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Abstract. A formula for counting lattice paths in the plane from µ = (µ1, µ2) to
λ = (λ1, λ2) which do not cross the lines y = x + d and y = x + c, where c, d ∈ Z and

d > c, by descents and major index is given. The proof, which is purely combinatorial,
uses a bijection on certain two–rowed tableaux. As application, formulas for the joint
distribution of Kolmogorov–Smirnov and run statistics are derived.

1. Introduction. In this paper we consider lattice paths in the plane consisting
of unit horizontal and vertical steps in the positive direction. In the sequel we shall
call them shortly paths.

The number of paths from µ = (µ1, µ2) to λ = (λ1, λ2), λ, µ ∈ Z
2, which do not

cross the lines y = x + d and y = x + c, where c, d ∈ Z and d > c, is

(1.1)
∑

k∈Z

{(

λ1 + λ2 − µ1 − µ2

λ1 − µ1 − k(d − c + 2)

)

−

(

λ1 + λ2 − µ1 − µ2

λ1 − µ2 + k(d − c + 2) + c − 1

)}

,

provided λ1 + c ≤ λ2 ≤ λ1 + d and µ1 + c ≤ µ2 ≤ µ1 + d. This is easily proved by
iterated reflection (cf. [9, pp. 6,7,121] for the proof and statistical applications).

In Theorem 1 below, we generalize this result to counting lattice paths by major
and descents, thus continuing previous work of one of the authors [3,4,5]. First we
give the relevant definitions.

The major index (or “greater index”) of a multiset permutation π = π1π2 . . . πn,
πi ∈ N0 (set of nonnegative integers), is defined by

majπ =
n−1
∑

i=1

i · χ(πi > πi+1) .
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(χ(A) = 1 if A is true, and χ(A) = 0 otherwise.) McMahon [7] was the first to
consider major counting. He was led to introduce this notion, while investigating the
problem of finding generating functions for plane partitions.

A pair πiπi+1 with πi > πi+1 is called a descent of π. The number of descents of
π,

des π =
n−1
∑

i=1

χ(πi > πi+1) ,

is another important statistics on multiset permutations. Stanley [10] showed that
maj and des are crucial for the computation of partition generating functions.

Any path in a natural way corresponds to a multiset permutation consisting of 0’s
and 1’s. Let p be a path from µ to λ. p may be represented by a pair (µ, π), where
µ is the starting point of p and π = π1π2 . . . πλ1+λ2−µ1−µ2 , where πi = 0 if the i’th
step in the path p is a horizontal one and πi = 1 if the i’th step in the path p is a
vertical one. π is a multiset permutation consisting of λ1−µ1 entries of 0 and λ2−µ2

entries of 1. For example, the path in Figure 1 is represented by ((0, 0), 100100). Of
course, this representation of paths is unique. Hence, we may identify each path with
its representation. Given a path p = (µ, π), we extend maj and des to p by defining
maj p := majπ and des p := desπ.

•

• • •

• • •

Figure 1

Now we are able to formulate the generalization of formula (1.1) to counting by
maj and des.

Theorem 1. Given c, d ∈ Z, d > c, let L+
c,d(λ, µ) be the set of all lattice paths

from µ = (µ1, µ2) to λ = (λ1, λ2) which do not cross the lines y = x+d and y = x+c.
If λ1 + c ≤ λ2 ≤ λ1 + d and µ1 + c ≤ µ2 ≤ µ1 + d, then

(1.2)
∑

p∈L
+
c,d

(λ,µ)

xdes pqmaj p

=
∑

n≥0

xn
∑

k∈Z

qn2+k2(d−c+1)−k(1−c+µ2−µ1)

×

([

λ1 − µ1 − k(d − c)
n + k

] [

λ2 − µ2 + k(d − c)
n − k

]

−

[

λ2 − µ1 − k(d − c) − c + 1
n + k

] [

λ1 − µ2 + k(d − c) + c − 1
n − k

])

,

2



where
[ a

b

]

is the Gaussian binomial coefficient

[

a
b

]

= (1 − qa)(1 − qa−1) · · · (1 − qa−b+1)/(1 − qb)(1 − qb−1) · · · (1 − q).

