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Abstrat. We deal with unweighted and weighted enumerations of lozenge tilings

of a hexagon with side lengths a; b + m; ; a + m; b;  + m, where an equilateral tri-

angle of side length m has been removed from the enter. We give losed formulas

for the plain enumeration and for a ertain (�1)-enumeration of these lozenge tilings.

In the ase that a = b = , we also provide losed formulas for ertain weighted

enumerations of those lozenge tilings that are ylially symmetri. For m = 0, the

latter formulas speialize to statements about weighted enumerations of ylially

symmetri plane partitions. One suh speialization gives a proof of a onjeture of

Stembridge on a ertain weighted ount of ylially symmetri plane partitions. The

tools employed in our proofs are nonstandard appliations of the theory of nonin-

terseting lattie paths and determinant evaluations. In partiular, we evaluate the

determinants det

0�i;j�n�1

�

!Æ

ij

+

�

m+i+j

j

��

, where ! is any 6th root of unity. These

determinant evaluations are variations of a famous result due to Andrews (Invent.

Math. 53 (1979), 193{225), whih orresponds to ! = 1.

1. Introdution

Let a, b and  be positive integers, and onsider a hexagon with side lengths a; b; ; a; b;

 (in yli order) and angles of 120

Æ

. It is well-known that the total number of lozenge
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Here and in the following, by a lozenge we mean a rhombus with side lengths 1 and angles of 60

Æ

and 120

Æ
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tilings of suh a hexagon equals

H(a) H(b) H() H(a+ b + )

H(a + b) H(b+ ) H(+ a)

; (1.1)

where H(n) stands for the \hyperfatorial"

Q

n�1

k=0

k!. This follows from a bijetion (f.

[7℄) between suh lozenge tilings and plane partitions ontained in an a� b�  box, and

from MaMahon's enumeration [26, Se. 429, q ! 1; proof in Se. 494℄ of the latter.

In [33℄ (see also [34℄), Propp posed several problems regarding \inomplete" hexagons.

For example, Problem 2 in [33℄ (and [34℄) asks for the number of lozenge tilings of a

hexagon with side lengths n; n+1; n; n+1; n; n+1 with the entral unit triangle removed.

This problem was solved in [4, Theorem 1℄, [15, Theorem 20℄ and [32, Theorem 1℄ (the

most general result, for a hexagon with side lengths a; b + 1; ; a + 1; b;  + 1, being

ontained in [32℄). In [5℄, the �rst author onsiders the ase when a larger triangle (in

fat, possibly several) is removed. However, in ontrast to [32℄, the results in [5℄ assume

that the hexagon has a reetive symmetry, i.e., that b = .

Continuing this line of researh, in this paper we address the general ase, when no

symmetry axis is required. We onsider hexagons of sides a; b + m; ; a + m; b;  + m

(in lokwise order) with an equilateral triangle of side m removed from the enter (see

Figures 1 and 2 for examples). We all this triangle the ore, and the leftover region,

denoted C

a;b;

(m), a ored hexagon.

To de�ne C

a;b;

(m) preisely, we need to speify what position of the ore is the

\entral" one. Let s be a side of the ore, and let u and v be the sides of the hexagon

parallel to it. The most natural de�nition (and the one that we are going to adopt)

would require that the distane between s and u is the same as the distane between v

and the vertex of the ore opposite s, for all three hoies of s.

However, sine the sides of the ore have to be along lines of the underlying triangular

lattie, it is easy to see that this an be ahieved only if a, b and  have the same parity

(Figure 1 illustrates suh a ase); in that ase, we de�ne this to be the position of the

ore. On the other hand, if for instane a has parity di�erent from that of b and , the

triangle satisfying the above requirements would only have one side along a lattie line,

while eah of the remaining two extends midway between two onseutive lattie lines

(this an be seen from Figure 2). To resolve this, we translate this entral triangle half

a unit towards the side of the hexagon of length b, in a diretion parallel to the side of

length a, and de�ne this to be the position of the ore in this ase.

Note that, when translating the entral triangle, there is no \natural" reason to do it

in the sense we hose: we ould have just as well hosen the opposite sense, obtaining an

alternative (and not less entral) de�nition of the ore. However, it is easy to see that

the alternative de�nition does not lead to new regions: it generates the same region that

we obtain by swapping b and  in our de�nition. (In fat, this ambiguity in hoosing

the enter will be used e�etively in Setion 12, see Theorem 29 and the paragraph

preeding it.)

Our main results, given in Theorems 1 and 2 below, provide expliit formulas for

the total number of lozenge tilings of suh a ored hexagon (see Figures 3 and 8.a for

examples of suh tilings). Remarkably, the results an be expressed in losed form, more

preisely, as quotients of produts of hyperfatorials (ompletely analogous to formula

(1.1)), thus providing an in�nite family of enumerations whih ontains MaMahon's
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Figure 1. Position of the ore when a, b and  have the same parity: C

3;5;1

(2)
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Figure 2. Position of the ore when a, b and  have mixed parities: C

2;5;1

(2)

\box formula" (1.1) as a speial ase. For the statement of the theorems, it is onvenient

to extend the de�nition of hyperfatorials to half-integers (i.e., odd integers divided

by 2):

H(n) :=

(

Q

n�1

k=0

�(k + 1) for n an integer,

Q

n�

1

2

k=0

�(k +

1

2

) for n a half-integer:

Now we are able to state our theorems. The �rst result addresses the ase that a,

b and  have the same parity. Let L(R) stand for the number of lozenge tilings of the

region R.

Theorem 1. Let a; b; ;m be nonnegative integers, a; b;  having the same parity. The

number of lozenge tilings of a hexagon with sides a; b + m; ; a + m; b;  + m, with an

equilateral triangle of side m removed from its enter (see Figure 1 for an example) is
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given by

L(C

a;b;

(m)) =

H(a +m) H(b+m) H(+m) H(a + b+ +m)

H(a+ b +m) H(a+ +m) H(b + +m)

H(m+

�

a+b+

2

�

) H(m+

�
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2

�

)

H(

a+b

2
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2
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�
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�
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+
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�
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�
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: (1.2)

Clearly, formula (1.2) redues to (1.1) for m = 0 (as it should). The speial ase

m = 1 has been obtained earlier in [32, Theorem 1℄.

The orresponding result for the ase when a, b and  do not have the same parity

reads as follows.

Theorem 2. Let a; b; ;m be nonnegative integers, with a of parity di�erent from the

parity of b and . The number of lozenge tilings of a hexagon with sides a; b+m; ; a+

m; b; +m, with the \entral" (in the sense desribed above) triangle of side m removed

(see Figure 2 for an example) is given by

L(C

a;b;

(m)) =

H (a +m) H (b +m) H (+m) H (a+ b + +m) H

�
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Again, formula (1.3) redues to (1.1) for m = 0. The speial ase m = 1 has been

obtained earlier in [32, Theorem 4℄.

Given the expliit results in Theorems 1 and 2, it is routine to determine, using

the Euler{MaLaurin summation formula, the asymptoti behavior of the number of

lozenge tilings of a ored hexagon. For instane, when a, b and  have the same parity

we obtain the following result.

Corollary 3. Let a; b; ;m; n be nonnegative integers, a; b;  having the same parity. The

number of lozenge tilings of a hexagon with sides an; (b+m)n; n; (a+m)n; bn; (+m)n,

with an equilateral triangle of side mn removed from its enter, is asymptotially given

by

L(C

an;bn;n

(mn)) � e

kn

2

; n!1;
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where

k =

(a+m)

2

2

log(a +m) +

(b+m)

2

2

log(b+m) +

(+m)

2

2

log(+m)

+

(a+b++m)
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2

log(a + b+  +m) + 2(m+

a+b+

2

)
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log(m+
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2
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+ 2(
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2

)

2

log(
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2

) + 2(
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log(
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log(
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log(m)

�
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2

log(a+ b +m) +

3
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(a+  +m)

2

log(a+ +m)

+

3
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(b + +m)

2

log(b + +m)

+ (

a+b

2

+m)

2

log(
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2

+m) + (

a+

2

+m)

2

log(

a+

2

+m) + (

b+

2

+m)

2

log(

b+

2

+m)

+(

a+b

2

)

2

log(a + b) + (

a+

2

)

2

log(a+ ) + (

b+

2

)

2

log(b+ )

�

+ (m

2

+ a

2

+ b

2

+ 

2

+

3m(a+b+)

2

+ ab + b+ a) log 2: (1.4)

In addition to plain ounts, (�1)-enumerations of plane partitions, i.e., enumerations

where plane partitions are given a weight of 1 or �1, aording to ertain rules, have

been found to possess remarkable properties (see [39, 40℄). Motivated in part by a on-

jetured (�1)-enumeration on ylially symmetri plane partitions due to Stembridge

[41℄, in Setion 2 we onsider a (�1)-enumeration of the lozenge tilings of Theorems 1

and 2. The orresponding results are given in Theorems 4 and 5.

In Setion 3, we restrit our attention to ylially symmetri lozenge tilings (i.e.,

tilings invariant under rotation by 120

Æ

) of ored hexagons. Clearly, this makes sense

only if a = b = , i.e., for ored hexagons of the form C

a;a;a

(m). The plain enumer-

ation of suh ylially symmetri lozenge tilings had already been onsidered in [6,

Theorem 3.2 and Corollary 3.3℄. We restate the result here as Theorem 6. We provide

several additional results. Theorem 7 onerns the (�1)-enumeration of suh ylially

symmetri lozenge tilings and some additional weighted enumerations of them, where

eah lozenge tiling is weighted by some 6th root of unity, aording to a ertain rule (see

the paragraph before Theorem 7 for the preise de�nition). In the speial ase m = 0

we obtain results about weighted enumerations of ylially symmetri plane partitions

(see Corollary 8). A partiular ase of Corollary 8 proves a onjeture of Stembridge

[41, Case 9 on p. 6℄ about a ertain (�1)-enumeration of ylially symmetri plane

partitions. (The �rst proof of this onjeture, by totally di�erent means, is due to

Kuperberg [23, last displayed equation on p. 27℄.) Our results also allow us to prove

another onjeture on (�1)-enumeration of ylially symmetri plane partitions due to

Stembridge [41, Case 10 on p. 7℄. In fat, we again prove a more general result, namely

a result on ylially symmetri lozenge tilings (see Theorem 9).

The remaining setions, Setions 4{11, are devoted to the proofs of these results.

For the proofs of Theorems 1{5, the enumeration results for lozenge tilings without

symmetry, we proeed as follows. First, we identify tilings with ertain families of

noninterseting lattie paths (see Setion 5). Then, a nonstandard appliation of the

main theorem on noninterseting lattie paths [24, Lemma 1℄, [13, Theorem 1℄ (restated

here in Lemma 14) provides a determinant for the weighted ount of lozenge tilings (see

(5.4), respetively (5.5)). To be preise, the determinant gives the orret weighted

ount either only for even m (m being the side of the ore) or only for odd m, depending

on whether we are onsidering plain enumeration or (�1)-enumeration. To over the

other ase as well, we prove that the weighted ount of lozenge tilings that we are
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interested in is polynomial in m, so that it suÆes to determine this number only for

one of the two possibilities, either for even m or for odd m. This is in turn ahieved by

evaluating the aforementioned determinant (see Lemmas 17{24).

The results on weighted enumerations of ylially symmetri lozenge tilings in Se-

tion 3 an be obtained in a similar way. We phrase the problem in terms of noninterset-

ing lattie paths, and thus �nd determinants for these enumerations. The determinants

have the form

det

0�i;j�a�1

�

!Æ

ij

+

�

m + i+ j

j

��

; (1.5)

where ! is any 6th root of unity. These determinants are remarkable. The ase ! = 1

oured �rst in the work of Andrews on plane partitions. He evaluated the determinant

(1.5) in that ase [2, Theorem 8℄ (restated here as Theorem 10) in order to prove the

\weak Madonald onjeture" on ounting ylially symmetri plane partitions. It had

already been observed in [6, Se. 3℄ that Andrews' evaluation of (1.5) with ! = 1 gives

the number of ylially symmetri lozenge tilings of the ored hexagon C

a;a;a

(m). We

prove our weighted enumerations of these lozenge tilings by evaluating the determinant

(1.5) when ! is any 6th root of unity (see Theorems 11{13).

Our paper is strutured as follows. In Setion 2 we give the preise de�nition of our

(�1)-enumeration of lozenge tilings, and we state the orresponding results (see The-

orems 4 and 5). In Setion 3 we de�ne preisely our unusual weightings of ylially

symmetri lozenge tilings. Theorems 6 and 7, Corollary 8 and Theorem 9 state the

orresponding results. The subsequent setion, Setion 4, gives the proofs of our enu-

meration results in Theorems 1{9, leaving out, however, several details. These details

are then worked out in later setions. First of all, in Setion 5, it is explained how

lozenge tilings orrespond, in a one-to-one fashion, to families of noninterseting lattie

paths. We then employ the result of Lemma 14 to obtain, at least for every other value

of m, a determinant for the weighted ount of lozenge tilings that we are interested in

(see Lemmas 15 and 16). It is then argued in Setion 6 that this number is in fat

polynomial in m, so that the evaluation of the determinant in Lemma 15, respetively

Lemma 16, suÆes. The preise form of the evaluation of the determinant in Lemma 15

(again, a ase-by-ase analysis is neessary, depending on the parity of a) is stated and

proved in Setion 7 (see Lemmas 17{20), while the preise form of the evaluation of the

determinant in Lemma 16 is stated and proved in Setion 8 (see Lemmas 21{24). Fi-

nally, in Setion 9 we prove the determinant evaluation of Theorem 11, in Setion 10 the

one in Theorem 12, and in Setion 11 the one in Theorem 13. We onlude the artile

with some omments onerning onnetions of this work with multiple hypergeometri

series and some open problems. These are the subjet of Setion 12.

2. (�1)-enumerations of lozenge tilings of ored hexagons

In this setion we enumerate lozenge tilings of a ored hexagon with respet to a

ertain weight that assigns to eah lozenge tiling the value 1 or �1. More preisely,

�x a lozenge tiling T of the ored hexagon C

a;b;

(m) (see Figures 1 and 2 for examples

of suh regions, and Figure 3 for an example of a tiling; at this point, the thikness of

edges is without signi�ane). Consider the side of the ore whih is parallel to the sides

of the hexagon of lengths a and a+m (in the �gure this is the bottommost side of the

ore). Extend this side of the triangle to the right. Let n(T ) be the number of edges of
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Figure 3. A lozenge tiling of a hexagon with sides a = 5, b = 3,  = 1 and

removed triangle of side length m = 2.

lozenges of the tiling T ontained in the extended side (in Figure 3 there are two suh

edges, marked as thik segments). The statisti n(T ) beomes most transparent in the

lattie path interpretation of lozenge tilings that is going to be explained in Setion 5,

as it ounts exatly the number of paths whih pass the ore on the right . Furthermore,

we shall see in Setion 3 that in the plane partitions ase, i.e., in the ase m = 0 (when

the ore shrinks to a point), the statisti n(T ) has a very natural meaning as well (see

the remarks after Theorem 7).

In the (�1)-enumeration, whih is the subjet of the following two theorems, eah

lozenge tiling T is weighted by (�1)

n(T )

. Let L

�1

(R) be the weighted ount of lozenge

tilings of region R under the above weight.

Theorem 4. Let a; b; ;m be nonnegative integers. If all of a, b and  are even, then

the weighted ount

P

(�1)

n(T )

, summed over all lozenge tilings T of a hexagon with

sides a; b +m; ; a +m; b;  +m, with an equilateral triangle of side length m removed

from its enter (see Figure 1) is given by

L

�1

(C

a;b;

(m)) =

(�1)

a=2

H(a+m) H(b +m) H(+m) H(a+ b + +m)

H(a+ b +m) H(a + +m) H(b + +m)

�

H(

a

2

)

2

H(

b

2

)

2

H(



2

)

2

H(

m�1

2

) H(

m+1

2

)

H(

a

2

+

m�1

2

) H(

b

2

+

m�1

2

) H(



2

+

m�1

2

) H(

a

2

+

m+1

2

) H(

b

2

+

m+1

2

) H(



2

+

m+1

2

)

�

H(

a+b+m�1

2

) H(

a+b+m+1

2

) H(

a++m�1

2

) H(

a++m+1

2

) H(

b++m�1

2

) H(

b++m+1

2

)

H(

a+b

2

) H(

a+

2

) H(

b+

2

) H(

a+b

2

+m) H(

a+

2

+m) H(

b+

2

+m)

�

H(

a+b+

2

+m)

2

H(

a+b+

2

+

m�1

2

) H(

a+b+

2

+

m+1

2

)

: (2.1)

For a; b;  all odd, the (�1)-enumeration equals zero.
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Figure 4. A ylially symmetri lozenge tiling of a hexagon with sides 3,

5, 3, 5, 3, 5 and ore of size m = 2.

The analogous theorem for the ase when a has a parity di�erent from the parity of

b and  reads as follows.

