n, if ui = −3 then add a nonunderlined i to the nonunderlined
block that is currently being written (by condition (iii)).

(d) For 1 < i ≤ n, if ui = 1 then end an underlined block with i. This block is a
singleton if ui−1 < 0, and so i − 1 belongs to a preceding nonunderlined block,
or if ui−1 = 1, and so i − 1 ends the preceding underlined block.

(e) For 1 < i < n, if ui = 3, then add an underlined i to the current underlined
block if ui−1 = 3, and start a new underlined block with i if ui−1 < 3.

Clearly the above process yields the only U whose code is (u1, . . . , un), and conditions
(i) through (iv) guarantee that the process never halts with an error. �

Lemma 7.2 may be rephrased in terms of inequalities as follows.

Corollary 7.3. A vector (u1, . . . , un) ∈ {±1,±3}n is the code of a ({1}, {2}, . . . , {n})-
compatible bipartitional relation if and only if it satisfies u1 ≥ −1, un ≤ 1 and ui −
ui+1 ≤ 2 for i = 1, 2, . . . , n − 1.
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Theorem 7.4. Let U and V be ({1}, {2}, . . . , {n})-compatible bipartitional relations
with codes (u1, . . . , un) respectively (v1, . . . , vn). Then U ⊆ V if and only if us ≤ vs

holds for s = 1, 2, . . . , n.

Proof. Assume that U = U(Bε1

1 , Bε2

2 , . . . , Bεk

k ) and V = U(Cη1

1 , Cη2

2 , . . . , Cηl

l ). Since
U and V are both ({1}, {2}, . . . , {n})-compatible, by Proposition 6.4, U is contained
in V if and only if every underlined Bi is contained in some underlined Cj and every
nonunderlined Ci is contained in some nonunderlined Bj. It suffices to show that this
is equivalent to us ≤ vs for all s.

Assume U ⊆ V first, and consider the possible values of us, for a fixed s ∈ {1, 2, . . . ,
n}. Let Bj be the block of U containing s. If us = −3, then us ≤ vs is automatically
true. If us = −1 then vs cannot be −3, otherwise the nonunderlined block Ci containing
s has a smaller element in Ci, whereas the least element of the nonunderlined block
Bj is s. Only Bj could contain Ci, but it does not. This contradiction shows that
vs ≥ −1 = us. If us = 1 then s is an element in an underlined block Bi of U . This
block Bi must be contained in some underlined Cj. In other words, s belongs to an
underlined block in V showing vs ≥ 1 = us. Finally, if us = 3, then {s, s + 1} is the
subset of some underlined Bi. This Bi is contained in some underlined Cj, for which we
must have {s, s + 1} ⊆ Cj. Thus, s is not the last element in Cj, forcing vs ≥ 3 = us.

For the converse, assume, by way of contradiction, that us ≤ vs for 1 ≤ s ≤ n, but
U 6⊆ V . Then either condition (ii) or (iii) of Proposition 6.4 is violated.

Case 1. Some nonunderlined Ci is not contained in any nonunderlined Bj. If the
least element s of Ci belongs to some underlined Bj then, because of vs < 0 and
us > 0 we have us > vs, a contradiction. It remains the case where s belongs to some
nonunderlined Bj. In this case let t be the least element of Ci which does not belong to
the same Bj as s. Such a t exists since the entire block Ci is not contained in Bj. Now
we have vt = −3 and ut ≥ −1, implying vt < ut, again contradicting our assumption.

Case 2. Some underlined Bi is not contained in any underlined Cj. This case is the
dual of the previous one, see also Lemma 7.5 below.

In both cases we obtain that U 6⊆ V implies ut > vt for some t, which is absurd. �

Lemma 7.5. If (u1, . . . , un) is the code of the bipartitional relation U then (−un, . . . ,
−u1) is the code of U c.

The proof is straightforward and is left to the reader.
Using Theorem 7.4 and Corollary 7.3 we are able to show that the sublattice of

π-compatible bipartitional relations is distributive for any ordered partition π.

Theorem 7.6. Let π be any ordered partition on X. Then the lattice Bipπ(X) is
distributive.

Proof. Without loss of generality, let X = {1, 2, . . . , n}. It suffices to consider the case
where π = ({1}, {2}, . . . , {n}). For, if π = (C1, C2, . . . , Ck), then, from the remarks
immediately following Definition 6.1, it is easy to see by compressing the blocks Ci to
singletons {i} that

Bipπ({1, 2, . . . , n}) ∼= Bip({1},{2},...,{k})({1, 2, . . . , k}). (7.1)
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From now on, let π = ({1}, {2}, . . . , {n}). By Theorem 7.4 and Corollary 7.3, the
partially ordered set Bipπ(X) is isomorphic to the set of all vectors (u1, . . . , un) ∈
{±1,±3} satisfying u1 ≥ −1, un ≤ 1 and ui − ui+1 ≤ 2 for i = 1, 2, . . . , n− 1, partially
ordered by the relation (u1, . . . , un) ≤ (v1, . . . , vn) if and only if ui ≤ vi holds for all i.
We claim that the join and meet operations in this representation are given by

(u1, . . . , un) ∨ (v1, . . . , vn) = (max(u1, v1), . . . , max(un, vn)) and

(u1, . . . , un) ∧ (v1, . . . , vn) = (min(u1, v1), . . . , min(un, vn)).

Clearly the above operations yield the join and meet of the two vectors in the larger lat-
tice of all vectors from {±1,±3}n, partially ordered by the Cartesian product of natural
orders of integers. Thus we only need to show that (max(u1, v1), . . . , max(un, vn)) and
(min(u1, v1), . . . , min(un, vn)) satisfy the inequalities required by Corollary 7.3, given
that (u1, . . . , un) and (v1, . . . , vn) satisfy these inequalities. The verification of this ob-
servation is straightforward and is left to the reader. The theorem now follows from
the fact that the max and min operations are distributive over each other. �

The next example shows that the entire lattice Bip(X) is not distributive for |X| ≥ 2,
and that, in fact, it is not even modular.

Example 7.7. Let X = {1, 2, . . . , n} for some n ≥ 2 and consider the bipartitional
relations U1 = U({1}, {2}, . . . , {n}), U2 = U({1}, {2}, . . . , {n}), and V = U({n}, {n −
1}, . . . , {1}). It is easy to verify that U1 is contained in U2, the join U1 ∨ V is X × X,
and the meet U2 ∧ V is ∅. The set {U1, U2, V, ∅, X × X}, shown in Figure 3, is thus a
sublattice, isomorphic to the smallest example of a nonmodular lattice.

∅ = U({1, 2, . . . , n})

V = U({n}, {n − 1}, . . . , {1})

U1 = U({1}, {2}, . . . , {n})

U2 = U({1}, {2}, . . . , {n})

X × X = U({1, 2, . . . , n})

Figure 3. Nonmodular sublattice contained in Bip({1, 2, . . . , n})

By Birkhoff’s theorem [17, Th. 3.4.1], every distributive lattice is isomorphic to the
lattice of order ideals in the poset of its join-irreducible elements. In order to apply this
result, we need to find the join-irreducible elements in Bipπ(X). In preparation for the
corresponding result (see Theorem 7.10 below), we first characterize the cover relations
in Bipπ(X). Again, without loss of generality, we may assume that X = {1, 2, . . . , n}
and π = ({1}, {2}, . . . , {n}).

Proposition 7.8. Let X = {1, 2, . . . , n}, and let π be the permutation π = ({1}, {2},
. . . , {n}). Let U $ V be π-compatible bipartitional relations in Bip(X). Then V covers
U in Bip(X) if and only if V covers U in Bipπ(X).
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Proof. Clearly, if V covers U in Bip(X) it also covers it in Bipπ(X). We only need to
show that whenever V ⊃ U holds in Bipπ(X), then there is a π-compatible U ′ covering
U in Bip(X) such that U ⊂ U ′ ⊆ V holds in Bipπ(X). We prove this statement by
considering the codes (u1, . . . , un) of U and (v1, . . . , vn) of V . Assume that ui ≤ vi holds
for i = 1, 2, . . . , n and that j is the least index such that uj < vj.

Case 1. uj = −3. In this case j > 1 and uj−1 is negative. The element j is in a
nonunderlined block of U , and it is not the first element of this block. Let U ′ be the
({1}, {2}, . . . , {n})-compatible bipartitional relation obtained from U by splitting the
block containing j into two adjacent blocks, such that the second block begins with j.
Then the code (u′

1, . . . , u
′
n) of U ′ is obtained from the code (u1, . . . , un) by increasing

uj to u′
j = −1 and leaving all other coordinates unchanged. Since uj < vj, we have

−1 ≤ vj, and thus u′
i ≤ vi holds for i = 1, 2, . . . , n.

Case 2. uj = −1. In this case uj−1 (if it exists) is not 3 and U has a nonunderlined
block starting at j. Since −1 = uj < vj, we also have 1 ≤ vj, and so vj is positive.

Subcase 2a. uj+1 = −3, i.e., j+1 belongs to the nonunderlined block of U that started
at j. Thus, by condition (iii) in Lemma 7.2, vj+1 cannot be −3 and so −1 ≤ vj+1.
Let U ′ be the ({1}, {2}, . . . , {n})-compatible bipartitional relation obtained from U by
splitting the block containing j +1 into two adjacent blocks, such that the second block
begins with j + 1. Just like in Case 1, the code (u′

1, . . . , u
′
n) of U ′ is obtained from the

code (u1, . . . , un) by increasing uj+1 = −3 to u′
j+1 = −1, and so u′

i ≤ vi holds for all i.