Previous results of McMahon [8, p.1429] and of one of the authors [4, Theorems
5-7] are special cases of this theorem.

In the next section we give the proof of Theorem 1, which essentially is an extension
of iterated reflection. It is inspired by a correspondence on tableaux which was used
in [6] for the computation of plane partition generating functions. In section 3 special
cases of Theorem 1 are discussed. We derive a formula for counting lattice paths only
bounded by a single line by maj and des (Corollary 2). q–Vandermonde summation [1,
3.3.10] is used to obtain formulas for the maj–counting in the two and one boundary
case, respectively (Corollaries 3 and 4). Finally, we give an application of our formulas
to counting lattice paths by their number of turns. Thus, we provide an alternative
proof for the expressions for the joint distribution of run statistics and (one- and
two-sided) Smirnov statistics, which were earlier obtained by Vellore [11].

2. Proof of Theorem 1. Any path p from µ to λ may be represented by an
array

(2.1)
an an−1 . . . a1

bn bn−1 . . . b1 ,

where n is equal to des p, the number of descents of p, ai is equal to the x–coordinate
of the i’th descent of p, and bi is the y–coordinate of the i’th descent of p. More
precisely, if p = (µ, π) and πνπν+1 is the i’th descent of π, then

ai = µ1 + |{j : πj = 0 and j ≤ ν}|

and
bi = µ2 + |{j : πj = 1 and j ≤ ν}| .

For example, the path in Figure 1 would be represented by

2 0
2 1

.

We shall frequently use the short notation (a | b), where a = (an, an−1,
. . . , a1) and b = (bn, bn−1, . . . , b1), for an array of the form (2.1). By definition,
for a path p which is represented by (a | b) we have

(2.2) ai < ai+1, µ1 ≤ ai ≤ λ1 − 1 ,

and

(2.3) bi < bi+1, µ2 + 1 ≤ bi ≤ λ2 .
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Besides, if p ∈ L+
c,d(λ, µ), then the inequalities

(2.4) bi ≤ ai + d for i = n, n − 1, . . . , 1

and

(2.5) bi ≥ ai+1 + c for i = n, n − 1, . . . , 1, 0 ,

with the conventions an+1 := λ1 and b0 := µ2, hold. In turn, given a double–array
of the form (2.1), which satisfies (2.2)–(2.5), there is a uniquely determined path
p ∈ L+

c,d(λ, µ), which corresponds to this array.

If we let w(a | b) :=
∑

i ai +
∑

i bi, then, obviously, for a path p with representation
(a | b) the equation

maj p = w(a | b) − n(µ1 + µ2)

is true. Therefore, in order to prove Theorem 1, we have to show that the gen-
erating function

∑

qw(a|b), where the sum is over all (a | b), a = (an, . . . , a1) and
b = (bn, . . . , b1), which satisfy (2.2)–(2.5), is equal to

(2.6)
∑

k∈Z

qn(µ1+µ2)+n2+k2(d−c+1)−k(1−c+µ2−µ1)

×

([

λ1 − µ1 − k(1 − c)
n + k

] [

λ2 − µ2 + k(d − c)
n − k

]

−

[

λ2 − µ1 − k(d − c) − c + 1
n + k

] [

λ1 − µ2 + k(d − c) + c − 1
n − k

])

.

First we introduce some more sets of double–arrays. For k ∈ Z let L
(1)
c,d(λ, µ; k)

denote the set of all “skew” arrays of the form

(2.7)(a)
an+k . . . an−k . . . a1

bn−k . . . b1
for k ≥ 0

and

(2.7)(b)
an+k . . . a1

bn−k . . . bn+k . . . b1
for k < 0

satisfying ai+1 > ai and bi+1 > bi, and

(2.8)
µ1 ≤ai ≤ λ1 − k(d − c) − 1

µ2 + 1 ≤bi ≤ λ2 + k(d − c) .