Theorem 5. Let a; b; ;m be nonnegative integers, a of parity di�erent from the parity

of b and . The weighted ount

P

(�1)

n(T )

, summed over all lozenge tilings T of a

hexagon with sides a; b+m; ; a+m; b; +m, with an equilateral triangle of side length

m removed that is \entral" in the sense that was desribed in the Introdution (see

Figure 2), equals

L

�1

(C

a;b;

(m)) =

(�1)

da=2e

H(a+m) H(b +m) H(+m) H(a+ b+  +m)

H(a+ b +m) H(a+ +m) H(b + +m)

�

H(

�

a+b+

2

�

+m) H(

�

a+b+

2

�

+m)

H(

a+b+1

2

+m) H(

a+�1

2

+m) H(

b+

2

+m)

�

H(

�

a

2

�

) H(

�

a

2

�

) H(

�

b

2

)

�

H(

�

b

2

�

) H(

�



2

�

) H(

�



2

�

) H(

m�1

2

) H(

m+1

2

)

H(

m�1

2

+

�

a+1

2

�

) H(

m+1

2

+

�

a�1

2

�

) H(

m�1

2

+

�

b+1

2

�

) H(

m+1

2

+

�

b�1

2

�

) H(

m�1

2

+

�

+1

2

�

)

�

H(

a+b+m

2

)

2

H(

a++m

2

)

2

H(

b++m�1

2

) H(

b++m+1

2

)

H(

m+1

2

+

�

�1

2

�

) H(

a+b�1

2

) H(

a++1

2

) H(

b+

2

) H(

m�1

2

+

�

a+b++1

2

�

) H(

m+1

2

+

�

a+b+�1

2

�

)

:

(2.2)

3. Enumeration of ylially symmetri lozenge tilings

In this setion we enumerate ylially symmetri lozenge tilings of the ored hexagon

C

a

(m) := C

a;a;a

(m) with respet to ertain weights. By a ylially symmetri lozenge

tiling we mean a lozenge tiling whih is invariant under rotation by 120

Æ

. See Figure 4 for

an example. (At this point, all shadings, thik and dotted lines should be ignored.) The
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unweighted enumeration of these lozenge tilings was given earlier in [6, Theorem 3.2 and

Corollary 3.3℄. We restate the result below. Let L



(R) denote the number of ylially

symmetri lozenge tilings of region R.

Theorem 6. Let a be a nonnegative integer. The number L



(C

a

(m)) of ylially

symmetri lozenge tilings of a hexagon with side lengths a; a+m; a; a+m; a; a+m, with

an equilateral triangle of side length m removed from the enter, equals the right-hand

side in (3.2). �

Let us now assoiate ertain weights to eah suh lozenge tiling T . These weights

depend again on the number n(T ) of edges of lozenges of the tiling T whih are inident

to the extension to the right of the bottommost side of the ore. (Sine we are now

dealing with ylially symmetri tilings, it does, in fat, not matter whih side is

onsidered, and the weighted ount is not even a�eted by the hoie of diretion.) In

the following three theorems, eah lozenge tiling T is assigned the weight !

n(T )

, where

! is some �xed 6th root of unity. Denote by L

!



(R) the orresponding weighted ount

of ylially symmetri lozenge tilings of region R.

Theorem 7. Let a � 0 and m � 0 be integers. Then the weighted ount L

!



(C

a

(m)) :=

P

!

n(T )

, summed over all ylially symmetri lozenge tilings T of a hexagon with side

lengths a; a+m; a; a+m; a; a+m, with an equilateral triangle of side length m removed

from the enter, equals the right-hand side in (3.3) if ! = �1, it equals the right-hand

side in (3.4) if ! is a primitive third root of unity, and it equals the right-hand side in

(3.5) if ! is a primitive sixth root of unity.

If we speialize these results to m = 0, i.e., to the ase where there exists no ore, we

obtain enumeration results for ylially symmetri plane partitions. Before we state

these, let us briey reall the relevant notions from plane partition theory (f. e.g.

[37℄ or [39, Se. 1℄). There are (at least) three possible equivalent ways to de�ne plane

partitions. Out of the three possibilities, in this paper, we hoose to de�ne a plane

partition � as a subset of the three-dimensional integer lattie Z

3

+

(where Z

+

denotes

the set of positive integers), with the property that if (i

1

; j

1

; k

1

) is an element of �, then

all points (i

2

; j

2

; k

2

) with 1 � i

2

� i

1

, 1 � j

2

� j

1

, 1 � k

2

� k

1

also belong to �. (In

the language of partially ordered sets, � is an order ideal of Z

3

+

.) A plane partition � is

alled ylially symmetri if for every (i; j; k) in � the point (j; k; i) whih results by a

yli permutation of oordinates is in � as well.

Often, a plane partition is viewed as the orresponding pile of unit ubes whih

results when replaing eah point (i; j; k) of the plane partition by the unit ube with

enter (i; j; k). A three-dimensional piture of a plane partition, viewed as pile of unit

ubes, is shown in Figure 5 (in fat, this example is ylially symmetri). As we

already mentioned in the Introdution, plane partitions ontained in an a � b �  box

(i.e., plane partitions � with the property that every (i; j; k) 2 � satis�es 1 � i � a,

1 � j � b, 1 � k � ) are in bijetion with lozenge tilings of a hexagon with side

lengths a; b; ; a; b;  (see [7℄). This bijetion an be visualised easily on the example in

Figure 5. Clearly, under this bijetion, ylially symmetri plane partitions ontained

in an a � a � a box orrespond to ylially symmetri lozenge tilings of a hexagon

with all sides of length a. Thus, Theorem 7 with m = 0 yields results about ertain

weighted ounts of ylially symmetri plane partitions. We just have to �gure out

how the weights !

n(T )

for lozenge tilings T translate to the plane partition language.
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Figure 5. A ylially symmetri plane partition.

Let �

T

be the plane partition that orresponds to the lozenge tiling T under this

bijetion. Denote by m

1

(�

T

) the number of elements of the form (i; i; i) in �

T

. Then

there are preisely m

1

(�

T

) unit ubes on the main diagonal of the pile of unit ubes

representing �

T

. Let v be the vertex farthest from the origin of the last suh unit ube

(in the planar rendering of �

T

| for our example, Figure 5 | v is the enter of the

hexagon). A ray through v approahing orthogonally any of the oordinate planes will

ut through preisely m

1

(�

T

) layers of unit thikness. Sine eah suh ut orresponds

to a lozenge side ontained in the ray, we see that m

1

(�

T

) is preisely the statisti n(T ).

We therefore obtain the following orollary of Theorem 7.

Corollary 8. Let a be a nonnegative integer. Then the weighted ount

P

!

m

1

(�)

,

summed over all ylially symmetri plane partitions � ontained in an a � a � a

box, equals the right-hand side in (3.3) with m = 0 if ! = �1, it equals the right-

hand side in (3.4) with m = 0 if ! is a primitive third root of unity, and it equals the

right-hand side in (3.5) with m = 0 if ! is a primitive sixth root of unity. �

Weighted enumerations of this sort have been onsidered earlier. In fat, the result

for ! = �1 of Corollary 8 had been onjetured by Stembridge [41, Case 9 on p. 6℄,

and proved for the �rst time by Kuperberg [23, last displayed equation on p. 27℄.

Thus, the (�1)-result of Theorem 7 is a generalization of Kuperberg's result. There are

many more onjetures on (�1)-enumerations of ylially symmetri plane partitions

in [41℄. One of these, the Conjeture on p. 7 of [41, Case 10℄, asks for the weighted

ount

P

(�1)

m

6

(�)

of ylially symmetri plane partitions in whih the statisti m

6

(�)

is de�ned as the number of orbits (under yli rotation) f(i; j; k); (j; k; i); (k; i; j)g of

elements of � with oordinates that are not all equal.

We prove this onjeture of Stembridge in Theorem 9 below. In fat, in Theorem 9 we

prove a result for ylially symmetri lozenge tilings of ored hexagons. In this result,

a ylially symmetri lozenge tiling T is given a weight (�1)

n

6

(T )

, with the statisti
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Figure 6. The statisti n

6

for this tiling is n

6

(T

0

) = 3

n

6

(T ) to be desribed below. It is de�ned in a way so that in the ase when there is

no ore present (i.e., m = 0) it redues to m

6

(�

T

), where again �

T

denotes the plane

partition orresponding to T .

Let T be a �xed ylially symmetri lozenge tiling of the ored hexagon C

a

(m) (see

Figure 6 for an example with a = 3 andm = 2; at this point, all thik lines and shadings

should be ignored). We onsider the horizontal lozenges whih are at least partially

ontained in the top-right fundamental region. (In Figure 6 the top-right fundamental

region is framed. The horizontal lozenges whih are at least partially ontained in that

region are the grey and blak lozenges.) The statisti n

6

(T ) is by de�nition the sum

of the vertial distanes between these horizontal lozenges and the lower border of the

fundamental region. (Thus, for the lozenge tiling T

0

in Figure 6 we have, onsidering

the horizontal lozenges in the order from left to right, n

6

(T

0

) = 2 + 1 + 0 + 0 + 0 = 3.)

Suppose now that m = 0, and view the tiling T as a plane partition �

T

. The

fundamental region of T used in our de�nition of the statisti n

6

orresponds to a

fundamental region of �

T

with the main diagonal removed. Sine the distanes we add

up in our de�nition of n

6

(T ) are preisely the heights of the vertial olumns of unit

ubes in this fundamental region, we obtain that n

6

(T ) is equal to the number of unit

ubes ontained in it, whih is learly just the number of orbits of ubes o� the main

diagonal. This veri�es our laim that n

6

(T ) = m

6

(�

T

).

The weight whih is assigned to a tiling T in the theorem below is (�1)

n

6

(T )

. An

equivalent way to de�ne this weight is to say that it is the produt of the weights of

all lozenges whih are, at least partially, ontained in the top-right fundamental region,

where the weight of a horizontal lozenge with odd distane from the lower border of the

region is �1, the weight of all other lozenges being 1. (In Figure 6 the blak lozenge has

weight �1, all other lozenges have weight 1.) Yet another way to obtain this weight is

through the perfet mathings point of view of lozenge tilings, elaborated for example

in [22, 23℄. In this setup, the ylially symmetri lozenge tilings that we onsider here



12 M. CIUCU, T. EISENK

�

OLBL, C. KRATTENTHALER AND D. ZARE

orrespond bijetively to perfet mathings in a ertain hexagonal graph (basially, the

dual graph of a fundamental region of the ored hexagon). Assignment of weights to

the edges of this graph so that eah fae has \urvature" �1 (see [23, Se. II℄) generates

again (up to a multipliative onstant) the above weight for lozenge tilings.

Denote by L

�1

o

(R) (where the index letter stands for \orbits") the weighted ount of

lozenge tilings of region R under the above-de�ned weight.

Theorem 9. Let a and m be nonnegative integers. Let R

1

(a;m) denote the right-hand

side of (3.2), let R

2

(a;m) denote the right-hand side of (3.3), and let R

3

(a;m) denote

the right-hand side of (3.5). Then the weighted ount

P

(�1)

n

6

(T )

, summed over all

ylially symmetri lozenge tilings T of a hexagon with side lengths a; a + m; a; a +

m; a; a + m with an equilateral triangle of side length m removed from the enter, is

given by

L

�1

o

(C

a

(m)) =

8

>

>

>

<

>

>

>

:

jR

3

(

a

2

;

m

2

)j

2

if a is even and m is even,

R

1

(

a+1

2

;

m

2

� 1)R

1

(

a�1

2

;

m

2

+ 1) if a is odd and m is even,

R

1

(

a

2

;

m�1

2

)R

2

(

a

2

;

m+1

2

) if a is even and m is odd,

R

1

(

a+1

2

;

m�1

2

)R

2

(

a�1

2

;

m+1

2

) if a is odd and m is odd.

(3.1)

As we show in Setion 4, all the above results in the urrent setion follow from

evaluations of the determinant (1.5) for ! equal to 1, to �1, to a primitive third

root of unity, and to a primitive sixth root of unity, respetively. The orresponding

evaluations read as follows, the evaluation for ! = 1, given in Theorem 10 below, being

due to Andrews [2, Theorem 8℄.

Theorem 10. For any nonnegative integer a,

det

0�i;j�a�1

�

Æ

ij

+

�

m+ i + j

j

��

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

2

da=2e

a�2

Y

i=1

�

m

2

+ di=2e + 1

�

b(i+3)=4

�

Q

a=2

i=1

�

m

2

+

3a

2

�

�

3i

2

�

+

3

2

�

di=2e�1

�

m

2

+

3a

2

�

�

3i

2

�

+

3

2

�

di=2e

Q

a=2�1

i=1

(2i� 1)!! (2i+ 1)!!

if a is even,

2

da=2e

a�2

Y

i=1

�

m

2

+ di=2e + 1

�

b(i+3)=4

�

Q

(a�1)=2

i=1

�

m

2

+

3a

2

�

�

3i�1

2

�

+ 1

�

d(i�1)=2e

�

m

2

+

3a

2

�

�

3i

2

��

di=2e

Q

(a�1)=2

i=1

(2i� 1)!!

2

if a is odd,

(3.2)

where (�)

k

is the standard notation for shifted fatorials, (�)

k

:= �(�+1) � � � (�+k�1),

k � 1, and (�)

0

:= 1. �
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Theorem 11. For nonnegative integers a,

det

0�i;j�a�1

�

�Æ

ij

+

�

m + i+ j

j

��

=

(

0; if a is odd,

(�1)

a=2

Q

a=2�1

i=0

i!

2

(

m

2

+i)!

2

(

m

2

+3i+1)!

2

(m+3i+1)!

2

(2i)! (2i+1)! (

m

2

+2i)!

2

(

m

2

+2i+1)!

2

(m+2i)! (m+2i+1)!

; if a is even.

(3.3)

The proof of this theorem is given in Setion 9.

Theorem 12. Let ! be a primitive third root of unity. Then

det

0�i;j�a�1

�

!Æ

ij

+

�

m+ i + j

j

��

=

(1 + !)

a

2

ba=2

Q

ba=2

i=1

(2i� 1)!!

Q

b(a�1)=2

i=1

(2i� 1)!!

�

Y

i�0

�

m

2

+ 3i + 1

�

b(a�4i)=2

�

m

2

+ 3i+ 3

�

b(a�4i�3)=2

�

�

m

2

+ a� i+

1

2

�

b(a�4i�1)=2

�

m

2

+ a� i�

1

2

�

b(a�4i�2)=2

; (3.4)

where, in abuse of notation, by b� we mean the usual oor funtion if � � 0, however,

if � < 0 then b� must be read as 0, so that the produt over i � 0 is indeed a �nite

produt.

The proof of this theorem is given in Setion 10.

Theorem 13. Let ! be a primitive sixth root of unity. Then

det

0�i;j�a�1

�

!Æ

ij

+

�

m+ i + j

j

��

=

(1 + !)

a

�

2

3

�

ba=2

Q

ba=2

i=1

(2i� 1)!!

Q

b(a�1)=2

i=1

(2i� 1)!!

�

Y

i�0

�

m

2

+ 3i+

3

2

�

b(a�4i�1)=2

�

m

2

+ 3i+

5

2

�

b(a�4i�2)=2

� (

m

2

+ a� i)

b(a�4i)=2

(

m

2

+ a� i)

b(a�4i�3)=2

; (3.5)

where again, in abuse of notation, by b� we mean the usual oor funtion if � � 0,

however, if � < 0 then b� must be read as 0, so that the produt over i � 0 is indeed

a �nite produt.

The proof of this theorem is given in Setion 11.

4. Outline of the proofs of Theorems 1{9

In this setion, we give outlines of the proofs of our enumeration results stated in

the Introdution and in Setions 2 and 3. We �ll in the details of these proofs in later

setions.

Proof of Theorem 1. There is a standard bijetion between lozenge tilings and families

of noninterseting lattie paths. This bijetion is explained in Setion 5 (see in partiular

Figure 8). Thus, the problem of enumerating lozenge tilings is onverted to the problem

of ounting ertain families of noninterseting lattie paths. By the Lindstr�om{Gessel{

Viennot theorem (stated in Lemma 14), the number of suh families of paths an be

expressed as a determinant (see Lemma 15). Thus, in priniple, we would be done one

we evaluate this determinant, given in (5.4). However, Lemma 15 applies only if the
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size m of the ore is even. We show, in Setion 6, that it suÆes to address this ase,

by proving that the number of lozenge tilings that we are interested in is a polynomial

in m. The evaluation of the determinant (5.4) for even m is arried out in Setion 7

(see (7.1) and Lemmas 17 and 18). �

Proof of Theorem 4. The �rst steps are idential with those in the preeding proof:

the lozenge tilings are onverted into noninterseting lattie paths, in the way that

is desribed in Setion 5. Therefore, Lemma 14 yields a determinant for the (�1)-

enumeration that we are interested in. Unlike in the previous proof, this provides a

determinant for our weighted ount only if the size m of the ore is odd (see Lemma 15).

