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A lattice path P in Z
d is a path in the d-dimensional integer lattice Z

d

which uses only points of the lattice, that is, it is a sequence (P0, P1, . . . , Pl),

where Pi ∈ Z
d for all i. The vectors

−−→
P0P1,

−−→
P1P2, . . . ,

−−−−→
Pl−1Pl are called the

steps of P . The number of steps, l, is called the length of P , and denoted by
ℓ(P ). Figure 1 shows a lattice path in Z

2 of length 11. (The horizontal line
labelled y = R − 2 should be ignored at the moment.)
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Figure 1. A lattice path

The interest in the combinatorial study of lattice paths in a statistical
context arises primarily from three different sources: random walks, rank

order statistics for non-parametric testing, and queueing processes. In most
cases one is concerned with 2-dimensional lattice paths, i.e., with the case
d = 2.

The prototypical example of a random walk problem is the gambler’s ruin

problem (see also [7, Ch. XIV]): two players A and B have initially a and
R − a dollar, respectively. They play several rounds, in each of which the
probability that player A wins is pA, the probability that player B wins is
pB, and that there is a tie is pT = 1−pA−pB. If one player wins, (s)he takes
a dollar from the other. If there is a tie, nothing happens. The play stops
when one of the players is bankrupt. What is the probability that player A,
say, goes bankrupt after N rounds ?

By disregarding the last round (which is necessarily a round in which B
wins), this problem can be represented by a lattice path starting at (0, a−1),
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ending at (N − 1, 0), with steps (1, 1) (corresponding to player A to win
a round), (1,−1) (corresponding to player B to win a round), and (1, 0)
(corresponding to a tie), which does not pass below the x-axis, and which does
not pass above the horizontal line y = R−2. For example, the lattice path in
Figure 1 corresponds to the play, where player A starts with 2 dollar, player B
starts with 4 dollar, the outcome of the rounds is in turn TATBTTAABBBB
(the letter A symbolizing a round where A won, with an analogous meaning
of the letter B, and the letter T symbolizing a tie), so that A goes bankrupt
after N = 12 rounds (while B did not).

If we assign the weight pA to an up-step (1, 1), pB to a down-step (1,−1),
and pT to a level-step (1, 0), then the probability of this play is the prod-
uct of the weights of all the steps of the path P times pB (corresponding
to the last round where B wins and A goes bankrupt; in our example, it
is pT pApT pBpT pT pApApBpBpBpB). If we write p(P ) for the product of the
weights of the steps of P , then, in order to solve the problem, we need to
compute the sum

∑

P pBp(P ), where the sum is over all the above described
paths from (0, a − 1) to (N − 1, 0).

This problem is solved, in terms of generating functions, by the general
theorem below, which shows that the solution is provided by orthogonal poly-

nomials. For the statement of the theorem, we slightly modify and generalize
the lattice path problem. We consider three-step lattice paths as above1 (i.e.,
consisting of up-steps (1, 1), down-steps (1,−1), and level-steps (1, 0)), start-
ing at (0, r) and ending at (ℓ, s), which do not pass below the x-axis and do
not pass above the horizontal line y = K. Furthermore, we assign the weight
1 to an up-step, the weight bh to a level-step at height h, and the weight λh to
a down-step from height h to h−1. The weight w(P ) of a path P is defined as
the product of the weights of all its steps.2 The gambler’s ruin problem that
we considered above corresponds to the choices K = R− 2, r = a− 1, s = 0,
bh = pT , and λh = pApB in the more general problem. (This is because, for
any three-step path from (0, a− 1) to (ℓ, 0), the difference of the numbers of
down- and up-steps is a − 1, and, thus, the described weighting differs from
the weight which results by weighting an up-step by pA, a down-step by pB,
and a level-step by pt always by a factor of pa−1

A , regardless of ℓ.)

1In the combinatorial literature, the term Motzkin path is often used for the special
three-step lattice paths that start at the origin, return to the x-axis, and do not pass
below the x-axis. Furthermore, the term Dyck path is used for Motzkin paths without any
level-step.

