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Abstra
t. We deal with unweighted and weighted enumerations of lozenge tilings

of a hexagon with side lengths a; b + m; 
; a + m; b; 
 + m, where an equilateral tri-

angle of side length m has been removed from the 
enter. We give 
losed formulas

for the plain enumeration and for a 
ertain (�1)-enumeration of these lozenge tilings.

In the 
ase that a = b = 
, we also provide 
losed formulas for 
ertain weighted

enumerations of those lozenge tilings that are 
y
li
ally symmetri
. For m = 0, the

latter formulas spe
ialize to statements about weighted enumerations of 
y
li
ally

symmetri
 plane partitions. One su
h spe
ialization gives a proof of a 
onje
ture of

Stembridge on a 
ertain weighted 
ount of 
y
li
ally symmetri
 plane partitions. The

tools employed in our proofs are nonstandard appli
ations of the theory of nonin-

terse
ting latti
e paths and determinant evaluations. In parti
ular, we evaluate the

determinants det

0�i;j�n�1

�

!Æ

ij

+

�

m+i+j

j

��

, where ! is any 6th root of unity. These

determinant evaluations are variations of a famous result due to Andrews (Invent.

Math. 53 (1979), 193{225), whi
h 
orresponds to ! = 1.

1. Introdu
tion

Let a, b and 
 be positive integers, and 
onsider a hexagon with side lengths a; b; 
; a; b;


 (in 
y
li
 order) and angles of 120

Æ

. It is well-known that the total number of lozenge
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Here and in the following, by a lozenge we mean a rhombus with side lengths 1 and angles of 60

Æ

and 120

Æ
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tilings of su
h a hexagon equals

H(a) H(b) H(
) H(a+ b + 
)

H(a + b) H(b+ 
) H(
+ a)

; (1.1)

where H(n) stands for the \hyperfa
torial"

Q

n�1

k=0

k!. This follows from a bije
tion (
f.

[7℄) between su
h lozenge tilings and plane partitions 
ontained in an a� b� 
 box, and

from Ma
Mahon's enumeration [26, Se
. 429, q ! 1; proof in Se
. 494℄ of the latter.

In [33℄ (see also [34℄), Propp posed several problems regarding \in
omplete" hexagons.

For example, Problem 2 in [33℄ (and [34℄) asks for the number of lozenge tilings of a

hexagon with side lengths n; n+1; n; n+1; n; n+1 with the 
entral unit triangle removed.

This problem was solved in [4, Theorem 1℄, [15, Theorem 20℄ and [32, Theorem 1℄ (the

most general result, for a hexagon with side lengths a; b + 1; 
; a + 1; b; 
 + 1, being


ontained in [32℄). In [5℄, the �rst author 
onsiders the 
ase when a larger triangle (in

fa
t, possibly several) is removed. However, in 
ontrast to [32℄, the results in [5℄ assume

that the hexagon has a re
e
tive symmetry, i.e., that b = 
.

Continuing this line of resear
h, in this paper we address the general 
ase, when no

symmetry axis is required. We 
onsider hexagons of sides a; b + m; 
; a + m; b; 
 + m

(in 
lo
kwise order) with an equilateral triangle of side m removed from the 
enter (see

Figures 1 and 2 for examples). We 
all this triangle the 
ore, and the leftover region,

denoted C

a;b;


(m), a 
ored hexagon.

To de�ne C

a;b;


(m) pre
isely, we need to spe
ify what position of the 
ore is the

\
entral" one. Let s be a side of the 
ore, and let u and v be the sides of the hexagon

parallel to it. The most natural de�nition (and the one that we are going to adopt)

would require that the distan
e between s and u is the same as the distan
e between v

and the vertex of the 
ore opposite s, for all three 
hoi
es of s.

However, sin
e the sides of the 
ore have to be along lines of the underlying triangular

latti
e, it is easy to see that this 
an be a
hieved only if a, b and 
 have the same parity

(Figure 1 illustrates su
h a 
ase); in that 
ase, we de�ne this to be the position of the


ore. On the other hand, if for instan
e a has parity di�erent from that of b and 
, the

triangle satisfying the above requirements would only have one side along a latti
e line,

while ea
h of the remaining two extends midway between two 
onse
utive latti
e lines

(this 
an be seen from Figure 2). To resolve this, we translate this 
entral triangle half

a unit towards the side of the hexagon of length b, in a dire
tion parallel to the side of

length a, and de�ne this to be the position of the 
ore in this 
ase.

Note that, when translating the 
entral triangle, there is no \natural" reason to do it

in the sense we 
hose: we 
ould have just as well 
hosen the opposite sense, obtaining an

alternative (and not less 
entral) de�nition of the 
ore. However, it is easy to see that

the alternative de�nition does not lead to new regions: it generates the same region that

we obtain by swapping b and 
 in our de�nition. (In fa
t, this ambiguity in 
hoosing

the 
enter will be used e�e
tively in Se
tion 12, see Theorem 29 and the paragraph

pre
eding it.)

Our main results, given in Theorems 1 and 2 below, provide expli
it formulas for

the total number of lozenge tilings of su
h a 
ored hexagon (see Figures 3 and 8.a for

examples of su
h tilings). Remarkably, the results 
an be expressed in 
losed form, more

pre
isely, as quotients of produ
ts of hyperfa
torials (
ompletely analogous to formula

(1.1)), thus providing an in�nite family of enumerations whi
h 
ontains Ma
Mahon's
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Figure 1. Position of the 
ore when a, b and 
 have the same parity: C

3;5;1
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Figure 2. Position of the 
ore when a, b and 
 have mixed parities: C

2;5;1

(2)

\box formula" (1.1) as a spe
ial 
ase. For the statement of the theorems, it is 
onvenient

to extend the de�nition of hyperfa
torials to half-integers (i.e., odd integers divided

by 2):

H(n) :=

(

Q

n�1

k=0

�(k + 1) for n an integer,

Q

n�

1

2

k=0

�(k +

1

2

) for n a half-integer:

Now we are able to state our theorems. The �rst result addresses the 
ase that a,

b and 
 have the same parity. Let L(R) stand for the number of lozenge tilings of the

region R.

Theorem 1. Let a; b; 
;m be nonnegative integers, a; b; 
 having the same parity. The

number of lozenge tilings of a hexagon with sides a; b + m; 
; a + m; b; 
 + m, with an

equilateral triangle of side m removed from its 
enter (see Figure 1 for an example) is



4 M. CIUCU, T. EISENK

�

OLBL, C. KRATTENTHALER AND D. ZARE

given by

L(C

a;b;


(m)) =

H(a +m) H(b+m) H(
+m) H(a + b+ 
+m)

H(a+ b +m) H(a+ 
+m) H(b + 
+m)

H(m+

�

a+b+


2

�

) H(m+

�

a+b+


2

�

)

H(

a+b

2

+m) H(

a+


2

+m) H(

b+


2

+m)

�

H(

�

a

2

�

) H(

�

b

2

�

) H(

�




2

�

) H(

�

a

2

�

) H(

�

b

2

�

) H(

�




2

�

)

H(

m

2

+

�

a

2

�

) H(

m

2

+

�

b

2

�

) H(

m

2

+

�




2

�

) H(

m

2

+

�

a

2

�

) H(

m

2

+

�

b

2

�

) H(

m

2

+

�




2

�

)

�

H(

m

2

)

2

H(

a+b+m

2

)

2

H(

a+
+m

2

)

2

H(

b+
+m

2

)

2

H(

m

2

+

�

a+b+


2

�

) H(

m

2

+

�

a+b+


2

�

) H(

a+b

2

) H(

a+


2

) H(

b+


2

)

: (1.2)

Clearly, formula (1.2) redu
es to (1.1) for m = 0 (as it should). The spe
ial 
ase

m = 1 has been obtained earlier in [32, Theorem 1℄.

The 
orresponding result for the 
ase when a, b and 
 do not have the same parity

reads as follows.

Theorem 2. Let a; b; 
;m be nonnegative integers, with a of parity di�erent from the

parity of b and 
. The number of lozenge tilings of a hexagon with sides a; b+m; 
; a+

m; b; 
+m, with the \
entral" (in the sense des
ribed above) triangle of side m removed

(see Figure 2 for an example) is given by

L(C

a;b;


(m)) =

H (a +m) H (b +m) H (
+m) H (a+ b + 
+m) H

�

m +

�

a+b+


2

��

H

�

m+

�

a+b+


2

��

H (a+ b +m) H (a + 
+m) H (b+ 
+m) H

��

a+


2

�

+m

�

H

�

b+


2

+m

�

H

��

a+b

2

�

+m

�

�

H

�

m

2

�

2

H

��

a

2

��

H

��

b

2

��

H

��




2

��

H

��

a

2

��

H

��

b

2

��

H

��




2

��

H

�

m

2

+

�

a

2

��

H

�

m

2

+

�

b

2

��

H

�

m

2

+

�




2

��

H

�

m

2

+

�

a

2

��

H

�

m

2

+

�

b

2

��

H

�

m

2

+

�




2

��

�

H

��

a+b

2

�

+

m

2

�

H

��

a+b

2

�

+

m

2

�

H

��

a+


2

�

+

m

2

�

H

��

a+


2

�

+

m

2

�

H

�

b+


2

+

m

2

�

2

H

�

m

2

+

�

a+b+


2

��

H

�

m

2

+

�

a+b+


2

��

H

��

a+b

2

��

H

��

a+


2

��

H

�

b+


2

�

: (1.3)

Again, formula (1.3) redu
es to (1.1) for m = 0. The spe
ial 
ase m = 1 has been

obtained earlier in [32, Theorem 4℄.

Given the expli
it results in Theorems 1 and 2, it is routine to determine, using

the Euler{Ma
Laurin summation formula, the asymptoti
 behavior of the number of

lozenge tilings of a 
ored hexagon. For instan
e, when a, b and 
 have the same parity

we obtain the following result.

Corollary 3. Let a; b; 
;m; n be nonnegative integers, a; b; 
 having the same parity. The

number of lozenge tilings of a hexagon with sides an; (b+m)n; 
n; (a+m)n; bn; (
+m)n,

with an equilateral triangle of side mn removed from its 
enter, is asymptoti
ally given

by

L(C

an;bn;
n

(mn)) � e

kn

2

; n!1;
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where

k =

(a+m)

2

2

log(a +m) +

(b+m)

2

2

log(b+m) +

(
+m)

2

2

log(
+m)

+

(a+b+
+m)

2

2

log(a + b+ 
 +m) + 2(m+

a+b+


2

)

2

log(m+

a+b+


2

)

+ 2(

b

2

)

2

log(

b

2

) + 2(




2

)

2

log(




2

) + 2(

a

2

)

2

log(

a

2

) + (

m

2

)

2

log(m)

�

�

3

4

(a + b+m)

2

log(a+ b +m) +

3

4

(a+ 
 +m)

2

log(a+ 
+m)

+

3

4

(b + 
+m)

2

log(b + 
+m)

+ (

a+b

2

+m)

2

log(

a+b

2

+m) + (

a+


2

+m)

2

log(

a+


2

+m) + (

b+


2

+m)

2

log(

b+


2

+m)

+(

a+b

2

)

2

log(a + b) + (

a+


2

)

2

log(a+ 
) + (

b+


2

)

2

log(b+ 
)

�

+ (m

2

+ a

2

+ b

2

+ 


2

+

3m(a+b+
)

2

+ ab + b
+ 
a) log 2: (1.4)

In addition to plain 
ounts, (�1)-enumerations of plane partitions, i.e., enumerations

where plane partitions are given a weight of 1 or �1, a

ording to 
ertain rules, have

been found to possess remarkable properties (see [39, 40℄). Motivated in part by a 
on-

je
tured (�1)-enumeration on 
y
li
ally symmetri
 plane partitions due to Stembridge

[41℄, in Se
tion 2 we 
onsider a (�1)-enumeration of the lozenge tilings of Theorems 1

and 2. The 
orresponding results are given in Theorems 4 and 5.

In Se
tion 3, we restri
t our attention to 
y
li
ally symmetri
 lozenge tilings (i.e.,

tilings invariant under rotation by 120

Æ

) of 
ored hexagons. Clearly, this makes sense

only if a = b = 
, i.e., for 
ored hexagons of the form C

a;a;a

(m). The plain enumer-

ation of su
h 
y
li
ally symmetri
 lozenge tilings had already been 
onsidered in [6,

Theorem 3.2 and Corollary 3.3℄. We restate the result here as Theorem 6. We provide

several additional results. Theorem 7 
on
erns the (�1)-enumeration of su
h 
y
li
ally

symmetri
 lozenge tilings and some additional weighted enumerations of them, where

ea
h lozenge tiling is weighted by some 6th root of unity, a

ording to a 
ertain rule (see

the paragraph before Theorem 7 for the pre
ise de�nition). In the spe
ial 
ase m = 0

we obtain results about weighted enumerations of 
y
li
ally symmetri
 plane partitions

(see Corollary 8). A parti
ular 
ase of Corollary 8 proves a 
onje
ture of Stembridge

[41, Case 9 on p. 6℄ about a 
ertain (�1)-enumeration of 
y
li
ally symmetri
 plane

partitions. (The �rst proof of this 
onje
ture, by totally di�erent means, is due to

Kuperberg [23, last displayed equation on p. 27℄.) Our results also allow us to prove

another 
onje
ture on (�1)-enumeration of 
y
li
ally symmetri
 plane partitions due to

Stembridge [41, Case 10 on p. 7℄. In fa
t, we again prove a more general result, namely

a result on 
y
li
ally symmetri
 lozenge tilings (see Theorem 9).

The remaining se
tions, Se
tions 4{11, are devoted to the proofs of these results.

For the proofs of Theorems 1{5, the enumeration results for lozenge tilings without

symmetry, we pro
eed as follows. First, we identify tilings with 
ertain families of

noninterse
ting latti
e paths (see Se
tion 5). Then, a nonstandard appli
ation of the

main theorem on noninterse
ting latti
e paths [24, Lemma 1℄, [13, Theorem 1℄ (restated

here in Lemma 14) provides a determinant for the weighted 
ount of lozenge tilings (see

(5.4), respe
tively (5.5)). To be pre
ise, the determinant gives the 
orre
t weighted


ount either only for even m (m being the side of the 
ore) or only for odd m, depending

on whether we are 
onsidering plain enumeration or (�1)-enumeration. To 
over the

other 
ase as well, we prove that the weighted 
ount of lozenge tilings that we are
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interested in is polynomial in m, so that it suÆ
es to determine this number only for

one of the two possibilities, either for even m or for odd m. This is in turn a
hieved by

evaluating the aforementioned determinant (see Lemmas 17{24).

The results on weighted enumerations of 
y
li
ally symmetri
 lozenge tilings in Se
-

tion 3 
an be obtained in a similar way. We phrase the problem in terms of noninterse
t-

ing latti
e paths, and thus �nd determinants for these enumerations. The determinants

have the form

det

0�i;j�a�1

�

!Æ

ij

+

�

m + i+ j

j

��

; (1.5)

where ! is any 6th root of unity. These determinants are remarkable. The 
ase ! = 1

o

ured �rst in the work of Andrews on plane partitions. He evaluated the determinant

(1.5) in that 
ase [2, Theorem 8℄ (restated here as Theorem 10) in order to prove the

\weak Ma
donald 
onje
ture" on 
ounting 
y
li
ally symmetri
 plane partitions. It had

already been observed in [6, Se
. 3℄ that Andrews' evaluation of (1.5) with ! = 1 gives

the number of 
y
li
ally symmetri
 lozenge tilings of the 
ored hexagon C

a;a;a

(m). We

prove our weighted enumerations of these lozenge tilings by evaluating the determinant

(1.5) when ! is any 6th root of unity (see Theorems 11{13).

Our paper is stru
tured as follows. In Se
tion 2 we give the pre
ise de�nition of our

(�1)-enumeration of lozenge tilings, and we state the 
orresponding results (see The-

orems 4 and 5). In Se
tion 3 we de�ne pre
isely our unusual weightings of 
y
li
ally

symmetri
 lozenge tilings. Theorems 6 and 7, Corollary 8 and Theorem 9 state the


orresponding results. The subsequent se
tion, Se
tion 4, gives the proofs of our enu-

meration results in Theorems 1{9, leaving out, however, several details. These details

are then worked out in later se
tions. First of all, in Se
tion 5, it is explained how

lozenge tilings 
orrespond, in a one-to-one fashion, to families of noninterse
ting latti
e

paths. We then employ the result of Lemma 14 to obtain, at least for every other value

of m, a determinant for the weighted 
ount of lozenge tilings that we are interested in

(see Lemmas 15 and 16). It is then argued in Se
tion 6 that this number is in fa
t

polynomial in m, so that the evaluation of the determinant in Lemma 15, respe
tively

Lemma 16, suÆ
es. The pre
ise form of the evaluation of the determinant in Lemma 15

(again, a 
ase-by-
ase analysis is ne
essary, depending on the parity of a) is stated and

proved in Se
tion 7 (see Lemmas 17{20), while the pre
ise form of the evaluation of the

determinant in Lemma 16 is stated and proved in Se
tion 8 (see Lemmas 21{24). Fi-

nally, in Se
tion 9 we prove the determinant evaluation of Theorem 11, in Se
tion 10 the

one in Theorem 12, and in Se
tion 11 the one in Theorem 13. We 
on
lude the arti
le

with some 
omments 
on
erning 
onne
tions of this work with multiple hypergeometri


series and some open problems. These are the subje
t of Se
tion 12.

2. (�1)-enumerations of lozenge tilings of 
ored hexagons

In this se
tion we enumerate lozenge tilings of a 
ored hexagon with respe
t to a


ertain weight that assigns to ea
h lozenge tiling the value 1 or �1. More pre
isely,

�x a lozenge tiling T of the 
ored hexagon C

a;b;


(m) (see Figures 1 and 2 for examples

of su
h regions, and Figure 3 for an example of a tiling; at this point, the thi
kness of

edges is without signi�
an
e). Consider the side of the 
ore whi
h is parallel to the sides

of the hexagon of lengths a and a+m (in the �gure this is the bottommost side of the


ore). Extend this side of the triangle to the right. Let n(T ) be the number of edges of
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a

b +m

o





+m

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

b

a +m

9

>

>

=

>

>

;

m

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Figure 3. A lozenge tiling of a hexagon with sides a = 5, b = 3, 
 = 1 and

removed triangle of side length m = 2.

lozenges of the tiling T 
ontained in the extended side (in Figure 3 there are two su
h

edges, marked as thi
k segments). The statisti
 n(T ) be
omes most transparent in the

latti
e path interpretation of lozenge tilings that is going to be explained in Se
tion 5,

as it 
ounts exa
tly the number of paths whi
h pass the 
ore on the right . Furthermore,

we shall see in Se
tion 3 that in the plane partitions 
ase, i.e., in the 
ase m = 0 (when

the 
ore shrinks to a point), the statisti
 n(T ) has a very natural meaning as well (see

the remarks after Theorem 7).

In the (�1)-enumeration, whi
h is the subje
t of the following two theorems, ea
h

lozenge tiling T is weighted by (�1)

n(T )

. Let L

�1

(R) be the weighted 
ount of lozenge

tilings of region R under the above weight.

Theorem 4. Let a; b; 
;m be nonnegative integers. If all of a, b and 
 are even, then

the weighted 
ount

P

(�1)

n(T )

, summed over all lozenge tilings T of a hexagon with

sides a; b +m; 
; a +m; b; 
 +m, with an equilateral triangle of side length m removed

from its 
enter (see Figure 1) is given by

L

�1

(C

a;b;


(m)) =

(�1)

a=2

H(a+m) H(b +m) H(
+m) H(a+ b + 
+m)

H(a+ b +m) H(a + 
+m) H(b + 
+m)

�

H(

a

2

)

2

H(

b

2

)

2

H(




2

)

2

H(

m�1

2

) H(

m+1

2

)

H(

a

2

+

m�1

2

) H(

b

2

+

m�1

2

) H(




2

+

m�1

2

) H(

a

2

+

m+1

2

) H(

b

2

+

m+1

2

) H(




2

+

m+1

2

)

�

H(

a+b+m�1

2

) H(

a+b+m+1

2

) H(

a+
+m�1

2

) H(

a+
+m+1

2

) H(

b+
+m�1

2

) H(

b+
+m+1

2

)

H(

a+b

2

) H(

a+


2

) H(

b+


2

) H(

a+b

2

+m) H(

a+


2

+m) H(

b+


2

+m)

�

H(

a+b+


2

+m)

2

H(

a+b+


2

+

m�1

2

) H(

a+b+


2

+

m+1

2

)

: (2.1)

For a; b; 
 all odd, the (�1)-enumeration equals zero.
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Figure 4. A 
y
li
ally symmetri
 lozenge tiling of a hexagon with sides 3,

5, 3, 5, 3, 5 and 
ore of size m = 2.

The analogous theorem for the 
ase when a has a parity di�erent from the parity of

b and 
 reads as follows.