Again, the onsiderations in Setion 6 show that this number is a polynomial in m, so

it suÆes to evaluate the determinant (5.4) for odd m. This is done in Setion 7 (see

(7.1) and Lemmas 19 and 20). �

Proof of Theorem 2. Again, we use the strategy from the proof of Theorem 1. We

onvert the lozenge tilings into families of noninterseting lattie paths as desribed

in Setion 5. The starting and ending points are slightly di�erent from the ones used

before. They are given in (5.2). Lemma 14 yields a determinant for the number we

are interested in for even m (see Lemma 16). The onsiderations of Setion 6 still

apply, so the number of lozenge tilings is a polynomial in m and it suÆes to evaluate

the determinant (5.5) for even m. This is aomplished in Setion 8 (see (8.1) and

Lemmas 21 and 22). �

Proof of Theorem 5. We proeed analogously to the proof of Theorem 2. The lozenge

tilings are onverted into noninterseting lattie paths, in the way that is desribed in

Setion 5. Therefore, Lemma 14 yields a determinant for the (�1)-enumeration in the

ase of odd m (see Lemma 16). Again, the onsiderations in Setion 6 show that this

number is a polynomial in m, so that it suÆes to evaluate the determinant (5.5) for

odd m. This is worked out in Setion 8 (see (8.1) and Lemmas 23 and 24). �

Proof of Theorem 7. We follow the arguments of the proof of Theorem 6, as given in

[6, Lemma 3.1℄. Suppose we are given a ylially symmetri lozenge tiling T of our

ored hexagon C

a

(m). It is ompletely determined by its restrition to a fundamental

region, the lower-left fundamental region, say. (In the example in Figure 4, the lower-

left fundamental region is framed.) Some of the lozenges are ut in two by the borders of

the fundamental region. (In Figure 4 these are the shaded lozenges.) We draw lattie

paths whih onnet these \ut" lozenges, by \following" along the other lozenges,

as is indiated in Figure 4 by the dashed lines. To be preise, in eah lozenge in

the interior of the fundamental region, we onnet the midpoints of the sides that

run up-diagonal, in ase the lozenge possesses suh sides. Clearly, these paths are

noninterseting, by whih we mean that no two paths have a ommon vertex. Sine

they determine ompletely the ylially symmetri lozenge tiling, we may as well ount

all these families of noninterseting lattie paths, with respet to the orresponding

weight. In fat, as is easy to see, beause of the yli symmetry, the statisti n(T )

is exatly equal to a minus the number of paths. If we �x the \ut" lozenges, say in

positions i

1

; i

2

; : : : ; i

k

(ounted from inside out, beginning with 0; thus, in Figure 4, the

\ut" lozenges have positions 0 and 2), then, aording to Lemma 14, the number of

families of noninterseting lattie paths onneting the �xed \ut" lozenges is given by
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� � � � �

� � � � �

� � � � �

�

�

Figure 7. The orthogonal path orresponding to Figure 6

the orresponding Lindstr�om{Gessel{Viennot determinant (the left-hand side of (5.3)).

This determinant turns out to be the minor of

�

�

m+i+j

j

�

�

0�i;j�a�1

onsisting of rows

and olumns with indies i

1

; i

2

; : : : ; i

k

. This number must be multiplied by the ommon

weight !

a�k

of these families of noninterseting lattie paths. Therefore, in order to

obtain the total weighted ount that we are interested in, we have to sum all these

quantities, i.e., take the sum of

�

(i

1

; i

2

; : : : ; i

k

)-prinipal minor of

�

�

m+i+j

j

�

�

0�i;j�a�1

�

� !

a�k

over all k = 0; 1; : : : ; a and 0 � i

1

< i

2

< � � � < i

k

� a � 1. Clearly, this sum is

exatly equal to det

0�i;j�a�1

�

!Æ

ij

+

�

m+i+j

j

�

�

, whih equals the left-hand side of (3.3)

if ! = �1, the left-hand side of (3.4) if ! is a primitive third root of unity, and the

left-hand side of (3.5) if ! a primitive sixth root of unity. The respetive right-hand

sides provide therefore the solution to our enumeration problem. �

Proof of Theorem 9. We adapt the arguments used in the proof of Theorem 7. (Clearly,

here we want to ount the same objets, but with respet to a di�erent weight.) So,

again, we draw paths that onnet the lozenges whih are ut in two by the borders of

the fundamental region. This time, we hoose the top-right region as the fundamental

region. Figure 6 shows an example. There, the top-right fundamental region is framed.

As in Figure 4, paths are indiated by dashed lines. (In the example in Figure 6 there

is just one path.) If we slightly distort the underlying lattie, we get orthogonal paths

with positive horizontal and negative vertial steps. Figure 7 shows the orthogonal

path orresponding to the path in Figure 6. The manner in whih we have hosen the

oordinate system ensures that possible starting points of paths are the points (0; j),

0 � j � a� 1, and possible ending points are the points (m+ i; 0), 0 � i � a� 1.

Now, as before, we �x the positions of the \ut" lozenges. Then a weighted version of

the Lindstr�om{Gessel{Viennot theorem (see [24, Lemma 1℄ or [13, Cor. 2℄) an be used

to express the weighted ount of the orresponding families of noninterseting lattie

paths in form of a determinant. In fat, this weighted version just says that Lemma 14

remains true when the number P(A! E) of paths from A to E is replaed everywhere

by the weighted ount

P

P

w(P ) of all paths P from A to E, where w is some weight

funtion on the edges of the square lattie and the weight w(P ) of a path is the produt

of the weights of its steps. Thus, if we repeat the subsequent arguments in the proof of
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Theorem 7, then we obtain the determinant

det

0�i;j�a�1

�

Æ

ij

+

X

P :(0;j)!(m+i;0)

w(P )

�

(4.1)

for the weighted ount of our families of noninterseting lattie paths.

We now hoose the weight funtion w so that the weight of the family of noninter-

seting lattie paths orresponding to a tiling T is equal to (�1)

n

6

(T )

. To do this, it will

be onvenient to stik on an extra initial horizontal step at the beginning of eah path,

so that now it starts on the line x = �1. Weight the vertial steps on this line by 0,

all the remaining vertial steps by 1, and weight horizontal steps at height j by (�1)

j

.

Sine the height of a horizontal step is equal to the distane of the orresponding hori-

zontal lozenge to our referene line in the tiling, the weight of a family (P

1

; P

2

; : : : ) of

noninterseting lattie paths is equal to (�1)

n

6

(T )

, where T is the orresponding tiling.

On the other hand, it is learly equal to (�1)

A(P

1

)+A(P

2

)+���

, where A(P ) denotes the

area between a path P and the x-axis.

To �nd an expression for the entries of the Lindstr�om{Gessel{Viennot matrix we use

the well-known fat (see [38, Prop. 1.3.19℄) that the weighted ount

P

q

A(P )

, summed

over all lattie paths P from (0; ) to (d; 0), is equal to [

+d



℄

q

, where [

n

k

℄

q

is the standard

q-binomial oeÆient,

�

n

k

�

q

:=

(1� q

n

)(1� q

n�1

) � � � (1� q

n�k+1

)

(1� q

k

)(1� q

k�1

) � � � (1� q)

:

Thus, the determinant (4.1) beomes (see also [41, Lemma 4℄)

det

0�i;j�a�1

�

Æ

ij

+ (�1)

j

�

m + i+ j

j

�

�1

�

: (4.2)

From the q-binomial theorem (see [1, (3.3.6)℄),

(1 + z)(1 + qz) � � � (1 + q

n�1

z) =

n

X

k=0

q

(

k

2

)

�

n

k

�

q

z

k

;

it is straightforward to extrat that

�

n

k

�

�1

=

8

<

:

0 if n is even and k is odd,

�

bn=2

bk=2

�

otherwise.

(4.3)

We have to ompute the determinant (4.2). Let us denote it by D

0

. We have to

distinguish between four ases, depending on the parities of m and a.

First, let m be even. We reorder rows and olumns simultaneously, so that the even-

numbered rows and olumns ome before the odd-numbered, respetively. If a is even,

then we obtain for D

0

the blok determinant

det

�

I(

a

2

) +B(

a

2

;

m

2

) �B(

a

2

;

m

2

)

B(

a

2

;

m

2

) I(

a

2

)

�

;

where I(N) is the N � N identity matrix and B(N;m) is the N � N matrix

�

�

m+i+j

j

�

�

0�i;j�N�1

. By a few simple manipulations, this determinant an be fatored
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into a produt of two determinants,

D

0

= det

�

I(

a

2

) +B(

a

2

;

m

2

) �B(

a

2

;

m

2

)

B(

a

2

;

m

2

) I(

a

2

)

�

= det

�

I(

a

2

) +B(

a

2

;

m

2

) �B(

a

2

;

m

2

)

B(

a

2

;

m

2

) I(

a

2

)

�

det

�

I(

a

2

) 0

�B(

a

2

;

m

2

) I(

a

2

)

�

= det

�

I(

a

2

) +B(

a

2

;

m

2

) +B(

a

2

;

m

2

)

2

�B(

a

2

;

m

2

)

0 I(

a

2

)

�

= det

�

I(

a

2

) +B(

a

2

;

m

2

) +B(

a

2

;

m

2

)

2

�

= det

�

!I(

a

2

) +B(

a

2

;

m

2

)

�

det

�

!I(

a

2

) +B(

a

2

;

m

2

)

�

;

where ! is a primitive sixth root of unity, eah of whih an be omputed by appliation

of Theorem 12. The result is the �rst expression in (3.1).

On the other hand, if a is odd, then analogous arguments yield

D

0

= det

�

I(

a+1

2

) +B(

a+1

2

;

m

2

) +B

()

(

a+1

2

;

m

2

)B

(r)

(

a+1

2

;

m

2

)

�

; (4.4)

where B

()

(

a+1

2

;

m

2

) is the (

a+1

2

)� (

a�1

2

) matrix whih arises from B(

a+1

2

;

m

2

) by deleting

its last olumn, while B

(r)

(

a+1

2

;

m

2

) is the (

a�1

2

)� (

a+1

2

) matrix whih arises from B by

deleting its last row.

It is easy to hek that

I(

a+1

2

)+B(

a+1

2

;

m

2

)+B

()

(

a+1

2

;

m

2

)B

(r)

(

a+1

2

;

m

2

) = (I(

a+1

2

)+B)

�

I(

a+1

2

) +B(

a+1

2

;

m

2

� 1)

�

;

where B is the (

a+1

2

) � (

a+1

2

)-matrix with (i; j)-entry

�

m

2

+i+j�1

j�1

�

, 0 � i; j � (a � 1)=2.

(So the �rst olumn of B is zero). We expand det(I(

a+1

2

) +B) with respet to the �rst

olumn and get det(I(

a�1

2

) +B(

a�1

2

;

m

2

+ 1)).

Therefore, in the ase of even m and odd a, we have

D

0

= det

�

I(

a+1

2

) +B(

a+1

2

;

m

2

� 1)

�

det

�

I(

a�1

2

) +B(

a�1

2

;

m

2

+ 1)

�

:

Both determinants an be evaluated by means of Theorem 10. The result is the seond

expression in (3.1).

Now let m be odd. We proeed analogously. If a is even, then reordering rows and

olumns aording to the parity of the indies gives

D

0

= det

�

I(

a

2

) +B(

a

2

;

m�1

2

) 0

B(

a

2

;

m+1

2

) I(

a

2

)�B(

a

2

;

m+1

2

)

�

= det

�

I(

a

2

) +B(

a

2

;

m�1

2

)

�

det

�

I(

a

2

)� B(

a

2

;

m+1

2

)

�

:

The �rst determinant is evaluated by means of Theorem 10, while the seond is evalu-

ated by means of Theorem 11. The result is the third expression in (3.1).

Finally, if a is odd we get

D

0

= det

�

I(

a+1

2

) +B(

a+1

2

;

m�1

2

) 0

B

(r)

(

a+1

2

;

m+1

2

) I(

a�1

2

)� B(

a�1

2

;

m+1

2

)

�

= det

�

I(

a+1

2

) +B(

a+1

2

;

m�1

2

)

�

det

�

I(

a�1

2

)� B(

a�1

2

;

m+1

2

)

�

:

Again, the �rst determinant is evaluated by means of Theorem 10, while the seond is

evaluated by means of Theorem 11. The result is the fourth expression in (3.1). �
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5. Lozenge tilings, noninterseting lattie paths, and determinants

The purpose of this setion is to derive determinants for the ordinary and (�1)-

enumeration of lozenge tilings of ored hexagons (see Lemmas 15 and 16). We �nd

these determinants by �rst translating the lozenge tilings to noninterseting lattie

paths, and subsequently applying the Lindstr�om{Gessel{Viennot theorem (stated here

as Lemma 14).

From lozenge tilings to noninterseting lattie paths. There is a well-known trans-

lation of lozenge tilings to families of noninterseting lattie paths. We start with a

lozenge tiling of the ored hexagon (see Figure 8.a). We mark the midpoints of the

edges along the sides of length a and a+m and along the side of the triangle whih is

parallel to them (see Figure 8.b). Now, in the same way as in the proof of Theorem 7

in the preeding setion, we onnet these points by paths whih \follow" along the

lozenges of the tiling, as is illustrated in Figure 8.b. Clearly, the resulting paths are

noninterseting, i.e., no two paths have a ommon vertex. If we slightly distort the

underlying lattie, we get orthogonal paths with positive horizontal and negative ver-

tial steps (see Figure 8.). In the ase that a, b and  have the same parity, we an

introdue a oordinate system in a way so that the oordinates of the starting points

A

i

and end points E

j

are

A

i

= (i� 1; +m+ i� 1); i = 1; 2; : : : ; a; (5.1a)

A

i

=

�

a + b

2

+ i� a� 1;

a+ 

2

+ i� a� 1

�

; i = a + 1; a+ 2; : : : ; a+m; (5.1b)

E

j

= (b + j � 1; j � 1); j = 1; 2; : : : ; a+m; (5.1)

see Figure 8..

Suppose now that the parity of a is di�erent from that of b and , whih is the ase in

Theorems 2 and 5. Sine in this ase the ore is slightly o� the \truly entral" position

(beause the triangle in the \truly entral" position would not be a lattie triangle; see

the de�nitions in the Introdution), the starting points of the lattie paths originating

at boundary points of the ore are hanged slightly as well. The starting and ending

points beome

A

i

= (i� 1; +m + i� 1); i = 1; 2; : : : ; a; (5.2a)

A

i

=

�

a + b� 1

2

+ i� a� 1;

a+ � 1

2

+ i� a� 1

�

; i = a + 1; a+ 2; : : : ; a+m;

(5.2b)

E

j

= (b+ j � 1; j � 1); j = 1; 2; : : : ; a+m: (5.2)

In either ase, the lozenge tiling an be reovered from the path family, so that it

suÆes to ount the families of noninterseting lattie paths with the above-mentioned

starting and end points.

From noninterseting lattie paths to a determinant. In order to ount these families

of noninterseting lattie paths, we make use of a result due to Lindstr�om [24, Lemma 1℄

and independently to Gessel and Viennot [13, Theorem 1℄. In fat, it is the not so well-

known general form of the result whih we need here. In order to state this result, we
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a. A lozenge tiling of the ored hexagon in Figure 1

a

b+m

	



+m

8

>

>

<

>

>

:

b

a+m

)

m

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

<

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

b. The orresponding path family

. The path family made orthogonal

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

Æ

Æ
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1
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1

Æ

Æ

A
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Æ

Æ

A
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E
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Æ

Æ

A

4

E

2

Æ

Æ

A

5

E

3

Figure 8

introdue some lattie path notation. We write P(A ! E) for the number of paths

starting at A and ending at E. Given two sets A = fA

1

; : : : ; A

n

g and E = fE

1

; : : : ; E

n

g

of lattie points and a permutation �, we write P(A ! E

�

; nonint.) for the number

of families of n noninterseting paths with the ith path running from A

i

to E

�(i)

,

i = 1; 2; : : : ; n.

Now we an state the main result on noninterseting lattie paths (see [24, Lemma 1℄

or [13, Theorem 1℄).

Lemma 14. Let A

1

; A

2

; : : : ; A

n

; E

1

; E

2

; : : : ; E

n

be points of the planar integer lattie.

Then the following identity holds:

det

1�i;j�n

(P(A

i

! E

j

)) =

X

�2S

n

(sgn �) � P(A! E

�

; nonint.): (5.3)

�

Remark. The result in [24℄, respetively [13℄, is in fat more general, as it is formulated

for paths in an arbitrary oriented graph. But then the graph must satisfy an ayliity
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ondition. We have not mentioned it in the formulation of the above lemma as it is

automatially satis�ed in our more restrited setting.

Usually, this lemma is applied in the ase that the only permutation for whih non-

interseting lattie paths exist is the identity permutation, so that the sum on the

right-hand side redues to a single term, whih ounts all families (P

1

; P

2

; : : : ; P

n

) of

noninterseting lattie paths, the ith path P

i

running from A

i

to E

i

, i = 1; 2; : : : ; n.

(The only exeptions that we are aware of, i.e., appliations of the above formula in

the ase where the sum on the right-hand side does not redue to a single term, an

be found in [8℄, [24℄, and [42℄.) This is, however, not exatly the situation that we

enounter in our problem. Therefore, it seems that Lemma 14 is not suited for our

problem. However, our hoie of starting and end points (see Figure 8.) implies that

noninterseting lattie paths are only possible if m onseutive end points (m being the

side length of the equilateral triangle removed from the hexagon) are paired with the

starting points from the triangle. So the orresponding permutation �, whih desribes

in whih order the starting points are onneted to the end points, di�ers from the

identity permutation by a omposition of yles of length m + 1. Thus, if m is even,

we have sgn � = 1, so that the right-hand side in Lemma 14 ounts exatly all nonin-

terseting lattie path families and, thus, all the lozenge tilings that we are interested

in.

On the other hand, if m is odd, then the sign of the permutation � will not be 1

always. In fat, as is straightforward to see, the sign of � is 1 if the number of paths

whih pass the ore on the right is even, and is �1 otherwise. If this is translated

bak to the original lozenge tiling, T say, then it follows that sgn � is exatly equal to

(�1)

n(T )

, with the statisti n(:) from Setion 2. Thus, in the ase that m is odd, the

determinant in Lemma 14 gives exatly the (�1)-enumeration of our lozenge tilings.

Sine the number of paths from (x

1

; y

1

) to (x

2

; y

2

) with positive horizontal and neg-

ative vertial steps equals the binomial oeÆient

�

x

2

�x

1

+y

1

�y

2

x

2

�x

1

�

, our �ndings so far an

be summarized as follows.

Lemma 15. Let a; b; ;m be nonnegative integers, a; b;  having the same parity. If m is

even, then the number of lozenge tilings of a hexagon with sides a; b+m; ; a+m; b; +m,

with an equilateral triangle of side length m removed from its enter, equals

det

1�i;j�a+m

0

B

B

�

�

b + +m

b� i + j

�

1 � i � a

�

b+

2

b+a

2

� i+ j

�

a+ 1 � i � a+m

1

C

C

A

: (5.4)

If m is odd, then the weighted ount

P

(�1)

n(T )

, where T varies through all the above

lozenge tilings, is equal to the above determinant.