2Clearly, these three-step paths can also be interpreted as a discrete-time birth-death
process with stay, where the number of individuals in the process does not exceed K (see
[4]). There is as well a Markov chain interpretation, see [7, Ch. XVI].
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Theorem 1.
3 Define the sequence (pn(x))n≥0 of polynomials by

(1) xpn(x) = pn+1(x) + bnpn(x) + λnpn−1(x), for n ≥ 1,

with initial conditions p0(x) = 1 and p1(x) = x − b0. Furthermore, define

(Spn(x))n≥0 to be the sequence of polynomials which arises from the sequence

(pn(x)) by replacing λi by λi+1 and bi by bi+1, i = 0, 1, 2, . . . , everywhere in

the three-term recurrence (1) and in the initial conditions. Finally, given a

polynomial p(x) of degree n, we denote the corresponding reciprocal polyno-

mial xnp(1/x) by p∗(x).
With the weight w defined as before, the generating function

∑

P w(P )xℓ(P ),

where the sum is over all three-step paths which start at (0, r), terminate at

height s, do not pass below the x-axis, and do not pass above the line y = K,

is given by

(2)















xs−rp∗r(x)Ss+1p∗K−s(x)

p∗K+1(x)
r ≤ s,

λr · · ·λs+1

xr−sp∗s(x)Sr+1p∗K−r(x)

p∗K+1(x)
r ≥ s.

We remark that in the case that r = s = 0 there is also an elegant expres-
sion for the generating function due to Flajolet [9] in terms of a continued
fraction.

In order to solve our problem, we just have to extract the coefficient of xℓ

in (2). By a partial fraction expansion, a formula of the type

(3)
∑

m

cmξℓ
m,

results, where the ξm’s are the zeroes of pK+1(x), and the cm’s are some
coefficients, only a finite number of them being non-zero. In particular,
the asymptotic behaviour of (3) is typically governed by the ξm’s of largest
absolute value, i.e., it is of the form

(4)
∑

m:|ξm|=M

cmξℓ
m,

where M denotes maxm |ξm|. A difficulty would occur when this expression
vanishes. However, under “normal” circumstances, this event rarely occurs.
For, by Favard’s theorem (see [43, Théorème 9 on p. I-4] or [44, Theorem
50.1]), the sequence of polynomials (pn(x))n≥0 is in fact a sequence of or-

thogonal polynomials. It is then known by general facts about orthogonal

3For self-contained derivations see e.g. [23, Appendix] or [28, Eqs. (4)/(5)].



4

polynomials (see e.g. [40, Theorem 3.3.1]) that if all bn’s are real and λn > 0
for all n, all the zeroes of pn(x) are in fact real and simple.

It should be noted that, because of the many available parameters (the
bn’s and λn’s), by appropriate specializations one can also obtain numerous
results about enumerating three-step paths according to various statistics,
such as the number of touchings on the bounding lines, etc. (See also [20];
see [4, Theorem 3.1] for alternative combinatorial formulas.)

There are two important special cases, in which a completely explicit so-
lution in terms of elementary functions can be given.

The first case occurs for bi = 0 and λi = 1 for all i, which (up to some
multiplicative constant) corresponds to the game where each of the players
A and B win a round with probability 1/2. In this case, the polynomials
pn(x) defined by the three-term recurrence (1) are Chebyshev polynomials
of the second kind,4 pn(x) = Un(x/2). The result which is then obtained
from Theorem 1 (clearly, the zeroes of Un(x) are x = cos(2kπ/(n + 1)),
k = 1, 2, . . . , n, and therefore the partial fraction expansion of (2) is easily
determined) is that the number of lattice paths from (0, r) to (ℓ, s) with
only up- and down-steps, which always stay between the x-axis and the line
y = K, is given by (see also [7, Ch. XIV, Eq. (5.7)])

(5)
2

K + 2

K+1
∑

k=1

(

2 cos
πk

K + 2

)ℓ

· sin
πk(r + 1)

K + 2
· sin

πk(s + 1)

K + 2
,

a formula which goes back to Lagrange. (An alternative expression is given
in (9) with the replacements s → −r, t → K − r, n → 1

2
(ℓ − s + r),

m → 1
2
(ℓ + s − r). It shows more clearly the integrality of the number. On

the other hand, the advantage of the expression (5) is that it immediately
allows to extract the asymptotic behaviour as the length ℓ of the paths tends
to ∞.)

