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0O-ANALOGUE OF A TWO VARIABLE INVERSE PAIR
OF SERIES WITH APPLICATIONS TO
BASIC DOUBLE HYPERGEOMETRIC SERIES

CHRISTIAN KRATTENTHALER

1. Introduction. Let
fz1,22) = (filz1, 22), (21, 22))
be a pair of a formal series (fps) in z; and z; of the form
(1.1)  fiz1,22) = zi[Yiz1,22) fori=1,2,

where 1;(z1,25) is an fps with 1;(0,0) # 0 for i = 1,2. Then there exists a
unique pair of fps

F(z1,20) = (Fi(z1,22), Fa(z1,22)) s
which is also of the form (1.1), with
(1.2) [ (Fi1,22), Fa(z1,22)) = 2z fori = 1,2,

This pair is called the inverse of f(z, 22).

For k,1 € Z? (pairs of integers), k = (k;,k;) and | = (I},1,), we adopt the
familiar multidimensional notations, |K| = k; +k, k+1= (ki +l1,kp + 1), k 2
if and only if k; 2 [, and k; 2 I, 0 = (0,0),

kK _ _ki_k
' =1z'zy,
and

X1, 2) = @, 221, 22).

By two-variable Lagrange inversion the coefficients of F;(z, z) or, even more
generally, the coefficients of integral powers of F;(z1,z;), i = 1,2, may be
evaluated (see for example [7, (4.5) with ¢(x) = x']):

(13)  (Z)F'Gi,2) = (27 )f 1, 2D ()1, 22),
where
of
D(f)(z1,22) = ¥1(z1, 22)¢2(zl722)g(217 22),
Received August 14, 1988.
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744 CHRISTIAN KRATTENTHALER

with g{}(zl, 2,) the Jacobian of f(zy, z2). ((zX)a(zy, z;) means the coefficient of z*
in the formal Laurent series (fLs) a(zy, z3).)
An example of such an inverse pair is

—22’1-—21

(1.4)(a) fo(ZhZz):(TZ_’__ 5 >

and

(1.4)(b) Fo(z1,20) = (Zl(l —2) 2 —zl)>'

l—zizp ' 1=z

With the help of Lagrange inversion the coefficient of z* in F}(z;,z,), and,
consequently, of

(1 —2)"(1 — 21)" /(1 — z2;25)"*",

can be evaluated. Essentially, this was done in [6, Theorem 1] and [7, p.190].
In addition, Evans et al. [6, Theorem 9] give the following g-analogue of their
formula, which may be written as

o (92122 @
5 @ (922: 9)alqz15 @)
_ b @ D1 @ Pro
(G Di (G5 P
X ((¢" = ¢*)d"* —¢") — (1 —g"H(1 —¢")) .

(For definition of the symbol (a; q)3 see (4.2).) They prove it by a basic hyper-
geometric transformation formula and put the question if a proof by two-variable
g-Lagrange inversion could be given. The first approach towards multivariable
g-Lagrange formulas was made by the author in [16]. In the present paper we
give a new two-variable g-Lagrange formula (Theorem 3), a special case of
which helps to establish a proof of (1.5). As a by-product, in Theorem 5, a
g-analogue of the inverse pair (1.4) is obtained.

The coefficient matrices of the members of the pair which will be given in
(4.13) of Theorem 5 are inverses of each other (with respect to matrix multipli-
cation). In [8, 10] Gessel and Stanton, using certain pairs of matrices, which are
inverses of each other, systematically derive one-variable basic hypergeomet-
ric summations and transformations. Applying the same method to the inverse
matrices determined by the pair in (4.13), we are able to deduce a number of
two-variable basic hypergeometric summations and transformations, all of which
appear to be new. (F. H. Jackson [12, 13] was the first to treat basic double
hypergeometric series systematically. While there exists an extensive theory on
one-variable basic hypergeometric series, until now there have not appeared
many results on basic double series. In particular, the number of summation
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theorems is not very large. A collection of papers dealing with basic double
series is included in the references, although we do not claim that this list is
complete.)

Our paper is organized as follows. Section 2 contains a short outline of [16,
Section 3] in order to explain how two-variable g-Lagrange inversion should
be understood. In Section 3 the g-Lagrange formula is given which we need to
prove the coefficient theorem (1.5). The proof of (1.5) is done in Section 4 by
use of the inverse pair (4.13). Finally, Section 5 is devoted to the derivation of
basic double hypergeometric summations and transformations.