Lemma 16. Let a; b; ;m be nonnegative integers, a of parity di�erent from the parity

of b and . If m is even, then the number of lozenge tilings of a hexagon with sides

a; b+m; ; a+m; b; +m, with an equilateral triangle of side length m removed that is
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a

b +m

o



+m

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

b

a +m

9

>

>

=

>

>

;

m

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Figure 9. A lozenge tiling of a hexagon with sides a = 5, b = 3,  = 1 and

removed triangle of side length m = 2 and the orresponding paths.

\entral" in the sense that was desribed in the Introdution, equals

det

1�i;j�a+m

0

B

B

�

�

b + +m

b� i + j

�

1 � i � a

�

b+

2

b+a+1

2

� i+ j

�

a+ 1 � i � a+m

1

C

C

A

: (5.5)

If m is odd, then the weighted ount

P

(�1)

n(T )

, where T varies through all the above

lozenge tilings, is equal to the above determinant.

6. Polynomiality of the number of lozenge tilings

The goal of this setion is to establish polynomiality in m| the side of the ore | of

the weighted ounts of lozenge tilings onsidered in Theorems 1, 2, 4, 5, provided a; b; 

are �xed. Below we just address the ase that a, b and  have the same parity (i.e., the

ase onsidered in Theorems 1 and 4), the other ase being ompletely analogous.

We set up a bijetion between the lozenge tilings of our ored hexagon and nonin-

terseting lattie paths in a manner di�erent from the one in the preeding setion.

We start by extending all sides of the removed triangle to the left (if viewed from the

interior of the triangle; see Figure 9, where these extensions are marked as thik seg-

ments). These segments partition the ored hexagon into three regions. Furthermore,

the segments ut some of the lozenges in two. (In Figure 9 these lozenges are shaded.)

In eah of the three regions, we mark the midpoints of those edges of the \ut" lozenges

and of those edges along the border of the region that are not parallel to the \thik"

segments bordering this region (see Figure 9). Now, in eah of the three regions, we

onnet the marked points by \following" along the lozenges of the tiling, in the same

way as in Setion 4 (in the proof of Theorem 7), and in Setion 5 (see Figure 8.b). The

lozenge tiling an be reovered from the three noninterseting path families. Thus this

de�nes indeed a bijetion.
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Hene, if we �x the lozenges that are ut in two by the segments, the orresponding

number of lozenge tilings whih ontain these �xed \ut" lozenges is easily omputed

by applying the Lindstr�om{Gessel{Viennot theorem (Lemma 14) to eah of the three

regions separately. This gives a produt of three determinants, one for eah region. The

total number of lozenge tilings is then obtained as the sum over all possible hoies of

\ut" lozenges (along the segments) of this produt of three determinants.

It is easy to see that eah entry in any of the three determinants is a binomial

oeÆient of the form

�

m+x

y

�

, where x and y are independent of m. So the entries are

polynomials in m, and, hene, the determinants as well. The segment whih extends

the side of the removed triangle that is parallel to a has length minf

a+b

2

;

a+

2

g, whih is

independent of m, similarly for the other lines. The total number of lozenge tilings is

thus equal to a sum of polynomials in m, where the range of summation is independent

of m. Therefore it is itself a polynomial in m, as was laimed.

Basially, the same arguments hold also for (�1)-enumeration. The only di�erene is

that eah produt of three determinants is multiplied by a sign, depending (aording to

the de�nition of our statisti n) on the parity of the number of lozenge sides ontained

in the northeastern extension of the bottom side of the ore. However, this number

equals the length of this extension minus the number of lozenges the extension uts

through, and is therefore again independent of m.

7. Determinant evaluations, I

In this setion we evaluate the determinant in Lemma 15. The underlying matrix is

a mixture of two matries. If we would have to ompute the determinant of just one

of the matries (i.e., if we onsider the ase a = 0 or m = 0), then the determinant

ould be easily evaluated (see (12.5)). However, the mixture is muh more diÆult to

evaluate. As it turns out, we have to distinguish between several ases, depending on

the parities of a and m.

It is onvenient to take (b + +m)!

Æ

(b+ a +m� i)! (+m+ i� 1)! out of the ith

row, i = 1; 2; : : : ; a, and

�

b+

2

�

!

Æ�

b+3a

2

+m� i

�

!

�

�a

2

+ i� 1

�

! out of the ith row, i =

a + 1; a+ 2; : : : ; a+m. This gives

det

1�i;j�a+m

0

B

B

�

�

b + +m

b� i + j

�

1 � i � a

�

b+

2

b+a

2

� i+ j

�

a+ 1 � i � a+m

1

C

C

A

=

a

Y

i=1

(b + +m)!

(b + a+m� i)! (+m + i� 1)!

a+m

Y

i=a+1

�

b+

2

�

!

�

b+3a

2

+m� i

�

!

�

�a

2

+ i� 1

�

!

� det

1�i;j�a+m

�

(+m+ i� j + 1)

j�1

(b� i+ j + 1)

a+m�j

1 � i � a

�

�a

2

+ i� j + 1

�

j�1

�

b+a

2

� i + j + 1

�

a+m�j

a < i � a+m

�

: (7.1)

Thus it suÆes to evaluate the determinant on the right-hand side. The advantage

is that this determinant is a polynomial in b and . This enables us to apply the

\identi�ation of fators" method, as proposed in [20, Se. 2.4℄. The four lemmas

below address the four di�erent ases, as a and m vary through all possible parities.
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Lemma 17. Let a and m be both even nonnegative integers. Then

det

1�i;j�a+m

�

(+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�

�a

2

+ i� j + 1

�

j�1

�

b+a

2

� i+ j + 1

�

a+m�j

a < i � a+m

�

=

H(a+m) H(

a

2

)

2

H(

m

2

)

2

H(

a+m

2

)

2

2

m(a+m�1)=2

m=2

Y

k=1

�

b

2

+ k

�

2

a=2

�



2

+ k

�

2

a=2

a=2�1

Y

k=0

(b + +m + 2k + 1)

a�2k�1

�

a=2�1

Y

k=1

(b + + 2m+ 2k)

a�2k

m

Y

k=m=2+1

(b + + 2k)

a+m�k

m=2

Y

k=1

(b + + 2k)

m�k

: (7.2)

Proof. Let us denote the determinant in (7.2) by D

1

(b; ).

We proeed in several steps. An outline is as follows. The determinant D

1

(b; ) is

obviously a polynomial in b and . In Steps 1{5 we show that the right-hand side of

(7.2) divides D

1

(b; ) as a polynomial in b and . In Step 6 we show that the degree of

D

1

(b; ) as a polynomial in b is at most

�

a+m

2

�

. Of ourse, the same is true for the degree

in . On the other hand, the degree of the right-hand side of (7.2) as a polynomial in b

is exatly

�

a+m

2

�

. It follows that D

1

(b; ) must equal the right-hand side of (7.2) times a

quantity whih does not depend on b. This quantity must be polynomial in . But, in

fat, it annot depend on  as well, beause, as we just observed, the degree in  of the

right-hand side of (7.2) is already equal to the maximal degree in  of D

1

(b; ). Thus,

this quantity is a onstant with respet to b and . That this onstant is equal to 1 is

�nally shown in Step 7, by evaluating the determinant D

1

(b; ) for b =  = 0.

Before we begin with the detailed desription of the individual steps, we should ex-

plain the odd looking ourrenes of \e � a mod 2" below (e.g., in Step 1(a){(d)).

Clearly, in the present ontext this means \e � 0 mod 2", as a is even by assump-

tion. However, Steps 1{6 will also serve as a model for the proofs of the subsequent

Lemmas 18{20. Consequently, formulations are hosen so that they remain valid with-

out hange at the orresponding plaes. In partiular, in the ontext of the proofs of

Lemmas 18 and 20, the statement \e � a mod 2" will mean \e � 1 mod 2".

Step 1.

Q

m=2

k=1

�

b

2

+ k

�

2

a=2

�



2

+ k

�

2

a=2

divides the determinant. The original determinant

is symmetri in b and  for ombinatorial reasons. The fators whih were taken out of

the determinant in (7.1) are also symmetri in b and  (this an be seen by reversing all

the produts involving ). Therefore it suÆes to hek that the linear fators involving

b divide D

1

(b; ), i.e., that the produt

Q

m=2

k=1

�

b

2

+ k

�

2

a=2

divides D

1

(b; ).

We distinguish between four subases, labeled below as (a), (b), (), and (d).

(a) (b + e)

e

divides D

1

(b; ) for 1 � e � minfa;mg, e � a mod 2: This follows from

the easily veri�ed fat that (b + e) is a fator of eah entry in the �rst e olumns of

D

1

(b; ).

(b) (b + e)

m

divides D

1

(b; ) for m < e < a, e � a mod 2: We prove this by �nding

m \di�erent" linear ombinations of the olumns of D

1

(b; ) whih vanish for b = �e.

By the term \di�erent" we mean that these linear ombinations are themselves linearly

independent. (Equivalently, we �nd m linearly independent vetors in the kernel of the

linear operator de�ned by the matrix underlying D

1

(�e; ).) See Setion 2 of [19℄, and

in partiular the Lemma in that setion, for a formal justi�ation of this proedure.
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To be preise, we laim that the following equation holds for s = 1; 2; : : : ; m,

e+s�m

X

j=1

�

e�m+ s� 1

j � 1

�

(+ a� e� s+ 2m + 1)

e+s�j�m

(a� e� s+ 2m + 1)

e+s�j�m

� (olumn j of D

1

(�e; )) = 0:

(7.3)

Sine the entries of D

1

(b; ) have a split de�nition (see (7.2)), for the proof of the

above equation we have to distinguish between two ases. If we restrit (7.3) to the ith

row, i � a, then (7.3) beomes

e+s�m

X

j=1

�

e�m + s� 1

j � 1

�

(+ a� e� s+ 2m+ 1)

e+s�j�m

(a� e� s + 2m+ 1)

e+s�j�m

� (+m + i� j + 1)

j�1

(�e� i + j + 1)

a+m�j

= 0; (7.4)

whereas on restrition to the ith row, i > a, equation (7.3) beomes

e+s�m

X

j=1

�

e�m + s� 1

j � 1

�

(+ a� e� s+ 2m+ 1)

e+s�j�m

(a� e� s + 2m+ 1)

e+s�j�m

�

�

�a

2

+ i� j + 1

�

j�1

�

�e+a

2

� i + j + 1

�

a+m�j

= 0: (7.5)

First, let i � a. Here and in the following, we make use of the usual hypergeometri

notation

r

F

s

�

a

1

; : : : ; a

r

b

1

; : : : ; b

s

; z

�

=

1

X

k=0

(a

1

)

k

� � � (a

r

)

k

k! (b

1

)

k

� � � (b

s

)

k

z

k

: (7.6)

In this notation, the sum on the left-hand side of (7.4) reads

(2� e� i)

�1+a+m

(1 + a + � e + 2m� s)

�1+e�m+s

(1 + a� e+ 2m� s)

�1+e�m+s

�

3

F

2

�

1� � i�m; 1� e +m� s; 1� a�m

1� a� �m; 2� e� i

; 1

�

:

Next we use a transformation formula due to Thomae [43℄ (see also [10, (3.1.1)℄),

3

F

2

�

A;B;�n

D;E

; 1

�

=

(E �B)

n

(E)

n

3

F

2

�

�n;B;D � A

D; 1 +B � E � n

; 1

�

; (7.7)

where n is a nonnegative integer. This gives

(1 + a+ � e+ 2m� s)

e�m+s�1

(1� i�m+ s)

a+m�1

(1 + a� e+ 2m� s)

e�m+s�1

�

3

F

2

�

1� a�m; 1� e +m� s;�a+ i

1� a� �m; 1� a+ i� s

; 1

�

:

The fator (1� i�m + s)

a+m�1

vanishes for i � a and the denominator is never zero,

so the sum in (7.4) equals zero, as desired.
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We proeed similarly in order to prove (7.5) for i > a. The hypergeometri form of

the sum in (7.5) is

(2 +

a

2

�

e

2

� i)

a+m�1

(1 + a+ � e+ 2m� s)

e�m+s�1

(1 + a� e+ 2m� s)

e�m+s�1

�

3

F

2

�

1 +

a

2

�



2

� i; 1� a�m; 1� e+m� s

1� a� �m; 2 +

a

2

�

e

2

� i

; 1

�

:

Using the transformation formula (7.7) again, we get

(1 +

a

2

+

e

2

�m� i+ s)

a+2m�e�s

(1 +

3a

2

�

e

2

� i +m)

e�m+s�1

�

(1 + a+ � e+ 2m� s)

e�m+s�1

(1 + a� e+ 2m� s)

e�m+s�1

�

3

F

2

�

1� e+m� s; 1� a�m;�

3a

2

�



2

+ i�m

1� a� �m; 1�

3 a

2

�

e

2

+ i� s

; 1

�

:

This expression is zero, beause the fator (1+

a

2

+

e

2

�m�i+s)

a+2m�e�s

vanishes for i > a

(it is here where we need e � a mod 2, beause this guarantees that 1+

a

2

+

e

2

�m� i+s

is an integer). So the sum in (7.5) equals zero, as desired.

() (b + e)

a

divides D

1

(b; ) for a < e < m, e � a mod 2: Proeeding in the spirit

of ase (b), we prove this by �nding a linear ombinations of the olumns of D

1

(b; )

whih vanish for b = �e. To be preise, we laim that the following equation holds for

s = 1; 2; : : : ; a:

e�a

2

+s

X

j=1

�

e�a

2

+ s� 1

j � 1

�

�



2

+m�

e

2

+ a� s+ 1

�

(e�a)=2+s�j

�

m +

3a�e

2

� s+ 1

�

(e�a)=2+s�j

� (olumn j of D

1

(�e; )) = 0:

(7.8)

In order to prove this equation, we �rst restrit it to the ith row, i � a. Then, in

hypergeometri notation, the left-hand side reads

(2� e� i)

a+m�1

(1 + a +



2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

(1 +

3 a

2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

�

3

F

2

�

1� a�m; 1� � i�m; 1 +

a

2

�

e

2

� s

1�

a

2

�



2

�m; 2� e� i

; 1

�

:

We apply the transformation formula (7.7) and get

(1 + � e+m)

e

2

�

a

2

+s�1

(1 + a+



2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

�

(1�

a

2

�

e

2

� i+ s)

3 a

2

�

e

2

+m�s

(1 +

3 a

2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

3

F

2

�

1 +

a

2

�

e

2

� s; 1� � i�m;

a

2

�



2

1�

a

2

�



2

�m; 1 +

a

2

� +

e

2

�m� s

; 1

�

:

This expression is zero beause the fator (1�

a

2

�

e

2

� i + s)

3a

2

�

e

2

+m�s

vanishes.
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If instead we restrit the left-hand side of (7.8) to the ith row, i > a, and onvert it

into hypergeometri form, then we obtain

(2 +

a

2

�

e

2

� i)

a+m�1

(1 + a+



2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

(1 +

3 a

2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

�

3

F

2

�

1 +

a

2

�



2

� i; 1� a�m; 1 +

a

2

�

e

2

� s

1�

a

2

�



2

�m; 2 +

a

2

�

e

2

� i

; 1

�

:

We apply again the transformation formula (7.7). This gives

(1 + a+



2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

(1� i + s)

�1+a+m

(1 +

3a

2

�

e

2

+m� s)

�1�

a

2

+

e

2

+s

�

3

F

2

�

1 +

a

2

�

e

2

� s; 1� a�m;�a + i�m

1�

a

2

�



2

�m; 1� a+ i�m� s

; 1

�

:

This expression is zero beause the fator (1� i+ s)

�1+a+m

vanishes for a + 1 � i �

a +m. So the sum in (7.8) equals zero, as desired.

(d) (b+ e)

a+m�e

divides D

1

(b; ) for maxfa;mg � e � a+m� 1, e � a mod 2: Still

proeeding in the spirit of ase (b), this time we �nd a+m� e linear ombinations of

the rows of D

1

(b; ) whih vanish for b = �e. To be preise, we laim that the following

equation holds for s = 1; 2; : : : ; a+m� e:

s

X

i=1

�

s� 1

i� 1

�

(�1)

i

�

�e

2

+ 1

�

a+m�s

�

�e

2

+m

�

i�1

(1 + � e +m)

a+m�s+i�1

� (row (a+m� e� s+ i) of D

1

(�e; ))

+ (row

�

m+

3a

2

�

e

2

� s+ 1

�

of D

1

(�e; )) = 0: (7.9)

In the sum, it is only the �rst a rows whih are involved, whereas the extra term is

a row out of the last m rows of the determinant. Therefore, by restrition to the jth

olumn, we see that it is equivalent to

s

X

i=1

�

s� 1

i� 1

�

(�1)

i

�

�e

2

+ 1

�

a+m�s

�

�e

2

+m

�

i�1

(1 + � e +m)

a+m�s+i�1

� (a+ + 2m� e� s+ i� j + 1)

j�1

(�a�m+ s� i+ j + 1)

a+m�j

+

�

�e

2

+ a+m� s� j + 2

�

j�1

(�a�m + s+ j)

a+m�j

= 0: (7.10)

We treat the ases j � a +m � s and j > a +m � s separately. For j � a +m � s

the fator (�a � m + s � i + j + 1)

a+m�j

, whih appears in the sum, is zero for all

the summands, as well is the fator (�a�m + s+ j)

a+m�j

, whih appears in the extra

term in (7.10).