The second case occurs for bi = 1 and λi = 1 for all i, which (up to
some multiplicative constant) corresponds to the game where each of the
three possibilities (player A wins, player B wins, a tie occurs) has equal
probability 1/3. In this case, the polynomials pn(x) defined by the three-
term recurrence (1) are again Chebyshev polynomials of the second kind,
pn(x) = Un((x− 1)/2). The result which is then obtained from Theorem 1 is
that the number of three-step lattice paths from (0, r) to (ℓ, s), which always

4The Chebyshev polynomial of the second kind Un(x) is defined by Un(cos t) = sin((n+
1)t)/ sin t (see [21] for almost exhaustive information on these polynomials and, more
generally, on hypergeometric orthogonal polynomials).
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stay between the x-axis and the line y = K, is given by

(6)
2

K + 2

K+1
∑

k=1

(

2 cos
πk

K + 2
+ 1

)ℓ

· sin
πk(r + 1)

K + 2
· sin

πk(s + 1)

K + 2
.

We now turn to the second statistical motivation to study lattice paths:
rank order statistics for non-parametric testing. There, we are given two sets
of independent and identically distributed random variables X = {X1, X2,
. . . , Xm} of size m and Y = {Y1, Y2, . . . , Yn} of size n. These are then put
together and ordered into Z = (Z1, Z2, . . . , Zm+n) according to size. To such
an ordered sample one associates a lattice path in Z

2 starting at the origin,
in which the i-th step is a unit vertical step (0, 1) if Zi belongs to X , while
it is a unit horizontal step (1, 0) if Zi belongs to Y . Thus, if m = n = 5,
an example is Z = (X1, Y1, Y2, Y3, X2, X3, Y4, X4, X5, Y5), which would be
represented as shown in Figure 2. (The diagonal lines should be ignored at
the moment.) From now on, unless otherwise stated, the term “path” will
always mean a lattice path in Z

2 with unit horizontal and vertical steps in
the positive direction.
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Figure 2

To test whether the underlying distribution functions for X and Y are
equal or not, one introduces several statistics, all of which translate into
lattice path statistics. For the purpose of testing, the distributions of these
statistics are needed under the null hypothesis of equal distribution functions.
In light of the preceding remark, this involves counting of certain paths.
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The one-sided Kolmogorov-Smirnov statistic D+
m,n is defined by

D+
m,n = max

i

{ai

m
−

bi

n

}

,

where ai is the number of occurrences of Xj’s in the initial segment Z1, Z2, . . . ,
Zi of Z, while bi is the number of occurrences of Yj’s in this initial segment.
The two-sided Kolmogorov-Smirnov statistic Dm,n is defined by

Dm,n = max
i

{∣

∣

∣

ai

m
−

bi

n

∣

∣

∣

}

.

Thus we have D+
5,5 = 1/5 and D5,5 = 2/5 in our sample represented in

Figure 2. The run statistic counts the number of maximal consecutive sub-
sequences in Z the members of which belong to just one of the sets X or Y .
The number of runs in our example sample is 6. Other statistics that are
considered are the Galton statistic (in the lattice path picture: the number of
steps on the “positive” side of the main diagonal y = x), the median statistic,
and the rank sum statistic, to mention a few, see [27, Ch. 4].

In the lattice path picture, the one-sided Kolmogorov-Smirnov statistic is
basically the maximal deviation from the main diagonal in direction (−1, 1).
The two-sided Kolmogorov-Smirnov statistic is basically the maximal devia-
tion from the main diagonal, in either direction. So in Figure 2, paths which
stay in the region between the indicated lines y = x + 2 and y = x − 2
correspond to sequences Z with two-sided Kolmogorov-Smirnov statistic
Dn,n ≤ 2/5. The run statistic obviously translates into the number of maxi-
mal straight pieces (horizontal or vertical) in the corresponding path.