Theorem 5. Let a; b; 
;m be nonnegative integers, a of parity di�erent from the parity

of b and 
. The weighted 
ount

P

(�1)

n(T )

, summed over all lozenge tilings T of a

hexagon with sides a; b+m; 
; a+m; b; 
+m, with an equilateral triangle of side length

m removed that is \
entral" in the sense that was des
ribed in the Introdu
tion (see

Figure 2), equals

L

�1

(C

a;b;


(m)) =

(�1)

da=2e

H(a+m) H(b +m) H(
+m) H(a+ b+ 
 +m)

H(a+ b +m) H(a+ 
+m) H(b + 
+m)

�

H(

�

a+b+


2

�

+m) H(

�

a+b+


2

�

+m)

H(

a+b+1

2

+m) H(

a+
�1

2

+m) H(

b+


2

+m)

�

H(

�

a

2

�

) H(

�

a

2

�

) H(

�

b

2

)

�

H(

�

b

2

�

) H(

�




2

�

) H(

�




2

�

) H(

m�1

2

) H(

m+1

2

)

H(

m�1

2

+

�

a+1

2

�

) H(

m+1

2

+

�

a�1

2

�

) H(

m�1

2

+

�

b+1

2

�

) H(

m+1

2

+

�

b�1

2

�

) H(

m�1

2

+

�


+1

2

�

)

�

H(

a+b+m

2

)

2

H(

a+
+m

2

)

2

H(

b+
+m�1

2

) H(

b+
+m+1

2

)

H(

m+1

2

+

�


�1

2

�

) H(

a+b�1

2

) H(

a+
+1

2

) H(

b+


2

) H(

m�1

2

+

�

a+b+
+1

2

�

) H(

m+1

2

+

�

a+b+
�1

2

�

)

:

(2.2)

3. Enumeration of 
y
li
ally symmetri
 lozenge tilings

In this se
tion we enumerate 
y
li
ally symmetri
 lozenge tilings of the 
ored hexagon

C

a

(m) := C

a;a;a

(m) with respe
t to 
ertain weights. By a 
y
li
ally symmetri
 lozenge

tiling we mean a lozenge tiling whi
h is invariant under rotation by 120

Æ

. See Figure 4 for

an example. (At this point, all shadings, thi
k and dotted lines should be ignored.) The
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unweighted enumeration of these lozenge tilings was given earlier in [6, Theorem 3.2 and

Corollary 3.3℄. We restate the result below. Let L




(R) denote the number of 
y
li
ally

symmetri
 lozenge tilings of region R.

Theorem 6. Let a be a nonnegative integer. The number L




(C

a

(m)) of 
y
li
ally

symmetri
 lozenge tilings of a hexagon with side lengths a; a+m; a; a+m; a; a+m, with

an equilateral triangle of side length m removed from the 
enter, equals the right-hand

side in (3.2). �

Let us now asso
iate 
ertain weights to ea
h su
h lozenge tiling T . These weights

depend again on the number n(T ) of edges of lozenges of the tiling T whi
h are in
ident

to the extension to the right of the bottommost side of the 
ore. (Sin
e we are now

dealing with 
y
li
ally symmetri
 tilings, it does, in fa
t, not matter whi
h side is


onsidered, and the weighted 
ount is not even a�e
ted by the 
hoi
e of dire
tion.) In

the following three theorems, ea
h lozenge tiling T is assigned the weight !

n(T )

, where

! is some �xed 6th root of unity. Denote by L

!




(R) the 
orresponding weighted 
ount

of 
y
li
ally symmetri
 lozenge tilings of region R.

Theorem 7. Let a � 0 and m � 0 be integers. Then the weighted 
ount L

!




(C

a

(m)) :=

P

!

n(T )

, summed over all 
y
li
ally symmetri
 lozenge tilings T of a hexagon with side

lengths a; a+m; a; a+m; a; a+m, with an equilateral triangle of side length m removed

from the 
enter, equals the right-hand side in (3.3) if ! = �1, it equals the right-hand

side in (3.4) if ! is a primitive third root of unity, and it equals the right-hand side in

(3.5) if ! is a primitive sixth root of unity.

If we spe
ialize these results to m = 0, i.e., to the 
ase where there exists no 
ore, we

obtain enumeration results for 
y
li
ally symmetri
 plane partitions. Before we state

these, let us brie
y re
all the relevant notions from plane partition theory (
f. e.g.

[37℄ or [39, Se
. 1℄). There are (at least) three possible equivalent ways to de�ne plane

partitions. Out of the three possibilities, in this paper, we 
hoose to de�ne a plane

partition � as a subset of the three-dimensional integer latti
e Z

3

+

(where Z

+

denotes

the set of positive integers), with the property that if (i

1

; j

1

; k

1

) is an element of �, then

all points (i

2

; j

2

; k

2

) with 1 � i

2

� i

1

, 1 � j

2

� j

1

, 1 � k

2

� k

1

also belong to �. (In

the language of partially ordered sets, � is an order ideal of Z

3

+

.) A plane partition � is


alled 
y
li
ally symmetri
 if for every (i; j; k) in � the point (j; k; i) whi
h results by a


y
li
 permutation of 
oordinates is in � as well.

Often, a plane partition is viewed as the 
orresponding pile of unit 
ubes whi
h

results when repla
ing ea
h point (i; j; k) of the plane partition by the unit 
ube with


enter (i; j; k). A three-dimensional pi
ture of a plane partition, viewed as pile of unit


ubes, is shown in Figure 5 (in fa
t, this example is 
y
li
ally symmetri
). As we

already mentioned in the Introdu
tion, plane partitions 
ontained in an a � b � 
 box

(i.e., plane partitions � with the property that every (i; j; k) 2 � satis�es 1 � i � a,

1 � j � b, 1 � k � 
) are in bije
tion with lozenge tilings of a hexagon with side

lengths a; b; 
; a; b; 
 (see [7℄). This bije
tion 
an be visualised easily on the example in

Figure 5. Clearly, under this bije
tion, 
y
li
ally symmetri
 plane partitions 
ontained

in an a � a � a box 
orrespond to 
y
li
ally symmetri
 lozenge tilings of a hexagon

with all sides of length a. Thus, Theorem 7 with m = 0 yields results about 
ertain

weighted 
ounts of 
y
li
ally symmetri
 plane partitions. We just have to �gure out

how the weights !

n(T )

for lozenge tilings T translate to the plane partition language.
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Figure 5. A 
y
li
ally symmetri
 plane partition.

Let �

T

be the plane partition that 
orresponds to the lozenge tiling T under this

bije
tion. Denote by m

1

(�

T

) the number of elements of the form (i; i; i) in �

T

. Then

there are pre
isely m

1

(�

T

) unit 
ubes on the main diagonal of the pile of unit 
ubes

representing �

T

. Let v be the vertex farthest from the origin of the last su
h unit 
ube

(in the planar rendering of �

T

| for our example, Figure 5 | v is the 
enter of the

hexagon). A ray through v approa
hing orthogonally any of the 
oordinate planes will


ut through pre
isely m

1

(�

T

) layers of unit thi
kness. Sin
e ea
h su
h 
ut 
orresponds

to a lozenge side 
ontained in the ray, we see that m

1

(�

T

) is pre
isely the statisti
 n(T ).

We therefore obtain the following 
orollary of Theorem 7.

Corollary 8. Let a be a nonnegative integer. Then the weighted 
ount

P

!

m

1

(�)

,

summed over all 
y
li
ally symmetri
 plane partitions � 
ontained in an a � a � a

box, equals the right-hand side in (3.3) with m = 0 if ! = �1, it equals the right-

hand side in (3.4) with m = 0 if ! is a primitive third root of unity, and it equals the

right-hand side in (3.5) with m = 0 if ! is a primitive sixth root of unity. �

Weighted enumerations of this sort have been 
onsidered earlier. In fa
t, the result

for ! = �1 of Corollary 8 had been 
onje
tured by Stembridge [41, Case 9 on p. 6℄,

and proved for the �rst time by Kuperberg [23, last displayed equation on p. 27℄.

Thus, the (�1)-result of Theorem 7 is a generalization of Kuperberg's result. There are

many more 
onje
tures on (�1)-enumerations of 
y
li
ally symmetri
 plane partitions

in [41℄. One of these, the Conje
ture on p. 7 of [41, Case 10℄, asks for the weighted


ount

P

(�1)

m

6

(�)

of 
y
li
ally symmetri
 plane partitions in whi
h the statisti
 m

6

(�)

is de�ned as the number of orbits (under 
y
li
 rotation) f(i; j; k); (j; k; i); (k; i; j)g of

elements of � with 
oordinates that are not all equal.

We prove this 
onje
ture of Stembridge in Theorem 9 below. In fa
t, in Theorem 9 we

prove a result for 
y
li
ally symmetri
 lozenge tilings of 
ored hexagons. In this result,

a 
y
li
ally symmetri
 lozenge tiling T is given a weight (�1)

n

6

(T )

, with the statisti
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Figure 6. The statisti
 n

6

for this tiling is n

6

(T

0

) = 3

n

6

(T ) to be des
ribed below. It is de�ned in a way so that in the 
ase when there is

no 
ore present (i.e., m = 0) it redu
es to m

6

(�

T

), where again �

T

denotes the plane

partition 
orresponding to T .

Let T be a �xed 
y
li
ally symmetri
 lozenge tiling of the 
ored hexagon C

a

(m) (see

Figure 6 for an example with a = 3 andm = 2; at this point, all thi
k lines and shadings

should be ignored). We 
onsider the horizontal lozenges whi
h are at least partially


ontained in the top-right fundamental region. (In Figure 6 the top-right fundamental

region is framed. The horizontal lozenges whi
h are at least partially 
ontained in that

region are the grey and bla
k lozenges.) The statisti
 n

6

(T ) is by de�nition the sum

of the verti
al distan
es between these horizontal lozenges and the lower border of the

fundamental region. (Thus, for the lozenge tiling T

0

in Figure 6 we have, 
onsidering

the horizontal lozenges in the order from left to right, n

6

(T

0

) = 2 + 1 + 0 + 0 + 0 = 3.)

Suppose now that m = 0, and view the tiling T as a plane partition �

T

. The

fundamental region of T used in our de�nition of the statisti
 n

6


orresponds to a

fundamental region of �

T

with the main diagonal removed. Sin
e the distan
es we add

up in our de�nition of n

6

(T ) are pre
isely the heights of the verti
al 
olumns of unit


ubes in this fundamental region, we obtain that n

6

(T ) is equal to the number of unit


ubes 
ontained in it, whi
h is 
learly just the number of orbits of 
ubes o� the main

diagonal. This veri�es our 
laim that n

6

(T ) = m

6

(�

T

).

The weight whi
h is assigned to a tiling T in the theorem below is (�1)

n

6

(T )

. An

equivalent way to de�ne this weight is to say that it is the produ
t of the weights of

all lozenges whi
h are, at least partially, 
ontained in the top-right fundamental region,

where the weight of a horizontal lozenge with odd distan
e from the lower border of the

region is �1, the weight of all other lozenges being 1. (In Figure 6 the bla
k lozenge has

weight �1, all other lozenges have weight 1.) Yet another way to obtain this weight is

through the perfe
t mat
hings point of view of lozenge tilings, elaborated for example

in [22, 23℄. In this setup, the 
y
li
ally symmetri
 lozenge tilings that we 
onsider here
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orrespond bije
tively to perfe
t mat
hings in a 
ertain hexagonal graph (basi
ally, the

dual graph of a fundamental region of the 
ored hexagon). Assignment of weights to

the edges of this graph so that ea
h fa
e has \
urvature" �1 (see [23, Se
. II℄) generates

again (up to a multipli
ative 
onstant) the above weight for lozenge tilings.

Denote by L

�1

o

(R) (where the index letter stands for \orbits") the weighted 
ount of

lozenge tilings of region R under the above-de�ned weight.

Theorem 9. Let a and m be nonnegative integers. Let R

1

(a;m) denote the right-hand

side of (3.2), let R

2

(a;m) denote the right-hand side of (3.3), and let R

3

(a;m) denote

the right-hand side of (3.5). Then the weighted 
ount

P

(�1)

n

6

(T )

, summed over all


y
li
ally symmetri
 lozenge tilings T of a hexagon with side lengths a; a + m; a; a +

m; a; a + m with an equilateral triangle of side length m removed from the 
enter, is

given by

L

�1

o

(C

a

(m)) =

8

>

>

>

<

>

>

>

:

jR

3

(

a

2

;

m

2

)j

2

if a is even and m is even,

R

1

(

a+1

2

;

m

2

� 1)R

1

(

a�1

2

;

m

2

+ 1) if a is odd and m is even,

R

1

(

a

2

;

m�1

2

)R

2

(

a

2

;

m+1

2

) if a is even and m is odd,

R

1

(

a+1

2

;

m�1

2

)R

2

(

a�1

2

;

m+1

2

) if a is odd and m is odd.

(3.1)

As we show in Se
tion 4, all the above results in the 
urrent se
tion follow from

evaluations of the determinant (1.5) for ! equal to 1, to �1, to a primitive third

root of unity, and to a primitive sixth root of unity, respe
tively. The 
orresponding

evaluations read as follows, the evaluation for ! = 1, given in Theorem 10 below, being

due to Andrews [2, Theorem 8℄.

Theorem 10. For any nonnegative integer a,

det

0�i;j�a�1

�

Æ

ij

+

�

m+ i + j

j

��

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

2

da=2e

a�2

Y

i=1

�

m

2

+ di=2e + 1

�

b(i+3)=4


�

Q

a=2

i=1

�

m

2

+

3a

2

�

�

3i

2

�

+

3

2

�

di=2e�1

�

m

2

+

3a

2

�

�

3i

2

�

+

3

2

�

di=2e

Q

a=2�1

i=1

(2i� 1)!! (2i+ 1)!!

if a is even,

2

da=2e

a�2

Y

i=1

�

m

2

+ di=2e + 1

�

b(i+3)=4


�

Q

(a�1)=2

i=1

�

m

2

+

3a

2

�

�

3i�1

2

�

+ 1

�

d(i�1)=2e

�

m

2

+

3a

2

�

�

3i

2

��

di=2e

Q

(a�1)=2

i=1

(2i� 1)!!

2

if a is odd,

(3.2)

where (�)

k

is the standard notation for shifted fa
torials, (�)

k

:= �(�+1) � � � (�+k�1),

k � 1, and (�)

0

:= 1. �



LOZENGE TILINGS OF HEXAGONS WITH A CENTRAL TRIANGULAR HOLE 13

Theorem 11. For nonnegative integers a,

det

0�i;j�a�1

�

�Æ

ij

+

�

m + i+ j

j

��

=

(

0; if a is odd,

(�1)

a=2

Q

a=2�1

i=0

i!

2

(

m

2

+i)!

2

(

m

2

+3i+1)!

2

(m+3i+1)!

2

(2i)! (2i+1)! (

m

2

+2i)!

2

(

m

2

+2i+1)!

2

(m+2i)! (m+2i+1)!

; if a is even.

(3.3)

The proof of this theorem is given in Se
tion 9.

Theorem 12. Let ! be a primitive third root of unity. Then

det

0�i;j�a�1

�

!Æ

ij

+

�

m+ i + j

j

��

=

(1 + !)

a

2

ba=2


Q

ba=2


i=1

(2i� 1)!!

Q

b(a�1)=2


i=1

(2i� 1)!!

�

Y

i�0

�

m

2

+ 3i + 1

�

b(a�4i)=2


�

m

2

+ 3i+ 3

�

b(a�4i�3)=2


�

�

m

2

+ a� i+

1

2

�

b(a�4i�1)=2


�

m

2

+ a� i�

1

2

�

b(a�4i�2)=2


; (3.4)

where, in abuse of notation, by b�
 we mean the usual 
oor fun
tion if � � 0, however,

if � < 0 then b�
 must be read as 0, so that the produ
t over i � 0 is indeed a �nite

produ
t.

The proof of this theorem is given in Se
tion 10.

Theorem 13. Let ! be a primitive sixth root of unity. Then

det

0�i;j�a�1

�

!Æ

ij

+

�

m+ i + j

j

��

=

(1 + !)

a

�

2

3

�

ba=2


Q

ba=2


i=1

(2i� 1)!!

Q

b(a�1)=2


i=1

(2i� 1)!!

�

Y

i�0

�

m

2

+ 3i+

3

2

�

b(a�4i�1)=2


�

m

2

+ 3i+

5

2

�

b(a�4i�2)=2


� (

m

2

+ a� i)

b(a�4i)=2


(

m

2

+ a� i)

b(a�4i�3)=2


; (3.5)

where again, in abuse of notation, by b�
 we mean the usual 
oor fun
tion if � � 0,

however, if � < 0 then b�
 must be read as 0, so that the produ
t over i � 0 is indeed

a �nite produ
t.

The proof of this theorem is given in Se
tion 11.

4. Outline of the proofs of Theorems 1{9

In this se
tion, we give outlines of the proofs of our enumeration results stated in

the Introdu
tion and in Se
tions 2 and 3. We �ll in the details of these proofs in later

se
tions.

Proof of Theorem 1. There is a standard bije
tion between lozenge tilings and families

of noninterse
ting latti
e paths. This bije
tion is explained in Se
tion 5 (see in parti
ular

Figure 8). Thus, the problem of enumerating lozenge tilings is 
onverted to the problem

of 
ounting 
ertain families of noninterse
ting latti
e paths. By the Lindstr�om{Gessel{

Viennot theorem (stated in Lemma 14), the number of su
h families of paths 
an be

expressed as a determinant (see Lemma 15). Thus, in prin
iple, we would be done on
e

we evaluate this determinant, given in (5.4). However, Lemma 15 applies only if the
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size m of the 
ore is even. We show, in Se
tion 6, that it suÆ
es to address this 
ase,

by proving that the number of lozenge tilings that we are interested in is a polynomial

in m. The evaluation of the determinant (5.4) for even m is 
arried out in Se
tion 7

(see (7.1) and Lemmas 17 and 18). �

Proof of Theorem 4. The �rst steps are identi
al with those in the pre
eding proof:

the lozenge tilings are 
onverted into noninterse
ting latti
e paths, in the way that

is des
ribed in Se
tion 5. Therefore, Lemma 14 yields a determinant for the (�1)-

enumeration that we are interested in. Unlike in the previous proof, this provides a

determinant for our weighted 
ount only if the size m of the 
ore is odd (see Lemma 15).

Again, the 
onsiderations in Se
tion 6 show that this number is a polynomial in m, so

it suÆ
es to evaluate the determinant (5.4) for odd m. This is done in Se
tion 7 (see

(7.1) and Lemmas 19 and 20). �

Proof of Theorem 2. Again, we use the strategy from the proof of Theorem 1. We


onvert the lozenge tilings into families of noninterse
ting latti
e paths as des
ribed

in Se
tion 5. The starting and ending points are slightly di�erent from the ones used

before. They are given in (5.2). Lemma 14 yields a determinant for the number we

are interested in for even m (see Lemma 16). The 
onsiderations of Se
tion 6 still

apply, so the number of lozenge tilings is a polynomial in m and it suÆ
es to evaluate

the determinant (5.5) for even m. This is a

omplished in Se
tion 8 (see (8.1) and

Lemmas 21 and 22). �

Proof of Theorem 5. We pro
eed analogously to the proof of Theorem 2. The lozenge

tilings are 
onverted into noninterse
ting latti
e paths, in the way that is des
ribed in

Se
tion 5. Therefore, Lemma 14 yields a determinant for the (�1)-enumeration in the


ase of odd m (see Lemma 16). Again, the 
onsiderations in Se
tion 6 show that this

number is a polynomial in m, so that it suÆ
es to evaluate the determinant (5.5) for

odd m. This is worked out in Se
tion 8 (see (8.1) and Lemmas 23 and 24). �

Proof of Theorem 7. We follow the arguments of the proof of Theorem 6, as given in

[6, Lemma 3.1℄. Suppose we are given a 
y
li
ally symmetri
 lozenge tiling T of our


ored hexagon C

a

(m). It is 
ompletely determined by its restri
tion to a fundamental

region, the lower-left fundamental region, say. (In the example in Figure 4, the lower-

left fundamental region is framed.) Some of the lozenges are 
ut in two by the borders of

the fundamental region. (In Figure 4 these are the shaded lozenges.) We draw latti
e

paths whi
h 
onne
t these \
ut" lozenges, by \following" along the other lozenges,

as is indi
ated in Figure 4 by the dashed lines. To be pre
ise, in ea
h lozenge in

the interior of the fundamental region, we 
onne
t the midpoints of the sides that

run up-diagonal, in 
ase the lozenge possesses su
h sides. Clearly, these paths are

noninterse
ting, by whi
h we mean that no two paths have a 
ommon vertex. Sin
e

they determine 
ompletely the 
y
li
ally symmetri
 lozenge tiling, we may as well 
ount

all these families of noninterse
ting latti
e paths, with respe
t to the 
orresponding

weight. In fa
t, as is easy to see, be
ause of the 
y
li
 symmetry, the statisti
 n(T )

is exa
tly equal to a minus the number of paths. If we �x the \
ut" lozenges, say in

positions i

1

; i

2

; : : : ; i

k

(
ounted from inside out, beginning with 0; thus, in Figure 4, the

\
ut" lozenges have positions 0 and 2), then, a

ording to Lemma 14, the number of

families of noninterse
ting latti
e paths 
onne
ting the �xed \
ut" lozenges is given by
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� � � � �

� � � � �

� � � � �

�

�

Figure 7. The orthogonal path 
orresponding to Figure 6

the 
orresponding Lindstr�om{Gessel{Viennot determinant (the left-hand side of (5.3)).