Subcase 2b. uj+1 6= −3, i.e., the nonunderlined block containing j is a singleton
block. Let U ′ be the ({1}, {2}, . . . , {n})-compatible bipartitional relation obtained from
U by changing the nonunderlined block {j} into an underlined block {j}. The code
(u′

1, . . . , u
′
n) of U ′ is obtained from the code (u1, . . . , un) by increasing uj = −1 to

u′
j = 1, leaving all other coordinates unchanged. Since vj ≥ 1, we have u′

i ≤ vi for all i.

Case 3. uj = 1 (thus vj = 3). There is an underlined block in U ending with j,
whereas the underlined block containing j in V does not end with j.

Subcase 3a. uj+1 < 0. By condition (iii) of Lemma 7.2, we must have uj+1 = −1.
Moreover, vj = 3 and condition (iv) of Lemma 7.2 imply vj+1 ≥ 1. Therefore there is a
nonunderlined block in U starting at j + 1 and, thus, uj+1 < vj+1 is satisfied. We may
now repeat the reasoning of Case 2 for j + 1.

Subcase 3b. uj+1 > 0, i.e., there is an adjacent underlined block in U starting with
j +1. Let U ′ be the ({1}, {2}, . . . , {n})-compatible bipartitional relation obtained from
U by merging the underlined blocks containing j and j +1. The code (u′

1, . . . , u
′
n) of U ′

is obtained from the code (u1, . . . , un) by increasing uj = 1 to u′
j = 3, leaving all other

coordinates unchanged. Since vj = 3, we have u′
i ≤ vi for all i. �

Corollary 7.9. For any permutation π of X, every interval [U, V ] in Bipπ(X) has the
same rank as the corresponding interval [U, V ] in Bip(X).

Now we are in the position to describe the join-irreducible elements in Bipπ(X).

Theorem 7.10. Let X = {1, 2, . . . , n} and π = ({1}, {2}, . . . , {n}). Then Bipπ(X) has
the following 3n − 2 join-irreducible elements:

(i) E(i) := U({1, . . . , i − 1}, {i, . . . , n}) for i ∈ {2, . . . , n}.
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(ii) F (i) := U({1, . . . , i − 1}, {i}, {i + 1, . . . , n}) for i ∈ {1, 2, . . . , n}. Here the first
block is omitted for i = 1 and the last block is omitted for i = n.

(iii) G(i) := U({1, . . . , i− 1}, {i, i + 1}, {i+2, . . . , n}) for i ∈ {1, 2, . . . , n− 1}. Here
the first block is omitted for i = 1 and the last block is omitted for i = n − 1.

Moreover, the bipartitional relations listed under (i) and (ii) are also join-irreducible
elements in Bip(X).

Proof. The bipartitional relations of type (i) above have rank 1 and are clearly join-
irreducible elements even in the larger lattice Bip(X). By Theorem 5.1, a biparti-
tional relation of type (ii) covers exactly one element of Bip(X), namely U({1, . . . , i −
1}, {i}, {i + 1, . . . , n}). This bipartitional relation belongs of course also to Bipπ(X).
Thus the bipartitional relations listed under (ii) are again join-irreducible elements even
in the larger lattice Bip(X).

The element G(i) in (iii) is not join-irreducible in Bip(X) since, by Theorem 5.1, it
covers exactly the two elements

U({1, 2, . . . , i − 1}, {i}, {i + 1}, {i + 2, . . . , n})

and
U({1, 2, . . . , i − 1}, {i + 1}, {i}, {i + 2, . . . , n}).

However, only one, namely the former, is π-compatible. Hence, by Proposition 7.8,
G(i) covers exactly one element in Bipπ(X), which means that it is join-irreducible in
Bipπ(X).

Conversely, if V is join-irreducible in Bipπ(X), then, be definition, it covers exactly
one element, U say, in Bipπ(X). By Proposition 7.8, V covers U also in Bip(X). (V
may cover other elements in Bip(X) as well, but they must not be π-compatible.) By
Theorem 5.1, U can be obtained from V by either splitting an underlined block into
adjacent underlined blocks, or by joining two adjacent nonunderlined blocks, or by
changing a singleton underlined block into a nonunderlined block. V is join-irreducible
if and only if exactly one such operation yields a π-compatible U . This excludes the
possibility of V having two underlined blocks, or an underlined block with more than
two elements, or three adjacent nonunderlined blocks. Furthermore, it also excludes the
possibility of V having an underlined block at the same time as having two adjacent
nonunderlined blocks. It is now obvious that only the possibilities listed under (i)–(iii)
remain. �

Figure 4 indicates the Hasse diagram of the subposet of join-irreducible elements of
Bip({1},{2},...,{n})({1, . . . , n}).

8. The J–T decomposition of the order complex of an interval in the

bipartition lattice

This section contains preparatory material for the proofs of our main results in Sec-
tions 9 and 10. The ultimate goal is to construct an enumeration of all maximal chains
in Bip(X), respectively in any interval thereof, such that the results of Babson and
Hersh reviewed in Section 3 become applicable. The way that we propose here to arrive
there proceeds in two steps. Recall that, by Proposition 6.3, each maximal chain c de-
termines a unique permutation π such that all elements of c are π-compatible. The first
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F (n)F (1) F (2) F (3) · · · F (n − 1)

E(2)

G(1) G(n − 1)

E(n)

G(2)

E(3)

Figure 4. Join-irreducible elements of Bip({1},{2},...,{n})({1, . . . , n})

step, performed in this section, will consist of finding a suitable enumeration of all per-
mutations. This induces a “pre-enumeration” of the maximal chains, by putting them
together in smaller groups according to their associated permutations and enumerating
these groups. Then, in the subsequent sections, we shall refine this pre-enumeration
further to a full enumeration of all maximal chains by declaring how to enumerate the
maximal chains corresponding to the same permutation.

For all of Bip(X), the proposed enumeration of all permutations of X will be obtained
by the classical Johnson–Trotter algorithm [13, 19]. For proper intervals in Bip(X),
we will need to consider a variant adapted to enumerate only specific subgroups of
the full permutation group (namely Young subgroups, although this term will be of
no importance in the sequel; the interested reader may consult [18, Sec. 7.18] for more
information). We recall the Johnson–Trotter algorithm next, and subsequently describe
its variant. In Theorem 8.7 we prove a property of the Johnson–Trotter algorithm and
of its variant which will be crucial in proving the key lemma, Lemma 9.2, and of its
adaptation to the results of Section 10, showing that the enumerations of maximal chains
that we construct grows by creating skipped intervals. The adaptation of Lemma 9.2
to the case of intervals in Section 10 is made possible by the introduction of the J–T
decomposition of the order complex of an interval in Definition 8.9, and by Theorem 8.10,
discussing the properties of this decomposition.

The original version of the Johnson–Trotter algorithm [13, 19] is used to enumerate
all permutations of {1, 2, . . . , n} in such a way that each permutation differs from the
preceding one by a transposition of adjacent elements. It may be described recursively
as follows.

(1) The Johnson–Trotter enumeration of all permutations of {1} is ({1}).
(2) Assume we are given the Johnson–Trotter enumeration of all permutations of

{1, 2, . . . , n−1}. If the permutation ({σ1}, . . . , {σn−1}) is an odd numbered item
in this enumeration, then we replace it with the list

({σ1}, . . . , {σn−1}, {n}), ({σ1}, . . . , {n}, {σn−1}), . . . , ({n}, {σ1}, . . . , {σn−1}).

Otherwise we replace it with the list

({n}, {σ1}, . . . , {σn−1}), ({σ1}, {n}, . . . , {σn−1}), . . . , ({σ1}, . . . , {σn−1}, {n}).
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For example, the Johnson–Trotter enumeration of all permutations of {1, 2, 3} is

({1}, {2}, {3}), ({1}, {3}, {2}), ({3}, {1}, {2}),

({3}, {2}, {1}), ({2}, {3}, {1}), ({2}, {1}, {3}).

Before we are able to describe the announced variant, we need to first review some
facts about ordered partitions and their relation to bipartitions.

Definition 8.1. We say that an ordered partition π of X refines the ordered partition
(C1, . . . , Ck) if each block Ci is the union of consecutive blocks of π.

Lemma 8.2. For an ordered partition π of X, a bipartitional relation U(Bε1

1 , Bε2

2 , . . . ,
Bεk

k ) ⊆ X ×X is π-compatible if and only if π refines the ordered partition (B1, B2, . . . ,
Bk).

Refinement defines a partial order on the ordered partitions of X. The poset thus
obtained is isomorphic to the subposet of Bip(X) formed by all bipartitions having only
underlined blocks. This isomorphism is made precise in the following definition.

Definition 8.3. Let (C1, C2, . . . , Ck) be an ordered partition of X. We define the
underlined representation of (C1, C2, . . . , Ck) in Bip(X) as the bipartitional relation
U(C1

1 , C
1
2 , . . . , C

1
k), and we denote it by U(C1, C2, . . . , Ck).

Lemma 8.4. Let π and ρ be ordered partitions of X. Then π refines ρ if and only if
U(π) ≤ U(ρ) in Bip(X).

If U = U(Bε1

1 , Bε2

2 , . . . , Bεk

k ) and V = U(Cη1

1 , Cη2

2 , . . . , Cηl

l ), then we will be interested
in finding all permutations refining the ordered partition (B1, B2, . . . , Bk), as well as
the ordered partition (C1, C2, . . . , Cl).

Corollary 8.5. A permutation π of X refines the ordered partitions (B1, B2, . . . , Bk)
and (C1, C2, . . . , Cl) if and only if

U(π) ≤ U(B1, B2, . . . , Bk) ∧ U(C1, C2, . . . , Cl).