Clearly, the number of all (unrestricted) paths from the origin to (n,m)
is the binomial coefficient

(

n+m

n

)

. By the reflection principle, which is com-
monly attributed to D. André (see e.g. [5, p. 22]), it follows that the number
of paths from the origin to (n,m) which do not pass above the line y = x+ t,
where m ≤ n + t, is given by5

(7)

(

n + m

n

)

−

(

n + m

n + t + 1

)

.

In the case that n = m, this translates easily into an expression for the prob-
ability of encountering D+

n,n ≤ t/n under the null hypothesis. If n 6= m, we

5Roughly, the reflection principle sets up a bijection between the paths from the origin
to (n,m) which do pass above the line y = x + t and all paths from (−t − 1, t + 1) to
(n,m), by reflecting the path portion between the origin and the last touching point on
y = x+ t+1 in this latter line. Thus, the result of the enumeration problem is the number
of all paths from (0, 0) to (n,m), which is given by the binomial coefficient

(

n+m

n

)

, minus
the number of all paths from (−t − 1, t + 1) to (n,m), which is given by the binomial
coefficient

(

n+m

n+t+1

)

, whence the formula (7).
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need to count paths that do not pass above the line my = nx + t, for which
there is no compact formula known (and is unlikely to exist). Sato [32, 33]
has dealt with this problem (and its higher dimensional generalization) ex-
tensively. However, the most conceptual way to approach this problem seems
to be through the so-called kernel method (see [1]), which, in combination
with the saddle point method, allows one also to obtain strong asymptotic
results. There is one special instance, however, which has a “nice” formula.
The number of all lattice paths from the origin to (n,m) which never pass
above x = µy, where µ is a positive integer, is given by

(8)
n − µm + 1

n + m + 1

(

n + m + 1

m

)

.

The most elegant way to prove this formula is by means of the cycle lemma

of Dvoretzky and Motzkin [6] (see [27, p. 9], where the cycle lemma occurs
under the name of “penetrating analysis”).

Expression (7) with t = 1 and (8) provide solutions to the so-called classical

ballot problem. Its generalization to the urn problem due to Takács (see [41,
p. 2–4]), which has applications in queueing theory, has its solution through
the form of a cycle lemma. Its most general form is due to Spitzer [35], and
is known as “Spitzer’s lemma,” which has also many applications in random
walk theory.

Iteration of the reflection principle shows that the number of paths from
the origin to (n,m) which stay between the lines y = x + t and y = x + s
(being allowed to touch them), where t ≥ 0 ≥ s and n + t ≥ m ≥ n + s, is
given by the finite (!) sum

(9)
∑

k∈Z

((

n + m

n − k(t − s + 2)

)

−

(

n + m

n − k(t − s + 2) + t + 1

))

.

(See e.g. [27, p. 6]. Clearly, an alternative expression is provided by (5),
under the substitutions s → m − n − s, r → −s, K → t − s, ℓ → n + m.
While the above expression shows clearly the integrality of the numbers, the
expression (5) allows to extract the asymptotic behaviour as the length of the
paths tends to ∞.) If n = m and t = s, this translates in an obvious assertion
about the probability of encountering Dn,n ≤ t/n under the assumption that
the distribution functions of X and Y are the same. Again, if n 6= m, there is
no compact formula. Sato [32, 33] has given formulas in terms of generating
functions, but it seems difficult to work with them, except in a few special
cases.

The enumeration of lattice paths restricted to regions bounded by hyper-
planes has also been considered for other regions, such as quadrants, octants,
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and rectangles, as well as in higher dimensions. The papers [3, 11] (see also
[12]) contain a general result on the number of lattice paths in a chamber
(alcove) of an (affine) reflection group that shows how far one can go when
one uses the reflection principle. In particular, this result covers (7) and (9),
the enumeration of lattice paths in quadrants, octants, rectangles, and many
other results that have appeared (before and after) in the literature. We
present a particularly elegant (and frequently occurring) special case. (In
the language of [3, 11], it corresponds to the reflection group of “type An−1”.
See [15] for terminology and information on reflection groups.)