This determinant turns out to be the minor of

�

�

m+i+j

j

�

�

0�i;j�a�1


onsisting of rows

and 
olumns with indi
es i

1

; i

2

; : : : ; i

k

. This number must be multiplied by the 
ommon

weight !

a�k

of these families of noninterse
ting latti
e paths. Therefore, in order to

obtain the total weighted 
ount that we are interested in, we have to sum all these

quantities, i.e., take the sum of

�

(i

1

; i

2

; : : : ; i

k

)-prin
ipal minor of

�

�

m+i+j

j

�

�

0�i;j�a�1

�

� !

a�k

over all k = 0; 1; : : : ; a and 0 � i

1

< i

2

< � � � < i

k

� a � 1. Clearly, this sum is

exa
tly equal to det

0�i;j�a�1

�

!Æ

ij

+

�

m+i+j

j

�

�

, whi
h equals the left-hand side of (3.3)

if ! = �1, the left-hand side of (3.4) if ! is a primitive third root of unity, and the

left-hand side of (3.5) if ! a primitive sixth root of unity. The respe
tive right-hand

sides provide therefore the solution to our enumeration problem. �

Proof of Theorem 9. We adapt the arguments used in the proof of Theorem 7. (Clearly,

here we want to 
ount the same obje
ts, but with respe
t to a di�erent weight.) So,

again, we draw paths that 
onne
t the lozenges whi
h are 
ut in two by the borders of

the fundamental region. This time, we 
hoose the top-right region as the fundamental

region. Figure 6 shows an example. There, the top-right fundamental region is framed.

As in Figure 4, paths are indi
ated by dashed lines. (In the example in Figure 6 there

is just one path.) If we slightly distort the underlying latti
e, we get orthogonal paths

with positive horizontal and negative verti
al steps. Figure 7 shows the orthogonal

path 
orresponding to the path in Figure 6. The manner in whi
h we have 
hosen the


oordinate system ensures that possible starting points of paths are the points (0; j),

0 � j � a� 1, and possible ending points are the points (m+ i; 0), 0 � i � a� 1.

Now, as before, we �x the positions of the \
ut" lozenges. Then a weighted version of

the Lindstr�om{Gessel{Viennot theorem (see [24, Lemma 1℄ or [13, Cor. 2℄) 
an be used

to express the weighted 
ount of the 
orresponding families of noninterse
ting latti
e

paths in form of a determinant. In fa
t, this weighted version just says that Lemma 14

remains true when the number P(A! E) of paths from A to E is repla
ed everywhere

by the weighted 
ount

P

P

w(P ) of all paths P from A to E, where w is some weight

fun
tion on the edges of the square latti
e and the weight w(P ) of a path is the produ
t

of the weights of its steps. Thus, if we repeat the subsequent arguments in the proof of
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Theorem 7, then we obtain the determinant

det

0�i;j�a�1

�

Æ

ij

+

X

P :(0;j)!(m+i;0)

w(P )

�

(4.1)

for the weighted 
ount of our families of noninterse
ting latti
e paths.

We now 
hoose the weight fun
tion w so that the weight of the family of noninter-

se
ting latti
e paths 
orresponding to a tiling T is equal to (�1)

n

6

(T )

. To do this, it will

be 
onvenient to sti
k on an extra initial horizontal step at the beginning of ea
h path,

so that now it starts on the line x = �1. Weight the verti
al steps on this line by 0,

all the remaining verti
al steps by 1, and weight horizontal steps at height j by (�1)

j

.

Sin
e the height of a horizontal step is equal to the distan
e of the 
orresponding hori-

zontal lozenge to our referen
e line in the tiling, the weight of a family (P

1

; P

2

; : : : ) of

noninterse
ting latti
e paths is equal to (�1)

n

6

(T )

, where T is the 
orresponding tiling.

On the other hand, it is 
learly equal to (�1)

A(P

1

)+A(P

2

)+���

, where A(P ) denotes the

area between a path P and the x-axis.

To �nd an expression for the entries of the Lindstr�om{Gessel{Viennot matrix we use

the well-known fa
t (see [38, Prop. 1.3.19℄) that the weighted 
ount

P

q

A(P )

, summed

over all latti
e paths P from (0; 
) to (d; 0), is equal to [


+d




℄

q

, where [

n

k

℄

q

is the standard

q-binomial 
oeÆ
ient,

�

n

k

�

q

:=

(1� q

n

)(1� q

n�1

) � � � (1� q

n�k+1

)

(1� q

k

)(1� q

k�1

) � � � (1� q)

:

Thus, the determinant (4.1) be
omes (see also [41, Lemma 4℄)

det

0�i;j�a�1

�

Æ

ij

+ (�1)

j

�

m + i+ j

j

�

�1

�

: (4.2)

From the q-binomial theorem (see [1, (3.3.6)℄),

(1 + z)(1 + qz) � � � (1 + q

n�1

z) =

n

X

k=0

q

(

k

2

)

�

n

k

�

q

z

k

;

it is straightforward to extra
t that

�

n

k

�

�1

=

8

<

:

0 if n is even and k is odd,

�

bn=2


bk=2


�

otherwise.

(4.3)

We have to 
ompute the determinant (4.2). Let us denote it by D

0

. We have to

distinguish between four 
ases, depending on the parities of m and a.

First, let m be even. We reorder rows and 
olumns simultaneously, so that the even-

numbered rows and 
olumns 
ome before the odd-numbered, respe
tively. If a is even,

then we obtain for D

0

the blo
k determinant

det

�

I(

a

2

) +B(

a

2

;

m

2

) �B(

a

2

;

m

2

)

B(

a

2

;

m

2

) I(

a

2

)

�

;

where I(N) is the N � N identity matrix and B(N;m) is the N � N matrix

�

�

m+i+j

j

�

�

0�i;j�N�1

. By a few simple manipulations, this determinant 
an be fa
tored
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into a produ
t of two determinants,

D

0

= det

�

I(

a

2

) +B(

a

2

;

m

2

) �B(

a

2

;

m

2

)

B(

a

2

;

m

2

) I(

a

2

)

�

= det

�

I(

a

2

) +B(

a

2

;

m

2

) �B(

a

2

;

m

2

)

B(

a

2

;

m

2

) I(

a

2

)

�

det

�

I(

a

2

) 0

�B(

a

2

;

m

2

) I(

a

2

)

�

= det

�

I(

a

2

) +B(

a

2

;

m

2

) +B(

a

2

;

m

2

)

2

�B(

a

2

;

m

2

)

0 I(

a

2

)

�

= det

�

I(

a

2

) +B(

a

2

;

m

2

) +B(

a

2

;

m

2

)

2

�

= det

�

!I(

a

2

) +B(

a

2

;

m

2

)

�

det

�

!I(

a

2

) +B(

a

2

;

m

2

)

�

;

where ! is a primitive sixth root of unity, ea
h of whi
h 
an be 
omputed by appli
ation

of Theorem 12. The result is the �rst expression in (3.1).

On the other hand, if a is odd, then analogous arguments yield

D

0

= det

�

I(

a+1

2

) +B(

a+1

2

;

m

2

) +B

(
)

(

a+1

2

;

m

2

)B

(r)

(

a+1

2

;

m

2

)

�

; (4.4)

where B

(
)

(

a+1

2

;

m

2

) is the (

a+1

2

)� (

a�1

2

) matrix whi
h arises from B(

a+1

2

;

m

2

) by deleting

its last 
olumn, while B

(r)

(

a+1

2

;

m

2

) is the (

a�1

2

)� (

a+1

2

) matrix whi
h arises from B by

deleting its last row.

It is easy to 
he
k that

I(

a+1

2

)+B(

a+1

2

;

m

2

)+B

(
)

(

a+1

2

;

m

2

)B

(r)

(

a+1

2

;

m

2

) = (I(

a+1

2

)+B)

�

I(

a+1

2

) +B(

a+1

2

;

m

2

� 1)

�

;

where B is the (

a+1

2

) � (

a+1

2

)-matrix with (i; j)-entry

�

m

2

+i+j�1

j�1

�

, 0 � i; j � (a � 1)=2.

(So the �rst 
olumn of B is zero). We expand det(I(

a+1

2

) +B) with respe
t to the �rst


olumn and get det(I(

a�1

2

) +B(

a�1

2

;

m

2

+ 1)).

Therefore, in the 
ase of even m and odd a, we have

D

0

= det

�

I(

a+1

2

) +B(

a+1

2

;

m

2

� 1)

�

det

�

I(

a�1

2

) +B(

a�1

2

;

m

2

+ 1)

�

:

Both determinants 
an be evaluated by means of Theorem 10. The result is the se
ond

expression in (3.1).

Now let m be odd. We pro
eed analogously. If a is even, then reordering rows and


olumns a

ording to the parity of the indi
es gives

D

0

= det

�

I(

a

2

) +B(

a

2

;

m�1

2

) 0

B(

a

2

;

m+1

2

) I(

a

2

)�B(

a

2

;

m+1

2

)

�

= det

�

I(

a

2

) +B(

a

2

;

m�1

2

)

�

det

�

I(

a

2

)� B(

a

2

;

m+1

2

)

�

:

The �rst determinant is evaluated by means of Theorem 10, while the se
ond is evalu-

ated by means of Theorem 11. The result is the third expression in (3.1).

Finally, if a is odd we get

D

0

= det

�

I(

a+1

2

) +B(

a+1

2

;

m�1

2

) 0

B

(r)

(

a+1

2

;

m+1

2

) I(

a�1

2

)� B(

a�1

2

;

m+1

2

)

�

= det

�

I(

a+1

2

) +B(

a+1

2

;

m�1

2

)

�

det

�

I(

a�1

2

)� B(

a�1

2

;

m+1

2

)

�

:

Again, the �rst determinant is evaluated by means of Theorem 10, while the se
ond is

evaluated by means of Theorem 11. The result is the fourth expression in (3.1). �
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5. Lozenge tilings, noninterse
ting latti
e paths, and determinants

The purpose of this se
tion is to derive determinants for the ordinary and (�1)-

enumeration of lozenge tilings of 
ored hexagons (see Lemmas 15 and 16). We �nd

these determinants by �rst translating the lozenge tilings to noninterse
ting latti
e

paths, and subsequently applying the Lindstr�om{Gessel{Viennot theorem (stated here

as Lemma 14).

From lozenge tilings to noninterse
ting latti
e paths. There is a well-known trans-

lation of lozenge tilings to families of noninterse
ting latti
e paths. We start with a

lozenge tiling of the 
ored hexagon (see Figure 8.a). We mark the midpoints of the

edges along the sides of length a and a+m and along the side of the triangle whi
h is

parallel to them (see Figure 8.b). Now, in the same way as in the proof of Theorem 7

in the pre
eding se
tion, we 
onne
t these points by paths whi
h \follow" along the

lozenges of the tiling, as is illustrated in Figure 8.b. Clearly, the resulting paths are

noninterse
ting, i.e., no two paths have a 
ommon vertex. If we slightly distort the

underlying latti
e, we get orthogonal paths with positive horizontal and negative ver-

ti
al steps (see Figure 8.
). In the 
ase that a, b and 
 have the same parity, we 
an

introdu
e a 
oordinate system in a way so that the 
oordinates of the starting points

A

i

and end points E

j

are

A

i

= (i� 1; 
+m+ i� 1); i = 1; 2; : : : ; a; (5.1a)

A

i

=

�

a + b

2

+ i� a� 1;

a+ 


2

+ i� a� 1

�

; i = a + 1; a+ 2; : : : ; a+m; (5.1b)

E

j

= (b + j � 1; j � 1); j = 1; 2; : : : ; a+m; (5.1
)

see Figure 8.
.

Suppose now that the parity of a is di�erent from that of b and 
, whi
h is the 
ase in

Theorems 2 and 5. Sin
e in this 
ase the 
ore is slightly o� the \truly 
entral" position

(be
ause the triangle in the \truly 
entral" position would not be a latti
e triangle; see

the de�nitions in the Introdu
tion), the starting points of the latti
e paths originating

at boundary points of the 
ore are 
hanged slightly as well. The starting and ending

points be
ome

A

i

= (i� 1; 
+m + i� 1); i = 1; 2; : : : ; a; (5.2a)

A

i

=

�

a + b� 1

2

+ i� a� 1;

a+ 
� 1

2

+ i� a� 1

�

; i = a + 1; a+ 2; : : : ; a+m;

(5.2b)

E

j

= (b+ j � 1; j � 1); j = 1; 2; : : : ; a+m: (5.2
)

In either 
ase, the lozenge tiling 
an be re
overed from the path family, so that it

suÆ
es to 
ount the families of noninterse
ting latti
e paths with the above-mentioned

starting and end points.

From noninterse
ting latti
e paths to a determinant. In order to 
ount these families

of noninterse
ting latti
e paths, we make use of a result due to Lindstr�om [24, Lemma 1℄

and independently to Gessel and Viennot [13, Theorem 1℄. In fa
t, it is the not so well-

known general form of the result whi
h we need here. In order to state this result, we
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a. A lozenge tiling of the 
ored hexagon in Figure 1

a

b+m

	





+m

8

>

>

<

>

>

:

b

a+m

)

m

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

<

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

b. The 
orresponding path family


. The path family made orthogonal

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

Æ

Æ

A

1

E

1

Æ

Æ

A

2

E

4

Æ

Æ

A

3

E

5

Æ

Æ

A

4

E

2

Æ

Æ

A

5

E

3

Figure 8

introdu
e some latti
e path notation. We write P(A ! E) for the number of paths

starting at A and ending at E. Given two sets A = fA

1

; : : : ; A

n

g and E = fE

1

; : : : ; E

n

g

of latti
e points and a permutation �, we write P(A ! E

�

; nonint.) for the number

of families of n noninterse
ting paths with the ith path running from A

i

to E

�(i)

,

i = 1; 2; : : : ; n.

Now we 
an state the main result on noninterse
ting latti
e paths (see [24, Lemma 1℄

or [13, Theorem 1℄).

Lemma 14. Let A

1

; A

2

; : : : ; A

n

; E

1

; E

2

; : : : ; E

n

be points of the planar integer latti
e.

Then the following identity holds:

det

1�i;j�n

(P(A

i

! E

j

)) =

X

�2S

n

(sgn �) � P(A! E

�

; nonint.): (5.3)

�

Remark. The result in [24℄, respe
tively [13℄, is in fa
t more general, as it is formulated

for paths in an arbitrary oriented graph. But then the graph must satisfy an a
y
li
ity
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ondition. We have not mentioned it in the formulation of the above lemma as it is

automati
ally satis�ed in our more restri
ted setting.

Usually, this lemma is applied in the 
ase that the only permutation for whi
h non-

interse
ting latti
e paths exist is the identity permutation, so that the sum on the

right-hand side redu
es to a single term, whi
h 
ounts all families (P

1

; P

2

; : : : ; P

n

) of

noninterse
ting latti
e paths, the ith path P

i

running from A

i

to E

i

, i = 1; 2; : : : ; n.

(The only ex
eptions that we are aware of, i.e., appli
ations of the above formula in

the 
ase where the sum on the right-hand side does not redu
e to a single term, 
an

be found in [8℄, [24℄, and [42℄.) This is, however, not exa
tly the situation that we

en
ounter in our problem. Therefore, it seems that Lemma 14 is not suited for our

problem. However, our 
hoi
e of starting and end points (see Figure 8.
) implies that

noninterse
ting latti
e paths are only possible if m 
onse
utive end points (m being the

side length of the equilateral triangle removed from the hexagon) are paired with the

starting points from the triangle. So the 
orresponding permutation �, whi
h des
ribes

in whi
h order the starting points are 
onne
ted to the end points, di�ers from the

identity permutation by a 
omposition of 
y
les of length m + 1. Thus, if m is even,

we have sgn � = 1, so that the right-hand side in Lemma 14 
ounts exa
tly all nonin-

terse
ting latti
e path families and, thus, all the lozenge tilings that we are interested

in.

On the other hand, if m is odd, then the sign of the permutation � will not be 1

always. In fa
t, as is straightforward to see, the sign of � is 1 if the number of paths

whi
h pass the 
ore on the right is even, and is �1 otherwise. If this is translated

ba
k to the original lozenge tiling, T say, then it follows that sgn � is exa
tly equal to

(�1)

n(T )

, with the statisti
 n(:) from Se
tion 2. Thus, in the 
ase that m is odd, the

determinant in Lemma 14 gives exa
tly the (�1)-enumeration of our lozenge tilings.

Sin
e the number of paths from (x

1

; y

1

) to (x

2

; y

2

) with positive horizontal and neg-

ative verti
al steps equals the binomial 
oeÆ
ient

�

x

2

�x

1

+y

1

�y

2

x

2

�x

1

�

, our �ndings so far 
an

be summarized as follows.

Lemma 15. Let a; b; 
;m be nonnegative integers, a; b; 
 having the same parity. If m is

even, then the number of lozenge tilings of a hexagon with sides a; b+m; 
; a+m; b; 
+m,

with an equilateral triangle of side length m removed from its 
enter, equals

det

1�i;j�a+m

0

B

B

�

�

b + 
+m

b� i + j

�

1 � i � a

�

b+


2

b+a

2

� i+ j

�

a+ 1 � i � a+m

1

C

C

A

: (5.4)

If m is odd, then the weighted 
ount

P

(�1)

n(T )

, where T varies through all the above

lozenge tilings, is equal to the above determinant.

Lemma 16. Let a; b; 
;m be nonnegative integers, a of parity di�erent from the parity

of b and 
. If m is even, then the number of lozenge tilings of a hexagon with sides

a; b+m; 
; a+m; b; 
+m, with an equilateral triangle of side length m removed that is
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a

b +m

o





+m

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

b

a +m

9

>

>

=

>

>

;

m

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Figure 9. A lozenge tiling of a hexagon with sides a = 5, b = 3, 
 = 1 and

removed triangle of side length m = 2 and the 
orresponding paths.

\
entral" in the sense that was des
ribed in the Introdu
tion, equals

det

1�i;j�a+m

0

B

B

�

�

b + 
+m

b� i + j

�

1 � i � a

�

b+


2

b+a+1

2

� i+ j

�

a+ 1 � i � a+m

1

C

C

A

: (5.5)

If m is odd, then the weighted 
ount

P

(�1)

n(T )

, where T varies through all the above

lozenge tilings, is equal to the above determinant.

6. Polynomiality of the number of lozenge tilings

The goal of this se
tion is to establish polynomiality in m| the side of the 
ore | of

the weighted 
ounts of lozenge tilings 
onsidered in Theorems 1, 2, 4, 5, provided a; b; 


are �xed. Below we just address the 
ase that a, b and 
 have the same parity (i.e., the


ase 
onsidered in Theorems 1 and 4), the other 
ase being 
ompletely analogous.

We set up a bije
tion between the lozenge tilings of our 
ored hexagon and nonin-

terse
ting latti
e paths in a manner di�erent from the one in the pre
eding se
tion.

We start by extending all sides of the removed triangle to the left (if viewed from the

interior of the triangle; see Figure 9, where these extensions are marked as thi
k seg-

ments). These segments partition the 
ored hexagon into three regions. Furthermore,

the segments 
ut some of the lozenges in two. (In Figure 9 these lozenges are shaded.)

In ea
h of the three regions, we mark the midpoints of those edges of the \
ut" lozenges

and of those edges along the border of the region that are not parallel to the \thi
k"

segments bordering this region (see Figure 9). Now, in ea
h of the three regions, we


onne
t the marked points by \following" along the lozenges of the tiling, in the same

way as in Se
tion 4 (in the proof of Theorem 7), and in Se
tion 5 (see Figure 8.b). The

lozenge tiling 
an be re
overed from the three noninterse
ting path families. Thus this

de�nes indeed a bije
tion.
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Hen
e, if we �x the lozenges that are 
ut in two by the segments, the 
orresponding

number of lozenge tilings whi
h 
ontain these �xed \
ut" lozenges is easily 
omputed

by applying the Lindstr�om{Gessel{Viennot theorem (Lemma 14) to ea
h of the three

regions separately. This gives a produ
t of three determinants, one for ea
h region. The

total number of lozenge tilings is then obtained as the sum over all possible 
hoi
es of

\
ut" lozenges (along the segments) of this produ
t of three determinants.

It is easy to see that ea
h entry in any of the three determinants is a binomial


oeÆ
ient of the form

�

m+x

y

�

, where x and y are independent of m. So the entries are

polynomials in m, and, hen
e, the determinants as well. The segment whi
h extends

the side of the removed triangle that is parallel to a has length minf

a+b

2

;

a+


2

g, whi
h is

independent of m, similarly for the other lines. The total number of lozenge tilings is

thus equal to a sum of polynomials in m, where the range of summation is independent

of m. Therefore it is itself a polynomial in m, as was 
laimed.