2. Preliminaries. Unless otherwise stated, in this paper we shall always con-
sider fps (fLs) in the indeterminates z, and z; of the form

Zaiz', for some m € Z?,

iZm

whose coefficients a; are rational functions in the indeterminate g.
A sequence

f = (A1,22)) gepe
of fLs satisfying

Q1) fle,zm) =) fur® and fuc#0

nzk

is called a diagonal sequence. The sequence of powers of

fz1,22) = (filz1, 22),fol21, 22))

satisfying (1.1), (f*(z1,22)), <z2» is an example of a diagonal sequence. Given
another sequence

4= (gl(zlsz))EZza

where

a1(z1,22) = Z gz,

k21

the substitution of f into g is defined by
ﬂ(f) = (hl(zlazZ))lezz
with

h(z1,22) = ) gafi(z1,22),

k21
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or more precisely
h(z1,22) = Z ( Z fnkgkl) "
n \n2k2l
The sequence
F = (F@1,2)),p
is called inverse of f if

f(F) = @Nezz,
i.e., if and only if

22) Y faFa(z,n)=2* forall k € Z

n2k

or, equivalently

(2.3) > Funfak = 8mi  for all m,k € 27,

m2n2k

where we have set

Fi(z1,22) = ZFklzk-

k21

(Omk is the Kronecker-delta.) That means, f and ¥ are inverses of each other
if and only if the corresponding coefficient matrices (fak) and (Fy) are inverses
of each other. This fact will be of importance in Section 5. Equation (2.2) is
the analogue for (1.2) in the setting of sequences. Obviously, for any diagonal
sequence f there exists a uniquely determined inverse sequence ¥ .

By analogy with (1.3), we call an identity of the form

24)  (VF(z1,22) = @iz, 22)

a Lagrange formula, where the sequence of fLs f = (fk(z] y z;)_))k cze 18 expressed

in terms of f . Equation (2.4) immediately implies

25) Az, =) Fuz

ISk

and therefore

(2:6) (221, 22)a(z1,22) = Bnk-
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In [16] the author gave a method for finding f for a given sequence f . For
fLs a(z;,z;) and b(z;, z;) we introduce a bilinear form ( , ) by

Q7 (a1, 22),b(z1,22)) = (2")a(z1, 22)b(z1, 22).

Given any linear operator L mapping fLs into fLs, L* denotes the adjoint of L
with respect to ( , ), meaning

(La(z1,22), b(z1, 7)) = (a(z1,22), L*b(zy, 22))

for all a(z), z;) and b(zy, z;). What we need is the following special case of [16,
Theorem 1].

LEmMMA 1. Let

]( = (fk(ZhZZ))kEzz
be a diagonal sequence satisfying the system of equations
(2.8)  Uif(z1,22) = ci®)Vfk(z1,22) i=1,2,

where U; and V are linear operators (acting on fLs), V being bijective and
ci(k), i = 1,2, are functions from Z? into the field of rational functions of q
satisfying the property that if m # n there exists a j (j = 1 or 2) for which
cj(m) # cj(n). Let

(h(z1522)) g
be a non-trivial solution (i.e., hy Z O for all k € Z?) of the dual system
29)  U'h(z1,22) = ci(K)V " hi(z1,22) i = 1,2,
then
(2.10)  f(z1,22) = ((z1,22), V*hi(z1,22)) 7'V i (21, 22).

3. The Lagrange formula. Recall the definition of g-powers due to Hof-
bauer [11, 15].

Definition 2. The fps ¢4(¢) in the indeterminate ¢, € R (real numbers), are
called g-powers for a fixed fps ¢(¢) if p4(0)5# O for all « € R and

B walg) = (1+(g% — Dtp()) ald).

It is easy to see that for ¢ — 1 we have

Pa(t) — @%(1)
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where
&'/ = p@).
Let the operators €, €, be defined by
1" =q4"2" i=1,2.

The next theorem gives a g-analogue of the two-variable Lagrange inversion for
that special case of f(z;,z2) of Section 1, where in (1.1) v, depends only on z,
and v, only on z;.

THEOREM 3. Let ¢, (t) and ¢4(t) be q- powers for p(t) and ¢(t), respectively.
For the inverse sequence (F\(z1,22)),c52 Of (fx(21,22)) z00 Where
(B2 fulzr, ) = 2{'25 [ Qi r(@22) Prou(gz1)
with A\, u € R, we have that
B33 (2@, = ()1 - ¢ a¢Ene@e ")
X 271,00 (q22) Drpu(q21).-

Proof. By (3.1) we get

(1+@""" — Dazig(g2) erfic = ¢"'fx
(14 @™ — Dazp@n)) efi = ¢
and after a short calculation
[ [(1 = qz16(g21)) €1 + ¢*q218(qz1)e1 (1 — qz29(q22)) €2] fi
= 4" (1 — " q220(qz2)e2q21 $(qz1 e i
[ az2p(qz2)e2 (1 — qz18(qz1)) €1 + (1 — g220(q22)) €2] fi
[ = ¢"(1 — ¢ q20(q22)e2q21 (g2 e i

This is a system of “eigenvalue” equations in the sense of (2.8). Thus the dual
system for the auxiliary sequence

(hk(zl P 22)) kez?

reads, by use of €/ = € '(i = 1,2) and a(z,22)* = a(zy, z2) for any multiplica-
tion operator a(zy, z,),

([er" (1 —gz16(g21))
+q'e;" (1 — qp(gn)) e qz19(qz) |
=q" (1 — """ qz1(q21)€3 ' qz20(q22)) by
(! (1 — qz16(2)) €5 ' az20(g22)
+e' (1 —qz20(g22)) |k
( =¢" (1 — ¢ €7 q218(q21)€; ' q220(q22)) i,
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which is equivalent to

(1+ (g™ — Dz1d(z21)) €7 ' = ¢ e
(1+ @ = D2p()) €& ' he = ¢°h.