Theorem 2. Let A = (a1, a2, . . . , ad) and E = (e1, e2, . . . , ed) be points in

Z
d with a1 ≥ a2 ≥ · · · ≥ ad and e1 ≥ e2 ≥ · · · ≥ ed. The number of all paths

from A to E in the integer lattice Z
d, which consist of positive unit steps and

which stay in the region x1 ≥ x2 ≥ · · · ≥ xd, equals

(10)
(

d
∑

i=1

(ei − ai)
)

! det
1≤i,j≤d

(

1

(ei − aj − i + j)!

)

.

The counting problem of the theorem is equivalent to numerous other
counting problems. It has been originally formulated as an n-candidate ballot
problem (see e.g. [2]), but it is as well equivalent to counting the number of
standard Young tableaux of a given shape (see e.g. [2, 45]). In the case that
all aj’s are equal, the determinant does in fact evaluate into a closed form
product. In Young tableaux theory a particular way to write the result is
known as the hook-length formula (see e.g. [31, Sec. 3.10] or [36, Cor. 7.21.6]).

We return to lattice paths in the plane, mentioning some more closely
related results. The first is a result of Mohanty [26], which expresses the
number of all lattice paths from the origin to (n,m) which touch the line
y = x + t exactly r times, never crossing it, as the difference

(11)

(

n + m − r

n + t − 1

)

−

(

n + m − r

n + t

)

, r ≥ 1.

Not forbidding that the paths cross the bounding line, we arrive at the
problem of counting the lattice paths from the origin to (n,m), which cross
the main diagonal y = x exactly r times, the answer being [17]

(12)

{

m−n+2r+1
m+n+1

(

m+n+1
n−r

)

if m > n,
2r+2

n

(

2n

n−r−1

)

if m = n.
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Next, we give the number of lattice paths from the origin to (n, n) which
have 2r steps on one side of the line y = x, as

(13)

(

2r

r

)(

2n − 2r

n − r

)

,

a result due to Sparre Andersen [34]. We refer the reader to [27, Ch. 3] for
further results in this direction.

Enumerating lattice paths with a fixed number of maximal straight pieces
(which correspond to runs), is intimately connected to another basic enu-
meration problem concerning lattice paths: the enumeration of lattice paths
having a fixed number of turns. An effective way to attack the latter problem
is by means of two-rowed arrays, see the survey article [22], where in partic-
ular analogues of the reflection principle for two-rowed arrays are developed.
These imply formulas for the number of lattice paths with fixed starting and
end points and a fixed number of north-east (respectively east-north) turns6,
for unrestricted paths, as well as for paths bounded by lines. In particular,
analogues of (7)–(9) are known when the number of north-east (respectively
east-north) turns is fixed.7

These formulas imply for example (see again [22, Sec. 3.5]) that the number
of lattice paths from the origin to (n, n) which never pass above the line
y = x + t and have exactly 2r maximal straight pieces is given by

(14) 2

(

n − 1

r − 1

)2

−

(

n + t − 1

r − 2

)(

n − t − 1

r

)

−

(

n + t − 1

r − 1

)(

n − t − 1

r − 1

)

,

with a similar result for the case of 2r +1 maximal straight pieces.8 Further-
more, they imply that the number of lattice paths from the origin to (n, n)
which never pass above the line y = x + t and never below the line y = x− t

6A north-east turn in a lattice path is a point where the direction changes from “north”
to “east.” An east-north turn is defined analogously.

7These formulas imply directly formulas for the probability of the correlated random

walk (see [27, Sec. 5.2]), which is a random walk with horizontal and vertical steps in which
the probability of a step is not independent of the previous step made, subject to various
restrictions.