Basi
ally, the same arguments hold also for (�1)-enumeration. The only di�eren
e is

that ea
h produ
t of three determinants is multiplied by a sign, depending (a

ording to

the de�nition of our statisti
 n) on the parity of the number of lozenge sides 
ontained

in the northeastern extension of the bottom side of the 
ore. However, this number

equals the length of this extension minus the number of lozenges the extension 
uts

through, and is therefore again independent of m.

7. Determinant evaluations, I

In this se
tion we evaluate the determinant in Lemma 15. The underlying matrix is

a mixture of two matri
es. If we would have to 
ompute the determinant of just one

of the matri
es (i.e., if we 
onsider the 
ase a = 0 or m = 0), then the determinant


ould be easily evaluated (see (12.5)). However, the mixture is mu
h more diÆ
ult to

evaluate. As it turns out, we have to distinguish between several 
ases, depending on

the parities of a and m.

It is 
onvenient to take (b + 
+m)!

Æ

(b+ a +m� i)! (
+m+ i� 1)! out of the ith

row, i = 1; 2; : : : ; a, and

�

b+


2

�

!

Æ�

b+3a

2

+m� i

�

!

�


�a

2

+ i� 1

�

! out of the ith row, i =

a + 1; a+ 2; : : : ; a+m. This gives

det

1�i;j�a+m

0

B

B

�

�

b + 
+m

b� i + j

�

1 � i � a

�

b+


2

b+a

2

� i+ j

�

a+ 1 � i � a+m

1

C

C

A

=

a

Y

i=1

(b + 
+m)!

(b + a+m� i)! (
+m + i� 1)!

a+m

Y

i=a+1

�

b+


2

�

!

�

b+3a

2

+m� i

�

!

�


�a

2

+ i� 1

�

!

� det

1�i;j�a+m

�

(
+m+ i� j + 1)

j�1

(b� i+ j + 1)

a+m�j

1 � i � a

�


�a

2

+ i� j + 1

�

j�1

�

b+a

2

� i + j + 1

�

a+m�j

a < i � a+m

�

: (7.1)

Thus it suÆ
es to evaluate the determinant on the right-hand side. The advantage

is that this determinant is a polynomial in b and 
. This enables us to apply the

\identi�
ation of fa
tors" method, as proposed in [20, Se
. 2.4℄. The four lemmas

below address the four di�erent 
ases, as a and m vary through all possible parities.
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Lemma 17. Let a and m be both even nonnegative integers. Then

det

1�i;j�a+m

�

(
+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�


�a

2

+ i� j + 1

�

j�1

�

b+a

2

� i+ j + 1

�

a+m�j

a < i � a+m

�

=

H(a+m) H(

a

2

)

2

H(

m

2

)

2

H(

a+m

2

)

2

2

m(a+m�1)=2

m=2

Y

k=1

�

b

2

+ k

�

2

a=2

�




2

+ k

�

2

a=2

a=2�1

Y

k=0

(b + 
+m + 2k + 1)

a�2k�1

�

a=2�1

Y

k=1

(b + 
+ 2m+ 2k)

a�2k

m

Y

k=m=2+1

(b + 
+ 2k)

a+m�k

m=2

Y

k=1

(b + 
+ 2k)

m�k

: (7.2)

Proof. Let us denote the determinant in (7.2) by D

1

(b; 
).

We pro
eed in several steps. An outline is as follows. The determinant D

1

(b; 
) is

obviously a polynomial in b and 
. In Steps 1{5 we show that the right-hand side of

(7.2) divides D

1

(b; 
) as a polynomial in b and 
. In Step 6 we show that the degree of

D

1

(b; 
) as a polynomial in b is at most

�

a+m

2

�

. Of 
ourse, the same is true for the degree

in 
. On the other hand, the degree of the right-hand side of (7.2) as a polynomial in b

is exa
tly

�

a+m

2

�

. It follows that D

1

(b; 
) must equal the right-hand side of (7.2) times a

quantity whi
h does not depend on b. This quantity must be polynomial in 
. But, in

fa
t, it 
annot depend on 
 as well, be
ause, as we just observed, the degree in 
 of the

right-hand side of (7.2) is already equal to the maximal degree in 
 of D

1

(b; 
). Thus,

this quantity is a 
onstant with respe
t to b and 
. That this 
onstant is equal to 1 is

�nally shown in Step 7, by evaluating the determinant D

1

(b; 
) for b = 
 = 0.

Before we begin with the detailed des
ription of the individual steps, we should ex-

plain the odd looking o

urren
es of \e � a mod 2" below (e.g., in Step 1(a){(d)).

Clearly, in the present 
ontext this means \e � 0 mod 2", as a is even by assump-

tion. However, Steps 1{6 will also serve as a model for the proofs of the subsequent

Lemmas 18{20. Consequently, formulations are 
hosen so that they remain valid with-

out 
hange at the 
orresponding pla
es. In parti
ular, in the 
ontext of the proofs of

Lemmas 18 and 20, the statement \e � a mod 2" will mean \e � 1 mod 2".

Step 1.

Q

m=2

k=1

�

b

2

+ k

�

2

a=2

�




2

+ k

�

2

a=2

divides the determinant. The original determinant

is symmetri
 in b and 
 for 
ombinatorial reasons. The fa
tors whi
h were taken out of

the determinant in (7.1) are also symmetri
 in b and 
 (this 
an be seen by reversing all

the produ
ts involving 
). Therefore it suÆ
es to 
he
k that the linear fa
tors involving

b divide D

1

(b; 
), i.e., that the produ
t

Q

m=2

k=1

�

b

2

+ k

�

2

a=2

divides D

1

(b; 
).

We distinguish between four sub
ases, labeled below as (a), (b), (
), and (d).

(a) (b + e)

e

divides D

1

(b; 
) for 1 � e � minfa;mg, e � a mod 2: This follows from

the easily veri�ed fa
t that (b + e) is a fa
tor of ea
h entry in the �rst e 
olumns of

D

1

(b; 
).

(b) (b + e)

m

divides D

1

(b; 
) for m < e < a, e � a mod 2: We prove this by �nding

m \di�erent" linear 
ombinations of the 
olumns of D

1

(b; 
) whi
h vanish for b = �e.

By the term \di�erent" we mean that these linear 
ombinations are themselves linearly

independent. (Equivalently, we �nd m linearly independent ve
tors in the kernel of the

linear operator de�ned by the matrix underlying D

1

(�e; 
).) See Se
tion 2 of [19℄, and

in parti
ular the Lemma in that se
tion, for a formal justi�
ation of this pro
edure.
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To be pre
ise, we 
laim that the following equation holds for s = 1; 2; : : : ; m,

e+s�m

X

j=1

�

e�m+ s� 1

j � 1

�

(
+ a� e� s+ 2m + 1)

e+s�j�m

(a� e� s+ 2m + 1)

e+s�j�m

� (
olumn j of D

1

(�e; 
)) = 0:

(7.3)

Sin
e the entries of D

1

(b; 
) have a split de�nition (see (7.2)), for the proof of the

above equation we have to distinguish between two 
ases. If we restri
t (7.3) to the ith

row, i � a, then (7.3) be
omes

e+s�m

X

j=1

�

e�m + s� 1

j � 1

�

(
+ a� e� s+ 2m+ 1)

e+s�j�m

(a� e� s + 2m+ 1)

e+s�j�m

� (
+m + i� j + 1)

j�1

(�e� i + j + 1)

a+m�j

= 0; (7.4)

whereas on restri
tion to the ith row, i > a, equation (7.3) be
omes

e+s�m

X

j=1

�

e�m + s� 1

j � 1

�

(
+ a� e� s+ 2m+ 1)

e+s�j�m

(a� e� s + 2m+ 1)

e+s�j�m

�

�


�a

2

+ i� j + 1

�

j�1

�

�e+a

2

� i + j + 1

�

a+m�j

= 0: (7.5)

First, let i � a. Here and in the following, we make use of the usual hypergeometri


notation

r

F

s

�

a

1

; : : : ; a

r

b

1

; : : : ; b

s

; z

�

=

1

X

k=0

(a

1

)

k

� � � (a

r

)

k

k! (b

1

)

k

� � � (b

s

)

k

z

k

: (7.6)

In this notation, the sum on the left-hand side of (7.4) reads

(2� e� i)

�1+a+m

(1 + a + 
� e + 2m� s)

�1+e�m+s

(1 + a� e+ 2m� s)

�1+e�m+s

�

3

F

2

�

1� 
� i�m; 1� e +m� s; 1� a�m

1� a� 
�m; 2� e� i

; 1

�

:

Next we use a transformation formula due to Thomae [43℄ (see also [10, (3.1.1)℄),

3

F

2

�

A;B;�n

D;E

; 1

�

=

(E �B)

n

(E)

n

3

F

2

�

�n;B;D � A

D; 1 +B � E � n

; 1

�

; (7.7)

where n is a nonnegative integer. This gives

(1 + a+ 
� e+ 2m� s)

e�m+s�1

(1� i�m+ s)

a+m�1

(1 + a� e+ 2m� s)

e�m+s�1

�

3

F

2

�

1� a�m; 1� e +m� s;�a+ i

1� a� 
�m; 1� a+ i� s

; 1

�

:

The fa
tor (1� i�m + s)

a+m�1

vanishes for i � a and the denominator is never zero,

so the sum in (7.4) equals zero, as desired.
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We pro
eed similarly in order to prove (7.5) for i > a. The hypergeometri
 form of

the sum in (7.5) is

(2 +

a

2

�

e

2

� i)

a+m�1

(1 + a+ 
� e+ 2m� s)

e�m+s�1

(1 + a� e+ 2m� s)

e�m+s�1

�

3

F

2

�

1 +

a

2

�




2

� i; 1� a�m; 1� e+m� s

1� a� 
�m; 2 +

a

2

�

e

2

� i

; 1

�

:

Using the transformation formula (7.7) again, we get

(1 +

a

2

+

e

2

�m� i+ s)

a+2m�e�s

(1 +

3a

2

�

e

2

� i +m)

e�m+s�1

�

(1 + a+ 
� e+ 2m� s)

e�m+s�1

(1 + a� e+ 2m� s)

e�m+s�1

�

3

F

2

�

1� e+m� s; 1� a�m;�

3a

2

�




2

+ i�m

1� a� 
�m; 1�

3 a

2

�

e

2

+ i� s

; 1

�

:

This expression is zero, be
ause the fa
tor (1+

a

2

+

e

2

�m�i+s)

a+2m�e�s

vanishes for i > a

(it is here where we need e � a mod 2, be
ause this guarantees that 1+

a

2

+

e

2

�m� i+s

is an integer). So the sum in (7.5) equals zero, as desired.

(
) (b + e)

a

divides D

1

(b; 
) for a < e < m, e � a mod 2: Pro
eeding in the spirit

of 
ase (b), we prove this by �nding a linear 
ombinations of the 
olumns of D

1

(b; 
)

whi
h vanish for b = �e. To be pre
ise, we 
laim that the following equation holds for

s = 1; 2; : : : ; a:

e�a

2

+s

X

j=1

�

e�a

2

+ s� 1

j � 1

�

�




2

+m�

e

2

+ a� s+ 1

�

(e�a)=2+s�j

�

m +

3a�e

2

� s+ 1

�

(e�a)=2+s�j

� (
olumn j of D

1

(�e; 
)) = 0:

(7.8)

In order to prove this equation, we �rst restri
t it to the ith row, i � a. Then, in

hypergeometri
 notation, the left-hand side reads

(2� e� i)

a+m�1

(1 + a +




2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

(1 +

3 a

2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

�

3

F

2

�

1� a�m; 1� 
� i�m; 1 +

a

2

�

e

2

� s

1�

a

2

�




2

�m; 2� e� i

; 1

�

:

We apply the transformation formula (7.7) and get

(1 + 
� e+m)

e

2

�

a

2

+s�1

(1 + a+




2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

�

(1�

a

2

�

e

2

� i+ s)

3 a

2

�

e

2

+m�s

(1 +

3 a

2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

3

F

2

�

1 +

a

2

�

e

2

� s; 1� 
� i�m;

a

2

�




2

1�

a

2

�




2

�m; 1 +

a

2

� 
+

e

2

�m� s

; 1

�

:

This expression is zero be
ause the fa
tor (1�

a

2

�

e

2

� i + s)

3a

2

�

e

2

+m�s

vanishes.
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If instead we restri
t the left-hand side of (7.8) to the ith row, i > a, and 
onvert it

into hypergeometri
 form, then we obtain

(2 +

a

2

�

e

2

� i)

a+m�1

(1 + a+




2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

(1 +

3 a

2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

�

3

F

2

�

1 +

a

2

�




2

� i; 1� a�m; 1 +

a

2

�

e

2

� s

1�

a

2

�




2

�m; 2 +

a

2

�

e

2

� i

; 1

�

:

We apply again the transformation formula (7.7). This gives

(1 + a+




2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

(1� i + s)

�1+a+m

(1 +

3a

2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

�

3

F

2

�

1 +

a

2

�

e

2

� s; 1� a�m;�a + i�m

1�

a

2

�




2

�m; 1� a+ i�m� s

; 1

�

:

This expression is zero be
ause the fa
tor (1� i+ s)

�1+a+m

vanishes for a + 1 � i �

a +m. So the sum in (7.8) equals zero, as desired.

(d) (b+ e)

a+m�e

divides D

1

(b; 
) for maxfa;mg � e � a+m� 1, e � a mod 2: Still

pro
eeding in the spirit of 
ase (b), this time we �nd a+m� e linear 
ombinations of

the rows of D

1

(b; 
) whi
h vanish for b = �e. To be pre
ise, we 
laim that the following

equation holds for s = 1; 2; : : : ; a+m� e:

s

X

i=1

�

s� 1

i� 1

�

(�1)

i

�


�e

2

+ 1

�

a+m�s

�


�e

2

+m

�

i�1

(1 + 
� e +m)

a+m�s+i�1

� (row (a+m� e� s+ i) of D

1

(�e; 
))

+ (row

�

m+

3a

2

�

e

2

� s+ 1

�

of D

1

(�e; 
)) = 0: (7.9)

In the sum, it is only the �rst a rows whi
h are involved, whereas the extra term is

a row out of the last m rows of the determinant. Therefore, by restri
tion to the jth


olumn, we see that it is equivalent to

s

X

i=1

�

s� 1

i� 1

�

(�1)

i

�


�e

2

+ 1

�

a+m�s

�


�e

2

+m

�

i�1

(1 + 
� e +m)

a+m�s+i�1

� (a+ 
+ 2m� e� s+ i� j + 1)

j�1

(�a�m+ s� i+ j + 1)

a+m�j

+

�


�e

2

+ a+m� s� j + 2

�

j�1

(�a�m + s+ j)

a+m�j

= 0: (7.10)

We treat the 
ases j � a +m � s and j > a +m � s separately. For j � a +m � s

the fa
tor (�a � m + s � i + j + 1)

a+m�j

, whi
h appears in the sum, is zero for all

the summands, as well is the fa
tor (�a�m + s+ j)

a+m�j

, whi
h appears in the extra

term in (7.10).

For j > a+m� s we 
onvert the sum in (7.10) into hypergeometri
 form and get

�(1 +




2

�

e

2

)

a+m�s

(2 + a+ 
� e� j + 2m� s)

�1+j

(�a + j �m+ s)

a�j+m

(1 + 
� e+m)

a+m�s

�

2

F

1

�




2

�

e

2

+m; 1 + a� j +m� s

2 + a + 
� e� j + 2m� s

; 1

�

:
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We 
an evaluate the

2

F

1

-series by the Chu{Vandermonde summation formula (see

[36, (1.7.7), Appendix (III.4)℄),

2

F

1

�

A;�n

C

; 1

�

=

(C � A)

n

(C)

n

; (7.11)

where n is a nonnegative integer. Thus we get

�(2 + a +




2

�

e

2

� j +m� s)

j�1

(�a + j �m+ s)

a�j+m

: (7.12)

It is easily seen that adding the extra term in (7.10) gives zero.

Step 2.

Q

a=2�1

k=0

(b + 
+m+ 2k + 1)

a�2k�1

divides the determinant. We �nd e + 1

linear 
ombinations of the rows of D

1

(b; 
) whi
h vanish for b = �
�a�m+1+e. To be

pre
ise, we 
laim that the following equation holds for 0 � e � a�2, s = 1; 2; : : : ; e+1:

a�e�1

X

i=1

�

(
+m + i)

a�e�i+s�1

(
� e� 1 + i)

a�e�i+s�1

�

a� e� 2

i� 1

�

(s)

a�e�1

(�1)

i

(s� i+ a� e� 1)(a� e� 2)!

� (row i of D

1

(�
� a�m+ 1 + e; 
))

�

+ (�1)

a�e�1

� (row (a� e� 1 + s) of D

1

(�
� a�m+ 1 + e; 
)) = 0: (7.13)

Restri
ted to the jth 
olumn, and 
onverted into hypergeometri
 notation, the sum

in (7.13) reads

�

(1� a� 
+ e + j �m)

a�j+m

(1 + 
+m)

a�e+s�2

(2 + 
� j +m)

j�1

(s)

a�e�2

(1)

a�e�2

(
� e)

a�e+s�2

�

3

F

2

�

2� a+ e� s; a+ 
� e� j +m; 2� a+ e

3� a + e� s; 2 + 
� j +m

; 1

�

:

Here we use the Pfa�{Saals
h�utz summation formula (see [36, (2.3.1.3), Appen-

dix (III.2)℄)

3

F

2

�

A;B;�n

C; 1 + A+B � C � n

; 1

�

=

(C � A)

n

(C �B)

n

(C)

n

(C � A�B)

n

; (7.14)

where n is a nonnegative integer. Thus we get

(�1)

a�e�1

(1 + 
+m)

a�e+s�2

(2 + 
� j +m)

j�1

�

(3� 2 a� 
+ 2 e+ j �m� s)

a�e�2

(
� e)

a�e+s�2

(1� 
+ e)

�2�e+j�m

:

It is easily veri�ed that adding the jth 
oordinate of the extra term in (7.13) gives zero,

as desired. For now, we need equation (7.13) only for even e.

Step 3.

Q

a=2�1

k=1

(b+ 
 + 2m+ 2k)

a�2k

divides the determinant. We �nd e linear 
om-

binations of the 
olumns of D

1

(b; 
) whi
h vanish for b = �
 � 2m � a + e. To be

pre
ise, we 
laim that the following equation holds for 0 < e � a, e � a mod 2, and

s = 1; 2; : : : ; e:

a+m+s�e

X

j=s

�

a+m� e

j � s

�

� (
olumn j of D

1

(�
� 2m� a+ e; 
)) = 0: (7.15)
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Restri
ted to the ith row, i � a, and 
onverted into hypergeometri
 notation, the

left-hand side sum in (7.15) reads

(1 + 
+ i +m� s)

s�1

(1� a� 
+ e� i� 2m+ s)

a+m�s

�

2

F

1

�

�
� i�m + s;�a+ e�m

1� a� 
 + e� i� 2m+ s

; 1

�

:

This is summable by the Chu{Vandermonde summation formula (7.11). We get

(1� a+ e�m)

a�e+m

(1 + 
 + i+m� s)

s�1

(1� 
 + e� i�m)

s�e

:

This expression equals zero be
ause the fa
tor (1� a+ e�m)

a�e+m

vanishes.

On the other hand, if i > a, the left-hand side sum in (7.15), restri
ted to the ith

row and 
onverted into hypergeometri
 from, reads

(1�

a

2

+




2

+ i� s)

s�1

(1�




2

+

e

2

� i�m+ s)

a+m�s

�

2

F

1

�

a

2

�




2

� i + s;�a+ e�m

1�




2

+

e

2

� i�m + s

; 1

�

:

The Chu{Vandermonde summation formula (7.11) turns this expression into

(1�

a

2

+

e

2

�m)

a�e+m

(1�

a

2

+




2

+ i� s)

s�1

(1 + a�




2

+

e

2

� i)

�e+s

:

This expression is zero be
ause the fa
tor (1�

a

2

+

e

2

�m)

a�e+m

vanishes for e � a mod

2. So the sum in (7.15) is zero, as desired.

Step 4.

Q

m

k=m=2+1

(b+ 
 + 2k)

a+m�k

divides the determinant. We �nd a+m�e linear


ombinations of the 
olumns of D

1

(b; 
) whi
h vanish for b = �
�2e. To be pre
ise, we


laim that the following equation holds for m=2 < e � m and s = 1; 2; : : : ; a+m� e:

s+e

X

j=s

�

e

j � s

�

� (
olumn j of D

1

(�
� 2e; 
)) = 0: (7.16)

Restri
ted to the ith row, i � a, and 
onverted into hypergeometri
 notation, the

left-hand side sum in (7.16) reads

(1 + 
+ i +m� s)

s�1

(1� 
� 2e� i + s)

a+m�s 2

F

1

�

�
� i�m + s;�e

1� 
� 2e� i+ s

; 1

�

:

The result after appli
ation of the Chu{Vandermonde summation formula (7.11) is

(1� 2e+m)

e

(1 + 
+ i+m� s)

s�1

(1 + a� 
� 2e� i+m)

�a+e�m+s

:

This expression equals zero be
ause the fa
tor (1� 2e+m)

e

vanishes.