Analogously, for k ∈ Z let L
(2)
c,d(λ, µ; k) denote the set of all arrays of the form (2.7)

satisfying ai+1 > ai and bi+1 > bi, and

(2.9)
µ1 ≤ ai ≤ λ2 − k(d − c) − c

µ2 + 1 ≤ bi ≤ λ1 + k(d − c) + c − 1 .
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Note that L+
c,d(λ, µ) is a subset of L

(1)
c,d(λ, µ; 0), if we identify each path with its

representing array. Let L−
c,d(λ, µ) be the set difference

L
(1)
c,d(λ, µ; 0)\L+

c,d(λ, µ) .

L−
c,d(λ, µ) is the set of all arrays of the form (2.1) with rows decreasing, such that

either condition (2.4) or condition (2.5) is violated. We extend the weight w to
arrays (a(n+k) | b(n−k)) of the form (2.7), with a(n+k) = (an+k, . . . , a1) and b(n−k) =
(bn−k, . . . , b1), by

(2.10) w(a(n+k) | b(n−k)) = k2d − (k2 − k)c +
∑

i

ai +
∑

i

bi .

Next we construct a weight–preserving involution ϕ on the set

Lc,d =
⋃

k∈Z

(L
(1)
c,d(λ, µ; k) ∪ L

(2)
c,d(λ, µ; k))\L+

c,d(λ, µ) .

Given an element (a(n+k) | b(n−k)) of Lc,d, let J be the smallest nonnegative integer
such that either

(I) bJ < aJ+1 + c or J = n + k + 1

or

(II) bJ > aJ + d or J = n − k + 1 .

Note that in (I) the choice J = 0 would be legal while in (II) it would be not (cf. the
convention after (2.5)). For any (a(n+k) | b(n−k)) ∈ Lc,d it is possible to find such a
J , because if bi ≤ ai + d and bi ≥ ai+1 + c is satisfied for all i = 1, 2, . . . , n− |k|, then
for k > 0 we have J = n − k + 1 and for k < 0 we have J = n + k + 1. In the case
k = 0 there must be a J , J ≤ n, with either bJ > aJ + d or bJ < aJ+1 + c, since any
element (a(n) | b(n)) of Lc,d belongs to L−

c,d(λ, µ).

The map ϕ is defined as follows: If (a(n+k) | b(n−k)) is the array

an+k . . . an−k . . . aJ+1 aJ . . . a1

bn−k . . . bJ+1 bJ . . . b1 ,

where J is the above defined uniquely determined integer, then, if condition (I) holds,
ϕ(a(n+k) | b(n−k)) is defined by

(2.11)
(bn−k − c) . . . (bJ+1 − c) aJ . . . a1

(an+k + c) . . . (an−k + c) . . . (aJ+1 + c) bJ . . . b1 ,

if condition (I) does not hold (but, hence, condition (II) does), ϕ(a(n+k) | b(n−k)) is
defined by

(2.12)
(bn−k − d) . . . (bJ − d) aJ aJ−1 . . . a1

(an+k + d) . . . (an−k+2 + d) . . . (aJ+2 + d) (aJ+1 + d) bJ−1 . . . b1 .
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More precisely, the arrray (A(n−k) | B(n+k)) in (2.11) is given by

Ai =

{

ai 1 ≤ i ≤ J

bi − c J < i ≤ n − k

and

Bi =

{

bi 1 ≤ i ≤ J

ai + c J < i ≤ n + k ,

while the array (C(n−k+1) | D(n+k−1)) in (2.12) is given by

Ci =

{

ai 1 ≤ i ≤ J

bi−1 − d J < i ≤ n − k + 1

and

Di =

{

bi 1 ≤ i < J

ai+1 + d J ≤ i ≤ n + k − 1 .

