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Abstract. We present Viennot’s theory of heaps of pieces, show that heaps are
equivalent to elements in the partially commutative monoid of Cartier and Foata,
and illustrate the main results of the theory by reproducing its application to the
enumeration of parallelogram polyominoes due to Bousquet–Mélou and Viennot.

1. Introduction

The purpose of this note is to present an alternative, geometric point of view of
the “monöıde partiellement commutatif” of Cartier and Foata [7], now known as the
Cartier–Foata monoid. This alternative point of view is due to Viennot [22], who
introduced a combinatorial theory which he coined the theory of “heaps of pieces.”
While theoretically completely equivalent to the theory of Cartier and Foata, its main
feature is the visualisation of elements of the monoid in terms of so-called “heaps,”
which makes it very versatile in combinatorial applications.

We explain the basic set-up in the next section, and, in Section 3, why this is equiv-
alent to the monoid of Cartier and Foata. The two main theorems (generalising results
from [7]) are stated and proved in Section 4, while a beautiful application to parallel-
ogram polyominoes, due to Bousquet–Mélou and Viennot [6], is recalled in Section 5.
Other applications include applications to animals, polyominoes, Motzkin paths and
orthogonal polynomials, Rogers–Ramanujan identities, Lyndon words, fully commuta-
tive elements in Coxeter groups, Bessel functions, and Lorentzian quantum gravity, see
[3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24]. The reader is also
referred to the survey [2].

2. Heaps of pieces

Informally, a heap is what we would imagine. We take a collection of “pieces,” say
b1, b2, . . . , and put them one upon the other, sometimes also sideways, to form a “heap,”
see Figure 1.

We imagine that pieces can only move vertically (so that the heap in Figure 1 would
indeed form a stable arrangement). Note that we allow several copies of a piece to
appear in a heap. (This means that they differ only by a vertical translation.) For
example, in Figure 1 there appear two copies of b2. Under these assumptions, there
are pieces which can move past each other, and others which cannot. For example, in
Figure 1, we can move the piece b6 higher up, thus moving it higher than b1 if we wish.
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2 C. KRATTENTHALER

However, we cannot move b7 higher than b6, because b6 blocks the way. On the other
hand, we can move b7 past b1 (thus taking b6 with us).
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A heap of pieces

Figure 1

To make these considerations mathematically rigorous, consider the “skeleton” of a
heap. This is obtained by replacing each piece by a vertex, and by joining two vertices
by an edge whenever one vertex blocks the way of the other in the sense described above.
The skeleton of the heap in Figure 1 is shown in Figure 2. (There, we have labelled
each vertex by the name of the corresponding piece.) Mathematically, a skeleton is a
labelled partially ordered set or poset.
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The skeleton of the heap in Figure 1

Figure 2

Definition 2.1. A partially ordered set (poset) is a pair (P,�), where P is a set, and
where � is a binary relation defined on P which is

(1) reflexive, i.e., x � x for all x in P ,
(2) antisymmetric, i.e., if x � y and y � x, then x = y for all x, y in P ,
(3) transitive, i.e., if x � y and y � z then x � z for all x, y, z in P .

Posets are usually shown graphically in the form of Hasse diagrams. The Hasse
diagram of a poset is the graph with vertices P , in which x and y are connected by an
edge if x � y and there is no z different from x and y with x � z � y. Moreover, in
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the diagram, x is shown at a lower level than y. Clearly, the diagram in Figure 2 is the
Hasse diagram of a poset, with vertices labelled by pieces.

Now we can rigorously define what a heap is.

Definition 2.2. Let B be a set (of pieces) with a symmetric and reflexive binary relation
R. A heap is a triple (P,�, `), where (P,�) is a poset, and where ` is a labelling of the
elements of P by elements of B, such that:

(1) If x, y ∈ P and `(x)R`(y), then either x � y or y � x.
(2) The relation � is the transitive closure of the relations from (1).

Remark 2.3. The meaning of the relation R is that it expresses which pieces cannot be
moved past each other. That is, a relation xRy means that x blocks the way of y, and
vice versa. Requirement (1) above then says that, hence, in (any realisation of) a heap,
either x must be above y, symbolised by y � x, or x must be below y, symbolised by
x � y.