On the other hand, if i > a, the left-hand side sum in (7.16), restri
ted to the ith

row and 
onverted into hypergeometri
 from, reads

(1 �

a

2

+




2

+ i � s)

s�1

(1 +

a

2

�




2

� e � i + s)

a+m�s 2

F

1

�

a

2

�




2

� i+ s;�e

1 +

a

2

�




2

� e� i+ s

; 1

�

:
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Chu-Vandermonde summation (7.11) yields

(1� e)

e

(1�

a

2

+




2

+ i� s)

s�1

(1 +

3 a

2

�




2

� e� i+m)

�a+e�m+s

:

This expression is zero be
ause the fa
tor (1 � e)

e

vanishes. So the sum in (7.16) is

zero, as desired.

Step 5.

Q

m=2

k=1

(b+ 
 + 2k)

m�k

divides the determinant. We �nd e linear 
ombinations

of the rows of D

1

(b; 
) whi
h vanish for b = �
� 2m+2e. To be pre
ise, we 
laim that

the following equation holds for e � m� 1 and s = 1; 2; : : : ; e:

m�s+1

X

i=1

(�1)

i

�

m� s

i� 1

�

�




2

+

a

2

+ i

�

m�s�i+1

�




2

�

a

2

� e+ i

�

m�s�i+1

� (row (a + i) of D

1

(�
� 2m+ 2e; 
)) = 0: (7.17)

Restri
ted to the jth row, and 
onverted into hypergeometri
 notation, the left-hand

side sum in (7.17) reads

�

(1 +

a

2

+




2

)

m�s

(2 +

a

2

+




2

� j)

j�1

(�

a

2

�




2

+ e+ j �m)

a�j+m

(1�

a

2

+




2

� e)

m�s

�

2

F

1

�

1 +

a

2

+




2

� e� j +m;�m + s

2 +

a

2

+




2

� j

; 1

�

:

After applying Chu{Vandermonde summation (7.11) again, we obtain

� (1 +

a

2

+




2

)

m�s

(1 + e�m)

m�s

�

(�

a

2

�




2

+ e+ j �m)

a�j+m

(2 +

a

2

+




2

� j +m� s)

j�m+s�1

(1�

a

2

+




2

� e)

m�s

:

This expression equals zero be
ause the fa
tor (1 + e�m)

m�s

vanishes. So the sum in

(7.17) is zero, as desired.

Step 6. Determination of the degree of D

1

(b; 
) as a polynomial in b. Obviously the

degree of the (i; j)-entry of D

1

(b; 
) as a polynomial in b is a+m� j. Therefore, if we

expand the determinant D

1

(b; 
) a

ording to its de�nition as a sum over permutations,

ea
h term in this expansion has degree

�

a+m

2

�

in b. Hen
e, D

1

(b; 
) itself has degree at

most

�

a+m

2

�

in b.

Step 7. Computation of the multipli
ative 
onstant. As we observed at the beginning

of this proof, Steps 1{6 show that the determinant D

1

(b; 
) is equal to the right-hand

side of (7.2) up to multipli
ation by a 
onstant. To determine this 
onstant, it suÆ
es

to 
ompute D

1

(b; 
) for some parti
ular values of b and 
. We 
hoose b = 
 = 0. The

value of D

1

(0; 0) is most easily determined by going ba
k, via (7.1) and Lemma 15, to

the origin of the determinant D

1

(b; 
), whi
h is enumeration of lozenge tilings. Figure 10

shows the typi
al situation for b = 
 = 0. As the �gure illustrates, there is exa
tly one

lozenge tiling of the region. Hen
e, by Lemma 15, it follows that the determinant (5.4)

must be equal to 1 for b = 
 = 0. If we substitute this into (7.1), we have evaluated

D

1

(b; 
), whi
h is the determinant on the right-hand side of (7.1), for b = 
 = 0. It is

then a routine task to 
he
k that the result agrees exa
tly with the right-hand side of

(7.2) for b = 
 = 0.
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>
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<
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=

>
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;

m

8
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:

a m

a +m

Figure 10. The unique lozenge tiling for b = 
 = 0

This 
ompletes the proof of the lemma. �

Lemma 18. Let a and m be nonnegative integers, a odd and m even. Then

det

1�i;j�a+m

�

(
+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�


�a

2

+ i� j + 1

�

j�1

�

b+a

2

� i+ j + 1

�

a+m�j

a < i � a+m

�

=

H(a+m) H(

a�1

2

) H(

a+1

2

) H(

m

2

)

2

H(

a+m�1

2

) H(

a+m+1

2

) 2

m(a+m�1)=2

�

m=2

Y

k=1

�

b�1

2

+ k

�

(a+1)=2

�

b+1

2

+ k

�

(a�1)=2

�


�1

2

+ k

�

(a+1)=2

�


+1

2

+ k

�

(a�1)=2

�

(a�1)=2�1

Y

k=0

(b + 
+m+ 2k + 1)

a�2k�1

(a�1)=2

Y

k=1

(b+ 
 + 2m+ 2k)

a�2k

�

m

Y

k=m=2+1

(b + 
+ 2k)

a+m�k

m=2

Y

k=1

(b + 
+ 2k)

m�k

: (7.18)

Proof. We pro
eed analogously to the proof of Lemma 17. The only di�eren
e is the

parity of a, so we have to read through the proof of Lemma 17 and �nd the pla
es

where we used the fa
t that a is even.

As it turns out, the arguments in Steps 1{5 in the proof of Lemma 17 
an be used

here, pra
ti
ally without 
hange, to establish that the right-hand side of (7.18) divides

the determinant on the left-hand side of (7.18) as a polynomial in b and 
. Di�er-

en
es arise only in the produ
ts 
orresponding to ea
h sub
ase (for example, the ar-

guments in Step 3 of the proof of Lemma 17 prove that

Q

a=2�1

k=1

(b + 
+ 2m+ 2k)

a�2k

divides the determinant D

1

(b; 
) if a is even, while for odd a they prove that

Q

(a�1)=2

k=1

(b + 
+ 2m+ 2k)

a�2k

divides D

1

(b; 
)), and in the fa
t that in Step 2 we are

now interested in the fa
tors 
orresponding to odd values of e, 1 � e � a� 2 (be
ause

here the fa
tors with even e are 
overed by Steps 3 and 4).
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;

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:
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>
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>

>

>

>

>

>

>
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=
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>

>
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Figure 11. A lozenge tiling and the 
orresponding path family for b = 
 = 1, a = 5

Also Step 6, the determination of a degree bound on the determinant, 
an be used

verbatim.

For the determination of the multipli
ative 
onstant relating the right-hand and the

left-hand side of (7.18), we have to modify however the arguments in Step 7 of the proof

of Lemma 17. We determine the 
onstant by 
omputing the determinant for b = 
 = 1.

Again, this value is most 
onveniently found by going ba
k, via (7.1) and Lemma 15,

to the 
ombinatorial root of the determinant, whi
h is enumeration of lozenge tilings.

We 
laim that the number of lozenge tilings for b = 
 = 1, a odd and m even, equals

2

�

m+ 1 +

a�1

2

a�1

2

�

: (7.19)

This 
an be read o� Figure 11, whi
h shows a typi
al example of the 
ase b = 
 = 1:

The path starting at A

a+1

2

(see the labeling in Figure 11; it is derived from the labeling

of starting points of paths in Figure 8) must pass either to the right or to the left of

the triangle. Sin
e the hexagon is symmetri
, we 
an 
ount those path families where

the path passes to the right, and in the end multiply the resulting number by two. For

those path families, the paths starting at points to the right of A

a+1

2

are �xed. The

paths to the left have all exa
tly one South-East step. Suppose that the South-East

step of the path whi
h starts in A

i

, 1 � i � (a � 1)=2, o

urs as the h

i

th step. Then

we must have

m+ 2 � h

1

� h

2

� � � � � h

a�1

2

� 1:

So we just have to 
ount monotonously de
reasing sequen
es of

a�1

2

numbers between

1 and m + 2. The number is exa
tly the binomial 
oeÆ
ient in (7.19). It is then a

routine task to 
he
k that, on substitution in (7.1), the result agrees exa
tly with the

right-hand side of (7.18) for b = 
 = 1. �
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Lemma 19. Let a and m be nonnegative integers, a even and m odd. Then

det

1�i;j�a+m

�

(
+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�


�a

2

+ i� j + 1

�

j�1

�

b+a

2

� i+ j + 1

�

a+m�j

a < i � a+m

�

= (�1)

a=2

H(a+m) H(

a

2

)

2

H(

m�1

2

) H(

m+1

2

)

H(

a+m�1

2

) H(

a+m+1

2

) 2

m(a+m�1)=2

�

�

b

2

+

1+m

2

�

a

2

�




2

+

1+m

2

�

a

2

(m�1)=2

Y

k=1

�

b

2

+ k

�

2

a

2

(m�1)=2

Y

k=1

�




2

+ k

�

2

a

2

a=2�1

Y

k=1

(b + 
+ 2 k +m)

a�2 k

�

a=2�1

Y

k=1

(b+ 
+ 2 k + 2m)

a�2 k

(m�1)=2

Y

k=0

(1 + b+ 
 + 2 k +m)

a

m

Y

k=1

(b + 
+ 2 k)

m�k

:

(7.20)

Proof. We pro
eed analogously to the proof of Lemma 17. The only di�eren
e is the

parity of m, so we have to 
he
k the pla
es in the proof of Lemma 17 where we used

the fa
t that m is even.

Again, Steps 1{6 
an be reused verbatim, ex
ept that the produ
ts 
orresponding to

the individual sub
ases are slightly di�erent, and in Step 2 we are now interested in the

fa
tors 
orresponding to odd values of e, 1 � e � a� 2 (be
ause the fa
tors with even

e are 
overed by Steps 3 and 4).

The 
omputation of the multipli
ative 
onstant relating the right-hand and the left-

hand side of (7.20) is done analogously to Step 7 in the proof of Lemma 17, i.e., we


ompute the determinant for b = 
 = 0 by going ba
k, via (7.1) and Lemma 15, to

the lozenge tiling interpretation of the determinant. We already 
on
luded in the proof

of Lemma 17 that for b = 
 = 0 there is just one lozenge tiling (see Figure 10). By

de�nition, the statisti
 n(:) attains the value a=2 on this lozenge tiling, so that its

weight is (�1)

a=2

. It is then not diÆ
ult to verify that, on substitution of this in (7.1),

the result agrees exa
tly with the right-hand side of (7.20) for b = 
 = 0. �

Lemma 20. Let a and m be odd nonnegative integers. Then

det

1�i;j�a+m

�

(
+m + i� j + 1)

j�1

(b� i+ j + 1)

a+m�j

1 � i � a

�


�a

2

+ i� j + 1

�

j�1

�

b+a

2

� i+ j + 1

�

a+m�j

a < i � a+m

�

= 0: (7.21)

Proof. Analogously to the previous 
ases, we 
an show that the produ
t

(m+1)=2

Y

i=1

(

b�1

2

+ i)

(a+1)=2

(m�1)=2

Y

i=1

(

b+1

2

+ i)

(a�1)=2

(a�1)=2

Y

k=1

(b+ 
+m + 2k)

a�2k

�

(a�1)=2

Y

k=1

(b+ 
 + 2m+ 2k)

a�2k

m

Y

k=(m+1)=2

(b+ 
+ 2k)

a+m�k

(m�1)=2

Y

k=1

(b+ 
+ 2k)

m�k

divides the determinant as a polynomial in b and 
. Although not 
ompletely obvious,

this is implied by the linear 
ombinations of Lemma 17, Steps 1{5. The degree in

b of this produ
t is

�

a+m

2

�

+ 1 whi
h is larger than the maximal degree

�

a+m

2

�

of the

determinant viewed as a polynomial in b. So the determinant must be zero. �
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8. Determinant Evaluations, II

In this se
tion we evaluate the determinant in Lemma 16. We pro
eed analogously

to Se
tion 7 and start by taking (b+ 
+m)!

Æ

(b+ a+m� i)! (
+m+ i� 1)! out of

the ith row, i = 1; 2; : : : ; a, and

�

b+


2

�

!

Æ�

b+3a+1

2

+m� i

�

!

�


�a�1

2

+ i� 1

�

! out of the ith

row, i = a+ 1; a+ 2; : : : ; a+m. This gives

det

1�i;j�a+m

0

B

B

�

�

b + 
+m

b� i+ j

�

1 � i � a

�

b+


2

b+a+1

2

� i + j

�

a+ 1 � i � a+m

1

C

C

A

=

a

Y

i=1

(b+ 
 +m)!

(b + a+m� i)! (
+m + i� 1)!

a+m

Y

i=a+1

�

b+


2

�

!

�

b+3a+1

2

+m� i

�

!

�


�a�1

2

+ i� 1

�

!

� det

1�i;j�a+m

�

(
 +m+ i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�


�a�1

2

+ i� j + 1

�

j�1

�

b+a+1

2

� i + j + 1

�

a+m�j

a < i � a+m

�

: (8.1)

Thus it suÆ
es to evaluate the determinant on the right-hand side. As in the pre-


eding se
tion, the advantage is that this determinant is a polynomial in b and 
. So

we 
an again apply the \identi�
ation of fa
tors" method, as proposed in [20, Se
. 2.4℄.

We note that the �rst a rows of the matrix are identi
al to those of (7.1), whereas the

other m rows di�er only slightly. Hen
e we 
an use many arguments from Se
tion 7.

The four lemmas below address the four di�erent 
ases, as a and m vary through all


ombinations of parities.

Lemma 21. Let a and m be both even nonnegative integers. Then

det

1�i;j�a+m

�

(
+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�


�a�1

2

+ i� j + 1

�

j�1

�

b+a+1

2

� i + j + 1

�

a+m�j

a < i � a+m

�

=

H(a+m) H(

a

2

)

2

H(

m

2

)

2

H(

a+m

2

)

2

2

m(a+m�1)=2

m=2

Y

k=1

(

b�1

2

+ k)

a=2

(

b+1

2

+ k)

a=2

�

m=2

Y

k=1

(


�1

2

+ k)

a=2

(


+1

2

+ k)

a=2

a=2�1

Y

k=0

(b+ 
+m + 2k + 1)

a�2k�1

�

a=2�1

Y

k=1

(b + 
+ 2m+ 2k)

a�2k

m

Y

k=m=2+1

(b + 
+ 2k)

a+m�k

m=2

Y

k=1

(b + 
+ 2k)

m�k

: (8.2)

Proof of Lemma 21. Let us denote the determinant in (8.2) by D

2

(b; 
). We will again

pro
eed in the spirit of the proof of Lemma 17, i.e., we �rst show, in Steps 1{5 below,

that the right-hand side of (8.2) divides D

2

(b; 
) as a polynomial in b and 
. Then, in

Step 6, we show that the degree of D

2

(b; 
) as a polynomial in b is at most

�

a+m

2

�

, the

same being true for the degree in 
. Analogously to the proof of Lemma 17, we 
on
lude

that D

2

(b; 
) must equal the right-hand side of (8.2), times a 
onstant with respe
t to

b and 
. That this 
onstant is equal to 1 is �nally shown in Step 7, by evaluating the

determinant D

2

(b; 
) for b = 
 = 1.
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In order to prove (in Steps 1{5) that the right-hand side of (8.2) divides D

2

(b; 
),

for ea
h linear fa
tor of (8.2) we exhibit again suÆ
iently many linear 
ombinations of


olumns or rows whi
h vanish. These linear 
ombinations are almost identi
al (some-

times they are even identi
al) with the 
orresponding linear 
ombinations in the proof

of Lemma 17. Consequently, we will merely state these linear 
ombinations here, but

will not bother to supply their veri�
ations, be
ause these parallel the veri�
ations in

the proof of Lemma 17.

Step 1.

Q

m=2

k=1

(

b�1

2

+ k)

a=2

(

b+1

2

+ k)

a=2

(


�1

2

+ k)

a=2

(


+1

2

+ k)

a=2

divides the determi-

nant. Unlike in the 
ase of the previous determinant D

1

(b; 
) (see (7.2)), here it is not

possible to infer symmetry of D

2

(b; 
) in b and 
 dire
tly from the de�nition. Therefore

it will be ne
essary to prove separately that the fa
tors involving b, respe
tively 
, divide

the determinant.

Again, we distinguish between four sub
ases, labeled below as (a), (b), (
), and (d).

(a) (b+ e)

e

(
+ e)

e

divides D

2

(b; 
) for 1 � e � minfa;mg, e 6� a mod 2: This follows

from the easily veri�ed fa
t that (b + e) is a fa
tor of ea
h entry in the �rst e 
olumns

of D

2

(b; 
), respe
tively, that (
 + e) is a fa
tor of ea
h entry in the last e 
olumns of

D

2

(b; 
).

(b) (b + e)

m

(
 + e)

m

divides D

2

(b; 
) for m < e < a, e 6� a mod 2: The following

equations hold for s = 1; 2; : : : ; m:

e+s�m

X

j=1

�

e�m+ s� 1

j � 1

�

(
+ a� e� s+ 2m + 1)

e+s�j�m

(a� e� s+ 2m + 1)

e+s�j�m

� (
olumn j of D

2

(�e; 
)) = 0;

(8.3)

and

e+s�m

X

j=1

�

e�m + s� 1

j � 1

�

(b+ a� e� s+ 2m+ 1)

e+s�j�m

(a� e� s+ 2m + 1)

e+s�j�m

� (
olumn (a+m+ 1� j) of D

2

(b;�e)) = 0: (8.4)

(
) (b + e)

a

divides D

2

(b; 
) for a < e < m, e 6� a mod 2: The following equations

hold for s = 1; 2; : : : ; a:

e�a�1

2

+s

X

j=1

�

e�a�1

2

+ s� 1

j � 1

�

�




2

+m�

e

2

+ a� s+ 1

�

(e�a�1)=2+s�j

�

m+

3a�e

2

� s + 1

�

(e�a�1)=2+s�j

� (
olumn j of D

2

(�e; 
)) = 0; (8.5)

and

e�a�1

2

+s

X

j=1

�

e�a�1

2

+ s� 1

j � 1

�

�

b

2

+m�

e

2

+ a� s+ 1

�

(e�a�1)=2+s�j

�

m+

3a�e

2

� s + 1

�

(e�a�1)=2+s�j

� (
olumn (a+m+ 1� j) of D

2

(b;�e)) = 0: (8.6)
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(d) (b + e)

a+m�e

divides D

2

(b; 
) for maxfa;mg � e � a + m, e 6� a mod 2: The

following equations hold for s = 1; 2; : : : ; a+m� e:

s

X

i=1

�

s� 1

i� 1

�

(�1)

i

�


�e

2

+ 1

�

a+m�s

�


�e

2

+m

�

i�1

(1 + 
� e +m)

a+m�s+i�1

� (row (a+m� e� s+ i) of D

2

(�e; 
))

+ (row

�

m+

3a+1

2

�

e

2

� s+ 1

�

of D

2

(�e; 
)) = 0; (8.7)

and

s

X

i=1

�

s� 1

i� 1

�

(�1)

i

�

b�e

2

+ 1

�

a+m�s

�

b�e

2

+m

�

i�1

(1 + b� e+m)

a+m�s+i�1

� (row (e+ s�m� i + 1) of D

2

(b;�e))

+ (row

�

a+1

2

+

e

2

+ s

�

of D

2

(b;�e)) = 0: (8.8)

Step 2.

Q

a=2�1

k=0

(b + 
+m + 2k + 1)

a�2k�1

divides the determinant. The following

equation holds for 0 � e � a� 2, s = 1; 2; : : : ; e+ 1:

a�e�1

X

i=1

�

(
+m + i)

a�e�i+s�1

(
� e� 1 + i)

a�e�i+s�1

�

a� e� 2

i� 1

�

(s)

a�e�1

(�1)

i

(s� i+ a� e� 1)(a� e� 2)!

� (row i of D

2

(�
� a�m+ 1 + e; 
))

�

+ (�1)

a�e�1

� (row (a� e� 1 + s) of D

2

(�
� a�m + 1 + e; 
)) = 0: (8.9)

Here, we need equation (8.9) only for even e.

Step 3.

Q

a=2�1

k=1

(b + 
+ 2m+ 2k)

a�2k

divides the determinant. The following equa-

tion holds for 0 < e � a, e � a mod 2, and s = 1; 2; : : : ; e:

a+m+s�e

X

j=s

�

a+m� e

j � s

�

� (
olumn j of D

2

(�
� 2m� a+ e; 
)) = 0: (8.10)

Step 4.