A solution of this system is
hi(21,22) = 2 Pt ea(q22)Brye(qz1),
hence, by (2.10),

(B4 AGi,z) =1 — ¢ 2éE)ne@)e )
X 27 01,42(922)Pho+u(q21),

which together with (2.4) proves (3.3).

4. Inverse pairs of sequences. We use the standard notations
0 .
@) @@ = [J(1 —ag),

for arbitrary 3 € R

(42) (@ 9s = @ 9/@3"; Poo,

2 Aral; N (@39 (@) 7
43) r r 2| = ’
( #® [bl, by 1 ] ; (b1;9)j - (b 9); (4:9);

and

4.4) Hlial’”"arfq:l _ (‘11§‘1)oo“‘((1r;q)o<,.

b],...,bs (bl,q)oo(bmq)oo

We shall frequently write (a)o, or (@) instead of (a; q) Or (a; q)g, respectively.
That is to say, the base of such an expression is g unless otherwise stated.
By the g-binomial theorem [17, Appendix (IV. 11)]

(az; @)oo

a;
4.5 =
4.5) 140 [_;(1,2} @ Do

(which we use as an identity of fps in z; for an fps-definition of (z; ¢)w see [8,
Theorem 3.13]) we have

979 ) 5

“6) (zq)ﬁ—z((qq) ¢
3 q);



750 CHRISTIAN KRATTENTHALER

Letting ¢ — 1 we see that (z; q)s is a g-analogue for (1 — z)8.

We shall freely make use of the relations between expressions of the type
(a; q), contained in [17, Appendix II], and the “flip ¢ into g~ '7-idea, made
precise in [8, Theorem 3.13]. In particular,

A7 &g Do =1/q7 9

and

“8) (47 g =1/az:9)-p.

To obtain the promised inverse pair of sequences, we require the following
basic double summation.

LemMma 4. For ry,r, € R holds

U4 )11 (¢" )jz (ZZ)rI‘UI (21 )'2+Iz
49 Uz —1
“9) Z q/ (q)jl (q)jz (Zl ZZ)N +r2414)2

Proof. By two-fold use of the g-analogue of Gauss’s theorem [17, Appendix
(Iv.2)]

(c/a; @)oolc /b; @)oo
(c; q)oo(c/ab’ 4)00

’

a,b;
(4.10) 2¢1{ _g,¢c/a b]

(which, just as (4.5) we use in a formal sense) we evaluate

quz @), (g™, (22)r1+j1(21)r2+j2
=0 (4);, (C])h (lez)r1+rz+1;+jz

ry+jy r qu,' ’ qrz; ]
_Z ()4 E U 22) 2¢1[ , q,ZI(I'Z}

(q);z(ZlZZ)r|+rz+h lequ|+r2+jz.

_ ZZ, (@), 2D (22D, (21977)00(2122G )0
(q)jz(ZlZQ)rl-Hzﬂz (le2qu+r2+jz)oo(zlq’2)oo

220
(z2) 7,49";
== 201 4,22
(Z|Z2)r. z2122q";
=1.

In (4.9) perform the substitutions r; = k; + A\, rp = kp + &, j; = n; — k; and
ja = ny — ky. Multiplying the resulting identity by z* we get

@.11) Z =kt @k (@t
‘ 1 @D —1,(@)
n2k mi—ki (G —k;

n(ZZ)n|+/\(ZI)nz+u _ Zk
(lez)n,+n2+x+u
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After replacing z; by zj¢g™* and z, by z,¢ ™ in (4.11), turning ¢ into ¢~ leads
to

(4.12) Z qk|k2—n1n2+|n-—k[ (qk2+”)"1 —ki (qkl+)‘)"z-k2
(q)'ll _kl (q)nz—/(z

n2k
N (22q/\;q~l)nl+/\(zlqu;q_l)n2+u K

x puSp— =z
(Z122™*, ¢ nysmyirsn

)

valid for all k € Z2. By comparing this system of equations with (2.2), we
obtain

THEOREM 5. The sequences
g= (gk(Zx,Zz))keZz and G = (GI(ZhZZ))lezz
are inverses of each other where
@.13)@  g(z1,22) = € (62 /(qz2: Prr (9213 Do)
and

1(2241/\; q"')z,u(zxq”; q_l)lg+u .

4.13)(b) Gy(z1,nn) =1z ;
) Gl ) (212205 ¢ D1 shpareu

€12 is the linear operator defined by
€z = q"‘"zz“.
Proof. By the g-binomial theorem (4.5) we get

qu|k2-—n|n2+|n—kl (qkzﬂl)n, —kl (qk]+/\)n2—k2 Zn
(Q)n. —~k1 (q)nz—kz

n2k
= g%y (2/(q22)1, 42 (@21 )
= gk(z1, 22).
Using this, comparison of (2.2) and (4.12) completes the proof.