For j > a+m� s we onvert the sum in (7.10) into hypergeometri form and get

�(1 +



2

�

e

2

)

a+m�s

(2 + a+ � e� j + 2m� s)

�1+j

(�a + j �m+ s)

a�j+m

(1 + � e+m)

a+m�s

�

2

F

1

�



2

�

e

2

+m; 1 + a� j +m� s

2 + a + � e� j + 2m� s

; 1

�

:
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We an evaluate the

2

F

1

-series by the Chu{Vandermonde summation formula (see

[36, (1.7.7), Appendix (III.4)℄),

2

F

1

�

A;�n

C

; 1

�

=

(C � A)

n

(C)

n

; (7.11)

where n is a nonnegative integer. Thus we get

�(2 + a +



2

�

e

2

� j +m� s)

j�1

(�a + j �m+ s)

a�j+m

: (7.12)

It is easily seen that adding the extra term in (7.10) gives zero.

Step 2.

Q

a=2�1

k=0

(b + +m+ 2k + 1)

a�2k�1

divides the determinant. We �nd e + 1

linear ombinations of the rows of D

1

(b; ) whih vanish for b = ��a�m+1+e. To be

preise, we laim that the following equation holds for 0 � e � a�2, s = 1; 2; : : : ; e+1:

a�e�1

X

i=1

�

(+m + i)

a�e�i+s�1

(� e� 1 + i)

a�e�i+s�1

�

a� e� 2

i� 1

�

(s)

a�e�1

(�1)

i

(s� i+ a� e� 1)(a� e� 2)!

� (row i of D

1

(�� a�m+ 1 + e; ))

�

+ (�1)

a�e�1

� (row (a� e� 1 + s) of D

1

(�� a�m+ 1 + e; )) = 0: (7.13)

Restrited to the jth olumn, and onverted into hypergeometri notation, the sum

in (7.13) reads

�

(1� a� + e + j �m)

a�j+m

(1 + +m)

a�e+s�2

(2 + � j +m)

j�1

(s)

a�e�2

(1)

a�e�2

(� e)

a�e+s�2

�

3

F

2

�

2� a+ e� s; a+ � e� j +m; 2� a+ e

3� a + e� s; 2 + � j +m

; 1

�

:

Here we use the Pfa�{Saalsh�utz summation formula (see [36, (2.3.1.3), Appen-

dix (III.2)℄)

3

F

2

�

A;B;�n

C; 1 + A+B � C � n

; 1

�

=

(C � A)

n

(C �B)

n

(C)

n

(C � A�B)

n

; (7.14)

where n is a nonnegative integer. Thus we get

(�1)

a�e�1

(1 + +m)

a�e+s�2

(2 + � j +m)

j�1

�

(3� 2 a� + 2 e+ j �m� s)

a�e�2

(� e)

a�e+s�2

(1� + e)

�2�e+j�m

:

It is easily veri�ed that adding the jth oordinate of the extra term in (7.13) gives zero,

as desired. For now, we need equation (7.13) only for even e.

Step 3.

Q

a=2�1

k=1

(b+  + 2m+ 2k)

a�2k

divides the determinant. We �nd e linear om-

binations of the olumns of D

1

(b; ) whih vanish for b = � � 2m � a + e. To be

preise, we laim that the following equation holds for 0 < e � a, e � a mod 2, and

s = 1; 2; : : : ; e:

a+m+s�e

X

j=s

�

a+m� e

j � s

�

� (olumn j of D

1

(�� 2m� a+ e; )) = 0: (7.15)
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Restrited to the ith row, i � a, and onverted into hypergeometri notation, the

left-hand side sum in (7.15) reads

(1 + + i +m� s)

s�1

(1� a� + e� i� 2m+ s)

a+m�s

�

2

F

1

�

�� i�m + s;�a+ e�m

1� a�  + e� i� 2m+ s

; 1

�

:

This is summable by the Chu{Vandermonde summation formula (7.11). We get

(1� a+ e�m)

a�e+m

(1 +  + i+m� s)

s�1

(1�  + e� i�m)

s�e

:

This expression equals zero beause the fator (1� a+ e�m)

a�e+m

vanishes.

On the other hand, if i > a, the left-hand side sum in (7.15), restrited to the ith

row and onverted into hypergeometri from, reads

(1�

a

2

+



2

+ i� s)

s�1

(1�



2

+

e

2

� i�m+ s)

a+m�s

�

2

F

1

�

a

2

�



2

� i + s;�a+ e�m

1�



2

+

e

2

� i�m + s

; 1

�

:

The Chu{Vandermonde summation formula (7.11) turns this expression into

(1�

a

2

+

e

2

�m)

a�e+m

(1�

a

2

+



2

+ i� s)

s�1

(1 + a�



2

+

e

2

� i)

�e+s

:

This expression is zero beause the fator (1�

a

2

+

e

2

�m)

a�e+m

vanishes for e � a mod

2. So the sum in (7.15) is zero, as desired.

Step 4.

Q

m

k=m=2+1

(b+  + 2k)

a+m�k

divides the determinant. We �nd a+m�e linear

ombinations of the olumns of D

1

(b; ) whih vanish for b = ��2e. To be preise, we

laim that the following equation holds for m=2 < e � m and s = 1; 2; : : : ; a+m� e:

s+e

X

j=s

�

e

j � s

�

� (olumn j of D

1

(�� 2e; )) = 0: (7.16)

Restrited to the ith row, i � a, and onverted into hypergeometri notation, the

left-hand side sum in (7.16) reads

(1 + + i +m� s)

s�1

(1� � 2e� i + s)

a+m�s 2

F

1

�

�� i�m + s;�e

1� � 2e� i+ s

; 1

�

:

The result after appliation of the Chu{Vandermonde summation formula (7.11) is

(1� 2e+m)

e

(1 + + i+m� s)

s�1

(1 + a� � 2e� i+m)

�a+e�m+s

:

This expression equals zero beause the fator (1� 2e+m)

e

vanishes.

On the other hand, if i > a, the left-hand side sum in (7.16), restrited to the ith

row and onverted into hypergeometri from, reads

(1 �

a

2

+



2

+ i � s)

s�1

(1 +

a

2

�



2

� e � i + s)

a+m�s 2

F

1

�

a

2

�



2

� i+ s;�e

1 +

a

2

�



2

� e� i+ s

; 1

�

:
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Chu-Vandermonde summation (7.11) yields

(1� e)

e

(1�

a

2

+



2

+ i� s)

s�1

(1 +

3 a

2

�



2

� e� i+m)

�a+e�m+s

:

This expression is zero beause the fator (1 � e)

e

vanishes. So the sum in (7.16) is

zero, as desired.

Step 5.

Q

m=2

k=1

(b+  + 2k)

m�k

divides the determinant. We �nd e linear ombinations

of the rows of D

1

(b; ) whih vanish for b = �� 2m+2e. To be preise, we laim that

the following equation holds for e � m� 1 and s = 1; 2; : : : ; e:

m�s+1

X

i=1

(�1)

i

�

m� s

i� 1

�

�



2

+

a

2

+ i

�

m�s�i+1

�



2

�

a

2

� e+ i

�

m�s�i+1

� (row (a + i) of D

1

(�� 2m+ 2e; )) = 0: (7.17)

Restrited to the jth row, and onverted into hypergeometri notation, the left-hand

side sum in (7.17) reads

�

(1 +

a

2

+



2

)

m�s

(2 +

a

2

+



2

� j)

j�1

(�

a

2

�



2

+ e+ j �m)

a�j+m

(1�

a

2

+



2

� e)

m�s

�

2

F

1

�

1 +

a

2

+



2

� e� j +m;�m + s

2 +

a

2

+



2

� j

; 1

�

:

After applying Chu{Vandermonde summation (7.11) again, we obtain

� (1 +

a

2

+



2

)

m�s

(1 + e�m)

m�s

�

(�

a

2

�



2

+ e+ j �m)

a�j+m

(2 +

a

2

+



2

� j +m� s)

j�m+s�1

(1�

a

2

+



2

� e)

m�s

:

This expression equals zero beause the fator (1 + e�m)

m�s

vanishes. So the sum in

(7.17) is zero, as desired.

Step 6. Determination of the degree of D

1

(b; ) as a polynomial in b. Obviously the

degree of the (i; j)-entry of D

1

(b; ) as a polynomial in b is a+m� j. Therefore, if we

expand the determinant D

1

(b; ) aording to its de�nition as a sum over permutations,

eah term in this expansion has degree

�

a+m

2

�

in b. Hene, D

1

(b; ) itself has degree at

most

�

a+m

2

�

in b.

Step 7. Computation of the multipliative onstant. As we observed at the beginning

of this proof, Steps 1{6 show that the determinant D

1

(b; ) is equal to the right-hand

side of (7.2) up to multipliation by a onstant. To determine this onstant, it suÆes

to ompute D

1

(b; ) for some partiular values of b and . We hoose b =  = 0. The

value of D

1

(0; 0) is most easily determined by going bak, via (7.1) and Lemma 15, to

the origin of the determinant D

1

(b; ), whih is enumeration of lozenge tilings. Figure 10

shows the typial situation for b =  = 0. As the �gure illustrates, there is exatly one

lozenge tiling of the region. Hene, by Lemma 15, it follows that the determinant (5.4)

must be equal to 1 for b =  = 0. If we substitute this into (7.1), we have evaluated

D

1

(b; ), whih is the determinant on the right-hand side of (7.1), for b =  = 0. It is

then a routine task to hek that the result agrees exatly with the right-hand side of

(7.2) for b =  = 0.
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Figure 10. The unique lozenge tiling for b =  = 0

This ompletes the proof of the lemma. �

Lemma 18. Let a and m be nonnegative integers, a odd and m even. Then

det

1�i;j�a+m

�

(+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�

�a

2

+ i� j + 1

�

j�1

�

b+a

2

� i+ j + 1

�

a+m�j

a < i � a+m

�

=

H(a+m) H(

a�1

2

) H(

a+1

2

) H(

m

2

)

2

H(

a+m�1

2

) H(

a+m+1

2

) 2

m(a+m�1)=2

�

m=2

Y

k=1

�

b�1

2

+ k

�

(a+1)=2

�

b+1

2

+ k

�

(a�1)=2

�

�1

2

+ k

�

(a+1)=2

�

+1

2

+ k

�

(a�1)=2

�

(a�1)=2�1

Y

k=0

(b + +m+ 2k + 1)

a�2k�1

(a�1)=2

Y

k=1

(b+  + 2m+ 2k)

a�2k

�

m

Y

k=m=2+1

(b + + 2k)

a+m�k

m=2

Y

k=1

(b + + 2k)

m�k

: (7.18)

Proof. We proeed analogously to the proof of Lemma 17. The only di�erene is the

parity of a, so we have to read through the proof of Lemma 17 and �nd the plaes

where we used the fat that a is even.

As it turns out, the arguments in Steps 1{5 in the proof of Lemma 17 an be used

here, pratially without hange, to establish that the right-hand side of (7.18) divides

the determinant on the left-hand side of (7.18) as a polynomial in b and . Di�er-

enes arise only in the produts orresponding to eah subase (for example, the ar-

guments in Step 3 of the proof of Lemma 17 prove that

Q

a=2�1

k=1

(b + + 2m+ 2k)

a�2k

divides the determinant D

1

(b; ) if a is even, while for odd a they prove that

Q

(a�1)=2

k=1

(b + + 2m+ 2k)

a�2k

divides D

1

(b; )), and in the fat that in Step 2 we are

now interested in the fators orresponding to odd values of e, 1 � e � a� 2 (beause

here the fators with even e are overed by Steps 3 and 4).
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=

>
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>
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>

>
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A

4

A

5

Figure 11. A lozenge tiling and the orresponding path family for b =  = 1, a = 5

Also Step 6, the determination of a degree bound on the determinant, an be used

verbatim.

For the determination of the multipliative onstant relating the right-hand and the

left-hand side of (7.18), we have to modify however the arguments in Step 7 of the proof

of Lemma 17. We determine the onstant by omputing the determinant for b =  = 1.

Again, this value is most onveniently found by going bak, via (7.1) and Lemma 15,

to the ombinatorial root of the determinant, whih is enumeration of lozenge tilings.

We laim that the number of lozenge tilings for b =  = 1, a odd and m even, equals

2

�

m+ 1 +

a�1

2

a�1

2

�

: (7.19)

This an be read o� Figure 11, whih shows a typial example of the ase b =  = 1:

The path starting at A

a+1

2

(see the labeling in Figure 11; it is derived from the labeling

of starting points of paths in Figure 8) must pass either to the right or to the left of

the triangle. Sine the hexagon is symmetri, we an ount those path families where

the path passes to the right, and in the end multiply the resulting number by two. For

those path families, the paths starting at points to the right of A

a+1

2

are �xed. The

paths to the left have all exatly one South-East step. Suppose that the South-East

step of the path whih starts in A

i

, 1 � i � (a � 1)=2, ours as the h

i

th step. Then

we must have

m+ 2 � h

1

� h

2

� � � � � h

a�1

2

� 1:

So we just have to ount monotonously dereasing sequenes of

a�1

2

numbers between

1 and m + 2. The number is exatly the binomial oeÆient in (7.19). It is then a

routine task to hek that, on substitution in (7.1), the result agrees exatly with the

right-hand side of (7.18) for b =  = 1. �
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Lemma 19. Let a and m be nonnegative integers, a even and m odd. Then

det

1�i;j�a+m

�

(+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�

�a

2

+ i� j + 1

�

j�1

�

b+a

2

� i+ j + 1

�

a+m�j

a < i � a+m

�

= (�1)

a=2

H(a+m) H(

a

2

)

2

H(

m�1

2

) H(

m+1

2

)

H(

a+m�1

2

) H(

a+m+1

2

) 2

m(a+m�1)=2

�

�

b

2

+

1+m

2

�

a

2

�



2

+

1+m

2

�

a

2

(m�1)=2

Y

k=1

�

b

2

+ k

�

2

a

2

(m�1)=2

Y

k=1

�



2

+ k

�

2

a

2

a=2�1

Y

k=1

(b + + 2 k +m)

a�2 k

�

a=2�1

Y

k=1

(b+ + 2 k + 2m)

a�2 k

(m�1)=2

Y

k=0

(1 + b+  + 2 k +m)

a

m

Y

k=1

(b + + 2 k)

m�k

:

(7.20)

Proof. We proeed analogously to the proof of Lemma 17. The only di�erene is the

parity of m, so we have to hek the plaes in the proof of Lemma 17 where we used

the fat that m is even.

Again, Steps 1{6 an be reused verbatim, exept that the produts orresponding to

the individual subases are slightly di�erent, and in Step 2 we are now interested in the

fators orresponding to odd values of e, 1 � e � a� 2 (beause the fators with even

e are overed by Steps 3 and 4).

The omputation of the multipliative onstant relating the right-hand and the left-

hand side of (7.20) is done analogously to Step 7 in the proof of Lemma 17, i.e., we

ompute the determinant for b =  = 0 by going bak, via (7.1) and Lemma 15, to

the lozenge tiling interpretation of the determinant. We already onluded in the proof

of Lemma 17 that for b =  = 0 there is just one lozenge tiling (see Figure 10). By

de�nition, the statisti n(:) attains the value a=2 on this lozenge tiling, so that its

weight is (�1)

a=2

. It is then not diÆult to verify that, on substitution of this in (7.1),

the result agrees exatly with the right-hand side of (7.20) for b =  = 0. �

Lemma 20. Let a and m be odd nonnegative integers. Then

det

1�i;j�a+m

�

(+m + i� j + 1)

j�1

(b� i+ j + 1)

a+m�j

1 � i � a

�

�a

2

+ i� j + 1

�

j�1

�

b+a

2

� i+ j + 1

�

a+m�j

a < i � a+m

�

= 0: (7.21)

Proof. Analogously to the previous ases, we an show that the produt

(m+1)=2

Y

i=1

(

b�1

2

+ i)

(a+1)=2

(m�1)=2

Y

i=1

(

b+1

2

+ i)

(a�1)=2

(a�1)=2

Y

k=1

(b+ +m + 2k)

a�2k

�

(a�1)=2

Y

k=1

(b+  + 2m+ 2k)

a�2k

m

Y

k=(m+1)=2

(b+ + 2k)

a+m�k

(m�1)=2

Y

k=1

(b+ + 2k)

m�k

divides the determinant as a polynomial in b and . Although not ompletely obvious,

this is implied by the linear ombinations of Lemma 17, Steps 1{5. The degree in

b of this produt is

�

a+m

2

�

+ 1 whih is larger than the maximal degree

�

a+m

2

�

of the

determinant viewed as a polynomial in b. So the determinant must be zero. �
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8. Determinant Evaluations, II

In this setion we evaluate the determinant in Lemma 16. We proeed analogously

to Setion 7 and start by taking (b+ +m)!

Æ

(b+ a+m� i)! (+m+ i� 1)! out of

the ith row, i = 1; 2; : : : ; a, and

�

b+

2

�

!

Æ�

b+3a+1

2

+m� i

�

!

�

�a�1

2

+ i� 1

�

! out of the ith

row, i = a+ 1; a+ 2; : : : ; a+m. This gives

det

1�i;j�a+m

0

B

B

�

�

b + +m

b� i+ j

�

1 � i � a

�

b+

2

b+a+1

2

� i + j

�

a+ 1 � i � a+m

1

C

C

A

=

a

Y

i=1

(b+  +m)!

(b + a+m� i)! (+m + i� 1)!

a+m

Y

i=a+1

�

b+

2

�

!

�

b+3a+1

2

+m� i

�

!

�

�a�1

2

+ i� 1

�

!