Note that U(B1, B2, . . . , Bk) ∧ U(C1, C2, . . . , Cl) is taken in Bip(X). Hence, the re-
sulting bipartitional relation may also have nonunderlined blocks in its ordered bipar-
tition representation. By Proposition 6.4, such a bipartitional relation cannot contain
a bipartition having only underlined blocks, and in that case there is no permutation
refining both (B1, B2, . . . , Bk) and (C1, C2, . . . , Cl). If, however, U(B1, B2, . . . , Bk) ∧
U(C1, C2, . . . , Cl) has an ordered bipartition representation (D1

1, . . . , D
1
m) consisting of

underlined blocks only, then π refines both (B1, B2, . . . , Bk) and (C1, C2, . . . , Cl) if and
only if it refines (D1, . . . , Dm). Therefore enumerating all permutations associated to
some maximal chain containing U and V is equivalent to enumerating all permutations
refining a given ordered partition.

Now we adapt the Johnson–Trotter algorithm to list all permutations refining a given
ordered partition (C1, . . . , Ck) of {1, 2, . . . , n} such that each permutation differs from
the preceding one by a transposition of adjacent blocks, as follows.

(1) For n = 1 we may only have k = 1, C1 = {1}, and we list the permutation
({1}).
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(2) Assume we already know how to build the Johnson–Trotter enumeration of
all permutations refining any given ordered partition of {1, 2, . . . , n − 1}. Let
(C1, . . . , Ck) be an ordered partition of {1, 2, . . . , n}. If {n} = Cm is a block by
itself, then (C1, . . . , Cm−1, Cm+1, . . . , Ck) is an ordered partition of {1, 2, . . . , n−
1}. List all permutations π of {1, 2, . . . , n−1} refining (C1, . . . , Cm−1, Cm+1, . . . ,
Cn), and insert {n} between the last block of π contained in Cm−1 and the first
block of π contained in Cm+1. (At most one of these blocks may be missing if
m = 1 or m = k.) We obtain an appropriate enumeration.

From now on we may assume that the block Cm containing n contains at least
one more element. Introducing C ′

j = Cj \ {n} for j = 1, . . . , k, (C ′
1, . . . , C

′
k) is

an ordered partition of {1, 2, . . . , n − 1}, and we consider the Johnson–Trotter
enumeration of all permutations refining this ordered partition. Let

π = ({π1}, . . . , {πr}, . . . , {πs}, . . . , {πn})

be a permutation in this enumeration, where C ′
m = {πr, . . . , πs}. (Note that r

and s are the same for all permutations in the enumeration.) If π is an odd
numbered item in this enumeration, then we replace it with the list

({π1}, . . . , {πr}, . . . , {πs}, {n}, . . . , {πn}),

({π1}, . . . , {πr}, . . . , {n}, {πs}, . . . , {πn}),

. . . , ({π1}, . . . , {n}, {πr}, . . . , {πs}, . . . , {πn}),

otherwise we replace it with the list

({π1}, . . . , {n}, {πr}, . . . , {πs}, . . . , {πn}),

({π1}, . . . , {πr}, {n}, . . . , {πs}, . . . , {πn}),

. . . , ({π1}, . . . , {πr}, . . . , {πs}, {n}, . . . , {πn}).

For example, the Johnson–Trotter enumeration of all permutations refining ({1, 3},
{2, 4}) is built recursively as follows.

(1) The list of all permutations refining ({1}) is ({1}).
(2) The list of all permutations refining ({1}, {2}) is ({1}, {2}).
(3) The list of all permutations refining ({1, 3}, {2}) is

({1}, {3}, {2}), ({3}, {1}, {2}).

(4) The list of all permutations refining ({1, 3}, {2, 4}) is

({1}, {3}, {2}, {4}), ({1}, {3}, {4}, {2}),

({3}, {1}, {4}, {2}), ({3}, {1}, {2}, {4}).

Recall (see [5, p. 324]) that the shelling of a simplicial complex △ is an enumeration
F1, . . . , Fm of its facets such that each facet has the same dimension as △ and, for each
i > 1, any face τ ⊂ Fi that is contained in some preceding Fk, is also contained in a
preceding Fj whose intersection Fj ∩ Fi with Fi has codimension one (that is, making
Fj ∩ Fi “as large as possible”). Our next goal is to decompose each order complex
△([U, V ] \ {U, V }) in a manner resembling a shelling. In the decomposition we are
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going to describe, the role of the facets in a shelling will be played by subcomplexes of
the form

△([U, V ]π \ {U, V }), (8.1)

where π is a permutation such that U and V are π-compatible, and [U, V ]π stands
for the subposet of [U, V ] consisting of all π-compatible bipartitional relations. As a
consequence, we need to understand intersections of subcomplexes of the form (8.1). For
this, it is necessary to know when a bipartitional relation is simultaneously compatible
with two different ordered partitions. In this regard, Lemma 8.4 yields the following
immediate characterization.

Corollary 8.6. A bipartitional relation U is simultaneously compatible with the ordered
partitions (B1, . . . , Bk) and (C1, . . . , Cl) if and only if U is compatible with the ordered
partition (D1, . . . , Dm) given by

U(D1, . . . , Dm) = U(B1, . . . , Bk) ∨ U(C1, . . . , Cl).

Obviously (D1, . . . , Dm) is the “finest common coarsening” of the ordered partitions
(B1, . . . , Bk) and (C1, . . . , Cl). In particular, in the case where X = {1, 2, . . . , n} and the
permutations σ = ({σ1}, . . . , {σn}) and π = ({π1}, . . . , {πn}) differ in a transposition
of adjacent blocks, say, π = ({σ1}, . . . , {σi+1}, {σi}, . . . {σn}), then

U(σ) ∨ U(π) = ({σ1}, . . . , {σi, σi+1}, . . . , {σn}).

Thus U(σ) ∨ U(π) covers U(σ) and U(π) in Bip({1, 2, . . . , n}), and the intersection
Bipσ({1, 2, . . . , n}) ∩ Bipπ({1, 2, . . . , n}) has the largest possible rank that a proper
intersection of two lattices of the form Bipσ({1, 2, . . . , n}) may have. As a consequence,
for every interval [U, V ] such that U and V are simultaneously σ- and π-compatible,
the subcomplexes △([U, V ]σ \ {U, V }) and △([U, V ]π \ {U, V }) are either equal or their
intersection has codimension 3 in both subcomplexes (recall the formula (5.1) for the
rank function and the fact that, in the latter case, the above intersection arises by
identifying σi and σi+1). This makes such intersections analogous to codimension 1
faces in a shelling (recall again the definition [5, p. 324] of a shelling).

The following technical result is the key result for establishing the above indicated
shelling-like property of the announced J–T decomposition (to be defined in Defini-
tion 8.9) in Theorem 8.10.(iii).

Theorem 8.7. Let (C1, . . . , Ck) be an ordered partition of the set {1, 2, . . . , n} and con-
sider the Johnson–Trotter enumeration of all permutations refining this ordered parti-
tion. If τ precedes σ in this enumeration, then there is a permutation π preceding σ in
this enumeration, which differs from σ only in a transposition of adjacent blocks, and
which satisfies

U(τ) ∨ U(σ) ≥ U(π) ∨ U(σ) ⋗ U(σ).

Here, V1 ⋗ V2 means that V1 covers V2.

Example 8.8. The permutation τ = ({4}, {1}, {2}, {3}) precedes σ = ({4}, {2}, {3}, {1})
in the Johnson–Trotter enumeration of all permutations of {1, 2, 3, 4}, and we have

U(τ) ∨ U(σ) = ({4}, {1, 2, 3}).
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The permutation π = ({4}, {3}, {2}, {1}) also precedes σ in the Johnson–Trotter enu-
meration, and π differs from σ only in the transposition of the adjacent blocks {2} and
{3}. Thus we have

U(π) ∨ U(σ) = ({4}, {2, 3}, {1}),

implying
({4}, {1, 2, 3}) ≥ ({4}, {2, 3}, {1}) ⋗ ({4}, {2}, {3}, {1}).

We should perhaps also point out that, here, π does not immediately precede σ in the
Johnson–Trotter enumeration.

Proof of Theorem 8.7. We prove the statement by induction on n. There is nothing
to prove for n = 1. Assume that the statement holds up to n − 1. Consider a τ
preceding a σ in the Johnson–Trotter enumeration of all permutations refining the
ordered partition (C1, . . . , Ck) of {1, 2, . . . , n}. Let σ \ n, respectively τ \ n, denote
the permutations obtained from σ, respectively τ , by deleting the block {n}. Let
(C ′

1, . . . , C
′
l) be the ordered partition considered right before inserting n in the Johnson–

Trotter enumeration associated to (C1, . . . , Ck). In other words, we have l = k − 1 and
(C ′

1, . . . , C
′
k−1) = (C1, . . . , Cm−1, Cm+1, . . . , Ck) if {n} = Cm is a block by itself (for

some m), and we have l = k and C ′
j = Cj \ {n} for all j otherwise. Note that σ \ n and

τ \ n belong to the set of all permutations of {1, 2, . . . , n − 1} refining (C ′
1, . . . , C

′
l).

Case 1. σ \ n 6= τ \ n. Then τ \ n precedes σ \ n in the Johnson–Trotter enumera-
tion of all permutations refining (C ′

1, . . . , C
′
l). By our induction hypothesis, there is a

permutation π′ preceding σ \ n in this enumeration such that we have

U(τ \ n) ∨ U(σ \ n) ≥ U(π′) ∨ U(σ \ n) ⋗ U(σ \ n). (8.2)

Here, for some i, we have

U(π′) ∨ U(σ \ n) = ({σ1}, . . . , {σi, σi+1}, . . . , {σn−1}),

and we may assume

σ \ n = ({σ1}, . . . , {σi}, {σi+1}, . . . , {σn−1})

and
π′ = ({σ1}, . . . , {σi+1}, {σi}, . . . , {σn−1}).