For A = p = 0 the sequences g and G are the g-analogues of the powers of
Jfo(z1, 22) and Fy(zy, z) respectively, given in (1.4). In fact, for A = y = 0, when
q — 1 we have

gu(z1,22) = (21/( = )" (/1 = 2))"

211 —22)\" (2201 —2))\"
Gi(z1,22) — ( = ) =22 )

and
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Another formulation of Theorem 5 is

COROLLARY 6. The sequences j and G are inverses of each other where

(4.14)@)  g(z1,22) = 2°/(q22; Py (q215 Diga

and

= b 1@ T @19%5 6 D
4.14)(b) Gy(z1,22) =€ ( hizgl ! )
@190) - GG 2) =en (4 (2122 ¢ Distyanen

In the proof of Theorem 5 we saw that the coefficients of z" in gx(z;,z;) are

+p. ky+X.
k;kz—n1n2+|n—k| (qk2 “’ q)n. —kl (q ! ) q)nz—kz

4.15 =
) &nk=q (G Dny~1, (@5 Dy,

Using a variation of the g-Lagrange formula of Theorem 3, we compute the
coefficients of G\(z;, zp).

THEOREM 7. The coefficient of ¥ in G\(zy, z;) is given by

k; . 1 ki+h. —1
Illz—klkz(q G -1 G Dy,

(7 ks VRN (7 i ) VRN
X 1— q)\+u+k1+k2 (l - qll_kl)(l - qlz~k2) .
(1 —gkr)(1 — gh+)

(4.16) Gu=gq

Proof. 1t is a simple fact that the fps (z; g)o are g-powers for —1/(1 — z).
Hence, using (4.14)(a) and (3.4) with p(2) = ¢(z) = —1/(] —2),

Z122 1

8x(z1,22) = (1 - (]'\”'mﬁf 651) 27(g22)k, 2 (g2 k-

Because of (2.6) we get, since €], = €12,

—kiky =

8k(z1,22) = €129 """ gk(21, 22)-

Therefore the Lagrange formula (2.4) for F} = G, etc., reads

(Z)Gi(z1, 22)

= (Z_|>612(q_"1’<2 (1 —q’\+u( 2122 1 1)

€, €,
l—zp(1—2) ' ?

X 27%(qz2)k 41 (qzl)kzﬂz)-
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By the g-binomial theorem (4.5), with g replaced by ¢!, the right-hand side of
the last equation is equal to
I l—kky (qk2+u;q_l)k|—[| (q 7q l)kz -l

() TN (/Y ) TN

x (1= A+u+k,+k2(l — qll_kl)(l — qlz~k2)
’ (1= g1 — ™)

ki+A.

q

which establishes (4.16).

The coefficient evaluation (1.5) of Evans et al. [6] is only a reformulation of
Theorem 7.

CoroLLARY 8. For a,3 € R we have that

@.17) (92122)avs Z ik (@ N 1@* 7 Ny

(922)elqz1)s 15y Dk, (@,
x ((¢ — ¢*)g"* — &%) — (1 — ¢")(1 — ¢*)) 2*

Proof. By (4.13)(b) and (4.16) we have
(226" 4 D@10 G Dy
(2122¢™*5 ¢ D1 shparen

= Z ql|lsz|k2 (qk2+ll; qu )k|—11 (qkl-h\; qu )kz—lz
= @ Y-1@ g Ve,
x{1— q/\+lt+’<|+k2 a- qll_kl)(l - qlz~k2) 7~
(= g1 — g™

In this identity substitute (in order) k +1 for k, —3 — u for l, —a — X for [},
22g~ for z; and z;g~* for z; thus obtaining

(229 D-alzi;q =g
(z122;47 V—a—p

= Zq_k|kz+ak2+ﬁk1 (qkz—ﬂ; q_l)k' (qkl_a; q_l)kz

= @5 D@ g Y,

cag =g A —q™)
_ Stkh—a—p k
X (1 ¢ (1 =gk —qkz“ﬁ)) ‘

Regarding (4.8), a short calculation leads to

(921225 @anrp qu1k2+k.+k2 (q ,Q)kl (qa—kn;q)kz
(@22 Dalq239)8 153 (G Dr (@ Dry

=g —g*) \
x (1 1 =g —qﬂ-kz)) i
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which is equivalent to (4.17).

Remark. Our approach to the proof of (4.17) relies heavily on Gessel’s [7, p.
160] g = 1-proof. For example, the system of equations (4.12) is the g-analogue
for the two equations at the top of p. 160 in [7] (for a = d = 0).

From Corollary 8 we may deduce another identity of [6, (6.1)].
COROLLARY 9. For a, 3 € R we have that

@.18) GPasot =Yg ke @70 @" 0

(22)a(z)s =y @Dk, (@x,

Proof. In (4.17) replace z; by z;/q and z; by z/q. Multiplying the resulting
identity by

(A —z2z/p™ =) (@n)q”

and collecting the terms on the right-hand side yield (4.18).