One can readily verify the following properties of ϕ:

(1) If (a(n+k) | b(n−k)) ∈ L
(i)
c,d(λ, µ; k), i = 1, 2, and ϕ(a(n+k) | b(n−k)) is given by

(2.11), then ϕ(a(n+k) | b(n−k)) ∈ L
(3−i)
c,d (λ, µ;−k).

(2) If (a(n+k) | b(n−k)) ∈ L
(i)
c,d(λ, µ; k), i = 1, 2, and ϕ(a(n+k) | b(n−k)) is given by

(2.12), then ϕ(a(n+k) | b(n−k)) ∈ L
(3−i)
c,d (λ, µ;−k + 1).

(3) ϕ is an involution on Lc,d.
(4) ϕ is weight–preserving with respect to the weight w given in (2.10).

Items (1)–(4) imply the generating function identity

(2.13)
∑

k∈Z

k 6=0

∑

p∈L
(1)
c,d

(λ,µ;k)

qw(p) +
∑

p∈L
−

c,d
(λ,µ,k)

qw(p) =

=
∑

k∈Z

∑

p∈L
(2)
c,d

(λ,µ;k)

qw(p) .

Besides, by definition we have

(2.14)
∑

p∈L
−

c,d

qw(p) =
∑

p∈L
(1)
c,d

(λ,µ;0)

qw(p) −
∑

p∈L
+
c,d

(λ,µ)

qw(p) .

Obviously, because of (2.10) the generating function

∑

p∈L
(1)
c,d

(λ,µ;k)

qw(p)

is equal to qk2d−(k2−k)c times the product of two partition generating functions,
namely the generating function for all (linear) partitions with (n + k) distinct parts,
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each part at least µ1 and at most λ1 − 1 − k(d − c) times the generating function
for all partitions with (n − k) distinct parts, each part at least (µ2 + 1) and at most
λ2 + k(d − c). Therefore, by applying the classical result [1, Theorem 3.1] for the
generating function for linear partitions, we obtain

(2.15)
∑

p∈L
(1)
c,d

(λ,µ;k)

qw(p) = qN(k)

[

λ1 − µ1 − k(d − c)
n + k

] [

λ2 − µ2 + k(d − c)
n − k

]

,

where

N(k) = k2d − (k2 − k)c +

(

n + k
2

)

+

(

n − k
2

)

+ µ1(n + k) + (µ2 + 1)(n − k) .

Analogously, we get

(2.16)
∑

p∈L
(2)
c,d

(λ,µ;k)

qw(p)

= qN(k)

[

λ2 − µ1 − k(d − c) − c + 1
n + k

] [

λ1 − µ2 + k(d − c) + c − 1
n − k

]

.

Finally, substitution of (2.14)–(2.16) into (2.13) yields (2.6), which is equivalent to
Theorem 1.

3. Special cases and applications. In this section we discuss some special
choices of the parameters occuring in Theorem 1.

If we choose c = µ2 − λ1 in Theorem 1, the terms with k /∈ {0, 1} vanish. Besides,
any path from µ = (µ1, µ2) to λ = (λ1, λ2) cannot cross the line y = x+µ2−λ1. Thus
we obtain the result for lattice path counting by maj and des for the one boundary
case.

Corollary 2. Given d ∈ Z, let L+
d (λ, µ) be the set of all lattice paths from µ =

(µ1, µ2) to λ = (λ1, λ2) not crossing the line y = x+d. If λ2 ≤ λ1+d and µ2 ≤ µ1+d,

then

(3.1)
∑

p∈L
+
d

(λ,µ)

xdes pqmaj p

=
∑

n≥0

xnqn2

([

λ1 − µ1

n

] [

λ2 − µ2

n

]

−qµ1−µ2+d

[

λ2 − µ1 − d + 1
n + 1

] [

λ1 − µ2 + d − 1
n − 1

])

.