� det

1�i;j�a+m

�

( +m+ i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�

�a�1

2

+ i� j + 1

�

j�1

�

b+a+1

2

� i + j + 1

�

a+m�j

a < i � a+m

�

: (8.1)

Thus it suÆes to evaluate the determinant on the right-hand side. As in the pre-

eding setion, the advantage is that this determinant is a polynomial in b and . So

we an again apply the \identi�ation of fators" method, as proposed in [20, Se. 2.4℄.

We note that the �rst a rows of the matrix are idential to those of (7.1), whereas the

other m rows di�er only slightly. Hene we an use many arguments from Setion 7.

The four lemmas below address the four di�erent ases, as a and m vary through all

ombinations of parities.

Lemma 21. Let a and m be both even nonnegative integers. Then

det

1�i;j�a+m

�

(+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�

�a�1

2

+ i� j + 1

�

j�1

�

b+a+1

2

� i + j + 1

�

a+m�j

a < i � a+m

�

=

H(a+m) H(

a

2

)

2

H(

m

2

)

2

H(

a+m

2

)

2

2

m(a+m�1)=2

m=2

Y

k=1

(

b�1

2

+ k)

a=2

(

b+1

2

+ k)

a=2

�

m=2

Y

k=1

(

�1

2

+ k)

a=2

(

+1

2

+ k)

a=2

a=2�1

Y

k=0

(b+ +m + 2k + 1)

a�2k�1

�

a=2�1

Y

k=1

(b + + 2m+ 2k)

a�2k

m

Y

k=m=2+1

(b + + 2k)

a+m�k

m=2

Y

k=1

(b + + 2k)

m�k

: (8.2)

Proof of Lemma 21. Let us denote the determinant in (8.2) by D

2

(b; ). We will again

proeed in the spirit of the proof of Lemma 17, i.e., we �rst show, in Steps 1{5 below,

that the right-hand side of (8.2) divides D

2

(b; ) as a polynomial in b and . Then, in

Step 6, we show that the degree of D

2

(b; ) as a polynomial in b is at most

�

a+m

2

�

, the

same being true for the degree in . Analogously to the proof of Lemma 17, we onlude

that D

2

(b; ) must equal the right-hand side of (8.2), times a onstant with respet to

b and . That this onstant is equal to 1 is �nally shown in Step 7, by evaluating the

determinant D

2

(b; ) for b =  = 1.
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In order to prove (in Steps 1{5) that the right-hand side of (8.2) divides D

2

(b; ),

for eah linear fator of (8.2) we exhibit again suÆiently many linear ombinations of

olumns or rows whih vanish. These linear ombinations are almost idential (some-

times they are even idential) with the orresponding linear ombinations in the proof

of Lemma 17. Consequently, we will merely state these linear ombinations here, but

will not bother to supply their veri�ations, beause these parallel the veri�ations in

the proof of Lemma 17.

Step 1.

Q

m=2

k=1

(

b�1

2

+ k)

a=2

(

b+1

2

+ k)

a=2

(

�1

2

+ k)

a=2

(

+1

2

+ k)

a=2

divides the determi-

nant. Unlike in the ase of the previous determinant D

1

(b; ) (see (7.2)), here it is not

possible to infer symmetry of D

2

(b; ) in b and  diretly from the de�nition. Therefore

it will be neessary to prove separately that the fators involving b, respetively , divide

the determinant.

Again, we distinguish between four subases, labeled below as (a), (b), (), and (d).

(a) (b+ e)

e

(+ e)

e

divides D

2

(b; ) for 1 � e � minfa;mg, e 6� a mod 2: This follows

from the easily veri�ed fat that (b + e) is a fator of eah entry in the �rst e olumns

of D

2

(b; ), respetively, that ( + e) is a fator of eah entry in the last e olumns of

D

2

(b; ).

(b) (b + e)

m

( + e)

m

divides D

2

(b; ) for m < e < a, e 6� a mod 2: The following

equations hold for s = 1; 2; : : : ; m:

e+s�m

X

j=1

�

e�m+ s� 1

j � 1

�

(+ a� e� s+ 2m + 1)

e+s�j�m

(a� e� s+ 2m + 1)

e+s�j�m

� (olumn j of D

2

(�e; )) = 0;

(8.3)

and

e+s�m

X

j=1

�

e�m + s� 1

j � 1

�

(b+ a� e� s+ 2m+ 1)

e+s�j�m

(a� e� s+ 2m + 1)

e+s�j�m

� (olumn (a+m+ 1� j) of D

2

(b;�e)) = 0: (8.4)

() (b + e)

a

divides D

2

(b; ) for a < e < m, e 6� a mod 2: The following equations

hold for s = 1; 2; : : : ; a:

e�a�1

2

+s

X

j=1

�

e�a�1

2

+ s� 1

j � 1

�

�



2

+m�

e

2

+ a� s+ 1

�

(e�a�1)=2+s�j

�

m+

3a�e

2

� s + 1

�

(e�a�1)=2+s�j

� (olumn j of D

2

(�e; )) = 0; (8.5)

and

e�a�1

2

+s

X

j=1

�

e�a�1

2

+ s� 1

j � 1

�

�

b

2

+m�

e

2

+ a� s+ 1

�

(e�a�1)=2+s�j

�

m+

3a�e

2

� s + 1

�

(e�a�1)=2+s�j

� (olumn (a+m+ 1� j) of D

2

(b;�e)) = 0: (8.6)
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(d) (b + e)

a+m�e

divides D

2

(b; ) for maxfa;mg � e � a + m, e 6� a mod 2: The

following equations hold for s = 1; 2; : : : ; a+m� e:

s

X

i=1

�

s� 1

i� 1

�

(�1)

i

�

�e

2

+ 1

�

a+m�s

�

�e

2

+m

�

i�1

(1 + � e +m)

a+m�s+i�1

� (row (a+m� e� s+ i) of D

2

(�e; ))

+ (row

�

m+

3a+1

2

�

e

2

� s+ 1

�

of D

2

(�e; )) = 0; (8.7)

and

s

X

i=1

�

s� 1

i� 1

�

(�1)

i

�

b�e

2

+ 1

�

a+m�s

�

b�e

2

+m

�

i�1

(1 + b� e+m)

a+m�s+i�1

� (row (e+ s�m� i + 1) of D

2

(b;�e))

+ (row

�

a+1

2

+

e

2

+ s

�

of D

2

(b;�e)) = 0: (8.8)

Step 2.

Q

a=2�1

k=0

(b + +m + 2k + 1)

a�2k�1

divides the determinant. The following

equation holds for 0 � e � a� 2, s = 1; 2; : : : ; e+ 1:

a�e�1

X

i=1

�

(+m + i)

a�e�i+s�1

(� e� 1 + i)

a�e�i+s�1

�

a� e� 2

i� 1

�

(s)

a�e�1

(�1)

i

(s� i+ a� e� 1)(a� e� 2)!

� (row i of D

2

(�� a�m+ 1 + e; ))

�

+ (�1)

a�e�1

� (row (a� e� 1 + s) of D

2

(�� a�m + 1 + e; )) = 0: (8.9)

Here, we need equation (8.9) only for even e.

Step 3.

Q

a=2�1

k=1

(b + + 2m+ 2k)

a�2k

divides the determinant. The following equa-

tion holds for 0 < e � a, e � a mod 2, and s = 1; 2; : : : ; e:

a+m+s�e

X

j=s

�

a+m� e

j � s

�

� (olumn j of D

2

(�� 2m� a+ e; )) = 0: (8.10)

Step 4.

Q

m

k=m=2+1

(b+  + 2k)

a+m�k

divides the determinant. The following equation

holds for m=2 < e � m and s = 1; 2; : : : ; a+m� e:

s+e

X

j=s

�

e

j � s

�

� (olumn j of D

2

(�� 2e; )) = 0: (8.11)

Step 5.

Q

m=2

k=1

(b+ + 2k)

m�k

divides the determinant. The following equation holds

for e � m� 1 and s = 1; 2; : : : ; e:

m�s+1

X

i=1

(�1)

i

�

m� s

i� 1

�

�



2

+

a

2

+ i�

1

2

�

m�s�i+1

�



2

�

a

2

� e+ i�

1

2

�

m�s�i+1

� (row (a + i) of D

1

(�� 2m+ 2e; )) = 0: (8.12)

Step 6. Determination of the degree of D

2

(b; ) as a polynomial in b. This is learly

the same degree as for D

1

(b; ), that is,

�

a+m

2

�

.
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Step 7. Computation of the multipliative onstant. In analogy to the proof of

Lemma 18, we evaluate the determinant for b =  = 1. Again, we do this by going

bak, via (8.1) and Lemma 16, to the ombinatorial origin of the determinant, whih is

enumeration of lozenge tilings. We an still use Figure 11 for our onsiderations. The

number of lozenge tilings is easily seen to be equal to

�

m+1+

a

2

a

2

�

+

�

m+1+

a

2

�1

a

2

�1

�

. It is then

a routine omputation to verify that this does indeed give the multipliative onstant

as laimed in (8.2). �

Lemma 22. Let a and m be nonnegative integers, a odd and m even. Then

det

1�i;j�a+m

�

(+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�

�a�1

2

+ i� j + 1

�

j�1

�

b+a+1

2

� i + j + 1

�

a+m�j

a < i � a+m

�

=

H(a+m) H(

a�1

2

) H(

a+1

2

) H(

m

2

)

2

H(

a+m�1

2

) H(

a+m+1

2

) 2

m(a+m�1)=2

�

m=2

Y

k=1

(

b

2

+ k)

(a�1)=2

(

b

2

+ k)

(a+1)=2

(



2

+ k)

(a�1)=2

(



2

+ k)

(a+1)=2

�

(a�3)=2

Y

k=0

(b + +m+ 2k + 1)

a�2k�1

(a�1)=2

Y

k=0

(b+ + 2m + 2k)

a�2k

�

m

Y

k=m=2+1

(b + + 2k)

a+m�k

m=2

Y

k=1

(b + + 2k)

m�k

: (8.13)

Proof. We proeed analogously to the proof of Lemma 21. The only di�erene is the

parity of a, so we have to hek the plaes in the proof of Lemma 21 where we used the

fat that a is even.

Steps 1, 3{5 an be reused verbatim, but the orresponding produts are slightly

di�erent.

In Step 2 we are now interested in the fators orresponding to odd values of e

(1 � e � a� 2), beause the fators with even e are overed by Steps 3 and 4.

Step 6 an be reused verbatim.

The omputation of the multipliative onstant is done analogously to Step 7 in the

proof of Lemma 17. Again using Figure 10, we see that the number of lozenge tilings,

related to our determinant via (8.1) and Lemma 16, for b =  = 0 equals 1. It is then a

routine omputation to verify that this gives the multipliative onstant as laimed in

(8.13). �
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Lemma 23. Let a and m be nonnegative integers, a even and m odd. Then

det

1�i;j�a+m

�

(+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�

�a�1

2

+ i� j + 1

�

j�1

�

b+a+1

2

� i + j + 1

�

a+m�j

a < i � a+m

�

= (�1)

a=2

H(a +m) H(

a

2

)

2

H(

m�1

2

) H(

m+1

2

)

H(

a+m�1

2

) H(

a+m+1

2

) 2

m(a+m�1)=2

(m+1)=2

Y

k=1

(

b�1

2

+ k)

a=2

(m�1)=2

Y

k=1

(

b+1

2

+ k)

a=2

�

(m+1)=2

Y

k=1

(

�1

2

+ k)

a=2

(m�1)=2

Y

k=1

(

+1

2

+ k)

a=2

a=2�1

Y

k=1

(b + +m+ 2k)

a�2k

�

a=2�1

Y

k=1

(b+  + 2m+ 2k)

a�2k

m

Y

k=(m+1)=2

(b+ + 2k)

a+m�k

(m�1)=2

Y

k=1

(b+ + 2k)

m�k

:

(8.14)

Proof. We proeed analogously to the proof of Lemma 21. The only di�erene is the

parity of m, so we have to hek the plaes in the proof of Lemma 21 where we used

the fat that m is even.

Steps 1, 3{5 an be reused verbatim, but the orresponding produts are slightly

di�erent.

In Step 2 we are now interested in the fators orresponding to odd values of e

(1 � e � a� 3), beause the fators with even e are overed by Steps 3 and 4.

Step 6 an be reused verbatim.

The omputation of the multipliative onstant is done analogously to Step 7 in

the proof of Lemma 21. Using again Figure 11, we see that the (�1)-enumeration of

lozenge tilings, related to our determinant via (8.1) and Lemma 16, for b =  = 1 equals

(�1)

a=2

�

m+1+

a

2

a

2

�

+ (�1)

a=2+1

�

m+1+

a

2

�1

a

2

�1

�

. It is then a routine omputation to verify that

this gives the multipliative onstant as laimed in (8.14). �

Lemma 24. Let a and m be odd nonnegative integers. Then

det

1�i;j�a+m

�

(+m + i� j + 1)

j�1

(b� i + j + 1)

a+m�j

1 � i � a

�

�a�1

2

+ i� j + 1

�

j�1

�

b+a+1

2

� i + j + 1

�

a+m�j

a < i � a+m

�

= (�1)

(a+1)=2

H(a+m) H(

a�1

2

) H(

a+1

2

) H(

m�1

2

) H(

m+1

2

)

H(

a+m

2

)

2

2

m(a+m�1)=2+1=2

�

(m+1)=2

Y

k=1

(

b

2

+ k)

(a�1)=2

(m�1)=2

Y

k=1

(

b

2

+ k)

(a+1)=2

�

(m+1)=2

Y

k=1

(



2

+ k)

(a�1)=2

(m�1)=2

Y

k=1

(



2

+ k)

(a+1)=2

(a�1)=2

Y

k=1

(b + +m+ 2k)

a�2k

�

(a�1)=2

Y

k=1

(b+  + 2m+ 2k)

a�2k

m

Y

k=(m+1)=2

(b+ + 2k)

a+m�k

(m�1)=2

Y

k=1

(b+ + 2k)

m�k

:

(8.15)
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Proof. We proeed analogously to the proof of Lemma 21. The parameters a and m

are odd, so we have to hek the plaes in the proof of Lemma 21 where we used the

fat that a or m is even.

Steps 1{6 an be reused verbatim, but the orresponding produts are slightly dif-

ferent.

The omputation of the multipliative onstant is done analogously to Step 7 in

the proof of Lemma 17. Again using Figure 10, we see that the (�1)-enumeration of

lozenge tilings, related to our determinant via (8.1) and Lemma 16, for b =  = 0 equals

(�1)

(a+1)=2

. It is then a routine omputation to verify that this gives the multipliative

onstant as laimed in (8.15). �

9. Proof of Theorem 11

For the proof of Theorem 11, we proeed similarly to [28℄. We de�ne determinants

Z

n

(x; �) by

Z

n

(x; �) = det

0�i;j�n�1

 

�Æ

ij

+

n�1

X

t;k=0

�

i+ �

t

��

k

t

��

j � k + �� 1

j � k

�

x

k�t

!

: (9.1)

The only di�erene to the de�nition of Z

n

(x; �) in [28℄ is the minus sign in front of Æ

ij

.

Then an analogue of Theorem 5 of [28℄ is true.

Lemma 25. Let n be a nonnegative integer. Then Z

n

(x; �) = 0 if n is odd. If n is

even, then Z

n

(x; �) fators,

Z

n

(x; �) = (�1)

n=2

det

0�i;j�n=2�1

 

n�1

X

t=0

t+ 1

j + 1

�

i+ �

t� i

��

j + 1

t� j

�

x

2j+1�t

!

� det

0�i;j�n=2�1

 

n�1

X

t=0

t + �+ 1

i + �+ 1

�

i + �+ 1

t� i

��

j

t� j

�

x

2j�t

!

: (9.2)

Proof. As in the proof of Theorem 5 of [28℄, de�ne matries S;M;U ,

S =

��

i+ �

t

��

0�i;t�n�1

; M =

��

k

t

�

x

k�t

�

0�t;k�n�1

;

U =

��

j � k + �� 1

j � k

��

0�k;j�n�1

;

and J and F (x),

J =

�

(�1)

k�i

�

�

k � i

��

0�i;k�n�1

; F (x) =

��

j � bj=2

j � i

�

(�x)

j�i

�

0�i;j�n�1

: (9.3)

Thus, Z

n

(x; �) equals det(�I+SMU). Now, as in [28℄, multiply Z

n

(x; �) on the left by

det(F (1)

t

) and on the right by det(JF (x)). Subsequently do the manipulations given

in [28℄ (whih amount to applying the Chu{Vandermonde summation formula several

times). The result is that

Z

n

(x; �) = det

0�i;j�n�1

(�I + SMU) = det

0�i;j�n�1

(�V (x; �) +W (x; �));
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where

V (x; �)

2i+r;2j+s

=

n�1

X

t=0

(�1)

r+s

�

i + r + �

t� i

��

j + s

t� j

�

x

2j+s�t

; (9.4)

W (x; �)

2i+r;2j+s

=

n�1

X

t=0

�

i+ �

t� i� r

��

j

t� j � s

�

x

2j+s�t

; (9.5)

where r and s are restrited to be 0 or 1, as in [28℄.

It is straightforward to hek that V

2i;2j

= W

2i;2j

. Hene, eah entry of the matrix

�V +W in an even-numbered row and even-numbered olumn is 0. This implies that

det(�V +W ) must be 0 whenever the size of the matrix, n, is odd. In the ase that n

is even it implies the fatorization

Z

n

(x; �) = det(�V (x; �) +W (x; �))

= (�1)

n=2

det

0�i;j�n=2�1

(�V

2i;2j+1

+W

2i;2j+1

) det

0�i;j�n=2�1

(�V

2i+1;2j

+W

2i+1;2j

):

As is easily veri�ed, this equation is exatly equivalent to (9.2). �

Proof of Theorem 11. Now hoose x = 1, � = m=2, n = a in Lemma 25. Then all the

sums appearing in (9.2) an be evaluated by means of the Chu{Vandermonde summa-

tion (7.11). The result is

Z

a

(1; m=2) = det

0�i;j�a�1

�

�Æ

ij

+

�

m + i+ j

j

��

= det

0�i;j�a=2�1

�

(3i+m + 1)

(i+ j +m=2)!