Q

m

k=m=2+1

(b+ 
 + 2k)

a+m�k

divides the determinant. The following equation

holds for m=2 < e � m and s = 1; 2; : : : ; a+m� e:

s+e

X

j=s

�

e

j � s

�

� (
olumn j of D

2

(�
� 2e; 
)) = 0: (8.11)

Step 5.

Q

m=2

k=1

(b+ 
+ 2k)

m�k

divides the determinant. The following equation holds

for e � m� 1 and s = 1; 2; : : : ; e:

m�s+1

X

i=1

(�1)

i

�

m� s

i� 1

�

�




2

+

a

2

+ i�

1

2

�

m�s�i+1

�




2

�

a

2

� e+ i�

1

2

�

m�s�i+1

� (row (a + i) of D

1

(�
� 2m+ 2e; 
)) = 0: (8.12)

Step 6. Determination of the degree of D

2

(b; 
) as a polynomial in b. This is 
learly

the same degree as for D

1

(b; 
), that is,

�

a+m

2

�

.
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Step 7. Computation of the multipli
ative 
onstant. In analogy to the proof of

Lemma 18, we evaluate the determinant for b = 
 = 1. Again, we do this by going

ba
k, via (8.1) and Lemma 16, to the 
ombinatorial origin of the determinant, whi
h is

enumeration of lozenge tilings. We 
an still use Figure 11 for our 
onsiderations. The

number of lozenge tilings is easily seen to be equal to

�

m+1+

a

2

a

2

�

+

�

m+1+

a

2

�1

a

2

�1

�

. It is then

a routine 
omputation to verify that this does indeed give the multipli
ative 
onstant

as 
laimed in (8.2). �

Lemma 22. Let a and m be nonnegative integers, a odd and m even. Then

det

1�i;j�a+m

�

(
+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�


�a�1

2

+ i� j + 1

�

j�1

�

b+a+1

2

� i + j + 1

�

a+m�j

a < i � a+m

�

=

H(a+m) H(

a�1

2

) H(

a+1

2

) H(

m

2

)

2

H(

a+m�1

2

) H(

a+m+1

2

) 2

m(a+m�1)=2

�

m=2

Y

k=1

(

b

2

+ k)

(a�1)=2

(

b

2

+ k)

(a+1)=2

(




2

+ k)

(a�1)=2

(




2

+ k)

(a+1)=2

�

(a�3)=2

Y

k=0

(b + 
+m+ 2k + 1)

a�2k�1

(a�1)=2

Y

k=0

(b+ 
+ 2m + 2k)

a�2k

�

m

Y

k=m=2+1

(b + 
+ 2k)

a+m�k

m=2

Y

k=1

(b + 
+ 2k)

m�k

: (8.13)

Proof. We pro
eed analogously to the proof of Lemma 21. The only di�eren
e is the

parity of a, so we have to 
he
k the pla
es in the proof of Lemma 21 where we used the

fa
t that a is even.

Steps 1, 3{5 
an be reused verbatim, but the 
orresponding produ
ts are slightly

di�erent.

In Step 2 we are now interested in the fa
tors 
orresponding to odd values of e

(1 � e � a� 2), be
ause the fa
tors with even e are 
overed by Steps 3 and 4.

Step 6 
an be reused verbatim.

The 
omputation of the multipli
ative 
onstant is done analogously to Step 7 in the

proof of Lemma 17. Again using Figure 10, we see that the number of lozenge tilings,

related to our determinant via (8.1) and Lemma 16, for b = 
 = 0 equals 1. It is then a

routine 
omputation to verify that this gives the multipli
ative 
onstant as 
laimed in

(8.13). �
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Lemma 23. Let a and m be nonnegative integers, a even and m odd. Then

det

1�i;j�a+m

�

(
+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�


�a�1

2

+ i� j + 1

�

j�1

�

b+a+1

2

� i + j + 1

�

a+m�j

a < i � a+m

�

= (�1)

a=2

H(a +m) H(

a

2

)

2

H(

m�1

2

) H(

m+1

2

)

H(

a+m�1

2

) H(

a+m+1

2

) 2

m(a+m�1)=2

(m+1)=2

Y

k=1

(

b�1

2

+ k)

a=2

(m�1)=2

Y

k=1

(

b+1

2

+ k)

a=2

�

(m+1)=2

Y

k=1

(


�1

2

+ k)

a=2

(m�1)=2

Y

k=1

(


+1

2

+ k)

a=2

a=2�1

Y

k=1

(b + 
+m+ 2k)

a�2k

�

a=2�1

Y

k=1

(b+ 
 + 2m+ 2k)

a�2k

m

Y

k=(m+1)=2

(b+ 
+ 2k)

a+m�k

(m�1)=2

Y

k=1

(b+ 
+ 2k)

m�k

:

(8.14)

Proof. We pro
eed analogously to the proof of Lemma 21. The only di�eren
e is the

parity of m, so we have to 
he
k the pla
es in the proof of Lemma 21 where we used

the fa
t that m is even.

Steps 1, 3{5 
an be reused verbatim, but the 
orresponding produ
ts are slightly

di�erent.

In Step 2 we are now interested in the fa
tors 
orresponding to odd values of e

(1 � e � a� 3), be
ause the fa
tors with even e are 
overed by Steps 3 and 4.

Step 6 
an be reused verbatim.

The 
omputation of the multipli
ative 
onstant is done analogously to Step 7 in

the proof of Lemma 21. Using again Figure 11, we see that the (�1)-enumeration of

lozenge tilings, related to our determinant via (8.1) and Lemma 16, for b = 
 = 1 equals

(�1)

a=2

�

m+1+

a

2

a

2

�

+ (�1)

a=2+1

�

m+1+

a

2

�1

a

2

�1

�

. It is then a routine 
omputation to verify that

this gives the multipli
ative 
onstant as 
laimed in (8.14). �

Lemma 24. Let a and m be odd nonnegative integers. Then

det

1�i;j�a+m

�

(
+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�


�a�1

2

+ i� j + 1

�

j�1

�

b+a+1

2

� i + j + 1

�

a+m�j

a < i � a+m

�

= (�1)

(a+1)=2

H(a+m) H(

a�1

2

) H(

a+1

2

) H(

m�1

2

) H(

m+1

2

)

H(

a+m

2

)

2

2

m(a+m�1)=2+1=2

�

(m+1)=2

Y

k=1

(

b

2

+ k)

(a�1)=2

(m�1)=2

Y

k=1

(

b

2

+ k)

(a+1)=2

�

(m+1)=2

Y

k=1

(




2

+ k)

(a�1)=2

(m�1)=2

Y

k=1

(




2

+ k)

(a+1)=2

(a�1)=2

Y

k=1

(b + 
+m+ 2k)

a�2k

�

(a�1)=2

Y

k=1

(b+ 
 + 2m+ 2k)

a�2k

m

Y

k=(m+1)=2

(b+ 
+ 2k)

a+m�k

(m�1)=2

Y

k=1

(b+ 
+ 2k)

m�k

:

(8.15)
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Proof. We pro
eed analogously to the proof of Lemma 21. The parameters a and m

are odd, so we have to 
he
k the pla
es in the proof of Lemma 21 where we used the

fa
t that a or m is even.

Steps 1{6 
an be reused verbatim, but the 
orresponding produ
ts are slightly dif-

ferent.

The 
omputation of the multipli
ative 
onstant is done analogously to Step 7 in

the proof of Lemma 17. Again using Figure 10, we see that the (�1)-enumeration of

lozenge tilings, related to our determinant via (8.1) and Lemma 16, for b = 
 = 0 equals

(�1)

(a+1)=2

. It is then a routine 
omputation to verify that this gives the multipli
ative


onstant as 
laimed in (8.15). �

9. Proof of Theorem 11

For the proof of Theorem 11, we pro
eed similarly to [28℄. We de�ne determinants

Z

n

(x; �) by

Z

n

(x; �) = det

0�i;j�n�1

 

�Æ

ij

+

n�1

X

t;k=0

�

i+ �

t

��

k

t

��

j � k + �� 1

j � k

�

x

k�t

!

: (9.1)

The only di�eren
e to the de�nition of Z

n

(x; �) in [28℄ is the minus sign in front of Æ

ij

.

Then an analogue of Theorem 5 of [28℄ is true.

Lemma 25. Let n be a nonnegative integer. Then Z

n

(x; �) = 0 if n is odd. If n is

even, then Z

n

(x; �) fa
tors,

Z

n

(x; �) = (�1)

n=2

det

0�i;j�n=2�1

 

n�1

X

t=0

t+ 1

j + 1

�

i+ �

t� i

��

j + 1

t� j

�

x

2j+1�t

!

� det

0�i;j�n=2�1

 

n�1

X

t=0

t + �+ 1

i + �+ 1

�

i + �+ 1

t� i

��

j

t� j

�

x

2j�t

!

: (9.2)

Proof. As in the proof of Theorem 5 of [28℄, de�ne matri
es S;M;U ,

S =

��

i+ �

t

��

0�i;t�n�1

; M =

��

k

t

�

x

k�t

�

0�t;k�n�1

;

U =

��

j � k + �� 1

j � k

��

0�k;j�n�1

;

and J and F (x),

J =

�

(�1)

k�i

�

�

k � i

��

0�i;k�n�1

; F (x) =

��

j � bj=2


j � i

�

(�x)

j�i

�

0�i;j�n�1

: (9.3)

Thus, Z

n

(x; �) equals det(�I+SMU). Now, as in [28℄, multiply Z

n

(x; �) on the left by

det(F (1)

t

) and on the right by det(JF (x)). Subsequently do the manipulations given

in [28℄ (whi
h amount to applying the Chu{Vandermonde summation formula several

times). The result is that

Z

n

(x; �) = det

0�i;j�n�1

(�I + SMU) = det

0�i;j�n�1

(�V (x; �) +W (x; �));
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where

V (x; �)

2i+r;2j+s

=

n�1

X

t=0

(�1)

r+s

�

i + r + �

t� i

��

j + s

t� j

�

x

2j+s�t

; (9.4)

W (x; �)

2i+r;2j+s

=

n�1

X

t=0

�

i+ �

t� i� r

��

j

t� j � s

�

x

2j+s�t

; (9.5)

where r and s are restri
ted to be 0 or 1, as in [28℄.

It is straightforward to 
he
k that V

2i;2j

= W

2i;2j

. Hen
e, ea
h entry of the matrix

�V +W in an even-numbered row and even-numbered 
olumn is 0. This implies that

det(�V +W ) must be 0 whenever the size of the matrix, n, is odd. In the 
ase that n

is even it implies the fa
torization

Z

n

(x; �) = det(�V (x; �) +W (x; �))

= (�1)

n=2

det

0�i;j�n=2�1

(�V

2i;2j+1

+W

2i;2j+1

) det

0�i;j�n=2�1

(�V

2i+1;2j

+W

2i+1;2j

):

As is easily veri�ed, this equation is exa
tly equivalent to (9.2). �

Proof of Theorem 11. Now 
hoose x = 1, � = m=2, n = a in Lemma 25. Then all the

sums appearing in (9.2) 
an be evaluated by means of the Chu{Vandermonde summa-

tion (7.11). The result is

Z

a

(1; m=2) = det

0�i;j�a�1

�

�Æ

ij

+

�

m + i+ j

j

��

= det

0�i;j�a=2�1

�

(3i+m + 1)

(i+ j +m=2)!

(2i� j +m=2)! (2j � i + 1)!

�

� det

0�i;j�a=2�1

�

(3j +m=2 + 1)

(i + j +m=2)!

(2i� j +m=2 + 1)! (2j � i)!

�

:

Both determinants on the right-hand side of this identity 
an be evaluated by means of

Theorem 10 in [18℄, whi
h reads

det

0�i;j�n�1

�

(x + y + i + j � 1)!

(x+ 2i� j)! (y + 2j � i)!

�

=

n�1

Y

i=0

i! (x + y + i� 1)! (2x+ y + 2i)

i

(x+ 2y + 2i)

i

(x + 2i)! (y + 2i)!

: (9.6)

This 
ompletes the proof of the theorem. �

10. Proof of Theorem 12

We prove Theorem 12 by �nding a determinant fa
torization, Eq. (10.1), in whi
h

the �rst determinant represents the number of all lozenge tilings of a hexagon with side

lengths a; a +m; a; a +m; a; a +m and removed 
entral triangle of side length m (see

the following paragraph), in whi
h the se
ond determinant represents the number of all

su
h tilings whi
h are 
y
li
ally symmetri
 (see e.g. [6, Lemma 3.1℄), and in whi
h the

third determinant is the one that we want to evaluate. Sin
e the total number of the

above lozenge tilings is already known (thanks to Theorem 1), as well as the number of
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S

2

S

1

S

3

Figure 12. A lozenge tiling of a hexagon with a = b = 
 = 3 and 
ore of size m = 2.

all su
h tilings whi
h are 
y
li
ally symmetri
 (thanks to Theorem 6), we obtain, up to

some multipli
ative 
onstant that is not diÆ
ult to �nd, an expli
it expression for our

determinant on the left-hand side of (3.4). The fa
torization (10.1), interpreted 
ombi-

natorially in the above way, 
ould be explained in terms of the prin
iple of \fa
torization

through symmetry" as des
ribed in [23, Se
. IVB; 
f. in parti
ular Se
. VIIA℄ (with a

pre
ursor appearing in [16, Theorem 3', Se
. 5, although it is not expli
itly stated℄).

We prefer to provide a dire
t derivation by means of \wrapping latti
e paths around

the triangular hole," as it is a very attra
tive and instru
tive alternative way to derive

this equation.

We already know that the number of all lozenge tilings of a hexagon with side lengths

a; a +m; a; a +m; a; a +m and removed 
entral triangle of side length m equals (1.2)

with a = b = 
. On the other hand, we 
laim that it equals det(I + B

3

), where, as

before in the proof of Theorem 9 in Se
tion 4, B = B(a;m) is the a � a matrix with

entries

�

m+i+j

j

�

, 0 � i; j � a� 1, and I = I(a) is the a� a identity matrix.

To prove this 
laim, we �rst note that det(I+B

3

) is the sum of all prin
ipal minors of

B

3

. Next we 
onsider the 
onstru
tion used in Se
tion 6 in order to prove polynomiality

in m of the number of lozenge tilings of a 
ored hexagon, i.e., we extend all sides of the

removed triangle to the left (if viewed from the interior of the triangle), as is indi
ated

by the thi
k segments, labeled as S

1

, S

2

, and S

3

, in Figure 12. These segments 
ut the


ored hexagon into three regions. In parti
ular, they 
ut some of the lozenges in two.

(In Figure 12, these lozenges are shaded.) Subsequently, in ea
h of the three regions, we


onne
t the \
ut" lozenges by paths, by \following" along the lozenges of the tiling, as

is illustrated in Figure 12 by the dashed lines. (Note the di�eren
e between Figures 12

and 9. In our spe
ial 
ase a = b = 
 all the paths form 
y
les.)

Let us number the possible positions of the \
ut" lozenges, from inside to outside,

by 0; 1; : : : ; a � 1. Thus, the positions of the \
ut" lozenges on the segment S

1

are 0
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and 2, they are 0 and 1 on S

2

, and they are 1 and 2 on S

3

. The number of paths

in the lower left region whi
h start at position i on S

1

and end at position j on S

2

is

�

m+i+j

j

�

, whi
h is the (i; j)-entry of B. The rotational symmetry of the 
ored hexagon

guarantees that an analogous fa
t is true for the other regions. Thus, the number of

paths starting at position i on S

1

, then running around the removed triangle, and �nally

ending at position j on S

1

, equals the (i; j)-entry of B

3

. If we have a family of paths

starting and ending at positions i

1

; i

2

; : : : ; i

k

, the Lindstr�om{Gessel{Viennot theorem

(see Lemma 14) implies that the number of these paths is the minor 
onsisting of rows

and 
olumns with indi
es i

1

; i

2

; : : : ; i

k

of the matrix B

3

. Thus, the number of these

families of paths is the sum of all prin
ipal minors of B

3

, whi
h we have already found

to be equal to det(I +B

3

).

Now we use the fa
torization

I +B

3

= (I +B)(!I +B)(!I +B);

where ! is a primitive third root of unity. Thus we have

det(I +B

3

) = det(I +B) � j det(!I +B)j

2

: (10.1)

The left-hand side equals (1.2) with a = b = 
 by the above 
onsiderations, and the

determinant det(I + B) has been 
omputed by Andrews [2, Theorem 8℄, restated here

as Theorem 10.

Thus, a 
ombination of (10.1), Theorem 10 and (1.2) with a = b = 
 will give det(!I+

B), the determinant that we want to 
ompute, up to a 
omplex fa
tor of modulus 1. We

note that the determinant is a polynomial in m. It is a routine 
omputation to verify

that the determinant is the expression 
laimed in Theorem 12, up to this multipli
ative


onstant.

In order to 
ompute the multipli
ative 
onstant, we 
ompute the leading 
oeÆ
ient

of the determinant as a polynomial in m=2, and 
ompare the result with the leading


oeÆ
ient of the right-hand side of (3.4). Unfortunately, the leading 
oeÆ
ient of the

determinant 
annot be determined straightforwardly by extra
ting the leading 
oeÆ-


ient of ea
h of the entries and 
omputing the 
orresponding determinant, for the result

would be zero. Therefore we have to perform some manipulations of the matrix �rst to

avoid 
an
ellation of leading terms. We use the strategy from [28℄, whi
h we have al-

ready used in the proof of Lemma 25. Instead of the determinant Z

n

(x; �), we 
onsider

here the slightly di�erent determinant

f

Z

n

(x; �) = det

0�i;j�n�1

 

!Æ

ij

+

n�1

X

t;k=0

�

i+ �

t

��

k

t

��

j � k + �� 1

j � k

�

x

k�t

!

; (10.2)

where ! is a primitive third root of unity.

Now we pro
eed analogously to the proof of Lemma 25, i.e., we multiply

f

Z

n

(x; �) on

the left by det(F (1)

t

) and on the right by det(JF (x)), where the matri
es F (x) and J

are given in (9.3), and use Chu{Vandermonde summation several times. This yields

f

Z

n

(x; �) = det

0�i;j�n�1

(!V (x; �) +W (x; �));

where V (x; �) and W (x; �) are the matri
es de�ned in equation (9.4).

Now let x = 1, � = m=2, n = a, and V = V (1; m=2), W = W (1; m=2). Again

using Chu{Vandermonde summation, we 
an express the desired determinant in terms
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of V = (V

ij

)

0�i;j�a�1

and W = (W

ij

)

0�i;j�a�1

:

det(!I +B) = det(!V +W ); (10.3)

where

V

2i+r;2j+s

= (�1)

r+s

�

i + j + r + s+m=2

s+ 2j � i

�

(10.4)

and

W

2i+r;2j+s

=

�

i + j +m=2

s+ 2j � i� r

�

; (10.5)

where r and s are restri
ted to be 0 or 1. Next we extra
t the leading 
oeÆ
ients of all

the entries of !V +W , viewed as polynomials in m=2, and 
ompute the 
orresponding

determinant. If we should obtain something nonzero, then this must be the leading


oeÆ
ient of the determinant det(!V +W ), and hen
e of det(!I+B), as a polynomial

in m=2. Thus, we have to 
ompute the determinant of the matrix L = (L

ij

)

0�i;j�a�1

,

where

L

2i+r;2j+s

=

(

(�1)

s+1

(s+2j�i)!

! if r = 1,

(�1)

s

(s+2j�i)!

! +

1

(s+2j�i)!

if r = 0.

We add row 1 of L to row 0, row 3 to row 2, et
. In that manner, we obtain the matrix

L

0

= (L

0

ij

)

o�i;j�a�1

, where

L

0

2i+r;2j+s

=

8

>

<

>

:

1

(s+2j�i)!

if r = 0, 2i 6= a� 1,

(�1)

s+1

(s+2j�i)!

! if r = 1;

((�1)

s

!+1)

(s+2j�i)!

if 2i = a� 1:

Clearly, we have detL = detL

0

, and we 
an take out ! from all the rows of L

0

with odd

row index. We get

detL = !

b

a

2




detL

00

;

with the matrix L

00

= (L

00

ij

)

0�i;j�a�1

de�ned by

L

00

2i+r;2j+s

=

8

>

<

>

:

1

(s+2j�i)!

if r = 0, 2i 6= a� 1,

(�1)

s+1

(s+2j�i)!

if r = 1;

((�1)

s

!+1)

(s+2j�i)!

if 2i = a� 1:

Now we add row 0 of L

00

to row 1, row 2 to row 3, et
. We obtain the matrix L

000

=

(L

000

ij

)

0�i;j�a�1

, where

L

000

2i+r;2j+s

=

8

>

>

>

>

<

>

>

>

>

:

1

(s+2j�i)!

if r = 0, 2i 6= a� 1,

2

(s+2j�i)!

if r = 1, s = 1,

0 if r = 1, s = 0,

((�1)

s

!+1)

(s+2j�i)!

if 2i = a� 1:

We rearrange the rows and 
olumns simultaneously, so that the odd-numbered rows

and 
olumns 
ome before the even-numbered, respe
tively. Now we have obtained a
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blo
k matrix with one blo
k formed by the rows and 
olumns with odd indi
es and the

other one formed by the rows and 
olumns with even indi
es. Consequently, we have

detL = !

ba=2


det

0�i;j�

b

a�2

2




�

2

(1 + 2j � i)!