Just as the pair (4.13) corresponds to the identity (4.17), there exists an inverse
pair of sequences corresponding to (4.18), which we will state without proof.

THEOREM 10. The sequence of fLs

k
(4.19)(@) € (qk'kla — g" 2y — gMizy) z )
(223 Q)k|+)\+l(zl; Q)k2+u+l

is the inverse of the sequence

z.(zq L D m@gh g )I7+p,
(21224~ Lg~ )l.+12+/\+u+l

(4.19)(b)

5. Transformations and summations. Suppose that the infinite lower-
triangular matrices (fak)akezz and (Fiyez: are inverses of each other. Then
the “inverse relations”

(5.1) by

Z fokak, M€ 7’

n2k20

and

(52) ax= Z Fabi, ke Z?
k2120
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are equivalent, where (ax) = (@{) and (b,) = (b?) are sequences of rational
functions in ¢g. For the choice

—kiky+nyny—|n—k|

fak=¢q gnk and
Fig = ghlahllkligy,
by (4.15) and (4.16) the equations (5.1) and (5.2) may be written in the form

(B)nl(A)nz k| nyky+nyk; — ( ) ( )
5.3 by = 1
G- @nin 2

k20
(Bq”l )kz —hi (Aqnz )kl —ka (q " )k1 (q—”z )kz
(A, (B, %
and
) = (kg (D)+(5) BLT L Ag ),

(q)kl (q)kz
(1 — Agh)(1 — Bgh)
(1 — Agh—R)(1 — Bgh—h)

(@ (g "), I
X b
g (qkz—k1+lB)l‘ (qkl—kzﬂA)bq 1

__AB(—¢"(1-¢*)
(1 —Agh—h)(1 — Bghh)

" Z k1+1)ll (q~kz+l)12 Illb
(qk2 k1+lB) (qkl kZ“A) 1>
120

where we have set A = ¢* and B = g*. Setting

(@ ) (g, il
Xk = _ q bl’
% (qkz 'HB)I, (qk] k2+lA)[2

(5.4) becomes a recursion for X, namely,
N —("1)-("2) (@D, (@,
(=D%g 22/ (@ IB), (gAY,

_AB(—g)(1—¢)
(1 =Ag*)(1 — Bg®)

k—es
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where e = (1, 1). The solution of this recursion is

—( 'kl (Q)k, (Q)kg
Xk = (—1) (qkz“k""lB)k (qk,-kz-HA)kz
X Zq (AB)’ak —jes
Jjz0
consequently,

(g7, (g7, I
5.5 b
( ) g (qkz"k‘”B)[, (qk‘_kZHA)[z U

= (=DM

(D (@i,
(qkz—k,HB) (qlc.—l<2+lA)k2

x S ) Byay e

jz0

Multiplication of (5.1) (where fy = g iktm+m—In—klg ) by 78 and summing
up both sides with respect to n, by use of (4.13)(a) and (4.15), yield the trans-
formation

(Bz1)oo(A22) 00 PP
5.6 bazy'zy? = L2
D I EANaP DL 7w =
Equation (5.6) holds if (5.3) or (5.4) is satisfied. Similarly, multiplying (5.2)
(where Fiq = gtk hib=k=IG ) by g %%z and summing with respect to k, we
get by (4.13)(b) and (4.16)

§ :q—lqkzakzk

k20
_ Bz21/3:9 NeoA22/4: 4" Noo(2122/9%1 4" oo
1/4: 4 Noo(22/ 8 4 Noo(AB21 22 /4%, 4 oo
.1 R |
9 Zq""Zb.z'(ZZ/q’q );.(21/14,4 iy
(@122/4% ¢ i

120

After replacing z; by gz, z by gz, and g by ¢!

, we obtain the transformation
(5.7) Z qknkz—h—kza;(l/q)zflﬁ Z:’;z
k=0
_ (B21)00(A22)00(2122)00
(21)00(22)00(ABz122) 0

% qu,zz bt/ bt (@2), (20,
2 (212

120
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Again, (5.7) holds if (5.3) or (5.4) is satisfied. Different choices of (ax) and (by,)
which satisfy (5.3) or (5.4) yield basic double hypergeometric summations and
transformations when substituted into (5.5), (5.6) or (5.7).