We illustrate this concept with the heap in Figure 1. The pieces are B = {b1, b2, . . . ,
b7}. The relations are (not mentioning the relations of the form biRbi; if a relation
biRbj holds then also bjRbi)

b1Rb2, b1Rb3, b1Rb4, b2Rb4, b3Rb4, b2Rb5, b6Rb7. (2.1)

According to Remark 2.3, these relations mean that if biRbj, then in any heap a piece
bi must be either below or above a piece bj, more precisely, in the corresponding poset
a vertex u labelled bi and a vertex v labelled bj must either satisfy u � v or v � u. In
our running example we have b2Rb4, and indeed there is one piece b2 which is above b4,
and there is another piece b2 which is below b4, see Figure 1.

A class of heaps which is of great importance for studying animals, polyominoes,
Motzkin paths and orthogonal polynomials (cf. [2, 3, 4, 5, 12, 13, 24]), is the class of
heaps of monomers and dimers, which we now introduce. (A more general class of
heaps will be relevant in our sample application in Section 5.)
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Example 2.4. Let B = M ∪D, where M = {m0, m1, . . . } is the set of monomers and
D = {d1, d2, . . . } is the set of dimers. We think of a monomer mi as a point, symbolised
by a circle, with x-coordinate i, see Figure 3. We think of a dimer di as two points,
symbolised by circles, with x-coordinates i − 1 and i which are connected by an edge,
see Figure 3.

We impose the relations miRmi, miRdi, miRdi+1, i = 0, 1, . . . , diRdj, i− 1 ≤ j ≤ i,
and extend R to a symmetric relation. Figure 4 shows two heaps of momomers and
dimers.
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Two heaps of monomers and dimers

Figure 4

Next we make heaps into a monoid by introducing a composition of heaps. (A monoid
is a set with a binary operation which is associative.) Intuitively, given two heaps H1

and H2, the composition of H1 and H2, the heap H1 ◦H2, is the heap which results by
putting H2 on top of H1. The rigorous definition is the following.

Definition 2.5. Let H1 and H2 be heaps, H1 = (P1,�1, `1), H2 = (P2,�2, `2). Then
the composition of H1 and H2, H1 ◦ H2, is the heap (H3,�3, `3) with

(1) P3 = P1 ∪ P2.
(2) The partial order �3 on P3 is the transitive closure of

(a) v1 �3 v2 if v1 �1 v2,
(b) v1 �3 v2 if v1 �2 v2,
(c) v1 �3 v2 if v1 ∈ P1, v2 ∈ P2 and `1(v1)R`2(v2).

The composition of the two heaps in Figure 4 is shown in Figure 5.
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Figure 5

Given pieces B with relation R, let H(B,R) be the set of all heaps consisting of pieces
from B, including the empty heap, denoted by ∅. It is easy to see that Definition 2.5
makes (H(B,R), ◦) into a monoid with unit ∅.

3. Equivalence with the Cartier–Foata monoid

The monoid which we have just defined in the previous section can be seen to be
equivalent to the Cartier–Foata monoid [7]. In order to explain this equivalence, we
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first observe that heaps could also be encoded by words with letters from B, i.e., by
sequences of pieces. To obtain a word from a heap H = (P,�, `), one considers a linear
extension of the poset P (i.e., a linear ordering ≤ of the elements of P in which x ≤ y
whenever x � y), and then reads the labels `(x) of the elements of P , while x runs
through all elements of P in the linear order, bottom to top. Clearly, since there may
be several linear extensions of a poset, several different words may be read off from
the same heap. For the heap in Figure 1 (see Figure 2 for the corresponding poset),
possible such readings are

b2b7b4b5b6b3b2b1 and b2b5b4b2b3b1b7b6. (3.1)

Of course, we want to identify words that are read off from the same heap. Therefore
we introduce an equivalence relation on words: We say that the words u and w are
equivalent, in symbols u ∼ w, if w arises from u by a squence of interchanges of two
adjacent letters x and y for which x6Ry. For example, given the relation R as in (2.1),
the words in (3.1) arise from each other by the following sequence of interchanges:

b2b7b4b5b6b3b2b1 ∼ b2b7b5b4b6b3b2b1 ∼ b2b5b7b4b6b3b2b1

∼ b2b5b4b7b6b3b2b1 ∼ b2b5b4b7b6b2b3b1 ∼ b2b5b4b7b2b6b3b1

∼ b2b5b4b2b7b6b3b1 ∼ b2b5b4b2b7b3b6b1 ∼ b2b5b4b2b3b7b6b1

∼ b2b5b4b2b3b7b1b6 ∼ b2b5b4b2b3b1b7b6.