�

det

0�i;j�

b

a�1

2




 

1

(2j�i)!

i 6=

a�1

2

(! + 1)

1

(2j�i)!

i =

a�1

2

!

= !

ba=2


(! + 1)

�(a odd)

2

ba=2


b(a�2)=2


Y

j=0

1

(2j + 1)!

b(a�1)=2


Y

j=0

1

(2j)!

� det

0�i;j�b(a�2)=2


((2j � i + 2)

i

) det

0�i;j�b(a�1)=2


((2j � i+ 1)

i

);

where we used the notation �(A)=1 if A is true and �(A)=0 otherwise. The two deter-

minants 
an be evaluated by spe
ial 
ases of a variant of the Vandermonde determinant

evaluation whi
h we state in Lemma 26 below. After appli
ation of this lemma and

some simpli�
ation we get

2

l

2

!

l

H(l)

2

H(2l)

(10.6)

if a is even, a = 2l, and

2

l

2

+l

!

l

(! + 1)

H(l) H(l + 1)

H(2l + 1)

(10.7)

if a is odd, a = 2l + 1.

It is routine to 
he
k that the leading 
oeÆ
ient of the right-hand side of (3.4), viewed

as a polynomial in m=2, is exa
tly the same.

This �nishes the proof of the theorem. �

Lemma 26. Let p

i

be a moni
 polynomial of degree i, i = 0; 1; : : : ; n. Then

det

0�i;j�n

(p

i

(X

j

)) =

Y

0�i<j�n

(X

j

�X

i

):

�

11. Proof of Theorem 13

If a is even, a = 2l say, the formula 
an be derived analogously to Theorem 12. (The

derivation of the latter was the subje
t of the pre
eding se
tion.) Here, the starting

point is to do the (�1)-enumeration (as opposed to \ordinary" enumeration) of all the

lozenge tilings of a hexagon with side lengths a; a+m; a; a +m; a; a+m and removed


entral triangle of side length m in two di�erent ways.

First, the (�1)-enumeration of these lozenge tilings is given by (2.1) with a = b = 
.

On the other hand, the arguments given at the beginning of the pre
eding se
tion,

suitably modi�ed, show that it also equals det(�I +B

3

), where B is again the matrix

from the pre
eding se
tion.

Now we use the fa
torization

det(�I +B

3

) = det(�I +B) � j det(!I +B)j

2

; (11.1)

where ! is a primitive sixth root of unity. (Note that this equation is the analogue

of (10.1) in the present 
ontext. Again, this fa
torization of the (�1)-enumeration of

all lozenge tilings of the above 
ored hexagon 
ould have also been derived by means

of the prin
iple of \fa
torization through symmetry" [23, Se
. IVB; 
f. in parti
ular
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Se
. VIIA℄.) By the above 
onsiderations, the left-hand side equals (2.1) with a = b = 
,

and the determinant det(�I+B) is 
omputed in Theorem 11. This determines det(!I+

B) up to a multipli
ative 
onstant of modulus 1. It is then a routine 
omputation to


he
k that the result agrees with the expression at the right-hand side of (3.5), up to a

fa
tor of modulus 1.

In order to determine the multipli
ative 
onstant, one pro
eeds as in the pre
eding

se
tion. In fa
t, the determination of the leading 
oeÆ
ient of the determinant as a

polynomial in m=2 given there 
an be used here verbatim, be
ause we treated ! like

an indeterminate in the respe
tive 
omputations. Thus, the leading 
oeÆ
ient is the

expression in (10.6), with ! now a primitive sixth root of unity. It is routine to 
he
k

that for a = 2l the right-hand side of (3.5) has the same leading 
oeÆ
ient as polynomial

in m=2.

Now let us suppose that a is odd, a = 2l + 1 say. Unfortunately, the above strategy

of determining the value of det(!I + B) through equation (11.1) fails miserably here,

be
ause det(�I + B

3

) as well as det(�I + B) are zero in the 
ase of odd a (
ompare

Theorems 4 and 11). Therefore we have to �nd a di�erent line of atta
k. We approa
h

the evaluation of det(!I + B), for odd a, by �rst transforming the determinant in the

way we have already done in the proofs of Lemma 25 and of Theorem 12, and by then

applying on
e again the \identi�
ation of fa
tors" method to evaluate the obtained

determinant.

In fa
t, the manipulations explained in the pre
eding se
tion that proved (10.3)

(whi
h are based on multiplying the relevant matrix to the left and right by suitable

matri
es, as elaborated in the proof of Lemma 25 in Se
tion 9) remain valid in the

present 
ontext, again, be
ause there ! is treated like an indeterminate. Therefore we

have

det(!I +B) = det(!V +W );

where the matri
es V = (V

ij

)

0�i;j�2l

and W = (W

ij

)

0�i;j�2l

are again the matri
es

de�ned by (10.4) and (10.5).

Our goal is now to evaluate the determinant of the matrix !V +W . We denote this

matrix by X(2l+1; m=2). The determinant detX(2l+1; m=2) is a polynomial in m, so

we 
an indeed use the \identi�
ation of fa
tors" method to 
ompute this determinant.

Again, there are several steps to be performed. In Steps 1{4 below we prove that the

right-hand side of (3.5) does indeed divide the determinant as a polynomial in m. In

Step 5 we determine the maximal degree of the determinant as a polynomial in m. It

turns out to be (a

2

� 1)=4, whi
h is exa
tly the degree of the right-hand side of (3.5)

(for odd a, of 
ourse). Therefore the determinant must be equal to the right-hand side

of (3.5), up to a multipli
ative 
onstant. This multipli
ative 
onstant is �nally found

to be 1 in Step 6.

Step 1.

Q

bl=2
�1

i=0

(

m

2

+ 2l � i + 1)

l�2i�1

divides the determinant detX(2l + 1; m=2).

Pro
eeding in the spirit of Step 1(b) in the proof of Lemma 17, we prove this by

�nding, for ea
h linear fa
tor of the produ
t, a linear 
ombination of the 
olumns of

X(2l + 1; m=2) whi
h vanishes if the fa
tor vanishes. To be pre
ise, we 
laim that for
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m=2 = �3l + k + 3d; d � 0 and 1 � k � l � 2d� 1 the following equation holds:

k�1

X

j=0

�

k � 1

j

�

�

! � (
olumn (2l � 2d� 2j � 1) of X(2l + 1;�3l + k + 3d))

+ (
olumn (2l � 2d� 2j � 2) of X(2l + 1;�3l + k + 3d))

�

= 0: (11.2)

If we restri
t the left-hand side of this equation to the (2i)th row, and simplify a little

bit, it be
omes

k�1

X

j=0

�

k � 1

j

���

i� 2l + 2d� j + k

2l � 2d� 2j � i� 1

�

+

�

i� 2l + 2d� j + k � 1

2l � 2d� 2j � i� 2

��

: (11.3)

It be
omes (! � 1) times the same expression if we restri
t to the (2i+ 1)th row.

As is seen by inspe
tion, the expression (11.3) vanishes trivially for k = 1. From now

on, let k > 1. In order to establish that (11.3) vanishes in that 
ase as well, we �rst

rewrite the sum (11.3) in hypergeometri
 notation (7.6):

(k � 1) (2 + 4d+ 2i+ k � 4l)

�2�2d�i+2l

(2l � 2d� i� 1)!

�

4

F

3

�

1� k;

4

3

�

k

3

; 1 + d+

i

2

� l;

1

2

+ d+

i

2

� l

1

3

�

k

3

; 1� 2d� i� k + 2l; 2 + 4d+ 2i+ k � 4l

; 4

�

: (11.4)

The hypergeometri
 summation formula whi
h is relevant here, and as well in the

subsequent steps, is the following \strange" evaluation of a

7

F

6

-series, due to Gessel

and Stanton [12, (1.7)℄ (see also [10, (3.8.14), 
 = 1, a! q

A

, et
., q ! 1℄):

7

F

6

�

A; 1 +

A

3

; B; 1�B;

F

2

;

1

2

+ A�

F

2

+ n;�n

A

3

; 1 +

A

2

�

B

2

;

1

2

+

A

2

+

B

2

; 1 + A� F;�A+ F � 2n; 1 + A+ 2n

; 1

�

=

(1 + A)

2n

(1 +

A

2

�

B

2

�

F

2

)

n

(

1

2

+

A

2

+

B

2

�

F

2

)

n

(1 + A� F )

2n

(1 +

A

2

�

B

2

)

n

(

1

2

+

A

2

+

B

2

)

n

;

where n is a nonnegative integer. If in this formula we let B tend to in�nity, we obtain

5

F

4

�

A; 1 +

A

3

;

F

2

;

1

2

+ A�

F

2

+ n;�n

A

3

; 1 + A� F;�A+ F � 2n; 1 + A+ 2n

; 4

�

=

(1 + A)

2n

(1 + A� F )

2n

: (11.5)

In parti
ular, this formula allows us to dedu
e that the left-hand side of (11.5) must

be zero whenever A is a negative integer. This is seen as follows: Multiply both sides

of (11.5) by

(�A + F � 2n)

�A

(1 + A+ 2n)

�A

: (11.6)

Then, for a �xed negative integer A, the left-hand side be
omes polynomial in n. The

right-hand side is zero for all n larger than �A=2 be
ause of the presen
e of the term

(1 + A)

2n

. The term (11.6) is nonzero for these values of n, therefore the left-hand side

of (11.5) must be zero for these n. Sin
e these are in�nitely many n, the left-hand side

of (11.5) must be in fa
t zero for all n. (An alternative way to see that the left-hand side

of (11.5) vanishes for all negative A is by setting 
 = 1 in [11, (5.13)℄ or [10, (3.8.11)℄,

then repla
e a by q

A

, et
., and �nally let q ! 1 and B !1.)
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If we use (11.5) with A = 1�k, F = 2d+ i�2l+2, n = 2d+ i+k�2l, together with

the above remarks, then we get immediately that the

4

F

3

-series in (11.4) vanishes for

k > 1. (It should be noted that, for this 
hoi
e of parameters, the

5

F

4

-series in (11.5)

redu
es to the

4

F

3

-series in (11.4).) Thus, equation (11.2) is established.

Step 2.

Q

bl=2


i=0

(m=2 + 2l � i)

l�2i

divides the determinant. We 
laim that for m=2 =

�3l + k + 3d� 1, d � 0 and 1 � k � l � 2d the following equation holds:

k�1

X

j=0

�

k � 1

j

�

�

(
olumn (2l � 2d� 2j) of X(2l + 1;�3l + k + 3d� 1))

+ (2! � 1) � (
olumn (2l � 2d� 2j � 1) of X(2l + 1;�3l + k + 3d� 1))

+ (! � 1) � (
olumn (2l � 2d� 2j � 2) of X(2l + 1;�3l + k + 3d� 1))

�

= 0: (11.7)

Restri
ted to the (2i)th row, the left-hand side of this equation be
omes, after a little

simpli�
ation,

(1 + !)

k�1

X

j=0

�

k � 1

j

���

i� 2l + 2d� j + k � 1

2l � 2d� 2j � i

�

+

�

i� 2l + 2d� j + k � 2

2l � 2d� 2j � i� 1

��

:

(11.8)

Clearly, this expression vanishes for k = 1. If k > 1, we write (11.8) in hypergeometri


notation, to obtain

(1 + !)

(k � 1) (4d+ 2i+ k � 4l)

�1�2d�i+2l

(2l � 2d� i)!

�

4

F

3

�

1� k;

4

3

�

k

3

;

1

2

+ d+

i

2

� l; d+

i

2

� l

1

3

�

k

3

; 2� 2d� i� k + 2l; 4d+ 2i+ k � 4l

; 4

�

: (11.9)

This time we use (11.5) with A = 1� k, F = 2d + i� 2l + 1, n = 2d + i + k � 2l � 1.

Together with the remarks a

ompanying (11.5), this implies immediately that the

4

F

3

-series in (11.9) vanishes for k > 1.

On the other hand, restri
ted to the (2i + 1)th row, the left-hand side of (11.7)

be
omes, after a little simpli�
ation,

(! � 1)

k�1

X

j=0

�

k � 1

j

���

i� 2l + 2d� j + k

2l � 2d� 2j � i� 1

�

+

�

i� 2l + 2d� j + k � 1

2l � 2d� 2j � i� 2

��

� !

k�1

X

j=0

�

k � 1

j

���

i� 2l + 2d� j + k � 1

2l � 2d� 2j � i

�

+

�

i� 2l + 2d� j + k � 2

2l � 2d� 2j � i� 1

��

:

That the �rst sum vanishes was already shown in Step 1 (
ompare (11.3)), that the

se
ond sum vanishes was shown just above (
ompare (11.8)). Thus, equation (11.7) is

established.

A short argument shows that the linear 
ombinations of Step 1 are independent of

the linear 
ombinations of Step 2. Let us denote the 
olumns of X(2l + 1; m=2) by

C

0

; C

1

; : : : ; C

2l

. In Step 1 we have linear 
ombinations of ve
tors of the form !C

2k+1

+

C

2k

, whereas in Step 2 we have always linear 
ombinations of ve
tors of the form
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C

2k+2

+ (2! � 1)C

2k+1

+ (! � 1)C

2k

. If these linear 
ombinations were dependent we


ould use the identity

(C

2k+2

+ (2! � 1)C

2k+1

+ (! � 1)C

2k

)� (! + 1)(!C

2k+1

+ C

2k

) = C

2k+2

� 2C

2k

;

and get a linear 
ombination of ve
tors of the form !C

2k+1

+ C

2k

equal to a nonzero

real linear 
ombination of the C

i

's, whi
h is 
learly impossible.

Step 3.

Q

bl=2
�1

i=0

(m=2 + 3i + 5=2)

l�2i�1

divides the determinant. We 
laim that for

m=2 = �k �

3

2

d, d odd, d � 1, and 1 � k � l � d the following equation holds:

k�1

X

i=0

�

k � 1

i

�

�

(row (2i+ 2d) of X(2l + 1;�k �

3

2

d))

+ ! � (row (2i+ 2d+ 1) of X(2l + 1;�k �

3

2

d))

�

= 0: (11.10)

Restri
ted to the (2j)th 
olumn, the left-hand side of this equation be
omes, after a

little simpli�
ation,

k�1

X

i=0

�

k � 1

i

���

i� d=2 + j � k + 1

2j � i� d

�

+

�

i� d=2 + j � k

2j � i� d

��

: (11.11)

It be
omes (! � 1) times the same expression if we restri
t to the (2j + 1)th 
olumn.

Again, the expression (11.11) vanishes trivially for k = 1. In order to establish that

(11.11) vanishes for k > 1 as well, we reverse the order of summation, and then write

the sum in hypergeometri
 notation. Thus we obtain

(�1)

k

(1� k) (d� 2j)

k�1

(2j � d)! (�

d

2

+ j)

d�2j+k

4

F

3

�

1� k;

4

3

�

k

3

;

1

2

�

d

4

+

j

2

�

k

2

; 1�

d

4

+

j

2

�

k

2

1

3

�

k

3

; 1 +

d

2

� j; 2� d+ 2j � k

; 4

�

:

(11.12)

By (11.5) with A = 1� k, F = 1� d=2+ j� k, n = j � d=2, together with the remarks

a

ompanying (11.5), this implies immediately that the

4

F

3

-series in (11.12) vanishes

for k > 1. Thus, equation (11.10) is established.

Step 4.

Q

bl=2


i=0

(m=2+3i+3=2)

l�2i

divides the determinant. We 
laim that for m=2 =

�k �

3

2

d�

1

2

, d even, d � 0, and 1 � k � l � d the following equation holds:

k�1

X

i=0

�

k � 1

i

�

�

(row (2i+ 2d) of X(2l + 1;�k �

3

2

d�

1

2

))

+ (2� !) � (row (2i+ 2d+ 1) of X(2l + 1;�k �

3

2

d�

1

2

))

� ! � (row (2i+ 2d+ 2) of X(2l + 1;�k �

3

2

d�

1

2

))

�

= 0: (11.13)

Restri
ted to the (2j)th 
olumn, the left-hand side of this equation be
omes, after a

little simpli�
ation,

(1� 2!)

k�1

X

i=0

�

k � 1

i

���

i� d=2 + j � k + 1=2

2j � i� d� 1

�

+

�

i� d=2 + j � k � 1=2

2j � i� d� 1

��

:

(11.14)
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Again, this expression vanishes trivially for k = 1. If k > 1, after reversion of summa-

tion, the hypergeometri
 form of (11.14) is

(�1)

k

(1� k) (1 + d� 2j)

�1+k

(2j � d� 1)! (�

1

2

�

d

2

+ j)

1+d�2j+k

�

4

F

3

�

1� k;

4

3

�

k

3

;

1

4

�

d

4

+

j

2

�

k

2

;

3

4

�

d

4

+

j

2

�

k

2

1

3

�

k

3

;

3

2

+

d

2

� j; 1� d+ 2j � k

; 4

�

: (11.15)

Now we use (11.5) with A = 1� k, F = 1=2� d=2+ j� k, n = j� d=2� 1=2. Together

with the remarks a

ompanying (11.5), this implies immediately that the

4

F

3

-series in

(11.15) vanishes for k > 1.

On the other hand, restri
ted to the (2j + 1)th 
olumn, the left-hand side of (11.13)

be
omes, after a little simpli�
ation,

(! � 1)

k�1

X

i=0

�

k � 1

i

���

i� d=2 + j � k + 1=2

2j � i� d� 1

�

+

�

i� d=2 + j � k � 1=2

2j � i� d� 1

��

+

k�1

X

i=0

�

k � 1

i

���

i� d=2 + j � k + 3=2

2j � i� d+ 1

�

+

�

i� d=2 + j � k + 1=2

2j � i� d+ 1

��

: (11.16)

It was already shown just before that the �rst sum in (11.16) vanishes (
ompare (11.14)).

The se
ond sum 
ertainly vanishes for k = 1. To see that it vanishes for k > 1 as well, we

reverse the order of summation and then 
onvert the sum into hypergeometri
 notation,

(�1)

k

(1� k) (�1 + d� 2j)

�1+k

(2j � d+ 1)! (

1

2

�

d

2

+ j)

�1+d�2j+k

�

4

F

3

�

1� k;

4

3

�

k

3

;

3

4

�

d

4

+

j

2

�

k

2

;

5

4

�

d

4

+

j

2

�

k

2

1

3

�

k

3

;

1

2

+

d

2

� j; 3� d+ 2j � k

; 4

�

: (11.17)

Again, by (11.5), this time with A = 1� k, F = 3=2� d=2 + j � k, n = j � d=2 + 1=2,

together with the remarks a

ompanying (11.5), it follows immediately that the

4

F

3

-

series in (11.17) vanishes for k > 1. Thus, equation (11.13) is established.

The linear 
ombinations of Steps 3 and 4 are independent by the argument used at

the end of Step 2.

Step 5. Determination of the degree of detX(2l+1; m=2) as a polynomial in m. The

(i; j)-entry of X(2l + 1; m=2), viewed as polynomial in m, has the degree j � bi=2
.

Therefore, the determinant of X(2l + 1; m=2) has degree at most

2l

X

j=0

j �

2l

X

i=0

�

i

2

�

= l(l + 1) =

a

2

� 1

4

as a polynomial in m.

Step 6. Computation of the multipli
ative 
onstant. It suÆ
es to 
ompute the leading


oeÆ
ient of the determinant detX(2l+ 1; m=2) as a polynomial in m=2. This leading


oeÆ
ient 
an be 
omputed as the determinant of the leading 
oeÆ
ients of the indi-

vidual entries. In fa
t, we already did su
h a 
omputation at the end of the proof of

Theorem 12 in the pre
eding se
tion, with ! a primitive third root of unity instead of
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a

b+m

o





+m

8

>

>

<

>

>

:

b

a+m

)

m

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

>

<

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

a

b+m

o





+m

8

>

>

<

>

>

:

b

a+m

)

m

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(

9

>

>

>

>

>

=

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

a. Removal of the triangle whi
h is b. Removal of the triangle whi
h is

o�-
enter by one \unit"

o�-
enter by 3/2 \units"

Figure 13

a primitive sixth root of unity. However, sin
e ! was treated there as an indetermi-

nate, everything 
an be used here as well. Thus we obtain the expression (10.7), with

! a primitive sixth root of unity. It is then routine to 
he
k that for a = 2l + 1 the

right-hand side of (3.5) has the same leading 
oeÆ
ient as a polynomial in m=2. �

12. Comments and open problems

1) Conje
tured further enumeration results. There is overwhelming eviden
e (through


omputer supported empiri
al 
al
ulations) that there are also \ni
e" formulas for the

number of lozenge tilings of a 
ored hexagon for at least two further lo
ations of the


ore.