8If t = 0, the numbers in (14) become 1

n

(

n

r

)(

n

r−1

)

, and they are known as the Narayana

numbers.
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and have exactly 2r maximal straight pieces is given by

(15)
∞

∑

k=−∞

{

2

(

n − 2kt − 1

r + k − 1

)(

n + 2kt − 1

r − k − 1

)

−

(

n − 2kt + t − 1

r + k − 2

)(

n + 2kt − t − 1

r − k

)

−

(

n − 2kt + t − 1

r + k − 1

)(

n + 2kt − t − 1

r − k − 1

)

}

,

with a similar result for the case of 2r + 1 maximal straight pieces. Both,
Eqs. (14) and (15), are results originally obtained by Vellore [42]. They
translate into obvious assertions about the joint probability of encountering
a fixed number of runs and D+

n,n ≤ t/n, respectively Dn,n ≤ t/n, under the
assumption that the distribution functions of X and Y are the same.

The most general boundary for lattice paths that one can imagine is the
restriction that it stays between two given (fixed) paths. Let us assume
that the horizontal steps of the upper (fixed) path are at heights a1 ≤ a2 ≤
· · · ≤ an, whereas the horizontal steps of the lower (fixed) path are at heights
b1 ≤ b2 ≤ · · · ≤ bn, ai ≥ bi, i = 1, 2, . . . , n. Then the number of all paths from
(0, b1) to (n, an) satisfying the property that for all i = 1, 2, . . . , n the height
of the i-th horizontal step is between bi and ai is given by the determinant

(16) det
1≤i,j≤n

((

ai − bj + 1

j − i + 1

))

.

In the statistical literature, this formula is often known as “Steck’s formula”
[37], but it is actually a special case of a much more general theorem due
to Kreweras [24]. A generalization of (16) to higher dimensional paths was
given by Handa and Mohanty [14]. For a continuous analogue of (16), and
its applications see [27, Sec. 4.5].

Several of the formulas presented have also applications in queueing the-
ory (see [41] and [27, Sec. 5.3] for more extensive treatments of this aspect of
lattice paths). Consider an M/M/1 queueing system in which the customers
arrive individually at a counter in accordance with a Poisson process of den-
sity λ1 and are served individually by a single server. The service times are
i.i.d. random variables with distribution function

F (x) =

{

1 − e−λ0x if x ≥ 0,

0 otherwise,
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and are independent of the arrival times. In the combined process, every
event independent of others is either an arrival with probability p = λ1/(λ0 +
λ1) or a departure with probability q = 1−p. If we represent a departure by a
vertical unit and an arrival by a horizontal unit, then a busy period, initiated
by j customers and consisting of n + j services (departures) corresponds
to the set of lattice paths from (0, 0) to (n, n + j) that do not touch the
line y = x + j except at the end. Thus, the probability for a busy period
initiated by j customers in which n+ j customers are served, is pnqn+j times
the number of these lattice paths. The latter number results from (7) by
setting m = n + j − 1 and t = j − 1. Using some probabilistic reasoning,
it is then possible to derive an explicit integral formula for the probability
that such a busy period has length ≤ t. More refined queueing problems
(allowing for arrivals/departures in batches, for bounds on the number of
waiting customers, etc.) can also be treated by this lattice path method. We
refer the reader again to [41] and [27, Sec. 5.3].

We remark that another area of application of lattice path enumeration
has been in Discrete Distributions, see [27, Ch. 5].

Another vast topic is the enumeration of several paths which do not have
any common points.9 This problem has been introduced and was first studied
by Karlin and McGregor [18, 19] (in the continuous case). If the starting and
end points of the paths are fixed, the number of such families of non-touching
paths is given (under mild restrictions on the starting and end points) by a
determinant, where the (i, j)-entry of the determinant counts the number of
paths from the j-th starting to the i-th end point. The most general form of
this theorem has been obtained by Lindström [25] and has been rediscovered
by Gessel and Viennot [10].10 It covers numerous determinant formulas in
the literature, including (16) and its higher dimensional generalization due
to Handa and Mohanty (as shown by Sulanke [39]). The most widely used
case of the theorem is the following.

Theorem 3. Let G be an acyclic directed graph. Let (A1, A2, . . . , An) and

(E1, E2, . . . , En) be sequences of vertices in G such that for i < j and k < l
any path from Ai to El and any path from Aj to Ek have at least one point

in common. Then the number of all families (P1, P2, . . . , Pn) of non-touching

9In the combinatorial literature, such families of paths are, slightly confusingly, called
“non-intersecting” paths. In this text we use the term “non-touching” paths.