(2i� j +m=2)! (2j � i + 1)!

�

� det

0�i;j�a=2�1

�

(3j +m=2 + 1)

(i + j +m=2)!

(2i� j +m=2 + 1)! (2j � i)!

�

:

Both determinants on the right-hand side of this identity an be evaluated by means of

Theorem 10 in [18℄, whih reads

det

0�i;j�n�1

�

(x + y + i + j � 1)!

(x+ 2i� j)! (y + 2j � i)!

�

=

n�1

Y

i=0

i! (x + y + i� 1)! (2x+ y + 2i)

i

(x+ 2y + 2i)

i

(x + 2i)! (y + 2i)!

: (9.6)

This ompletes the proof of the theorem. �

10. Proof of Theorem 12

We prove Theorem 12 by �nding a determinant fatorization, Eq. (10.1), in whih

the �rst determinant represents the number of all lozenge tilings of a hexagon with side

lengths a; a +m; a; a +m; a; a +m and removed entral triangle of side length m (see

the following paragraph), in whih the seond determinant represents the number of all

suh tilings whih are ylially symmetri (see e.g. [6, Lemma 3.1℄), and in whih the

third determinant is the one that we want to evaluate. Sine the total number of the

above lozenge tilings is already known (thanks to Theorem 1), as well as the number of
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S

2

S

1

S

3

Figure 12. A lozenge tiling of a hexagon with a = b =  = 3 and ore of size m = 2.

all suh tilings whih are ylially symmetri (thanks to Theorem 6), we obtain, up to

some multipliative onstant that is not diÆult to �nd, an expliit expression for our

determinant on the left-hand side of (3.4). The fatorization (10.1), interpreted ombi-

natorially in the above way, ould be explained in terms of the priniple of \fatorization

through symmetry" as desribed in [23, Se. IVB; f. in partiular Se. VIIA℄ (with a

preursor appearing in [16, Theorem 3', Se. 5, although it is not expliitly stated℄).

We prefer to provide a diret derivation by means of \wrapping lattie paths around

the triangular hole," as it is a very attrative and instrutive alternative way to derive

this equation.

We already know that the number of all lozenge tilings of a hexagon with side lengths

a; a +m; a; a +m; a; a +m and removed entral triangle of side length m equals (1.2)

with a = b = . On the other hand, we laim that it equals det(I + B

3

), where, as

before in the proof of Theorem 9 in Setion 4, B = B(a;m) is the a � a matrix with

entries

�

m+i+j

j

�

, 0 � i; j � a� 1, and I = I(a) is the a� a identity matrix.

To prove this laim, we �rst note that det(I+B

3

) is the sum of all prinipal minors of

B

3

. Next we onsider the onstrution used in Setion 6 in order to prove polynomiality

in m of the number of lozenge tilings of a ored hexagon, i.e., we extend all sides of the

removed triangle to the left (if viewed from the interior of the triangle), as is indiated

by the thik segments, labeled as S

1

, S

2

, and S

3

, in Figure 12. These segments ut the

ored hexagon into three regions. In partiular, they ut some of the lozenges in two.

(In Figure 12, these lozenges are shaded.) Subsequently, in eah of the three regions, we

onnet the \ut" lozenges by paths, by \following" along the lozenges of the tiling, as

is illustrated in Figure 12 by the dashed lines. (Note the di�erene between Figures 12

and 9. In our speial ase a = b =  all the paths form yles.)

Let us number the possible positions of the \ut" lozenges, from inside to outside,

by 0; 1; : : : ; a � 1. Thus, the positions of the \ut" lozenges on the segment S

1

are 0
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and 2, they are 0 and 1 on S

2

, and they are 1 and 2 on S

3

. The number of paths

in the lower left region whih start at position i on S

1

and end at position j on S

2

is

�

m+i+j

j

�

, whih is the (i; j)-entry of B. The rotational symmetry of the ored hexagon

guarantees that an analogous fat is true for the other regions. Thus, the number of

paths starting at position i on S

1

, then running around the removed triangle, and �nally

ending at position j on S

1

, equals the (i; j)-entry of B

3

. If we have a family of paths

starting and ending at positions i

1

; i

2

; : : : ; i

k

, the Lindstr�om{Gessel{Viennot theorem

(see Lemma 14) implies that the number of these paths is the minor onsisting of rows

and olumns with indies i

1

; i

2

; : : : ; i

k

of the matrix B

3

. Thus, the number of these

families of paths is the sum of all prinipal minors of B

3

, whih we have already found

to be equal to det(I +B

3

).

Now we use the fatorization

I +B

3

= (I +B)(!I +B)(!I +B);

where ! is a primitive third root of unity. Thus we have

det(I +B

3

) = det(I +B) � j det(!I +B)j

2

: (10.1)

The left-hand side equals (1.2) with a = b =  by the above onsiderations, and the

determinant det(I + B) has been omputed by Andrews [2, Theorem 8℄, restated here

as Theorem 10.

Thus, a ombination of (10.1), Theorem 10 and (1.2) with a = b =  will give det(!I+

B), the determinant that we want to ompute, up to a omplex fator of modulus 1. We

note that the determinant is a polynomial in m. It is a routine omputation to verify

that the determinant is the expression laimed in Theorem 12, up to this multipliative

onstant.

In order to ompute the multipliative onstant, we ompute the leading oeÆient

of the determinant as a polynomial in m=2, and ompare the result with the leading

oeÆient of the right-hand side of (3.4). Unfortunately, the leading oeÆient of the

determinant annot be determined straightforwardly by extrating the leading oeÆ-

ient of eah of the entries and omputing the orresponding determinant, for the result

would be zero. Therefore we have to perform some manipulations of the matrix �rst to

avoid anellation of leading terms. We use the strategy from [28℄, whih we have al-

ready used in the proof of Lemma 25. Instead of the determinant Z

n

(x; �), we onsider

here the slightly di�erent determinant

f

Z

n

(x; �) = det

0�i;j�n�1

 

!Æ

ij

+

n�1

X

t;k=0

�

i+ �

t

��

k

t

��

j � k + �� 1

j � k

�

x

k�t

!

; (10.2)

where ! is a primitive third root of unity.

Now we proeed analogously to the proof of Lemma 25, i.e., we multiply

f

Z

n

(x; �) on

the left by det(F (1)

t

) and on the right by det(JF (x)), where the matries F (x) and J

are given in (9.3), and use Chu{Vandermonde summation several times. This yields

f

Z

n

(x; �) = det

0�i;j�n�1

(!V (x; �) +W (x; �));

where V (x; �) and W (x; �) are the matries de�ned in equation (9.4).

Now let x = 1, � = m=2, n = a, and V = V (1; m=2), W = W (1; m=2). Again

using Chu{Vandermonde summation, we an express the desired determinant in terms
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of V = (V

ij

)

0�i;j�a�1

and W = (W

ij

)

0�i;j�a�1

:

det(!I +B) = det(!V +W ); (10.3)

where

V

2i+r;2j+s

= (�1)

r+s

�

i + j + r + s+m=2

s+ 2j � i

�

(10.4)

and

W

2i+r;2j+s

=

�

i + j +m=2

s+ 2j � i� r

�

; (10.5)

where r and s are restrited to be 0 or 1. Next we extrat the leading oeÆients of all

the entries of !V +W , viewed as polynomials in m=2, and ompute the orresponding

determinant. If we should obtain something nonzero, then this must be the leading

oeÆient of the determinant det(!V +W ), and hene of det(!I+B), as a polynomial

in m=2. Thus, we have to ompute the determinant of the matrix L = (L

ij

)

0�i;j�a�1

,

where

L

2i+r;2j+s

=

(

(�1)

s+1

(s+2j�i)!

! if r = 1,

(�1)

s

(s+2j�i)!

! +

1

(s+2j�i)!

if r = 0.

We add row 1 of L to row 0, row 3 to row 2, et. In that manner, we obtain the matrix

L

0

= (L

0

ij

)

o�i;j�a�1

, where

L

0

2i+r;2j+s

=

8

>

<

>

:

1

(s+2j�i)!

if r = 0, 2i 6= a� 1,

(�1)

s+1

(s+2j�i)!

! if r = 1;

((�1)

s

!+1)

(s+2j�i)!

if 2i = a� 1:

Clearly, we have detL = detL

0

, and we an take out ! from all the rows of L

0

with odd

row index. We get

detL = !

b

a

2



detL

00

;

with the matrix L

00

= (L

00

ij

)

0�i;j�a�1

de�ned by

L

00

2i+r;2j+s

=

8

>

<

>

:

1

(s+2j�i)!

if r = 0, 2i 6= a� 1,

(�1)

s+1

(s+2j�i)!

if r = 1;

((�1)

s

!+1)

(s+2j�i)!

if 2i = a� 1:

Now we add row 0 of L

00

to row 1, row 2 to row 3, et. We obtain the matrix L

000

=

(L

000

ij

)

0�i;j�a�1

, where

L

000

2i+r;2j+s

=

8

>

>

>

>

<

>

>

>

>

:

1

(s+2j�i)!

if r = 0, 2i 6= a� 1,

2

(s+2j�i)!

if r = 1, s = 1,

0 if r = 1, s = 0,

((�1)

s

!+1)

(s+2j�i)!

if 2i = a� 1:

We rearrange the rows and olumns simultaneously, so that the odd-numbered rows

and olumns ome before the even-numbered, respetively. Now we have obtained a
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blok matrix with one blok formed by the rows and olumns with odd indies and the

other one formed by the rows and olumns with even indies. Consequently, we have

detL = !

ba=2

det

0�i;j�

b

a�2

2



�

2

(1 + 2j � i)!

�

det

0�i;j�

b

a�1

2



 

1

(2j�i)!

i 6=

a�1

2

(! + 1)

1

(2j�i)!

i =

a�1

2

!

= !

ba=2

(! + 1)

�(a odd)

2

ba=2

b(a�2)=2

Y

j=0

1

(2j + 1)!

b(a�1)=2

Y

j=0

1

(2j)!

� det

0�i;j�b(a�2)=2

((2j � i + 2)

i

) det

0�i;j�b(a�1)=2

((2j � i+ 1)

i

);

where we used the notation �(A)=1 if A is true and �(A)=0 otherwise. The two deter-

minants an be evaluated by speial ases of a variant of the Vandermonde determinant

evaluation whih we state in Lemma 26 below. After appliation of this lemma and

some simpli�ation we get

2

l

2

!

l

H(l)

2

H(2l)

(10.6)

if a is even, a = 2l, and

2

l

2

+l

!

l

(! + 1)

H(l) H(l + 1)

H(2l + 1)

(10.7)

if a is odd, a = 2l + 1.

It is routine to hek that the leading oeÆient of the right-hand side of (3.4), viewed

as a polynomial in m=2, is exatly the same.

This �nishes the proof of the theorem. �

Lemma 26. Let p

i

be a moni polynomial of degree i, i = 0; 1; : : : ; n. Then

det

0�i;j�n

(p

i

(X

j

)) =

Y

0�i<j�n

(X

j

�X

i

):

�

11. Proof of Theorem 13

If a is even, a = 2l say, the formula an be derived analogously to Theorem 12. (The

derivation of the latter was the subjet of the preeding setion.) Here, the starting

point is to do the (�1)-enumeration (as opposed to \ordinary" enumeration) of all the

lozenge tilings of a hexagon with side lengths a; a+m; a; a +m; a; a+m and removed

entral triangle of side length m in two di�erent ways.

First, the (�1)-enumeration of these lozenge tilings is given by (2.1) with a = b = .

On the other hand, the arguments given at the beginning of the preeding setion,

suitably modi�ed, show that it also equals det(�I +B

3

), where B is again the matrix

from the preeding setion.

Now we use the fatorization

det(�I +B

3

) = det(�I +B) � j det(!I +B)j

2

; (11.1)

where ! is a primitive sixth root of unity. (Note that this equation is the analogue

of (10.1) in the present ontext. Again, this fatorization of the (�1)-enumeration of

all lozenge tilings of the above ored hexagon ould have also been derived by means

of the priniple of \fatorization through symmetry" [23, Se. IVB; f. in partiular
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Se. VIIA℄.) By the above onsiderations, the left-hand side equals (2.1) with a = b = ,

and the determinant det(�I+B) is omputed in Theorem 11. This determines det(!I+

B) up to a multipliative onstant of modulus 1. It is then a routine omputation to

hek that the result agrees with the expression at the right-hand side of (3.5), up to a

fator of modulus 1.

In order to determine the multipliative onstant, one proeeds as in the preeding

setion. In fat, the determination of the leading oeÆient of the determinant as a

polynomial in m=2 given there an be used here verbatim, beause we treated ! like

an indeterminate in the respetive omputations. Thus, the leading oeÆient is the

expression in (10.6), with ! now a primitive sixth root of unity. It is routine to hek

that for a = 2l the right-hand side of (3.5) has the same leading oeÆient as polynomial

in m=2.

Now let us suppose that a is odd, a = 2l + 1 say. Unfortunately, the above strategy

of determining the value of det(!I + B) through equation (11.1) fails miserably here,

beause det(�I + B

3

) as well as det(�I + B) are zero in the ase of odd a (ompare

Theorems 4 and 11). Therefore we have to �nd a di�erent line of attak. We approah

the evaluation of det(!I + B), for odd a, by �rst transforming the determinant in the

way we have already done in the proofs of Lemma 25 and of Theorem 12, and by then

applying one again the \identi�ation of fators" method to evaluate the obtained

determinant.

In fat, the manipulations explained in the preeding setion that proved (10.3)

(whih are based on multiplying the relevant matrix to the left and right by suitable

matries, as elaborated in the proof of Lemma 25 in Setion 9) remain valid in the

present ontext, again, beause there ! is treated like an indeterminate. Therefore we

have

det(!I +B) = det(!V +W );

where the matries V = (V

ij

)

0�i;j�2l

and W = (W

ij

)

0�i;j�2l

are again the matries

de�ned by (10.4) and (10.5).

Our goal is now to evaluate the determinant of the matrix !V +W . We denote this

matrix by X(2l+1; m=2). The determinant detX(2l+1; m=2) is a polynomial in m, so

we an indeed use the \identi�ation of fators" method to ompute this determinant.

Again, there are several steps to be performed. In Steps 1{4 below we prove that the

right-hand side of (3.5) does indeed divide the determinant as a polynomial in m. In

Step 5 we determine the maximal degree of the determinant as a polynomial in m. It

turns out to be (a

2

� 1)=4, whih is exatly the degree of the right-hand side of (3.5)

(for odd a, of ourse). Therefore the determinant must be equal to the right-hand side

of (3.5), up to a multipliative onstant. This multipliative onstant is �nally found

to be 1 in Step 6.

Step 1.

Q

bl=2�1

i=0

(

m

2

+ 2l � i + 1)

l�2i�1

divides the determinant detX(2l + 1; m=2).

Proeeding in the spirit of Step 1(b) in the proof of Lemma 17, we prove this by

�nding, for eah linear fator of the produt, a linear ombination of the olumns of

X(2l + 1; m=2) whih vanishes if the fator vanishes. To be preise, we laim that for
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m=2 = �3l + k + 3d; d � 0 and 1 � k � l � 2d� 1 the following equation holds:

k�1

X

j=0

�

k � 1

j

�

�

! � (olumn (2l � 2d� 2j � 1) of X(2l + 1;�3l + k + 3d))

+ (olumn (2l � 2d� 2j � 2) of X(2l + 1;�3l + k + 3d))

�

= 0: (11.2)

If we restrit the left-hand side of this equation to the (2i)th row, and simplify a little

bit, it beomes

k�1

X

j=0

�

k � 1

j

���

i� 2l + 2d� j + k

2l � 2d� 2j � i� 1

�

+

�

i� 2l + 2d� j + k � 1

2l � 2d� 2j � i� 2

��

: (11.3)

It beomes (! � 1) times the same expression if we restrit to the (2i+ 1)th row.

As is seen by inspetion, the expression (11.3) vanishes trivially for k = 1. From now

on, let k > 1. In order to establish that (11.3) vanishes in that ase as well, we �rst

rewrite the sum (11.3) in hypergeometri notation (7.6):

(k � 1) (2 + 4d+ 2i+ k � 4l)

�2�2d�i+2l

(2l � 2d� i� 1)!