First, let a, b and 
 have the same parity, and 
onsider a hexagon with side lengths

a; b+m; 
; a+m; b; 
+m from whi
h an equilateral triangle of side length m is removed

whi
h is o�-
enter by \one unit". To be more pre
ise, let again s

a

be the side of the

triangle whi
h is parallel to the borders of the hexagon of lengths a and a + m, and

similarly for s

b

and s




. Then the distan
e of s

a

to the border of length a + m is the

same as the distan
e of the vertex of the triangle opposite to s

a

to the border of length

a. The distan
e of s

b

to the border of length b+m ex
eeds the distan
e of the vertex of

the triangle opposite to s

b

to the border of length b by two units. Finally, the distan
e

of s




to the border of length 
 +m is two units less than the distan
e of the vertex of

the triangle opposite to s




to the border of length 
. See Figure 13.a for an example.

Then the following seems to be true.

Conje
ture 1. Let a; b; 
;m be nonnegative integers, a; b; 
 having the same parity. The

number of lozenge tilings of a hexagon with sides a; b + m; 
; a + m; b; 
 + m, with an

equilateral triangle of side length m removed from the position that was des
ribed above
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(see Figure 13.a), equals

1

4

H(a+m) H(b +m) H(
+m) H(a+ b + 
+m)

H(a + b+m) H(a + 
+m) H(b+ 
+m)

�

H(m+

�

a+b+


2

�

) H(m+

�

a+b+


2

�

)

H(

a+b

2

+m+ 1)H(

a+


2

+m� 1)H(

b+


2

+m)

�

H(

�

a

2

�

) H(

�

b

2

�

) H(

�




2

�

) H(

�

a

2

�

) H(

�

b

2

�

) H(

�




2

�

)

H(

m

2

+

�

a

2

�

) H(

m

2

+

�

b

2

�

) H(

m

2

+

�




2

�

) H(

m

2

+

�

a

2

�

) H(

m

2

+

�

b

2

�

) H(

m

2

+

�




2

�

)

�

H(

m

2

)

2

H(

a+b+m

2

)

2

H(

a+
+m

2

)

2

H(

b+
+m

2

)

2

H(

m

2

+

�

a+b+


2

�

) H(

m

2

+

�

a+b+


2

�

) H(

a+b

2

� 1)H(

a+


2

+ 1)H(

b+


2

)

P

1

(a; b; 
;m); (12.1)

where P

1

(a; b; 
;m) is the polynomial given by

P

1

(a; b; 
;m) =

(

(a+ b)(a + 
) + 2am if a is even,

(a+ b)(a + 
) + 2(a+ b + 
+m)m if a is odd.

The reader should noti
e that the only di�eren
es between formulas (12.1) and

(1.2) are in some hyperfa
torials involving (a + b)=2 and (a + 
)=2, in the polyno-

mial P

1

(a; b; 
;m), whi
h does not appear in (1.2), and in the fa
tor 1=4 in front of

(12.1).

The se
ond 
ase needs a to have a parity di�erent from b and 
. Consider a hexagon

with side lengths a; b +m; 
; a +m; b; 
 +m from whi
h an equilateral triangle of side

length m is removed whi
h is o�-
enter by \3/2 units". To be more pre
ise, with s

a

,

s

b

, s




the sides of the triangle as above, the distan
e of s

a

to the border of length a+m

is the same as the distan
e of the vertex of the triangle opposite to s

a

to the border of

length a, the distan
e of s

b

to the border of length b +m ex
eeds the distan
e of the

vertex of the triangle opposite to s

b

to the border of length b by three units, and the

distan
e of s




to the border of length 
+m is three units less than the distan
e of the

vertex of the triangle opposite to s




to the border of length 
. See Figure 13.b for an

example. Then the following seems to be true.

Conje
ture 2. Let a; b; 
;m be nonnegative integers, a of parity di�erent from the parity

of b and 
. The number of lozenge tilings of a hexagon with sides a; b+m; 
; a+m; b; 
+m,

with an equilateral triangle of side length m removed from the position that was des
ribed

above (see Figure 13.b), equals

1

16

H (a +m) H (b +m) H (
+m) H (a+ b + 
+m)

H (a+ b +m) H (a+ 
+m) H (b+ 
+m)

�

H

�

m

2

�

2

H

��

a

2

��

H

��

b

2

��

H

��




2

��

H

��

a

2

��

H

��

b

2

��

H

��




2

��

H

�

m

2

+

�

a

2

��

H

�

m

2

+

�

b

2

��

H

�

m

2

+

�




2

��

H

�

m

2

+

�

a

2

��

H

�

m

2

+

�

b

2

��

H

�

m

2

+

�




2

��

�

H

��

a+b

2

�

+

m

2

�

H

��

a+b

2

�

+

m

2

�

H

��

a+


2

�

+

m

2

�

H

��

a+


2

�

+

m

2

�

H

�

b+


2

+

m

2

�

2

H

�

m

2

+

�

a+b+


2

��

H

�

m

2

+

�

a+b+


2

��

H

��

a+b

2

�

� 1

�

H

��

a+


2

�

+ 1

�

H

�

b+


2

�

�

H

�

m +

�

a+b+


2

��

H

�

m+

�

a+b+


2

��

H

��

a+


2

�

+m� 1

�

H

�

b+


2

+m

�

H

��

a+b

2

�

+m+ 1

�

P

2

(a; b; 
;m); (12.2)
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where the polynomial P

2

(a; b; 
;m) is given by

P

2

(a; b; 
;m) =

8

>

>

>

<

>

>

>

:

((a+ b)

2

� 1)((a+ 
)

2

� 1) + 4am(a

2

+ 2ab + b

2

+ 2a
+ 3b
+ 


2

+2am + 3bm+ 3
m + 2m

2

� 1) if a is even,

((a+ b)

2

� 1)((a+ 
)

2

� 1) + 4(a+ b + 
+m)m(a

2

+ b
� 1)

if a is odd.

Again, the reader should noti
e that the only di�eren
es between formulas (12.2) and

(1.3) are in some hyperfa
torials involving (a + b)=2 and (a + 
)=2, in the polynomial

P

2

(a; b; 
;m), whi
h does not appear in (1.3), and in the fa
tor 1=16 in front of (12.2).

Conje
tured results about the (�1)-enumeration of the above two families of lozenge

tilings 
ould be easily worked out as well, and would have similar appearan
e, i.e.,

the result would be a quotient of produ
ts of many \ni
e" fa
tors times an irredu
ible

polynomial of small degree. However, if one moves the triangle farther away from the


enter, then, for both ordinary and (�1)-enumeration, the irredu
ible polynomial fa
tor

seems to grow rather qui
kly in degree, and is therefore diÆ
ult to predi
t in general.

For a proof of Conje
tures 1 and 2, one might go through 
onsiderations analogous

to those in Se
tion 5, i.e., 
onvert the lozenge tilings into families of noninterse
ting

latti
e paths, and, by means of the Lindstr�om{Gessel{Viennot theorem (Lemma 14),

obtain a determinant for the number of lozenge tilings. This determinant, whi
h then

must be evaluated, is

det

1�i;j�a+m

0

B

B

�

�

b + 
+m

b� i + j

�

1 � i � a

�

b+


2

b+a

2

� i+ j + "

�

a+ 1 � i � a+m

1

C

C

A

; (12.3)

with " = 1 and " = 3=2, respe
tively. (The determinants in Lemmas 15 and 16 are the

respe
tive spe
ial 
ases " = 0 and " = 1=2 of (12.3).)

2) A multidimensional analogue of Watson's

3

F

2

-summation, and some variants.

There is another possible way to approa
h the evaluation of the determinants in Lem-

mas 15 and 16. This approa
h 
onsists of applying Lapla
e expansion to these de-

terminants. More pre
isely, we write an (a +m) � (a +m) determinant (su
h as the

determinant in Lemma 15 or 16) as a (signed) sum of produ
ts of a minor formed of

elements of the �rst a rows times the 
omplementary minor formed of elements of the

last m rows. That is, given an (a +m)� (a+m) matrix M , we write

detM =

X

K

(�1)

s(K)

�

detM

K

�

(detM

K

0

) ; (12.4)

where the sum is over all a-element subsets K of f1; 2; : : : ; a + mg, where s(K) =

P

k2K

k �

�

a+1

2

�

, M

K

denotes the submatrix of M determined by the �rst a rows and

the 
olumns with indi
es in K, K

0

denotes the 
omplement of K in f1; 2; : : : ; a +mg,

and M

K

0

denotes the submatrix of M determined by the last m rows and the 
olumns

with indi
es in K

0

.

The gain in applying (12.4) to our determinants in Lemmas 15 and 16 is that the

entries of the resulting minors whi
h then appear on the right-hand side of (12.4) have

now a uniform de�nition (in 
ontrast to the original determinants), and 
an in fa
t
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easily be evaluated in 
losed form, by means of the determinant evaluation

det

1�i;j�n

��

A

L

j

� i

��

=

Q

1�i<j�n

(L

j

� L

i

)

Q

n

i=1

(A� L

i

+ n)!

Q

n

i=1

(A+ i� 1)!

Q

n

i=1

(L

i

� 1)!

: (12.5)

(This determinant evaluation is easily proved, e.g., by means of a general determinant

lemma from [17, Lemma 2.2℄; see also [20, Se
. 2.2 and (3.12)℄). Thus, on the right-hand

side of (12.4) we obtain a multiple (hypergeometri
) series for our determinants. If an

evaluation of this multiple sum would appear in the existing literature, then we would

be immediately done. Unfortunately, this does not seem to be the 
ase. On the other

hand, we did evaluate the determinants in Se
tions 7 and 8. Thus, 
omparison of the

results with the right-hand side in (12.4) establishes summation theorems for multiple

hypergeometri
 series. The summation theorem that results, after some repla
ement of

parameters, from the evaluations in Se
tion 7 of the determinant in Lemma 15 is the

following.

Theorem 27. Let a be a positive integer and M be a nonnegative integer. The multiple

series

X

0�k

1

<k

2

<���<k

a

Y

1�i<j�a

(k

i

� k

j

)

2

a

Y

i=1

(�M)

k

i

(C)

k

i

(B)

k

i

k

i

!

�

a

2

�

M

2

+

C

2

�

k

i

(2B + a� 1)

k

i

(12.6)

equals

(�1)

a=2

2

a

2

�a�aM

M !

a

Q

a

i=1

(B)

i�1

�

a

2

+

C

2

�

M

2

�

a

M=2�a=2

�

a=2

Y

i=1

(i� 1)!

2

�

1

2

+

C

2

�

2

i�1

�

B �

C

2

+ i� 1

�

M=2�a=2+1

�

B �

C

2

+ i

�

M=2�a=2

�

M

2

� i

�

!

�

M

2

� i+ 1

�

!

�

a

2

+B �

1

2

�

2

M=2�i+1

�

a

2

+B

�

2

i�1

�

1 +

C

2

� i+

M

2

�

2i�1

(12.7)

if a and M are even, it equals

(�1)

a=2

2

a

2

�a�aM

M !

a

Q

a

i=1

(B)

i�1

�

a

2

+

C

2

�

M

2

�

a

M=2�a=2+1=2

a=2

Y

i=1

(i� 1)!

2

�

M

2

� i +

1

2

�

!

2

�

a=2

Y

i=1

�

C

2

�

i�1

�

C

2

�

i

�

B �

C

2

+ i�

1

2

�

2

M=2�a=2+1=2

�

a

2

+B �

1

2

�

M=2�i+1=2

�

a

2

+B �

1

2

�

M=2�i+3=2

�

a

2

+B

�

2

i�1

�

1 +

C

2

� i+

M

2

�

2i�1

(12.8)

if a is even and M is odd, it equals

(�1)

M=2

2

a

2

�a�aM

M !

a

�

B �

C

2

+

a

2

�

M=2�a=2+1=2

Q

a

i=1

(B)

i�1

�

M

2

�

!

�

a

2

+B

�

M=2

�

a

2

+

C

2

�

M

2

�

a

M=2�a=2+1=2

�

(a�1)=2

Y

i=1

(i� 1)! i!

�

C

2

�

2

i

�

B �

C

2

+ i�

1

2

�

2

M=2�a=2+1=2

�

M

2

� i

�

!

2

�

a

2

+B �

1

2

�

2

i

�

a

2

+B

�

2

M=2�i

�

1

2

+

C

2

� i+

M

2

�

2i

(12.9)

if a is odd and M is even, and it vanishes if both a and M are odd.



LOZENGE TILINGS OF HEXAGONS WITH A CENTRAL TRIANGULAR HOLE 53

There are two interesting features of this summation theorem to be observed. First,

if we set a = 1, the theorem redu
es to a terminating 
ase of Watson's

3

F

2

-summation

(see [36, (2.3.3.13); Appendix (III.23)℄),

3

F

2

�

A;C;B

1+A+C

2

; 2B

; 1

�

=

�

�

1

2

�

�

�

1

2

+B

�

�

�

1

2

+

A

2

+

C

2

�

�

�

1

2

�

A

2

�

C

2

+B

�

�

�

1

2

+

A

2

�

�

�

1

2

+

C

2

�

�

�

1

2

�

A

2

+B

�

�

�

1

2

�

C

2

+B

�

;

whi
h is a summation formula whi
h is not so often met. Se
ond, however, the above

theorem is an unusual multidimensional analogue of Watson's

3

F

2

-summation, be
ause

of the term

Q

1�i<j�a

(k

i

�k

j

)

2

appearing in the summand. Whereas for series 
ontaining

a term like

Q

1�i<j�a

(k

i

�k

j

) (i.e., the same term, but without the square) there is now

an extensive theory of summation and transformation formulas (su
h a series is 
alled

a hypergeometri
 series in U(a) or an A

a

hypergeometri
 series), mainly thanks to

Milne and Gustafson (see for example [14, 29, 30, 31, 35℄, and the referen
es 
ontained

therein), it is only o

asionally that series 
ontaining the square

Q

1�i<j�a

(k

i

� k

j

)

2

appear. Most of the time, they arise from series featuring S
hur fun
tions (see [21,

Theorem 6℄ for su
h an example). However, our Theorem 27 does not seem to extend

to a \S
hur fun
tion theorem."

The summation theorem that results from the evaluations in Se
tion 8 of the deter-

minant in Lemma 16 is a variant of the pre
eding theorem.

Theorem 28. Let a be a positive integer and M be a nonnegative integer. The multiple

series

X

0�k

1

<k

2

<���<k

a

Y

1�i<j�a

(k

i

� k

j

)

2

a

Y

i=1

(�M)

k

i

(C)

k

i

(B)

k

i

k

i

!

�

a

2

�

M

2

+

C

2

+

1

2

�

k

i

(2B + a� 2)

k

i

(12.10)

equals

(�1)

a=2

2

a

2

�a�aM

M !

a

Q

a

i=1

(B)

i�1

�

1

2

+

a

2

+

C

2

�

M

2

�

a

M=2�a=2

�

a=2

Y

i=1

(i� 1)!

2

�

C

2

�

i�1

�

C

2

�

i

�

M

2

� i

�

!

�

M

2

� i+ 1

�

!

�

a

2

+B � 1

�

i�1

�

a

2

+B � 1

�

i

�

a=2

Y

i=1

�

B �

C

2

+ i�

3

2

�

M=2�a=2+1

�

B �

C

2

+ i�

1

2

�

M=2�a=2

�

a

2

+B �

1

2

�

M=2�i

�

a

2

+B �

1

2

�

M=2�i+1

�

1

2

+

C

2

� i+

M

2

�

2i

(12.11)

if a and M are even, it equals

(�1)

a=2

2

a

2

�a�aM

M !

a

Q

a

i=1

(B)

i�1

�

1

2

+

a

2

+

C

2

�

M

2

�

a

M=2�a=2�1=2

a=2

Y

i=1

(i� 1)!

2

�

M

2

� i +

1

2

�

!

2

�

a=2

Y

i=1

�

1

2

+

C

2

�

2

i�1

�

B �

C

2

+ i� 1

�

2

M=2�a=2+1=2

�

a

2

+B � 1

�

i�1

�

a

2

+B � 1

�

i

�

a

2

+B �

1

2

�

2

M=2�i+1=2

�

1

2

+

C

2

� i+

M

2

�

2i

(12.12)
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if a is even and M is odd, it equals

(�1)

M=2

2

a

2

�a�aM

M !

a

�

B �

C

2

+

a

2

�

1

2

�

M=2�a=2+1=2

�

C

2

+

M

2

� �

M

2

�

!

�

a

2

+B � 1

�

M=2�a=2+1=2

�

Q

a

i=1

(B)

i�1

�

1

2

+

a

2

+

C

2

�

M

2

�

a

M=2�a=2�1=2

(a�1)=2

Y

i=1

(i� 1)! i!

�

1

2

+

C

2

�

i�1

�

1

2

+

C

2

�

i

�

M

2

� i

�

!

2

�

a

2

+B � 1

�

2

M=2�i+1

�

(a�1)=2

Y

i=1

�

B �

C

2

+ i� 1

�

2

M=2�a=2+1=2

�

a

2

+B �

1

2

�

i�1

�

a

2

+B �

1

2

�

i

�

C

2

� i+

M

2

�

2i+1

(12.13)

if a is odd and M is even, and it equals

(�1)

M=2�1=2

2

a

2

�a�aM

M !

a

�

B �

C

2

�
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if both a and M are odd.

In fa
t, the evaluations in Se
tion 8 of the determinant in Lemma 16 establish even

a further variant of Theorem 27. This variant is obtained as follows. Re
all (see the

Introdu
tion) that the determinant in Lemma 16 arose from the 
ase when the parity of

a was di�erent from that of b and 
, so that, in order to have a well-de�ned enumeration

problem, we had to adjust the de�nition of a \
entral" triangle of the hexagon. What

we did was to shift the really 
entral triangle by half a unit in parallel to the sides

of the hexagon of length a and a + m. Now let us suppose that, unlike in that 
ase,

it is b that has parity di�erent from that of a and 
, so that the \
entral" triangle

in the sense of the Introdu
tion is the really 
entral triangle shifted by half a unit in

parallel to the sides of the hexagon of length b and b + m. Clearly, our enumeration

results in Theorems 2 and 5 
an be still used, we just have to inter
hange the roles of

a and b. On the other hand, if we go through the 
onsiderations in Se
tion 5 (without

inter
hange of the roles of a and b, i.e., starting and end points of the latti
e paths

are 
hosen on the sides of the hexagon of length a and a + m and on the side of the

triangle whi
h is parallel), then we obtain a 
ertain determinant, whi
h di�ers slightly

from the determinants in Lemmas 15 and 16. Comparison of the enumeration results

with Lapla
e expansion (12.4) of the determinant establishes the following summation

theorem.

Theorem 29. Let a be a positive integer and M be a nonnegative integer. The multiple

series

X

0�k

1
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<���<k
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� k
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k
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�
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�

M

2
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C

2

�

k

i

(2B + a� 2)

k

i

(12.15)
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equals
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if a and M are even, it equals
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if a is even and M is odd, it equals
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if a is odd and M is even, and it equals
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if both a and M are odd.

The reader should observe that, by similar 
onsiderations, i.e., by applying Lapla
e

expansion (12.4) to (12.3), Conje
tures 1 and 2 are equivalent to further variations

of Theorem 27. To be pre
ise, Conje
tures 1 and 2 
ould be proved by establishing
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summation theorems for the multiple series
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; (12.20)

with " = 1 and " = 3=2, respe
tively.

3) Are there q-analogues of our results? By \q-analogue", we mean, as usual, that

obje
ts x are 
ounted with respe
t to a weight q

w(x)

, where w(x) is some statisti
 de�ned

on the obje
ts. The question of whether there is a q-analogue, say of Theorems 1 and

2, is motivated by two fa
ts: In the 
ase of m = 0 of Theorems 1 and 2, i.e., if one


ounts lozenge tilings of a hexagon with no triangle removed, or, equivalently, plane

partitions 
ontained in a given box, there is a well-known q-analogue due to Ma
Mahon

[26, Se
. 429; proof in Se
. 494℄, in whi
h every plane partition P is given the weight

q

jP j

, where jP j denotes the number of \boxes" (points, a

ording to our de�nition of

plane partitions in Se
tion 3) of P . The result is the q-analogue of formula (1.1) whi
h

is obtained by repla
ing all fa
torials in (1.1) by the respe
tive q-fa
torials. Similarly, in

the 
ase m = 1, q-analogues of Theorems 1 and 2 
an be gleaned from [32, Theorem 3℄,

by setting x

i

= q

i

, i = 1; 2; : : : ; n+1, respe
tively x

i

= q

i

, i = 1; 2; : : : ; n, x

n+1

= 0, and

using the hook-
ontent formula for the prin
ipal spe
ialization of S
hur fun
tions (see

[25, I, Se
. 3, Ex. 1℄, [9, Ex. A.30, (ii)℄). The question of whether there are q-analogues

for arbitrary m remains open. Furthermore, it would be parti
ularly interesting if there

were a q-analogue of Theorem 10 that would spe
ialize for m = 0 to the the statement

of the Ma
donald (ex)
onje
ture on 
y
li
ally symmetri
 plane partitions (
f. [27℄).
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