This result solves the problem put in [4, section 5, Remark (6)].
If in Theorem 1 or Corollary 2, respectively, x is set equal to 1, we obtain lattice

path counting results for maj–counting. By q–Vandermonde summation [1, 3.3.10]
the summation over n admits a closed form, as well in the two boundary case as in
the one boundary case. For the two boundary case we get:
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Corollary 3. With the assumptions of Theorem 1, we have

(3.2)
∑

p∈L
+
c,d

(λ,µ)

qmaj p =
∑

k∈Z

qk2(d−c+2)−k(1−c+µ2−µ1)

×

([

λ1 + λ2 − µ1 − µ2

λ1 − µ1 − k(d − c + 2)

]

−

[

λ1 + λ2 − µ1 − µ2

λ1 − µ2 + k(d − c + 2) + c − 1

])

.

The corresponding result for the one boundary case reads:

Corollary 4. With the assumptions of Corollary 2, we have

(3.3)
∑

p∈L
+
d

(λ,µ)

qmaj p

=

[

λ1 + λ2 − µ1 − µ2

λ1 − µ1

]

− qµ1−µ2+d+1

[

λ1 + λ2 − µ1 − µ2

λ1 − µ2 + d + 1

]

.

The last result was previously shown in [4, (5.36)]. The other generating function
identities in section 5 of [4] are also special cases of Theorem 1.

Next we want to reformulate Theorem 1 into a theorem about counting lattice
paths with respect to major and their number of turns. A turn in a lattice path is
any vertex of the lattice path where the direction of the path changes. In the example
given in Figure 1 there are turns at (0, 1), (2, 1) and (2, 2). Let t(p) denote the number
of turns of a lattice path p.

In order to obtain an expression for the generating function
∑

xt(p)qmaj p, where
the sum is over all paths p being an element of L+

c,d(λ, µ), we need some more notation.

Let F (λ, µ;x) denote the generating function
∑

xdes pqmaj p, where the sum is over all
paths p of L+

c,d(λ, µ). Let F01(λ, µ;x) denote the generating function
∑

xdes pqmaj p,

where the sum is over all paths p of L+
c,d(λ, µ) starting with a horizontal edge and

ending with a vertical one. F00(λ, µ;x), F10(λ, µ;x), and F11(λ, µ;x) are defined
analogously. Obviously, the following equation holds,

(3.4) F00(λ, µ;x) + F01(λ, µ;x) + F10(λ, µ;x) + F11(λ, µ;x) = F (λ, µ;x) .

Since for any multiset permutation π (consisting only of 0’s and 1’s) we have

des(0π) = des π

and

maj(0π) = majπ + des π ,

we obtain

(3.5) F00(λ, µ;x) + F01(λ, µ;x) = F (λ, µ + e1; qx) ,
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where e1 = (1, 0). Similarly, if e2 = (0, 1), we get

(3.6) F01(λ, µ;x) + F11(λ, µ;x) = F (λ − e2, µ;x) ,

and

(3.7) F01(λ, µ;x) = F (λ − e2, µ + e1; qx) .

Equations (3.4)–(3.7) yield

F00(λ, µ;x) = F (λ, µ + e1; qx) − F (λ − e2, µ + e1; qx)(3.8)

F01(λ, µ;x) = F (λ − e2, µ + e1; qx)

F10(λ, µ;x) = F (λ, µ;x) + F (λ − e2, µ + e1; qx)

− F (λ, µ + e1; qx) − F (λ − e2, µ;x)

F11(λ, µ;x) = F (λ − e2, µ;x) − F (λ − e2, µ + e1; qx) .

Simple considerations show that

(3.9)
∑

p∈L
+
c,d

(λ,µ)

xt(p) = F00(λ, µ;x2) + xF01(λ, µ;x2)

+
1

x
F10(λ, µ;x2) + F11(λ, µ;x2) .

Now we are in the position to formulate our path counting formula.

Theorem 5. Let

K1 = λ1 − µ1 − k(d − c) − 1

K2 = λ2 − µ2 + k(d − c) − 1

K3 = λ2 − µ1 − k(d − c) − c − 1

K4 = λ1 − µ2 + k(d − c) + c − 1 .