Thus, heaps in H(B,R) correspond to equivalence classes of words modulo ∼. Under
this correspondence, the composition of heaps corresponds exactly to the composition
of equivalence classes of words induced by concatenation of words. The equivalence of
the heap monoid and the Cartier–Foata monoid is now obvious.

4. The main theorems

For the statement of the main theorems in the theory of heaps, we need two more
terms. A trivial heap is a heap consisting of pieces all of which are pairwise unrelated,
i.e., x6Ry for all pieces x, y in H. Figure 6.a shows a trivial heap consisting of monomers
and dimers. A pyramid is a heap with exactly one maximal element (in the correspond-
ing poset). Figure 6.a shows a pyramid consisting of monomers and dimers. Finally, if
H is a heap, then we write |H| for the number of pieces in H.
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Figure 6

The following theorem is Proposition 5.3 from [22].



6 C. KRATTENTHALER

Theorem 4.1. Let M be a subset of the pieces B. Then, in the monoid H(B,R),
the (formal) sum of all heaps with maximal pieces (by which we mean the labels of the
maximal elements in the corresponding posets) contained in M is given by

∑

H∈H(B,R)

maximal pieces ⊆M

H =

(

∑

T∈T (B,R)

(−1)|T |T

)−1(
∑

T∈T (B\M,R)

(−1)|T |T

)

, (4.1)

where T (B,R) denotes the set of all trivial heaps with pieces from B, and similarly for
T (B\M,R). In particular, the sum of all heaps if given by

∑

H∈H(B,R)

H =

(

∑

T∈T (B,R)

(−1)|T |T

)−1

. (4.2)

Remark 4.2. The inverse of the series which appears on the right-hand sides of (4.1)
and (4.2) exists because it has the form (1 − X)−1 =

∑

j≥0 Xj.

Remark 4.3. Equation (4.1) generalises Eq. (1) from [7, Introduction, Part A], the latter
being equivalent to (4.2).

Proof. Formula (4.2) is the special case of (4.1) in which M = B. Therefore it suffices
to establish (4.1). By multiplication at the left by

∑

T∈T (B,R)(−1)|T |T , the latter is
equivalent to

∑

H∈H(B,R), T∈T (B,R)

maximal pieces of H ⊆M

(−1)|T |T ◦ H =

(

∑

T∈T (B\M,R)

(−1)|T |T

)

. (4.3)

We show that most of the terms on the left-hand side of (4.3) cancel each other pairwise.
In order to do this, we first fix an arbitrary linear order on the set of pieces B. Now,
let (H, T ) be a pair of a heap H in H(B,R) with maximal pieces contained in M and
a trivial heap T . Consider the minimal pieces in T ◦ H (again, this means the labels
of the minimal elements in the poset corresponding to T ◦ H) which are below some
maximal piece in T ◦H that belongs to M. Let b be the first such minimal piece in the
linear order of pieces. Then we form a new pair (H ′, T ′) by:

• If b ∈ T , then H ′ = b ◦ H and T ′ = T\b.
• If b /∈ T , then H ′ = H\b and T ′ = T ◦ b.

In particular, nothing changes in the composed heap, i.e., we have T ′ ◦ H ′ = T ◦ H.
Hence, we have (−1)|T

′|T ′ ◦ H ′ = −(−1)|T |T ◦ H. When the same mapping is applied
to (H ′, T ′) then we obtain back (H, T ). Therefore, all the summands on the left-hand
side of (4.3) which are indexed by pairs to which the above map is applicable cancel.
The remaining summands are those indexed by pairs (H, T ) for which T ◦ H does not
contain any maximal piece in M. This forces H (which “sits” on top of T in T ◦H) to
be the empty heap, and T to consist of pieces in B\M only (all the pieces in a trivial
heap are maximal). Thus, (4.3) is established. �

The second main theorem, Proposition 5.10 from [22], concerns the set of pyramids
in H(B,R), which, for convenience, we denote by P(B,R). In contrast to Theorem 4.1,
in the result we must give up non-commutativity.
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Theorem 4.4. For the following (formal) sum indexed by pyramids in H(B,R), we
have

∑

P∈P(B,R)

1

|P |
P =

comm
− log

(

∑

T∈T (B,R)

(−1)|T |T

)

, (4.4)

where =
comm

means that the identity holds in the commutative extension of H(B,R),
that is, in the commutative monoid which arises from H(B,R) by letting all pieces in
B commute.