10Other occurrences of non-touching paths are in statistical physics under the name
of “vicious walkers” as introduced by Fisher [8], and in combinatorial chemistry in the
enumeration of perfect matchings of hexagonal graphs, see [13, 16].
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paths, where Pi is a path running from Ai to Ei, i = 1, 2, . . . , n, is given by

(17) det
1≤i,j≤n

(

P (Aj → Ei)
)

,

where P (Aj → Ei) is the number of paths from Aj to Ei.

The most general theorem includes weighted counting as well, and it
drops the condition involving i, j, k, l. The standard application of the above
“weak” form of the theorem is to the enumeration of families of non-touching
paths in the integer lattice.

Theorem 4. Let (A1, A2, . . . , An) and (E1, E2, . . . , En) be sequences of lattice

points in Z
2 such that for i < j and k < l any path from Ai to El and any

path from Aj to Ek have at least one point in common. Then the number

of all families (P1, P2, . . . , Pn) of non-touching paths, where Pi consists of

horizontal and vertical steps in the positive direction and runs from Ai to Ei,

i = 1, 2, . . . , n, is given by

(18) det
1≤i,j≤n

(

P (Aj → Ei)
)

,

where P (A → E) is the binomial coefficient
(

e1+e2−a1−a2

e1−a1

)

, given that A =

(a1, a2) and E = (e1, e2).

If the starting points or/and the end points are not fixed, then the corre-
sponding number is given by a Pfaffian, a result obtained by Okada [30] and
Stembridge [38]. Refinements when the number of turns is fixed have been
obtained by Krattenthaler, see [22].

For further reading, and many more references, we refer the reader to the
textbooks [27] and [29].
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[23] C. Krattenthaler, Permutations with restricted patterns and Dyck paths, Adv. Appl.
Math. 27 (2001), 510–530.

[24] G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des parti-

tions des entiers, Cahiers du B.U.R.O. Univ. de Rech. Opér. 6 (1965), 5–105.
[25] B. Lindström, On the vector representations of induced matroids, Bull. London Math.

Soc. 5 (1973), 85–90.
[26] S. G. Mohanty, On some generalization of a restricted random walk, Stud. Sci. Math.

Hungarica 3 (1968), 225–241.
[27] S. G. Mohanty, Lattice Path Counting and Applications, Academic Press, New York,

1979.
[28] S. G. Mohanty, On the transient behaviour of a finite discrete time birth-death process,

Assam Statist. Rev. 5 (1991), 1–7.
[29] T. V. Narayana, Lattice path combinatorics with statistical applications, Math. Expo-

sitions, no. 23, Univ. of Toronto Press, Toronto, 1979.
[30] S. Okada, On the generating functions for certain classes of plane partitions, J. Com-

bin. Theory A 51 (1989), 1–23.



14

[31] B. E. Sagan, The symmetric group, 2nd edition, Springer–Verlag, New York, 2001.
[32] M. Sato, Generating functions for the number of lattice paths between two parallel

lines with a rational incline, Math. Japonica 34 (1989), 123–137.
[33] M. Sato, Generating functions for the number of lattice paths restricted by two parallel

hyperplanes, J. Statist. Plann. Inference 34 (1993), 251–258.
[34] E. Sparre Andersen, On the number of positive sums of random variables, Scand.

Actuarietidskr. 32 (1949), 27–36.
[35] F. Spitzer, A combinatorial lemma and its application to probability theory, Trans.

Amer. Math. Soc. 82 (1956), 323–339.
[36] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cam-

bridge, 1999.
[37] G. P. Steck, The Smirnov two-sample tests as rank tests, Ann. Math. Statist. 40

(1969), 1449–1466.
[38] J. R. Stembridge, Nonintersecting paths, pfaffians and plane partitions, Adv. in Math.

83 (1990), 96–131.
[39] R. A. Sulanke, A determinant for q-counting lattice paths, Discrete Math. 81 (1990),

91–96.
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