Subcase 1a. σ = ({σ1}, . . . , {σj}, {n}, {σj+1}, . . . , {σn−1}) holds for some j 6= i. Then
we set

π := ({π′
1}, . . . , {π

′
j}, {n}, {π

′
j+1}, . . . , {π

′
n−1}),

where π′ = ({π′
1}, . . . , {π

′
n−1}). In other words, we insert {n} at the same place into

π′ as the place where it needs to be inserted into σ \ n to obtain σ. By the recursive
structure of the Johnson–Trotter enumeration, π precedes σ in the enumeration of all
permutations refining (C1, . . . , Ck). Moreover, π differs from σ only in transposing the
adjacent blocks {σi} and {σi+1}. Thus,

U(π) ∨ U(σ) = ({σ1}, . . . , {σi, σi+1}, . . . , {σn}), (8.3)

and it covers U(σ) in Bip({1, 2, . . . , n}). Finally, by (8.2), the ordered bipartition
representation of U(τ \n)∨U(σ \n) contains σi and σi+1 in the same underlined block.
Therefore σi and σi+1 are also in the same underlined block in the ordered bipartition
representing U(τ)∨U(σ)- Together with (8.3), this implies U(τ)∨U(σ) ≥ U(π)∨U(σ).
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Subcase 1b. σ = ({σ1}, . . . , {σi}, {n}, {σi+1}, . . . , {σn−1}). In the same way as at the
end of the previous subcase, the fact that σi and σi+1 belong to the same underlined
block of U(τ \n)∨U(σ \n) implies that they also belong to the same underlined block
of U(τ)∨U(σ). Now, (σi, n) ∈ U(σ) and (n, σi+1) ∈ U(σ) imply that n also belongs to
the same underlined block of U(τ)∨U(σ). Thus U(τ)∨U(σ) contains the bipartitional
relation V represented by the ordered bipartition

({σ1}, . . . , {σi−1}, {σi, n, σi+1}, {σi+2}, . . . , {σn−1}).

As a consequence, by Lemma 8.4, the block Cm containing n also contains σi and σi+1.
Therefore the permutations

ρ′ = ({σ1}, . . . , {n}, {σi}, {σi+1}, . . . , {σn−1})

and
ρ′′ = ({σ1}, . . . , {σi}, {σi+1}, {n}, . . . , {σn−1})

both refine (C1, . . . , Ck). By the structure of the Johnson–Trotter enumeration, one of
them precedes σ. This one may be chosen as π. It follows that

U(τ) ∨ U(σ) ≥ V 	 U(π) ∨ U(σ) ⋗ U(σ).

Case 2. σ \ n = τ \ n. Without loss of generality, we may assume that σ \ n = τ \ n
is an even numbered item in the Johnson–Trotter enumeration of all permutations
refining (C ′

1, . . . , C
′
l). Since τ precedes σ in the Johnson–Trotter enumeration of all

permutations refining (C1, . . . , Ck), we must have

τ = ({σ1}, . . . , {σi}, {n}, {σi+1}, . . . , {σn−1})

and
σ = ({σ1}, . . . , {σj}, {n}, {σj+1}, . . . , {σn−1})

for some i < j ≤ n − 1. It is easy to see that

U(τ) ∨ U(σ) = U({σ1}, . . . , {σi}, {σi+1, . . . σj, n}, {σj+1}, . . . , {σn−1}).

As a consequence, by Lemma 8.4, the block Cm containing n also contains σi+1, . . . σj.
Therefore the permutation

π = ({σ1}, . . . , {σj−1}, {n}, {σj}, . . . , {σn−1})

also refines (C1, . . . , Ck) and it precedes σ in the Johnson–Trotter enumeration. We
have

U(π) ∨ U(σ) = ({σ1}, . . . , {σj−1}, {n, σj}, {σj+1} . . . , {σn−1}).

In particular, U(π)∨U(σ) covers U(σ), and U(π)∨U(σ) is contained in U(τ)∨U(σ). �

Using Theorem 8.7, we now show that, for any interval [U, V ] ⊆ Bip(X), the order
complex △([U, V ] \ {U, V }) has a “shelling-like” decomposition. Namely, we may write

△([U, V ] \ {U, V }) =
⋃

π

△([U, V ]π \ {U, V }), (8.4)

where the union is taken over all permutations π such that both U and V are π-
compatible. (The notation [U, V ]π was defined just after (8.1).) We may enumerate
these permutations using the Johnson–Trotter enumeration. To see the similarity with
a shelling, the reader should imagine that the role of facets in a shelling is played in
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the decomposition (8.4) by the subcomplexes △([U, V ]π \{U, V }), all of which have the
same dimension as △([U, V ] \ {U, V }) by Corollary 7.9. Moreover, by Theorem 7.6,
each poset [U, V ]π is a distributive lattice and, by a result due to Provan [15] (cf. also
[4, Cor. 2.2]), the order complex △([U, V ]π \ {U, V }) is either the order complex of a
Boolean lattice (and thus isomorphic to the boundary complex of a simplex) or it is a
polyhedral ball. In the case where U = ∅ and V = X × X, i.e., when [U, V ] = Bip(X),
the sublattice [U, V ]π is never a Boolean lattice, thus we decompose the order complex
as a union of balls. Note next that for proper intervals [U, V ] ⊂ Bip(X) it may happen
that △([U, V ]π \ {U, V }) = △([U, V ]σ \ {U, V }) holds for some π 6= σ. For example,
in the case where the ordered bipartition (Bε1

1 , Bε2

2 , . . . , Bεk

k ) representing U and the
ordered bipartition (Cη1

1 , Cη2

2 , . . . , Cηl

l ) representing V satisfy ε1 = η1 = 0 and B1 =
C1 = {1, 2} then a permutation π = ({π1}, . . . , {πn}) refining both (B1, B2, . . . , Bk)
and (C1, C2, . . . , Cl) must satisfy {π1, π2} = {1, 2}, but it does not matter whether
π1 = 1 and π2 = 2 or π1 = 2 and π2 = 1. By Proposition 6.3, π arises as the
only ordered partition that is compatible with all elements of some maximal chain c
containing U and V , but the choice of the values of π1 and π2 is related to the part of
c that is outside the interval [U, V ]. We may overcome this difficulty by keeping only
the first copy of each △([U, V ]π \ {U, V }).

Definition 8.9. Let [U, V ] ⊆ Bip(X) be an interval, where U = (Bε1

1 , Bε2

2 , . . . , Bεk

k ),
V = (Cη1

1 , Cη2

2 , . . . , Cηl

l ), and let the ordered partition (D1, . . . , Dm) be given by

U(D1, . . . , Dm) = U(B1, B2, . . . , Bk) ∧ U(C1, C2, . . . , Cl).

We define the J–T decomposition of △([U, V ] \ {U, V }) as follows:

(1) We list the order complexes △([U, V ]π \ {U, V }) in the order of the Johnson–
Trotter enumeration of permutations π refining (D1, . . . , Dm). (By Corollary 8.5,
these are the permutations π such that U and V are both π-compatible.)

(2) If the same simplicial complex occurs several times in the above enumeration,
we keep only its first occurrence and remove all other occurrences.

(3) The remaining list △1, . . . ,△N is the J–T decomposition of △([U, V ] \ {U, V }).

Theorem 8.10. The J–T decomposition △1, . . . ,△N of △([U, V ] \ {U, V }) has the
following properties:

(i) each △i has the same dimension as △([U, V ] \ {U, V });
(ii) each △i is either isomorphic to the boundary complex of a simplex or it is a

polyhedral ball;

(iii) for i > 1, any face contained in △i∩
(⋃

j<i △j

)
is also contained in △k for some

k < i such that there are permutations σ and π that differ only in a transposition
of adjacent blocks, with △i = △([U, V ]σ \{U, V }) and △k = △([U, V ]π \{U, V }).

Proof. We only need to show (iii) since, as mentioned above, item (i) follows from Corol-
lary 7.9, and item (ii) follows from Provan’s result [15, 4]. Assume △i = △([U, V ]σ \
{U, V }) and consider a face γ that is also contained in △j = △([U, V ]τ \ {U, V }) for
some j < i. This means that the elements of γ are σ-compatible and τ -compatible
bipartitional relations. By Corollary 8.6, these bipartitional relations are also com-
patible with the ordered bipartition ρ given by U(ρ) = U(τ) ∨ U(σ). By Theo-
rem 8.7, there is a permutation π preceding σ in the Johnson–Trotter enumeration
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of all permutations ρ with the property that both U and V are ρ-compatible, such
that U(τ) ∨ U(σ) ≥ U(π) ∨ U(σ) ⋗ U(σ). Thus the elements of the face γ are also
π-compatible, and γ is contained in

△([U, V ]σ \ {U, V }) ∩△([U, V ]π \ {U, V }).

Here △([U, V ]π \ {U, V }) = △k for some k < i in the J–T decomposition, in particular,
△k 6= △i. �

9. The topology of the order complex of Bip(X) \ {∅, X × X}

In this section we determine the homotopy type of the order complex of Bip(X) \
{∅, X×X}. To achieve this goal, we construct a listing of all maximal chains contained
in Bip(X) and then use the results of Babson and Hersh [1] as described in Section 3
to see that there is exactly one critical cell in this order complex with respect to the
induced discrete Morse matching.

We now describe the announced listing of all maximal chains of Bip(X). Without
loss of generality, we may assume that X = {1, 2, . . . , n}. The construction involves
the following three steps.