First take

A, (Ci
5.8 = ghiegh g Wu Ok
C8  a=q D (D,

By two-fold use of the g-Vandermonde summation [17, Appendix (IV.1)]

a,q " _ (bla;g), a"
59 201 [ RS J— G

s

we have by (5.3) and a bit of manipulation

— (B )n; (A)nz Z (q—nz )kz (qnl B )kz (C)kz
(@Dn, (@, 20 (g Ak, (B (s,

R q A g™
Xqhai| 9,9
q I Z/B;

— (B)n[ (A)nz Z (q_nz )kz (q”l B)kz (C)kz kl
@n @, 2 @A Bl

@7 ABY ) g
(ql—"l_kZ/B)nl 7

n

2) Aty C.q:
= (—AB)Y" "1"z+(21) (A)ng(q /AB),“
( ) I (q)n;(q)ng ¢l ql_nl/A;q’q

("Z' ) (A)nz ((11~"‘ o /AB )nl

— —AB ny nint
(=484 @ @,

@ JAC D o
1—n !
(" [A)n,

and finally

(¢™AB),, (AC),,
5.10) by = — 72
©-10) (Dn, (D,


file:///-nx-k
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The resulting evaluation (5.3) reads

B" )it (A4" )t 1 (C i (g D ("
5.11 2
AN B @n @

k20
x ()= () (g —agny
_ (@"AB),(C),,

B)n, (A,
For B = C we get the symmetric formula

G123 Bt ATk la

= Dk, (Dr,

x = ()=(3) gy —agmye
 (AB)uyin,

B A,

A standard notation for a g-Appell type basic double hypergeometric series is

€ly ey €p 1Ayy...Qr;C1y. .50y
i .
(5.13)  ghrn 471,22
fh »fm:blv bs;dl’ d

I—I(ej’ Dy +ky H(a/, D, H(C,, D,
H ﬁ,q»ﬁsz(b«;q)k,H(d‘;q)kz

j=1 j=1
The dual evaluatxon (5.5) for the above choice of (ax) and (b,) can be written
as

&k
Zy zp -

o [ABah ACgT
(5.14)  ¢p13 q:9:9

— qu—kﬁ-lB; AB,qkr—kg-HA; ’

_ ki k= ()= (%) phi 4k (A, (C
( 1) q B™A (quz—lnﬂ)I(I(Aqkwkzﬂ)k2

(¢ a7
><3‘152 b—1 P q ,49
| " A g7 G

k| k:kz—("z')—(‘%)Bk,Ak2 (A, (Ci,
e (Bga~hitty, (Agh =R+,

—

= (—

(¢, q

X 3¢ q9,q/AC
Pl /A’ql-kz/c;
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By (5.6) we get the transformation

(5.15) Z(anAB)”'(AC)"z ni

= @,
B it 4

= BT AT
(Zl)oo(ZZ)oo Z

k20
G (S T
Dr (Dr, (Az2)k, (Bz1)iy

The special case B = C

(AB)y, 4n
(5.16)  y
n>0 (Q)n[(Q)nz
_ (Bz1)oo(A22)0 7 Bh Ak
— 1 B IA 2
(21)00(22)00 ;
(A, By,  z'2¥

(@D, (D, (Az2)i, (Bzi),

turns out to be a g-analogue of

—a —b
A=z =) = —z) A=z (1 - 2L — ,
1—22 1—21

when setting A = g%, b = ¢” and letting ¢ — 1.
Finally, the dual transformation (5.7) reads

(A5 ¢ " (Ciq Dy )
Z (q—l.t;—l)lli (q—:[ q*li.) (B/ )kl (A/Q)k Z] 22
k20 ’ N ’

(Bz1)oo(Az2)o00(2122) l—l,
— %) 2 )00 l2oozq11[_ -1

(21)o0(22)00(ABz122) 00 =0

(g "AB;q "), (AC g7,

(O T A e 1A

o (@)1, (z1)
X 7\ 27y ———2.

(122141,
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The left-hand side can be summed by the g-binomial theorem (4.5). In basic
hypergeometric notation we obtain after a short calculation

- 1/AB : 23;1/AC, zy;

Piiy [2122 i 1/AB; q;zl,zz]
ABz\23,21, 22}

N H [zlzz,Ale,Asz;q] ’

or, after setting F = 1/AB and E = 1/AC,

nzm = Fy
B 2122 /F, 21, 22;
a H l:zlzz,zl/F,zz/E;q] '
As the cases z; = 0 and z; = 0, respectively, show, this is a generalization of

the g-binomial theorem (4.5).
Another choice is

2(41) Wi Bl i,
(C )/ﬁ (‘I)k.

By the g-Gauss sum (4.10) we obtain from (5.3)

(C)ny4ny (B, (A,
Oy (@ (@,

By (5.5) we get

1 F 1z E,zy; )
5.17) ¢l:0;l qs21522

(518) akg — 5klk2([

(5.19) by =

o [C 1B AT
(5200 ¢33 4.9

— C,qszl(ﬁrlB; C’qk|kk2+lA;
(1-A)010-B) @k
(1 —=g1A)(0 — g~ B) (O,

X 3¢ [q'k‘,q""‘/Caq; }
392 99| -
ql—k| /A,ql_k] /B,

= 5k‘k2C"‘

For the special case C = gAB the Pfaff-Saalschiitz summation [17, Appendix
av.4)]

a,b,q7"; (c/a; @nlc/b; On
521 = LT T
(5:21) 592 [c, d: ’ } (c;Qnlc/ab; @)y’
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provided cd = abq'™", can be applied to find

san a0 A .
. 0:2:2 . qAB,q"Z_k‘”B; qAB,qk“"'z”A;q’ 9,9
k) (D,
= 0k,k,(AB) _(qAB)k. .