With the assumptions of Theorem 1, we have

(3.10)
∑

p∈L
+
c,d

(λ,µ)

xt(p)qmaj p =
∑

n≥0

x2nAn +
∑

n≥0

x2n−1Bn ,

where

(3.11) An =
∑

k∈Z

qM(k)

(

qK2+2k+1

[

K1

n + k

] [

K2

n − k − 1

]

+

[

K1

n + k − 1

] [

K2

n − k

]

−
(

1 + qK3+1
)

[

K3

n + k − 1

] [

K4

n − k

])
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and

Bn =
∑

k∈Z

qM(k)

(

(

qk−n+qK2−n+k+1
)

[

K1

n + k − 1

] [

K2

n − k − 1

]

(3.12)

− qK3−n−k+2

[

K3

n + k − 2

] [

K4

n − k

]

−qk−n

[

K3

n + k − 1

] [

K4

n − k − 1

])

.

The exponent M(k) is given by the expression

n2 + k2(d − c + 1) − k(1 − c + µ2 − µ1) .

Proof. Combining (3.9) and (3.8), we obtain an expression for the desired gen-
erating function by using (1.2) with x replaced by x2. This expression by repeated
application of the q-binomial identities

[

N
K

]

= qK

[

N − 1
K

]

+

[

N − 1
K − 1

]

and
[

N
K

]

=

[

N − 1
K

]

+ qN−K

[

N − 1
K − 1

]

is turned into the claimed expressions (3.10)–(3.12). �

Counting lattice paths restricted by linear boundaries is intimately connected with
determining the distribution for the two-sample Kolmogorov–Smirnov statistics. Vel-
lore [11] derived formulas for the joint distribution of Kolmogorov–Smirnov statistics
and run statistics (cf. [9, p.101] for the definition of these statistics) in the equal-
sample case. Her formulas are special cases of Theorem 5. To see this, first observe
that for any path p the number of runs of p exceeds the number of turns of p by one.
Let Dn,n, D+

n,n, and Rn,n denote the two-sided, the one-sided Kolmogorov–Smirnov
statistics, and run statistics for two samples of size n, respectively. As is well-known,
(

2n
n

)

P (Dn,n ≤ t/n,Rn,n = r) is equal to the number of all lattice paths from (0, 0) to
(n, n) not crossing the lines y = x+ t and y = x− t and containing r runs. Hence, this
number is equal to the coefficient of xr−1 in (3.10), after setting q = 1, λ1 = λ2 = n,
µ1 = µ2 = 0, and d = −c = t. This provides another proof of [11, Theorems 8 and 9].
Similarly, the result [11, Theorem 5] for

(

2n
n

)

P (D+
n,n ≤ t/n,Rn,n = r) is the special

case q = 1, λ1 = λ2 = n, µ1 = µ2 = 0, d = t, c = n of Theorem 5.

Note. Recently, Burge [2] independently considered generating functions for par-
tition pairs with restrictions. To relate his paper to ours, observe that the proof of our
Theorem 1 uses double-rowed arrays which actually are pairs of strict partitions. So
it is clear that, in disguise, Theorem 1 is a theorem about the generating function for
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pairs of partitions subject to certain restrictions. In fact, our Theorem 1 could be de-
rived from Burge’s expression for his generating function R(N1,M1, N2,M2, a, b, α, β)
by setting N1 = N2, a = 1, and b = 0. In turn, our proof of Theorem 1 could
be modified to prove his result, too. Though the argumentation in Burge’s proof is
different from our’s, the basic correspondence (2.11/2.12) essentially also occurs in
Burge’s paper. However, Burge’s emphasis does not lie on lattice path enumeration
but on the combinatorial interpretation of certain q-identities. Most interestingly,
(among other results) he derives a number of identities expressing a Gaussian bino-
mial coefficient as difference of two terminating basic hypergeometric sums. These
identities combine two well-known but previously unrelated identities into a single
one. In particular, he finds an identity which combines Rogers’ proof and Schur’s
proof of the Rogers–Ramanujan identities.
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