Step 1. By Proposition 6.3, for each maximal chain c in Bip(X), there is a unique
permutation σ such that all elements of c are σ-compatible. Let us list the permutations
of X using the Johnson–Trotter enumeration and associate to each permutation σ
the set of all σ-compatible maximal chains, or, equivalently, of all maximal chains in
Bipσ(X).

Step 2. By Theorem 7.6, for a fixed σ, the lattice Bipσ(X) is distributive. By [5,
Th. 4.5], it has an EL-labelling using its join-irreducible elements. In this EL-labelling,
an edge UV , where U and V are elements of Bipσ(X) such that U is covered by V , is
labelled by the unique join-irreducible element W ∈ Bipσ(X) such that W ⊆ V but
W 6⊆ U . We use this EL-labelling to order the maximal chains of Bipσ(X) in the
following way. The join-irreducible elements of Bipσ(X) for σ = ({1}, {2}, . . . , {n}) are
given in Proposition 7.10. By permuting the elements of X, it is easy to see that the
join-irreducible elements of Bipσ(X) are the following:

(i) E(σ, i) := ({σ1, . . . , σi−1}, {σi, . . . , σn}) for i ∈ {2, . . . , n},
(ii) F (σ, i) := ({σ1, . . . , σi−1}, {σi}, {σi+1, . . . , σn}) for i ∈ {1, 2, . . . , n},
(iii) G(σ, i) := ({σ1, . . . , σi−1}, {σi, σi+1}, {σi+2, . . . , σn}) for i ∈ {1, 2, . . . , n − 1}.

For all what follows in this section, we fix the linear extension

E(σ, 2) ≺ F (σ, 1) ≺ E(σ, 3) ≺ F (σ, 2) ≺ G(σ, 1) ≺ · · ·

≺ E(σ, k + 2) ≺ F (σ, k + 1) ≺ G(σ, k) ≺ · · ·

E(σ, n) ≺ F (σ, n − 1) ≺ G(σ, n − 2) ≺ F (σ, n) ≺ G(σ, n − 1). (9.1)

(Here, we use the symbol ≺ to distinguish the linear extension in (9.1) from the order
relation in Bipσ(X).) Now, as announced above, we associate to each maximal chain
c : ∅ = U0 ⋖ · · · ⋖ U3n−2 = X × X contained in Bipσ(X) the word z1z2 · · · z3n−2, where
the letter zi is the unique join-irreducible element contained in Ui but not contained in
Ui−1. We list the maximal chains in Bipσ(X) according to the lexicographic order of
their associated words.
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Step 3. Given a σ-compatible maximal chain c and a σ′-compatible maximal chain
c′, the chain c precedes c′ if and only if either σ precedes σ′ in the Johnson–Trotter
enumeration, or if σ = σ′ and c precedes c′ in the ordering of the maximal chains in
Bipσ(X) described in Step 2.

The list of chains we thus obtain is in general not a poset lexicographic order as
defined in Definition 3.1, as it may be seen in the following example.

Example 9.1. Consider the cover relations U({1, 2, 3, 4}) ⋖ U({1, 2}, {3, 4})
and U({1, 2, 3, 4}) ⋖ U({1, 4}, {2, 3}) in Bip({1, 2, 3, 4}). Here U({1, 2}, {3, 4}) is
({1}, {2}, {3}, {4})-compatible and ({2}, {1}, {3}, {4})-compatible, but not
({1}, {4}, {2}, {3})-compatible, whereas U({1, 4}, {2, 3}) is ({1}, {4}, {2}, {3})-compat-
ible but not ({1}, {2}, {3}, {4})-compatible nor ({2}, {1}, {3}, {4})-compatible . In
the Johnson–Trotter enumeration of all permutations of {1, 2, 3, 4}, the permutations
({1}, {2}, {3}, {4}), ({1}, {4}, {2}, {3}), ({2}, {1}, {3}, {4}) follow in this order. It is
not true that every maximal chain extending U({1, 2, 3, 4}) ⋖ U({1, 2}, {3, 4}) precedes
every maximal chain extending U({1, 2, 3, 4}) ⋖ U({1, 4}, {2, 3}) since any
({1}, {4}, {2}, {3})-compatible maximal chain precedes any ({2}, {1}, {3}, {4})-com-
patible maximal chain. On the other hand, it is also not true that every maximal
chain extending U({1, 2, 3, 4})⋖U({1, 4}, {2, 3}) precedes every maximal chain extend-
ing U({1, 2, 3, 4}) ⋖ U({1, 2}, {3, 4}) since any ({1}, {2}, {3}, {4})-compatible maximal
chain precedes any ({1}, {4}, {2}, {3})-compatible maximal chain.

However, our list of maximal chains still grows by skipped intervals, as defined in
Definition 3.2, which we prove in the lemma below. In the proof of the lemma, and
also later, we use the following well-known property of the EL-labelling of distributive
lattices which we recalled in Step 2 above, and which involves the notion of a descent
in a word z1z2 · · · z3n−2: an index i for which zi ≻ zi+1 is called a descent. When we
list the maximal chains of Bipσ(X) in lexicographic order as described in Step 2, then
a subset {Ui1 , . . . , Uik} of a maximal chain c with associated word z1z2 · · · z3n−2 does
not belong to any previously listed maximal chain if and only if the set of their ranks
contains all descents of z1z2 · · · z3n−2.

Lemma 9.2. Let X = {1, 2, . . . , n}, and let σ = ({σ1}, {σ2}, . . . , {σn}) be a permuta-
tion of X. Furthermore, let c be a σ-compatible maximal chain of Bip(X), and assume
that the word z1z2 · · · z3n−2 is associated to c in Bipσ(X). As before, we list the max-
imal chains in Bipσ(X) according tot he lexicographic order of their associated words,
as described in Step 2 at the beginning of this section. Then a chain contained in c is
also contained in an earlier listed maximal chain of Bipσ(X) if and only if the set of its
ranks is disjoint from at least one of the following intervals:

(i) all singletons [i, i] = {i} such that zi ≻ zi+1;
(ii) all intervals [i, j] with zi = E(σ, q), zj+1 = G(σ, q − 1), for some q, such that

the permutation π obtained from σ by exchanging the adjacent blocks {σq−1} and
{σq} precedes σ in the Johnson–Trotter enumeration.

Proof. Consider first the intersection of c : ∅ = U0⋖· · ·⋖U3n−2 = X×X with another σ-
compatible maximal chain that was listed earlier. As noted in the paragraph preceding
the lemma, a chain belongs to such an intersection if and only if its set of ranks does
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not contain the descent set {i : zi ≻ zi+1} of the word z1z2 · · · z3n−2 or, equivalently, if
it is disjoint from at least one of the singletons listed in (i).

Consider next the intersection of c with a τ -compatible maximal chain c′, where
τ precedes σ in the Johnson–Trotter enumeration. This intersection is contained in
Bipτ (X)∩Bipσ(X) which, by part (iii) of Theorem 8.10, is contained in some Bipπ(X),
where π is obtained from σ by exchanging the adjacent blocks {σq−1} and {σq}, for
some q, and π precedes σ in the Johnson–Trotter enumeration. We may extend the
intersection c ∩ c′ to a π-compatible maximal chain. Clearly, the intersection c ∩ c′ is
then a chain in Bipπ(X) ∩ Bipσ(X). Consider now the word z1z2 · · · z3n−2 associated
to c and define i and j by zi = E(σ, q) and zj+1 = G(σ, q − 1). Equivalently, i is the
smallest rank at which we find a bipartition Ui that contains q − 1 and q in different
(nonunderlined) blocks, and j + 1 is the smallest rank at which we find a bipartition
Uj+1 containing q − 1 and q in the same underlined block. Thus the chain

U0 ⋖ U1 ⋖ · · · ⋖ Ui−1 < Uj+1 ⋖ Uj+2 ⋖ · · · ⋖ U3n−2 (9.2)

is π-compatible and σ-compatible, whereas any Uk of rank k ∈ [i, j] is only σ-compatible.
The intersection c ∩ c′ must be contained in (9.2), whence its set of ranks must be dis-
joint from [i, j]. Therefore, the intersection c ∩ c′ satisfies condition (ii) with the above
π.

Conversely, let γ be a subchain of c such that the set of its ranks avoids an interval
[i, j], where the interval is one of the intervals described in item (ii). Then γ is a
subchain of

U0 ⋖ U1 ⋖ · · · ⋖ Ui−1 < Uj+1 ⋖ Uj+2 ⋖ · · · ⋖ U3n−2.

This chain may be extended to the π-compatible maximal chain obtained from c by
replacing each Uk, i ≤ k ≤ j, by the bipartitional relation U ′

k obtained from Uk by
swapping the elements σq−1 and σq. Therefore γ is contained in the intersection of c
with a π-compatible maximal chain, where π precedes σ. �

Theorem 9.3. The order complex

△(Bip(X) \ {∅, X × X}) (9.3)

is homotopy equivalent to a sphere of dimension n − 2.

Proof. Without loss of generality, we may assume that X = {1, 2, . . . , n}. Lemma 9.2
says that the enumeration of maximal faces of the order complex (9.3) described in
Steps 1–3 at the beginning of this section grows by creating skipped intervals. Conse-
quently, by Theorem 3.3, in the Morse matching constructed by Babson and Hersh [1]
from such an enumeration, at most one critical cell is contributed per maximal chain,
namely exactly when the set of intervals I(c) (defined in Definition 3.2) covers all ele-
ments of the set of ranks {1, . . . , 3n − 2}.