Another example is when B = C and the right-hand side of (5.20) may be
summed. This time by the g-Vandermonde summation (5.9)

523) ohi2 Bt Aqh
. 0:1;2 ) q:9,9
- qkz—k1+lB; B’qk|—l2+1A;
(@h
= b, BN =
ke (gB)x,

The transformation (5.6) is
C : B;A;

(5.24) ¢},§{;§[ . _q;m,zz]

ke (ARBY (i)
(O @k Az Bz )i

_ _ (Bz1)oo(A22)0 Z 2

(@oo(@oo =

The special case A =B =C

(A)n|+ng ny_n;
(5.25) Z —(q)m(q)nz P

_ (Az;)oo(AzZ)oo s

(21)00(22)00 =0

kg (A (z122)*
(@ (Az)i(Azy )k

is a g-analogue of

N A T
(A—z21—2)=1-2)"~2) (1 (1—z,)(1—22)> '

By (5.7) the dual transformation is
A; g DB g™! :
Z -+ ( q_l )k(_lfl _)lk (CZIZZ)k
= Cra @ g
_ (B21)00(A22)00(2122)00 Zq[,[z_l,_lz
(21)00(22)00(AB2122)00 1=
(€ DB g7 ) (Asg
Ci gV (Ciqg g g D g7,

w I 12(22)1|(Z|)12
Ny
“ @z |
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which after setting £ = 1/A, D = 1/B, F = 1/C is transformed into

(5.26) ¢\32 F:D’Zz;EJl;q;z]/D,zQ/E
"z FF,
21,22, 2122/ DE; D,E;
= q| 291 q,2122/DE | .
21/D, 2 JE, 212; ;

If D = F the ¢, reduces to a ¢y, which is summable by the g-binomial
theorem (4.5), thus arriving at (5.17) a second time. For D = E = F, again by
(4.5), we deduce from (5.26)

p | P ,
(5:27) ¢y ‘Q»Z]/Daéz/D

Tz =

This is a g-analogue of

21,22, 2122/D;

q
Zl/szZ/DaZIZZ;

1—z12» 1 —z12

(1 Cn(l-z) oz —z»)‘f’

==z = )71 — z122)".

Also of interest is the limiting case F — oo in (5.26),

(D), (E), (z2)1, (21,
5.28 Il X270 0 D h 2o JE 153 i ]
( ) g 9 (q)l) (Q)Iz & / A 2/ ) (zy ZZ)/H'/:

H z1,22,2122/DE;
21/Dy 22 [E, 21223
it is a g-analogue of

[ ad=2) - 2=\
1—2z12» 1—z12»

= (=270 = 2)7(1 = zy )™

?

Equations (5.27) and (5.28) could also be obtained as limiting cases of Al-
Salam’s [1] g-Saalschiitzian double series theorems.
We have only proved (5.26) in a formal sense. But it is easy to deduce that
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(5.26) remains valid for |q| < 1, |z;| < |D| and |z;| < |E|, when it is interpreted
as an identity for basic hypergeometric functions. Setting z; = ¢%, z; = ¢°,
D =q¢'E=q¢ F=¢ and letting ¢ — 1, the resulting ,F, on the right-hand
side of (5.26) is summable by ordinary Gauss-summation [17, Appendix (II1.3)],
which leads to

G | frdibiea
(5290 F[i3 1,1
“la+b:fif;
r a—d,b—e,a+b,f,f —d—e
abatb—d—ef—df—e|
subject to suitable restrictions on a, b,d, e,f such that convergence is provided.
This identity is due to Carlitz [S, (1.7)].

Of course it is possible first to choose (b,) and, by (5.4), compute the ay’s.
If we take

_ (©)n D)
(q)m (q)'lz ’

two-fold application of g-Vandermonde summation (5.9) yields

(5.30) by

(5.31) a = (_1)lqu(kz')+(kzz)
o (qkz‘kl“B/C)k, (qkl*IQHA/D)kZ
(D, (@,
AB (1—g")1—¢) )
CD (1—¢“BJC)(1 —gvA/D) )"

x Ch Db <1—

The evaluation (5.3) becomes

(C)nl(D)nz _ niky+naky ki k2
B (Al *féo(" P

y (BG" Ny, (AG" Dty 1, (@251 B /C ),
(B, (A,
o @ TAIDY (T (G, )
(@, (@,

AB h NnoK (2
_ —Cﬁ Z ((1 tkitnoky ~ky ke
k=0

9 (BG" Yy, (AQ™ Dty 1 (¢ F B [C gy -1 (@5 2 A Dy

(B, (A,
y @ " (@, )
(D1 ( @Dy -1
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Let the first of the two sums on the right-hand side of this identity be abbre-
viated by Y,(A,B,C,D). Thus we may rewrite it as

(C)n, (D),
=AM — Ya(A,B,C,D)
ERONEE
1 —-g")(1—q")
— 1 L JABY, (gA,gB,qC,gD).
A=A =B n-e(qA, B, qC, qD)
The solution of this recursive relation is
(C)n, (D), .
Yu(A,B,C,D) = ——~—— ’(AB)’
" (B)n, (A)n, Zoq’
@9 D@97
(C; 9)i(D; q);

consequently we obtain the transformation

(532) Z (q"lkl +"2kzck1 Dkz

k20
y (BG" o —t, (AG™ e,y (¢ F B Oy,
(A, (B,
N (@A DY, (g (@i, )
(@Dr, (@,

—ny o —m .
_ (C)ny (D), ¢ [q q g q’qn1+n2ABj| .