Proof. We make heaps into labelled objects. More precisely, a labelled heap is a heap from
H(B,R) with N pieces which are arbitrarily labelled from 1 up to N (with each label
between 1 and N appearing exactly once). Given a labelled heap H1, we decompose it
uniquely into labelled pyramids as follows. To begin with, we “push” the piece labelled
1 “downwards.” Let this piece be b1. (In the language of words, we would push b1 to
the left, using partial commutativity of letters.) Since some pieces cannot move past
others, thereby we will take several pieces with us. In fact, these will form a pyramid
P1 with maximal piece b1. Let H2 be what remains from H1 after removing P1. We
now repeat the same procedure with the piece b2 which has the minimal label within all
pieces of H2. Etc. In the end, we will have obtained a set of labelled pyramids with the
special property that in each pyramid the label of its maximal element is the smallest
of all labels of pieces of the pyramid.

Let H̃(B,R) denote the set of all labelled heaps, and let P̃(B,R) denote the set of all
labelled pyramids in H̃(B,R) with the above special property. Then, by the exponential
principle for labelled combinatorial objects (cf. [1, Eqs. (20), (70)], [11, Sec. II.2.1], or
[19, Cor. 5.1.6]), we have immediately

∑

H∈H̃(B,R)

1

|H|!
H =comm exp





∑

P∈P̃(B,R)

1

|P |!
P



 .

However, for any (unlabelled) heap in H(B,R) with N pieces there are exactly N ! ways

to label the pieces to obtain a labelled heap in H̃(B,R), while for any (unlabelled)
pyramid from H(B,R) with N pieces there a exactly (N − 1)! ways to label the pieces
to obtain a labelled pyramid in P̃(B,R). (The reader should recall that the maximal
element of the pyramid must get the smallest label.) Hence,

∑

H∈H(B,R)

H =comm exp





∑

P∈P(B,R)

1

|P |
P



 ,

which, in view of (4.2), is equivalent to (4.4). �

In applications, heaps will have weights, which are defined by introducing a weight
w(b) (being an element in some commutative ring with unit element) for each piece b in
B, and by extending the weight w to all heaps H by letting w(H) denote the product of
all weights of the pieces in H. Theorems 4.1 and 4.4 immediately imply the following
corollary on the corresponding generating function of heaps.
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Corollary 4.5. Let M be a subset of the pieces B. Then, the generating function for
all heaps with maximal pieces contained in M is given by

∑

H∈H(B,R)

maximal pieces ⊆M

w(H) =

∑

T∈T (B\M,R)

(−1)|T |w(T )

∑

T∈T (B,R)

(−1)|T |w(T )
, (4.5)

where again T (B,R) denotes the set of all trivial heaps with pieces from B. In partic-
ular, the generating function for all heaps is given by

∑

H∈H(B,R)

w(H) =
1

∑

T∈T (B,R)

(−1)|T |w(T )
. (4.6)

Furthermore,
∑

P∈P(B,R)

1

|P |
w(P ) = − log

(

∑

T∈T (B,R)

(−1)|T |w(T )

)

, (4.7)

where again P(B,R) denotes the set of all pyramids in H(B,R).

5. A sample application

As an illustration, we show how to use the results from Section 4 in order to obtain
a formula for a multivariate generating function for parallelogram polyominoes. This
beautiful application of heaps is due to Bousquet–Mélou and Viennot [6].

A parallelogram polyomino is a non-empty set of square cells in the plane without
holes which are enclosed by two paths consisting of unit horizontal and vertical steps
in the positive direction, both of which starting in the same point and ending in the
same point. An example is shown in Figure 7.