We are going to show that there is exactly one maximal chain in our enumeration that
contributes a critical cell. This maximal chain is the lexicographically first chain among
the maximal chains that are compatible with the last permutation in the Johnson–
Trotter enumeration, namely

τ̂ := ({2}, {1}, {3}, {4}, . . . , {n}). (9.4)
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According to our construction, the lexicographically first chain which is compatible with
this permutation is

∅ ≺ H1 ≺ H1 ∨ H2 ≺ · · · ≺ H1 ∨ H2 ∨ · · · ∨ H3n−2, (9.5)

where H1, H2, . . . , H3n−2 is the enumeration of the join-irreducible elements in (9.1),
with σ replaced by τ̂ . Subsequently, we will compute the dimension of the critical cell
contributed by this maximal chain, using Theorem 3.5. The proof will be completed by
taking recourse to Theorem 3.6.

Consider now a σ-compatible chain c, whose associated word is z1z2 · · · z3n−2 (compare
Step 2 at the beginning of this section), and assume that it contributes a critical cell.
Our first goal is to determine the set of intervals I(c). According to Lemma 9.2, it
consists of those intervals listed in items (i) and (ii) in this lemma that are minimal
with respect to inclusion. Clearly, all singletons listed in item (i) of Lemma 9.2 belong
to I(c). Because of the property of EL-labellings of distributive lattices that we recalled
in the paragraph before Lemma 9.2, this implies in particular that any other interval
[i, j], i < j, can only be minimal with respect to inclusion if the substring zizi+1 · · · zj+1

of z1z2 · · · z3n−2 contains no descent. It is then not difficult to see from the choice of
the linear extension (9.1) of the subposet of join-irreducible elements (cf. Figure 4) that
an interval [i, j] listed in item (ii) of Lemma 9.2 belongs to I(c) if and only if we have
zi ≺ zi+1 ≺ · · · ≺ zj+1, there is a q such that zi = E(σ, q) and zj+1 = G(σ, q − 1), and
the permutation π obtained from σ by exchanging the adjacent blocks {σq−1} and {σq}
precedes σ in the Johnson–Trotter enumeration.

It remains the question, how exactly the join-irreducible elements in (9.1) can be
aligned in a word z1z2 · · · z3n−2 such that the above described minimal intervals in I(c)
cover all of [1, 3n − 3], and what properties the permutation σ must have. (While
reading the subsequent paragraphs, the reader is advised to keep Figure 4 in mind.)

In order to answer the above question, we claim that, if the above described minimal
intervals in I(c) cover all of {1, 2, . . . , n}, for all k = 1, 2, . . . , n we have the following
three properties:

(a) The letters appearing in the union of intervals

k⋃

j=2

[E(σ, j), G(σ, j − 1)] (9.6)

in the poset of join-irreducible elements of Bipσ({1, 2, . . . , n}) appear in increas-
ing order (with respect to the linear order described in (9.1)) in z1z2 · · · z3n−2

(from left to right).
(b) For j = 2, . . . , k, the permutation obtained from σ by exchanging the blocks

{σj−1} and {σj} precedes σ in the Johnson–Trotter enumeration.
(c) For j = 2, . . . , k, the substring E(σ, j) · · ·G(σ, j − 1) of z1z2 · · · z3n−2 contains

no descents.

We prove these assertions by induction on k. All three statements are vacuously true
for k = 1. Assume now that the statements are true for some k ∈ {1, 2, . . . , n− 1}. We
will show that they also hold if we increase k to k + 1.

Let us for the moment suppose that k = 1. Since E(σ, 2) < G(σ, 1) holds in
Bip({1, 2, . . . , n}), the letter E(σ, 2) must appear before the letter G(σ, 1) in the word
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z1z2 · · · z3n−2, and the substring E(σ, 2) · · ·G(σ, 1) contains an ascent, i.e., a letter fol-
lowed by a larger letter. Let zl ≺ zl+1 be the leftmost such ascent.

On the other hand, if k ≥ 2, then, by (c), we know that the substring E(σ, k) · · ·
G(σ, k−1) contains no descent. Moreover, since E(σ, k) < G(σ, k) in Bip({1, 2, . . . , n}),
the letter G(σ, k) must appear after the letter E(σ, k). Both together, we infer that
G(σ, k) must appear after G(σ, k−1), and the substring G(σ, k−1) · · ·G(σ, k) contains
an ascent. Let zl ≺ zl+1 be the leftmost such ascent.

To summarize both cases, in z1z2 · · · z3n−2 we find

E(σ, k + 1) · · ·G(σ, k − 1) · · · zlzl+1 · · ·G(σ, k), (9.7)

where zl ≺ zl+1 marks the ascent that we identified in both cases, and where G(σ, k−1)
is not present if k = 1. It is allowed that zl = G(σ, k − 1) (or even that zl = E(σ, 2) in
the case that k = 1) or zl+1 = G(σ, k).

The position l of the ascent zl ≺ zl+1 cannot be covered by a singleton listed under
item (i) in Lemma 9.2, thus it must be covered by a minimal interval [i, j] listed under
item (ii) in Lemma 9.2. In particular, i ≤ l.

Assume, by way of contradiction, that the interval [i, j] is not associated to E(σ, k+1)
and G(σ, k). Then we must have zi = E(σ, q) and zj+1 = G(σ, q−1) for some q 6= k+1.
We claim that q > k + 1. This is immediate when k = 1. For k ≥ 2, the inequality
q > k + 1 follows from the fact that criterion (a) does not allow any letter G(σ, q − 1)
satisfying q ≤ k to appear after G(σ, k − 1) (recall (9.7)).

Let us compare now the position of the letter E(σ, q) with the position of E(σ, 2) if
k = 1, or with the position of the letter G(σ, k − 1) if k ≥ 2. The letter E(σ, q) cannot
appear before E(σ, 2) when k = 1, nor can it appear before G(σ, k − 1) when k ≥ 2,
because E(σ, q) ≻ E(σ, 2), respectively E(σ, q) ≻ G(σ, k − 1), would force a descent in
the substring E(σ, q) · · ·G(σ, q−1), making [i, j] nonminimal. However, E(σ, q) cannot
appear after E(σ, 2) when k = 1, nor can it appear after G(σ, k − 1) when k ≥ 2.
For, if this is the case, then we have an ascent in the substring in E(σ, 2) · · ·E(σ, q),
respectively in the substring G(σ, k − 1) · · ·E(σ, q), and thus an ascent that occurs
before E(σ, q) = zi, a contradiction with our choice that zl ≺ zl+1 was the leftmost
ascent in the substring E(σ, 2) · · ·G(σ, 1), respectively in G(σ, k − 1) · · ·G(σ, k) (recall
that i ≤ l).

Thus we must have zi = E(σ, k + 1) and zj+1 = G(σ, k), and the permutation
obtained by exchanging the blocks {σk} and {σk+1} must precede σ in the Johnson–
Trotter enumeration. This proves that (b) remains valid when we increase k to k + 1.
Furthermore, the substring E(σ, k+1) · · ·G(σ, k) must not contain any descents, proving
that (c) remains valid when we increase k to k + 1. As a consequence, the elements
in [E(σ, k + 1), G(σ, k)] in the poset of join-irreducible elements of Bipσ({1, 2, . . . , n})
appear in increasing order in z1z2 . . . z3n−2. The letter E(σ, k + 1) must appear before
G(σ, k−1) since E(σ, k+1) < G(σ, k−1) holds in Bip({1, 2, . . . , n}). This implies that
the substrings E(σ, k) · · ·G(σ, k − 1) and E(σ, k + 1) · · ·G(σ, k) overlap, with G(σ, k)
following after G(σ, k− 1). In addition, both substrings contain no descents. Therefore
(a) remains also valid when we increase k to k + 1. This concludes the proof of the
properties (a)–(c).

For k = n, statement (b) forces σ to be the last permutation in the Johnson–Trotter
enumeration. Statement (a) implies that z1z2 · · · z3n−2 must not contain any descents,
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making c the first maximal chain in Bipσ({1, 2, . . . , n}). (Note that, for k = n, the union
of intervals (9.6) contains all 3n − 2 join irreducible elements of Bipσ({1, 2, . . . , n}).)

Thus far we have shown that the only maximal chain c that may contribute a critical
cell is the lexicographically first τ̂ -compatible chain (that is, the chain (9.5), with τ̂ being
given in (9.4)), where τ̂ is the last permutation in the Johnson–Trotter enumeration,
given in (9.4). We show that this chain c contributes a critical cell, by computing
explicitly the minimal intervals I(c), and then we find the dimension of the critical cell
by calculating the simplified system J(c), as given in Definition 3.4, and by applying
Theorem 3.5.

Since the word z1z2 · · · z3n−2 associated to c contains no descents, it must be the
string of join-irreducible elements listed in the order described in (9.1), and all intervals
[i, j], where zi = E(σ, k) and zj+1 = G(σ, k − 1), with k = 2, 3, . . . , n, belong to I(c).
Using the list (9.1), we obtain that

I(c) =

{
{[1, 3]} if n = 2;

{[1, 4]} ∪
⋃n−3

k=1{[3k, 3k + 4]} ∪ {[3n − 6, 3n − 3]} if n ≥ 3.
(9.8)

For any n ≥ 2, the union of intervals contained in I(c) is {1, 2, . . . , 3n−3}, therefore c
does contribute a critical cell by Theorem 3.3. We are left to find the family of intervals
J(c), using Definition 3.4 and (9.8) above. It is easy to see that J(c) is given by

J(c) =

{
{[1, 3]} if n = 2;

{[1, 4]} ∪
⋃n−3

k=1{[3k + 2, 3k + 4]} ∪ {[3n − 4, 3n − 3]} if n ≥ 3.
(9.9)

Since |J(c)| = n − 1, the dimension of the only critical cell is n − 2 by Theorem 3.5.
The theorem now follows upon invoking Theorem 3.6. �

If we combine the preceding theorem with Philip Hall’s theorem [17, Prop. 3.8.6]

stating that the Möbius function of a graded poset P with minimum element 0̂ and
maximum element 1̂ is the reduced Euler characteristic of the order complex △(P \
{0̂, 1̂}), then we obtain the following immediate corollary.