T B, | C,D;
The transformation (5.6) becomes

Dy,
2 Gonim

(@Dn (Dny
_ (BZI)OO(AZZ)OO |k| )
(z1)oo(22)00 RZN)[ b
(qszkl-f»lB/(:)kI (qkl—k2+lA/D)k2
(Dr, (Dry

AB (1-4¢"(1—g¢") ) 7'z ]
Ckkaz (1 _ 0 1“2 .
x CD (1 — =B /C)(1 — 4" A/D) ) Az, Bz,

The left-hand side is summable by the g-binomial theorem (4.5). Replacing z; by
z1/B, z; by /A, C /B by E and D /A by F, we obtain after some manipulation

533 EoFe Z[qZqu @ PE)w @ ),

(21)00(22) 00 = (D, (@D,

5 (1_ (=g *)1—g™") ) 7'z’ ]
(1 =g RE)1 =g F) ) (2) (1)
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In view of (4.17), this identity is a g-analogue for

(1 B z 2 >E+f
—7,1—
(I-z) U -2)7 = ks R

LTI Y CRE T
1—2, 1—2z

Setting

(G RE)w (g Fy, Nk
RGi,z) =y gt —0d e A5

k=0 (q)kl (q)kz (Zz)kl (Zl )1(2

(5.33) may be rewritten as

E Fz3)00
(Ez))00(F22) — RG1,2) 7123

(21)00(22)00 (1 _ Zl)(l _ 22) ((IZx¢722)

Thus, we have

(Ez21)oo(F22)o0 Z ; (2122)’

R
(z1,22) = o) (Ez))i(Fz);

j20

hence,

@ REN (@ Fy, z)'zy
5.34 2hike ' 2 A%
©-39 g (@D (D, (22)k, (21 )k,

_ (Ezl)oo(FZ?_)oo Z -j_\aizn) (2122)

Gl 3" (Ezy(Fa);

From (4.18) we see that this is a g-analogue of

(1 z o >e+f—1
1 — 1 — Zi
(1 - )e(l . )f
]-22 1-—21

-
P A T
==z 0 —2) (1 (1—21)(1—22)) ‘
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Finally, we turn to the dual transformation (5.7),

Z [(_1)|qu"1"2* (- (")

k20

L @B /C g D (g A D g
O TR Y T

Xclekz(lmAB (1—g ™)1 —g™") >z"' k

4

CD (1 —q~=B/C)(1 —q~*A/D)

_ (Bz1)o0o(A22)00(2122) 0

(Zl)oo(ZZ)oo(ABZlZ2)oo
g 12 (C g D;q7 Y,
XIZ;{ RPN

1 (@2 () }

122
(1221, +4

or, equivalently,

ik, @ B /Ch, (g A/D),
63 ?—; [q T @nGn
y (1 _AB (=g Mya—-g™ )
CD (1 — q~"2B/C)(1 - q”"A/D)
' . Bz1)00(A22)00(2122) 00
X (CZ‘)M(DZ”M] - Ezl)i(z(z)o:A;z]lzz;m
3 gt (1/C),(1/D),,
- D (@,
(2, 21y,

(Z1z2)+

x (Cz))"(Dz,)"

By use of (4.18), the left-hand side turns out to be equal to

(CDz122)00(A22)00 (B2} ) oo

5.36
(36)  TABz 2)m(C oo D22

(1 — g 'ABz2),
therefore from (5.35) we derive

an (I/D)h (), (210
5 37 1112 C ]1 D 12 1 2
-37) 12;:‘ (@D (D, Ty, O (z122)1,41,

_ (Cz1)00(Dz22)00(z122) 00
(21)00(22)00(CDZ1 220
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This identity appeared before in (5.28). Another identity, which was proved “en
passant” by (5.36) is

(5.38) (CP212)o0(A2)00B2)0 _ 2[ i @B /O (@M1 A/DY,,

(ABz122)0o(Cz1)oo(D22)o 42 @k, @k,

X(l_ﬂ (1—g*)1 =g )
CD (1 — q“'lB/C)(l — q—"lA/D)

X (Czp)b (Dzz)"l] :

After replacing z; by z,/C, z; by z2/D, B/C by ¢* and A/D by ¢°, we get by
4.2)

(z122)a+8 ( o @7y (@R Y,
530) A _ ke
59 s ~ 2\ @@,

x ((1 =g ") — ¢y — g™ — g1 — g™ ))),

which also appears in [6, Theorem 10].
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