A parallogram polyomino

Figure 7

The area a(P ) of a parallelogram polyomino P is the number of cells of P . The
width b(P ) of a parallelogram polyomino P is the number of columns of cells of P . The
height h(P ) of a parallelogram polyomino P is the number of rows of cells of P . For
our parallogram polyomino in Figure 7, P0 say, we have a(P0) = 24, b(P0) = 8, and
h(P0) = 7.
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We would like to compute the generating function
∑

P

xb(P )yh(P )qa(P ),

summed over all parallogram polyominoes P . In order to do so, we show that the
latter are in bijection with heaps, the pieces of which are segments of the form [a, c],
1 ≤ a ≤ c, with the “obvious” commutation relations: two segments [a1, c1] and [a2, c2]
commute if and only if one segment “is to the left of the other,” that is, if c1 < a2 or if
c2 < a1. See Figure 8 for an example of a heap formed out of pieces of that form. (More
precisely, the segments in this figure are S1 = [1, 3], S2 = [3, 4], S3 = [3, 3], S4 = [3, 4],
S5 = [3, 4], S6 = [1, 2], S7 = [2, 2], S8 = [2, 2].)
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Figure 8

Given a parallelogram polyomino P consisting of n columns, we obtain a heap of
segments in the following way: Let (c1, c2, . . . , cn) be the sequence of column lengths of
P (considering the columns from left to right). In our example in Figure 7, these are
(3, 4, 3, 4, 4, 2, 2, 2). Furthermore, define (a1, a2, . . . , an) to be the sequence with a1 = 1
and, for i > 1, ai being equal to the length of the segment along which the (i − 1)-
st and the i-th column of P touch each other. In our example in Figure 7, these are
(1, 3, 3, 3, 3, 1, 2, 2). Now form the heap by piling the segments [ai, ci], i = n, n−1, . . . , 1,
on each other, that is, we form the heap

[an, cn] ◦ [an−1, cn−1] ◦ · · · ◦ [a1, c1].

It can be checked that the heap in Figure 8 corresponds to the parallelogram polyomino
in Figure 7 under this correspondence.

It can be shown that this correspondence is, in fact, a bijection between parallelo-
gram polyominoes P and heaps of segments H with a maximal piece of the form [1, c].
Moreover, under this correspondence,

(1) b(P ) is the number of pieces of H;
(2) h(P ) is one more than the sum of all the lengths of pieces of H;
(3) a(P ) is the sum of the right abscissae of the pieces of H (i.e., the sum of the

ci’s).

For details, we refer the reader to [6].
Now we apply Corollary 4.5 with H(B,R) being our heaps of segments, M being the

set of all pieces of the form [1, c], and with the weight w being defined as

w(H) = x|H|y
P

(lengths of pieces of H)q
P

(right abscissae of pieces of H).
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In order to do so, first of all, we must compute the sum
∑

T∈T (B,R)

(−1)|T |w(T ).

Now, a trivial heap consisting of n pieces has the form

[a1, c1] ◦ [a2, c2] ◦ · · · ◦ [an, cn],

where 1 ≤ a1 ≤ c1 < a2 ≤ c2 < · · · < an ≤ cn. Therefore,

∑

T∈T (B,R)

(−1)|T |w(T ) =
∞

∑

n=0

(−1)nxn
∑

1≤a1≤c1<a2≤c2<···<an≤cn

y
P

n

i=1
(ci−ai)q

P

n

i=1
ci.

Now the sums over cn, an, cn−1, an−1, . . . , c1, a1 can be evaluated, in this order, all of
them being geometric sums. The result is

∑

T∈T (B,R)

(−1)|T |w(T ) =

∞
∑

n=0

(−1)nxnq(
n+1

2 )

(q; q)n (yq; q)n

,

where (α; q)k is the q-shifted factorial , given by (α; q)0 := 1 and

(α; q)k := (1 − α)(1 − αq) · · · (1 − αqk−1)

if k is a positive integer. Similary, we obtain

∑

T

′(−1)|T |w(T ) = −
∞

∑

n=0

(−1)nxn+1q(
n+2

2 )

(q; q)n (yq; q)n+1
,

the sum being over all trivial heaps T in T (B,R) containing at least one piece from
M. Hence, remembering that parallelogram polyominoes are non-empty sets of cells,
we infer that

∑

P

xb(P )yh(P )qa(P ) = y









∑

T∈T (B\M,R)

(−1)|T |w(T )

∑

T∈T (B,R)

(−1)|T |w(T )
− 1









= y

∞
∑

n=0

(−1)nxn+1q(
n+2

2 )

(q; q)n (yq; q)n+1

∞
∑

n=0

(−1)nxnq(
n+1

2 )

(q; q)n (yq; q)n

, (5.1)

the sum over P being over all parallogram polyominoes P .
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