Corollary 9.4. The Möbius function of the minimum and maximal element in Bip(X)
is given by

µ(∅, X × X) = (−1)|X|.

10. Regular and irregular intervals in Bip(X)

In this concluding section, we handle proper intervals of Bip(X). We distinguish
between two kinds of intervals, regular and irregular ones (see Definition 10.1.) As
we show in Proposition 10.2, regular intervals are isomorphic to the direct product of
Boolean lattices and smaller bipartition lattices. Since the Möbius function of Boolean
lattices is well-known, and since we computed the Möbius function of bipartition lattices
in Corollary 9.4, it is then easy to compute the Möbius function of regular intervals, see
Corollary 10.3. For irregular intervals we prove that their order complexes are always
contractible, see Theorem 10.4. Hence, the Möbius function of an irregular interval
vanishes. We must leave the question of the topological structure of regular intervals
open.
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Definition 10.1. We say that an interval [U, V ] ⊆ Bip(X) is regular if every x satis-
fying (x, x) ∈ V \ U also satisfies {y ∈ X : x ∼U y} = {y ∈ X : x ∼V y}. Otherwise
we call [U, V ] irregular.

In other words, an interval [U, V ] is regular if and only if, for every x belonging to a
nonunderlined block in U and to an underlined block in V , the block containing x in U
is equal to the block containing x in V in the ordered bipartition representations of U
and V , respectively. We remark that all of Bip(X), that is, the interval [∅, X × X], is
a regular interval. Indeed, assuming without loss of generality that X = {1, 2, . . . , n},
we have

[∅, X × X] = [U({1, 2, . . . , n}), U({1, 2, . . . , n})].

Proposition 10.2. Every regular interval [U, V ] ⊆ Bip(X) is isomorphic to a direct
product of Boolean lattices and lattices of the form Bip(B), where each B is a block in
the ordered bipartition representation of U and of V such that B is nonunderlined in U
and underlined in B.

Proof. We prove the statement by induction on the total number of blocks in the ordered
bipartition representations of U and V .

Assume first that there is no x ∈ X such that x is contained in an underlined block
of V and in a nonunderlined block of U . By Proposition 6.4, every nonunderlined block
of V is contained in some nonunderlined block of U , and every underlined block of U is
contained in some underlined block of V . Thus, by our assumption, X may be uniquely
written as a disjoint union X = X1∪X2∪· · ·∪Xm where each Xi is either an underlined
block of V (which is also the union of some consecutive underlined blocks of U) or a
nonunderlined block of U (which is also the union of some consecutive nonunderlined
blocks of V ). Moreover, since every Xi is either a block of U , or the union of consecutive
blocks of U , we may order the blocks Xi in such a way that, for all i < j, the relation
x <U y holds for all x ∈ Xi and y ∈ Xj. Since U ⊆ V , it is easy to see that, for
all i < j, x ∈ Xi, and y ∈ Xj. we also have x <V y. A relation W ⊆ X × X is
bipartitional and belongs to the interval [U, V ] if and only if, for each i, the restriction
W |Xi

is bipartitional, belongs to [U |Xi
, V |Xi

], and we have x <W y for all x ∈ Xi,
y ∈ Xj satisfying i < j. Thus the interval [U, V ] is isomorphic to the direct product∏m

i=1[U |Xi
, V |Xi

].
Given an interval [U |Xi

, V |Xi
], there are two possibilities: either U |Xi

has a single
nonunderlined block, or V |Xi

has a single underlined block. It is then easily seen by
compressing the (nonunderlined) blocks of V |Xi

, respectively the (underlined) blocks
of U |Xi

, to singleton blocks, that each interval [U |Xi
, V |Xi

] is isomorphic to a Boolean
lattice.

Assume finally that there is at least one x ∈ X such that (x, x) ∈ V \U . Since [U, V ]
is regular, the nonunderlined block Y1 (say) of U containing x is an underlined block of
V . Let Y0 (Y2) be the (possibly empty) union of all blocks listed before (after) Y1 in the
ordered bipartition representation of U . Since Y1 is also a block of V , and since U ⊆ V ,
it is easy to see that Y0 (Y2) is also the union of all blocks listed before (after) Y1 in the
ordered bipartition representation of V . A relation W ⊂ X × X is bipartitional and
belongs to [U, V ] if and only if for each i ∈ {0, 1, 2} the restriction W |Yi

is bipartitional,
belongs to [U |Yi

, V |Yi
] and, for all i < j, xi ∈ Yi and xj ∈ Yj implies xi <W xj.
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(Here we assume that the restriction of any relation to the empty set is the empty
set, hence Yi = ∅ implies |[U |Yi

, V |Yi
]| = 1.) Thus the interval [U, V ] is isomorphic to∏2

i=0[U |Yi
, V |Yi

]. We may apply the induction hypothesis to the intervals [U |Y0
, V |Y0

]
and [U |Y2

, V |Y2
], whereas the interval [U |Y1

, V |Y1
] is isomorphic to Bip(Y1). �

From the previous proposition, we obtain the following immediate corollary for the
Möbius function of regular intervals.

Corollary 10.3. Let [U, V ] be a regular interval in Bip(X). Then we have

µ(U, V ) = (−1)rk(V )−rk(U).

Proof. By [17, Prop. 3.8.2], the Möbius function behaves multiplicatively for products
of posets. Furthermore, it is well-known that the Möbius function of the minimum
and maximum element in a Boolean lattice of rank m is equal to (−1)m. Finally, by
Corollary 9.4, we also know that the Möbius function of the minimum and maximum
element in a bipartition lattice of rank 3n − 2 is equal to (−1)n = (−1)3n−2. If we put
all this together and also recall that the rank function of products of posets is additive,
we obtain the claim. �

Our final theorem says that irregular intervals have a contractible order complex.

Theorem 10.4. If [U, V ] ⊆ Bip({1, 2, . . . , n}) is not regular, then the order complex
△([U, V ] \ {U, V }) is contractible. In particular, the Möbius function µ(U, V ) vanishes
in Bip({1, 2, . . . , n}).

We show Theorem 10.4 by adapting the proof of Theorem 9.3. Again, we need to
define a listing of all maximal chains of [U, V ] to which the results of Section 3 are
applicable. As in Section 9, the construction of this listing involves three steps.

Step 1. We list the order complexes △([U, V ]σ \ {U, V }), where σ is a permutation
of X such that U and V are σ-compatible, using the Johnson–Trotter decomposition
of △([U, V ] \ {U, V }) as defined in Definition 8.9.

Step 2. By Theorem 7.6, for a fixed σ, the lattice Bipσ(X) is distributive, and,
hence, also the subposet [U, V ]σ is distributive. As in Step 2 in Section 9, [U, V ]σ has
an EL-labelling using its join-irreducible elements, due to [5, Th. 4.5].

Evidently, the join-irreducible elements of [U, V ]σ may be identified with those el-
ements E(σ, i), F (σ, i), and G(σ, i) which are contained in V but not in U . More
precisely, a join-irreducible element H ∈ Bipσ(X) is identified with the join-irreducible
element U ∨H ∈ [U, V ]σ. In the sequel, by abuse of terminology, when we speak of “the
join-irreducible elements of [U, V ]σ,” then we shall always mean the join-irreducible
elements H ∈ Bipσ(X) which are contained in V but not in U , keeping the above
identification in mind.

For defining the EL-labelling, however, we need to start with a linear extension
of the join-irreducible elements of [U, V ]σ. Unlike in Section 9, we select a different
linear extension for each σ, the individual choices being independent from each other.
Lemma 10.5 below describes the details of these choices.

Analogously to Section 9, we associate to each maximal chain c : U = U0⋖ · · ·⋖Um =
V contained in [U, V ]σ the word z1z2 · · · zm (here m + 1 is the rank of [U, V ]σ), where
the letter zi is the unique join-irreducible element of Bipσ(X) contained in Ui but not
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contained in Ui−1. We list the maximal chains in [U, V ]σ according to the lexicographic
order of their associated words.

Step 3. Assume that △([U, V ]σ \ {U, V }) and △([U, V ]σ′ \ {U, V }) appear in the
J–T decomposition of △([U, V ]\{U, V }). Given a σ-compatible maximal chain c and a
σ′-compatible maximal chain c′, the chain c precedes c′ if and only if either △([U, V ]σ \
{U, V }) precedes △([U, V ]σ′ \ {U, V }) in the J–T decomposition, or if σ = σ′ and c
precedes c′ in the ordering of [U, V ]σ described in Step 2.

Lemma 10.5. Let [U, V ] be an interval in Bip({1, 2, . . . , n}), and let σ = ({σ1}, {σ2},
. . . , {σn}) be a permutation such that △([U, V ]σ \ {U, V }) appears in the J–T decom-
position of △([U, V ] \ {U, V }). Assume that some p ∈ {2, . . . , n} has the following
properties:

(a) Exactly one of E(σ, p) and G(σ, p − 1) is contained in V but not in U .
(b) At least one of F (σ, p − 1) and F (σ, p) is contained in V but not in U .

Then there is a linear extension of the join-irreducible elements of [U, V ]σ such that, no
matter what linear extension we select for the other subcomplexes △([U, V ]π \ {U, V }),
no maximal chain of [U, V ]σ contributes a critical cell.

Proof. Consider first the case where E(σ, p) is contained in V but not in U , and G(σ, p−
1) is either contained in U or not contained in V . Without loss of generality, we
may assume that F (σ, p) is contained in V but not in U (otherwise we may simply
replace F (σ, p) by F (σ, p − 1) in the subsequent argument). This means that, when
we label the cover relations U1 ⋖ V1 in [U, V ]σ by the unique join-irreducible element
of Bipσ({1, 2, . . . , n}) that is contained in V1 but not in U1, the elements E(σ, p) and
F (σ, p) appear among the labels used but G(σ, p−1) does not. Select a linear extension
of the join-irreducible elements of [U, V ]σ (recall the convention explained in Step 2 after
the statement of Theorem 10.4), in which E(σ, p) is the least element. This is possible
since E(σ, p) is a minimal element among the join-irreducible elements. We claim that
for this labelling, no maximal chain of [U, V ]σ contributes a critical cell.

Consider a maximal chain c in [U, V ]σ, and assume by way of contradiction that it
contributes a critical cell. By Theorem 3.3, this means that the set of intervals I(c)
covers all elements of the set of ranks of [U, V ]. Let z1z2 · · · zm be the word associated to
c according to Step 2 after Theorem 10.4. In analogy to Lemma 9.2, a chain contained
in c is also contained in an earlier listed maximal chain if and only if the set of its ranks
is disjoint from at least one of the following intervals:

(i) all singletons [i, i] = {i} such that zi ≻ zi+1,
(ii) all intervals [i, j] with zi = E(σ, q), zj+1 = G(σ, q − 1), for some q, such that

the permutation π obtained from σ by exchanging the adjacent blocks {σq−1}
and {σq} makes △([U, V ]π \ {U, V }) precede △([U, V ]σ \ {U, V }) in the J–T
decomposition of △([U, V ] \ {U, V }) as described in Definition 8.9.

The proof is essentially the same, and is thus omitted.
Next we have to determine the subset I(c) of the above intervals which are minimal

with respect to inclusion. Clearly, I(c) contains all singletons listed under (i). In the
same way as in the proof of Theorem 9.3, it can be seen that an interval [i, j] listed
in item (ii) belongs to I(c) only if we have zi ≺ zi+1 ≺ · · · ≺ zj+1. (Note that we
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do not have an “if and only if” statement anymore, since the “if” part in the proof
of Theorem 9.3 followed from the particular choice of the linear extension (9.1) of the
poset of join-irreducible elements, which we do not and need not guarantee in the
present situation.)

Since E(σ, p) < F (σ, p) holds in Bip({1, 2, . . . , n}), the letter E(σ, p) must appear
before the letter F (σ, p) in z1z2 · · · zm. Moreover, because of E(σ, p) ≺ F (σ, p), the
substring E(σ, p) · · ·F (σ, p) contains an ascent. Let the leftmost such ascent be at
position l, so that we encounter

E(σ, p) · · · zlzl+1 · · ·F (σ, p),

with zl ≺ zl+1. The position l of the ascent is not covered by a singleton listed under
(i) above, thus it must be covered by a minimal interval [i, j] listed under (ii) above.
In particular, we have i ≤ l. The interval [i, j] is associated to zi = E(σ, q) and
zj+1 = G(σ, q − 1) for some q 6= p since G(σ, p − 1) is not a join-irreducible element in
[U, V ]σ. Since the interval [i, j] is minimal, the substring E(σ, q) · · ·G(σ, q − 1) cannot
contain any descents. By our choice of the linear extension of the join-irreducible
elements of [U, V ]σ, we have E(σ, p) ≺ E(σ, q). Consider now the relative position of
the letters E(σ, p) and E(σ, q). If the letter E(σ, q) appears after E(σ, p) in z1z2 · · · zm,
then we encounter

E(σ, p) · · ·E(σ, q) · · · zlzl+1 · · ·F (σ, p).

(It is allowed that zl = E(σ, q) or zl+1 = F (σ, p).) Then the substring E(σ, p) · · ·E(σ, q)
contains an ascent which is not covered by the interval [i, j] (recall that zi = E(σ, q)), in
contradiction to having selected the leftmost ascent in the substring E(σ, p) · · ·F (σ, p).
On the other hand, if the letter E(σ, q) appears before E(σ, p) in z1z2 · · · zm then we
encounter

E(σ, q) · · ·E(σ, p) · · · zlzl+1 · · ·G(σ, q − 1).

(It is allowed that zl = E(σ, p) or zl+1 = G(σ, q − 1).) Because of E(σ, q) ≻ E(σ, p),
there is a descent in the substring E(σ, q) · · ·E(σ, p), in contradiction to the fact that
the substring E(σ, q) · · ·G(σ, q − 1) does not contain any descents.

Consider now the case where G(σ, p−1) is contained in V without being contained in
U , and E(σ, p) is either contained in U or not contained in V . This case is similar to the
previous one, thus we only outline the necessary changes. Without loss of generality, we
may assume that F (σ, p) is contained in V , without being contained in U . Take a linear
extension of the partial order on the set of join-irreducible elements of [U, V ]σ such that
G(σ, p − 1) is the maximal element, and consider the word z1z2 · · · zm associated to a
maximal chain c that contributes a critical cell. Again, by Theorem 3.3, this means
that the set of intervals I(c) covers all elements of the set of ranks of [U, V ]. Since
F (σ, p) < G(σ, p − 1) holds in Bip({1, 2, . . . , n}), the letter F (σ, p) must appear before
the letter G(σ, p−1) in z1z2 · · · zm, and the substring F (σ, p) · · ·G(σ, p−1) contains an
ascent. Consider the rightmost such ascent. This ascent must be covered by an interval
[i, j] where zi = E(σ, q) and zj+1 = G(σ, q − 1) for some q 6= p since E(σ, p) is not a
join-irreducible element in [U, V ]σ. Whether the letter G(σ, p − 1) appears before or
after G(σ, q− 1) in z1z2 · · · zm, we obtain a contradiction, by either finding an ascent in
the substring G(σ, p−1) · · ·G(σ, q−1) to the right of the supposedly rightmost ascent in
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F (σ, p) · · ·G(σ, p−1), or we find a descent in G(σ, q−1) · · ·G(σ, p−1) in contradiction
to the substring E(σ, q) · · ·G(σ, q − 1) not containing any descents. �

Proof of Theorem 10.4. Assume that [U, V ] is irregular. Then there is an x ∈ {1, 2,
. . . , n} such that (x, x) ∈ V \ U and the block B of x in U is not equal to the block C
of x in V . The goal is to construct an enumeration of all maximal chains of [U, V ] using
Steps 1–3 after the statement of the theorem such that no maximal chain contributes
a critical cell according to Theorem 3.3. The only undetermined place in Steps 1–3
concerned the choice of linear extension of the join-irreducible elements of [U, V ]σ.

Let σ be an arbitrary permutation such that U and V are σ-compatible. It suffices to
find a p ∈ {2, . . . , n} which satisfies the criteria given in Lemma 10.5. List the elements
σ1, . . . , σn, in this order. The elements of B and C form sublists of consecutive elements:
B = {σi, σi+1, . . . , σj} and C = {σk, σk+1, . . . , σl}, for some i, j, k, l ∈ {1, 2, . . . , n},
where i ≤ j and k ≤ l, and where the intersection of the intervals [i, j] and [k, l] is not
empty since x ∈ B ∩ C. Thus, since B 6= C, one of the following four situations arises:

Case 1. i < k. In this case, we have {σk−1, σk} ⊆ B but {σk−1, σk} ∩ C = {σk}.
Thus, G(σ, k − 1) 6⊆ V , while E(σ, k) is contained in V , without being contained in U .
Similarly, F (σ, k) is contained in V , without being contained in U . We set p = k.

Case 2. i > k. In this case, we have {σi−1, σi} ⊆ C but {σi−1, σi} ∩ B = {σi}.
Thus, E(σ, i) ⊆ U , while G(σ, i − 1) is contained in V , without being contained in U .
Similarly, F (σ, i) is contained in V , without being contained in U . We set p = i.

Case 3. i = k and j < l. In this case, we have {σj, σj+1} ⊆ C but {σj, σj+1} ∩ B =
{σj}. Thus, E(σ, j+1) ⊆ U , while G(σ, j) is contained in V , without being contained in
U . Similarly, F (σ, j) is contained in V , without being contained in U . We set p = j +1.

Case 4. i = k and j > l. In this case, we have {σl, σl+1} ⊆ B but {σl, σl+1} ∩ C =
{σl}. Thus, G(σ, l) 6⊆ V , while E(σ, l+1) is contained in V , without being contained in
U . Similarly, F (σ, l) is contained in V , without being contained in U . We set p = l +1.

We may therefore apply Lemma 10.5 to conclude that there is an enumeration of
the maximal chains of [U, V ] such that, by Theorem 3.3, there are no critical cells
contributed by the associated Morse matching. Consequently, by Theorem 3.6, the
order complex △([U, V ] \ {U, V }) is contractible. �
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36 GÁBOR HETYEI AND CHRISTIAN KRATTENTHALER

[3] L. J. Billera and G. Hetyei, Decompositions of partially ordered sets, Order 17 (2000), 141–166.
[4] L. J. Billera, S. K. Hsiao and J. S. Provan, Enumeration in convex geometries and associated

polytopal subdivisions of spheres, Discrete Comput. Geom. 39 (2008), 123–137.
[5] A. Björner, Shellable and Cohen–Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260

(1980), 159–183.
[6] A. Björner and M. Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc. 277

(1983), 323–341.
[7] D. Foata and C. Krattenthaler, Graphical major indices II, Séminaire Lotharingien Combin. 34
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