�

4

F

3

�

1� k;

4

3

�

k

3

; 1 + d+

i

2

� l;

1

2

+ d+

i

2

� l

1

3

�

k

3

; 1� 2d� i� k + 2l; 2 + 4d+ 2i+ k � 4l

; 4

�

: (11.4)

The hypergeometri summation formula whih is relevant here, and as well in the

subsequent steps, is the following \strange" evaluation of a

7

F

6

-series, due to Gessel

and Stanton [12, (1.7)℄ (see also [10, (3.8.14),  = 1, a! q

A

, et., q ! 1℄):

7

F

6

�

A; 1 +

A

3

; B; 1�B;

F

2

;

1

2

+ A�

F

2

+ n;�n

A

3

; 1 +

A

2

�

B

2

;

1

2

+

A

2

+

B

2

; 1 + A� F;�A+ F � 2n; 1 + A+ 2n

; 1

�

=

(1 + A)

2n

(1 +

A

2

�

B

2

�

F

2

)

n

(

1

2

+

A

2

+

B

2

�

F

2

)

n

(1 + A� F )

2n

(1 +

A

2

�

B

2

)

n

(

1

2

+

A

2

+

B

2

)

n

;

where n is a nonnegative integer. If in this formula we let B tend to in�nity, we obtain

5

F

4

�

A; 1 +

A

3

;

F

2

;

1

2

+ A�

F

2

+ n;�n

A

3

; 1 + A� F;�A+ F � 2n; 1 + A+ 2n

; 4

�

=

(1 + A)

2n

(1 + A� F )

2n

: (11.5)

In partiular, this formula allows us to dedue that the left-hand side of (11.5) must

be zero whenever A is a negative integer. This is seen as follows: Multiply both sides

of (11.5) by

(�A + F � 2n)

�A

(1 + A+ 2n)

�A

: (11.6)

Then, for a �xed negative integer A, the left-hand side beomes polynomial in n. The

right-hand side is zero for all n larger than �A=2 beause of the presene of the term

(1 + A)

2n

. The term (11.6) is nonzero for these values of n, therefore the left-hand side

of (11.5) must be zero for these n. Sine these are in�nitely many n, the left-hand side

of (11.5) must be in fat zero for all n. (An alternative way to see that the left-hand side

of (11.5) vanishes for all negative A is by setting  = 1 in [11, (5.13)℄ or [10, (3.8.11)℄,

then replae a by q

A

, et., and �nally let q ! 1 and B !1.)
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If we use (11.5) with A = 1�k, F = 2d+ i�2l+2, n = 2d+ i+k�2l, together with

the above remarks, then we get immediately that the

4

F

3

-series in (11.4) vanishes for

k > 1. (It should be noted that, for this hoie of parameters, the

5

F

4

-series in (11.5)

redues to the

4

F

3

-series in (11.4).) Thus, equation (11.2) is established.

Step 2.

Q

bl=2

i=0

(m=2 + 2l � i)

l�2i

divides the determinant. We laim that for m=2 =

�3l + k + 3d� 1, d � 0 and 1 � k � l � 2d the following equation holds:

k�1

X

j=0

�

k � 1

j

�

�

(olumn (2l � 2d� 2j) of X(2l + 1;�3l + k + 3d� 1))

+ (2! � 1) � (olumn (2l � 2d� 2j � 1) of X(2l + 1;�3l + k + 3d� 1))

+ (! � 1) � (olumn (2l � 2d� 2j � 2) of X(2l + 1;�3l + k + 3d� 1))

�

= 0: (11.7)

Restrited to the (2i)th row, the left-hand side of this equation beomes, after a little

simpli�ation,

(1 + !)

k�1

X

j=0

�

k � 1

j

���

i� 2l + 2d� j + k � 1

2l � 2d� 2j � i

�

+

�

i� 2l + 2d� j + k � 2

2l � 2d� 2j � i� 1

��

:

(11.8)

Clearly, this expression vanishes for k = 1. If k > 1, we write (11.8) in hypergeometri

notation, to obtain

(1 + !)

(k � 1) (4d+ 2i+ k � 4l)

�1�2d�i+2l

(2l � 2d� i)!

�

4

F

3

�

1� k;

4

3

�

k

3

;

1

2

+ d+

i

2

� l; d+

i

2

� l

1

3

�

k

3

; 2� 2d� i� k + 2l; 4d+ 2i+ k � 4l

; 4

�

: (11.9)

This time we use (11.5) with A = 1� k, F = 2d + i� 2l + 1, n = 2d + i + k � 2l � 1.

Together with the remarks aompanying (11.5), this implies immediately that the

4

F

3

-series in (11.9) vanishes for k > 1.

On the other hand, restrited to the (2i + 1)th row, the left-hand side of (11.7)

beomes, after a little simpli�ation,

(! � 1)

k�1

X

j=0

�

k � 1

j

���

i� 2l + 2d� j + k

2l � 2d� 2j � i� 1

�

+

�

i� 2l + 2d� j + k � 1

2l � 2d� 2j � i� 2

��

� !

k�1

X

j=0

�

k � 1

j

���

i� 2l + 2d� j + k � 1

2l � 2d� 2j � i

�

+

�

i� 2l + 2d� j + k � 2

2l � 2d� 2j � i� 1

��

:

That the �rst sum vanishes was already shown in Step 1 (ompare (11.3)), that the

seond sum vanishes was shown just above (ompare (11.8)). Thus, equation (11.7) is

established.

A short argument shows that the linear ombinations of Step 1 are independent of

the linear ombinations of Step 2. Let us denote the olumns of X(2l + 1; m=2) by

C

0

; C

1

; : : : ; C

2l

. In Step 1 we have linear ombinations of vetors of the form !C

2k+1

+

C

2k

, whereas in Step 2 we have always linear ombinations of vetors of the form
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C

2k+2

+ (2! � 1)C

2k+1

+ (! � 1)C

2k

. If these linear ombinations were dependent we

ould use the identity

(C

2k+2

+ (2! � 1)C

2k+1

+ (! � 1)C

2k

)� (! + 1)(!C

2k+1

+ C

2k

) = C

2k+2

� 2C

2k

;

and get a linear ombination of vetors of the form !C

2k+1

+ C

2k

equal to a nonzero

real linear ombination of the C

i

's, whih is learly impossible.

Step 3.

Q

bl=2�1

i=0

(m=2 + 3i + 5=2)

l�2i�1

divides the determinant. We laim that for

m=2 = �k �

3

2

d, d odd, d � 1, and 1 � k � l � d the following equation holds:

k�1

X

i=0

�

k � 1

i

�

�

(row (2i+ 2d) of X(2l + 1;�k �

3

2

d))

+ ! � (row (2i+ 2d+ 1) of X(2l + 1;�k �

3

2

d))

�

= 0: (11.10)

Restrited to the (2j)th olumn, the left-hand side of this equation beomes, after a

little simpli�ation,

k�1

X

i=0

�

k � 1

i

���

i� d=2 + j � k + 1

2j � i� d

�

+

�

i� d=2 + j � k

2j � i� d

��

: (11.11)

It beomes (! � 1) times the same expression if we restrit to the (2j + 1)th olumn.

Again, the expression (11.11) vanishes trivially for k = 1. In order to establish that

(11.11) vanishes for k > 1 as well, we reverse the order of summation, and then write

the sum in hypergeometri notation. Thus we obtain

(�1)

k

(1� k) (d� 2j)

k�1

(2j � d)! (�

d

2

+ j)

d�2j+k

4

F

3

�

1� k;

4

3

�

k

3

;

1

2

�

d

4

+

j

2

�

k

2

; 1�

d

4

+

j

2

�

k

2

1

3

�

k

3

; 1 +

d

2

� j; 2� d+ 2j � k

; 4

�

:

(11.12)

By (11.5) with A = 1� k, F = 1� d=2+ j� k, n = j � d=2, together with the remarks

aompanying (11.5), this implies immediately that the

4

F

3

-series in (11.12) vanishes

for k > 1. Thus, equation (11.10) is established.

Step 4.

Q

bl=2

i=0

(m=2+3i+3=2)

l�2i

divides the determinant. We laim that for m=2 =

�k �

3

2

d�

1

2

, d even, d � 0, and 1 � k � l � d the following equation holds:

k�1

X

i=0

�

k � 1

i

�

�

(row (2i+ 2d) of X(2l + 1;�k �

3

2

d�

1

2

))

+ (2� !) � (row (2i+ 2d+ 1) of X(2l + 1;�k �

3

2

d�

1

2

))

� ! � (row (2i+ 2d+ 2) of X(2l + 1;�k �

3

2

d�

1

2

))

�

= 0: (11.13)

Restrited to the (2j)th olumn, the left-hand side of this equation beomes, after a

little simpli�ation,

(1� 2!)

k�1

X

i=0

�

k � 1

i

���

i� d=2 + j � k + 1=2

2j � i� d� 1

�

+

�

i� d=2 + j � k � 1=2

2j � i� d� 1

��

:

(11.14)
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Again, this expression vanishes trivially for k = 1. If k > 1, after reversion of summa-

tion, the hypergeometri form of (11.14) is

(�1)

k

(1� k) (1 + d� 2j)

�1+k

(2j � d� 1)! (�

1

2

�

d

2

+ j)

1+d�2j+k

�

4

F

3

�

1� k;

4

3

�

k

3

;

1

4

�

d

4

+

j

2

�

k

2

;

3

4

�

d

4

+

j

2

�

k

2

1

3

�

k

3

;

3

2

+

d

2

� j; 1� d+ 2j � k

; 4

�

: (11.15)

Now we use (11.5) with A = 1� k, F = 1=2� d=2+ j� k, n = j� d=2� 1=2. Together

with the remarks aompanying (11.5), this implies immediately that the

4

F

3

-series in

(11.15) vanishes for k > 1.

On the other hand, restrited to the (2j + 1)th olumn, the left-hand side of (11.13)

beomes, after a little simpli�ation,

(! � 1)

k�1

X

i=0

�

k � 1

i

���

i� d=2 + j � k + 1=2

2j � i� d� 1

�

+

�

i� d=2 + j � k � 1=2

2j � i� d� 1

��

+

k�1

X

i=0

�

k � 1

i

���

i� d=2 + j � k + 3=2

2j � i� d+ 1

�

+

�

i� d=2 + j � k + 1=2

2j � i� d+ 1

��

: (11.16)

It was already shown just before that the �rst sum in (11.16) vanishes (ompare (11.14)).

The seond sum ertainly vanishes for k = 1. To see that it vanishes for k > 1 as well, we

reverse the order of summation and then onvert the sum into hypergeometri notation,

(�1)

k

(1� k) (�1 + d� 2j)

�1+k

(2j � d+ 1)! (

1

2

�

d

2

+ j)

�1+d�2j+k

�

4

F

3

�

1� k;

4

3

�

k

3

;

3

4

�

d

4

+

j

2

�

k

2

;

5

4

�

d

4

+

j

2

�

k

2

1

3

�

k

3

;

1

2

+

d

2

� j; 3� d+ 2j � k

; 4

�

: (11.17)

Again, by (11.5), this time with A = 1� k, F = 3=2� d=2 + j � k, n = j � d=2 + 1=2,

together with the remarks aompanying (11.5), it follows immediately that the

4

F

3

-

series in (11.17) vanishes for k > 1. Thus, equation (11.13) is established.

The linear ombinations of Steps 3 and 4 are independent by the argument used at

the end of Step 2.

Step 5. Determination of the degree of detX(2l+1; m=2) as a polynomial in m. The

(i; j)-entry of X(2l + 1; m=2), viewed as polynomial in m, has the degree j � bi=2.

Therefore, the determinant of X(2l + 1; m=2) has degree at most

2l

X

j=0

j �

2l

X

i=0

�

i

2

�

= l(l + 1) =

a

2

� 1

4

as a polynomial in m.

Step 6. Computation of the multipliative onstant. It suÆes to ompute the leading

oeÆient of the determinant detX(2l+ 1; m=2) as a polynomial in m=2. This leading

oeÆient an be omputed as the determinant of the leading oeÆients of the indi-

vidual entries. In fat, we already did suh a omputation at the end of the proof of

Theorem 12 in the preeding setion, with ! a primitive third root of unity instead of
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a

b+m

o



+m

8

>

>

<

>

>

:

b

a+m

)

m

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

8

>

>

<

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

a

b+m

o



+m

8

>

>

<

>

>

:

b

a+m

)

m

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(

9

>

>

>

>

>

=

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

a. Removal of the triangle whih is b. Removal of the triangle whih is

o�-enter by one \unit"

o�-enter by 3/2 \units"

Figure 13

a primitive sixth root of unity. However, sine ! was treated there as an indetermi-

nate, everything an be used here as well. Thus we obtain the expression (10.7), with

! a primitive sixth root of unity. It is then routine to hek that for a = 2l + 1 the

right-hand side of (3.5) has the same leading oeÆient as a polynomial in m=2. �

12. Comments and open problems

1) Conjetured further enumeration results. There is overwhelming evidene (through

omputer supported empirial alulations) that there are also \nie" formulas for the

number of lozenge tilings of a ored hexagon for at least two further loations of the

ore.

First, let a, b and  have the same parity, and onsider a hexagon with side lengths

a; b+m; ; a+m; b; +m from whih an equilateral triangle of side length m is removed

whih is o�-enter by \one unit". To be more preise, let again s

a

be the side of the

triangle whih is parallel to the borders of the hexagon of lengths a and a + m, and

similarly for s

b

and s



. Then the distane of s

a

to the border of length a + m is the

same as the distane of the vertex of the triangle opposite to s

a

to the border of length

a. The distane of s

b

to the border of length b+m exeeds the distane of the vertex of

the triangle opposite to s

b

to the border of length b by two units. Finally, the distane

of s



to the border of length  +m is two units less than the distane of the vertex of

the triangle opposite to s



to the border of length . See Figure 13.a for an example.

Then the following seems to be true.

Conjeture 1. Let a; b; ;m be nonnegative integers, a; b;  having the same parity. The

number of lozenge tilings of a hexagon with sides a; b + m; ; a + m; b;  + m, with an

equilateral triangle of side length m removed from the position that was desribed above



50 M. CIUCU, T. EISENK

�

OLBL, C. KRATTENTHALER AND D. ZARE

(see Figure 13.a), equals

1

4

H(a+m) H(b +m) H(+m) H(a+ b + +m)

H(a + b+m) H(a + +m) H(b+ +m)

�

H(m+

�

a+b+

2

�

) H(m+

�

a+b+

2

�

)

H(

a+b

2

+m+ 1)H(

a+

2

+m� 1)H(

b+

2

+m)

�

H(

�

a

2

�

) H(

�

b

2

�

) H(

�



2

�

) H(

�

a

2

�

) H(

�

b

2

�

) H(

�



2

�

)

H(

m

2

+

�

a

2

�

) H(

m

2

+

�

b

2

�

) H(

m

2

+

�



2

�

) H(

m

2

+

�

a

2

�

) H(

m

2

+

�

b

2

�

) H(

m

2

+

�



2

�

)

�

H(

m

2

)

2

H(

a+b+m

2

)

2

H(

a++m

2

)

2

H(

b++m

2

)

2

H(

m

2

+

�

a+b+

2

�

) H(

m

2

+

�

a+b+

2

�

) H(

a+b

2

� 1)H(

a+

2

+ 1)H(

b+

2

)

P

1

(a; b; ;m); (12.1)

where P

1

(a; b; ;m) is the polynomial given by

P

1

(a; b; ;m) =

(

(a+ b)(a + ) + 2am if a is even,

(a+ b)(a + ) + 2(a+ b + +m)m if a is odd.

The reader should notie that the only di�erenes between formulas (12.1) and

(1.2) are in some hyperfatorials involving (a + b)=2 and (a + )=2, in the polyno-

mial P

1

(a; b; ;m), whih does not appear in (1.2), and in the fator 1=4 in front of

(12.1).

The seond ase needs a to have a parity di�erent from b and . Consider a hexagon

with side lengths a; b +m; ; a +m; b;  +m from whih an equilateral triangle of side

length m is removed whih is o�-enter by \3/2 units". To be more preise, with s

a

,

s

b

, s



the sides of the triangle as above, the distane of s

a

to the border of length a+m

is the same as the distane of the vertex of the triangle opposite to s

a

to the border of

length a, the distane of s

b

to the border of length b +m exeeds the distane of the

vertex of the triangle opposite to s

b

to the border of length b by three units, and the

distane of s



to the border of length +m is three units less than the distane of the

vertex of the triangle opposite to s



to the border of length . See Figure 13.b for an

example. Then the following seems to be true.

Conjeture 2. Let a; b; ;m be nonnegative integers, a of parity di�erent from the parity

of b and . The number of lozenge tilings of a hexagon with sides a; b+m; ; a+m; b; +m,

with an equilateral triangle of side length m removed from the position that was desribed

above (see Figure 13.b), equals

1

16

H (a +m) H (b +m) H (+m) H (a+ b + +m)

H (a+ b +m) H (a+ +m) H (b+ +m)

�

H

�

m

2

�

2

H

��

a

2

��

H

��

b

2

��

H

��



2

��

H

��

a

2

��

H

��

b

2

��

H

��



2

��

H

�

m

2

+

�

a

2

��

H

�

m

2

+

�

b

2

��

H

�

m

2

+

�



2

��

H

�

m

2

+

�

a

2

��

H

�

m

2

+

�

b

2

��

H

�

m

2

+

�



2

��

�

H

��

a+b

2

�

+

m

2

�

H

��

a+b

2

�

+

m

2

�

H

��

a+

2

�

+

m

2

�

H

��

a+

2

�

+

m

2

�

H

�

b+

2

+

m

2

�

2

H

�

m

2

+

�

a+b+

2

��

H

�

m

2

+

�

a+b+

2

��

H

��

a+b

2

�

� 1

�

H

��

a+

2

�

+ 1

�

H

�

b+

2

�

�

H

�

m +

�

a+b+

2

��

H

�

m+

�

a+b+

2

��

H

��

a+

2

�

+m� 1

�

H

�

b+

2

+m

�

H

��

a+b

2

�

+m+ 1

�

P

2

(a; b; ;m); (12.2)
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where the polynomial P

2

(a; b; ;m) is given by

P

2

(a; b; ;m) =

8

>

>

>

<

>

>

>

:

((a+ b)

2

� 1)((a+ )

2

� 1) + 4am(a

2

+ 2ab + b

2

+ 2a+ 3b+ 

2

+2am + 3bm+ 3m + 2m

2

� 1) if a is even,

((a+ b)

2

� 1)((a+ )

2

� 1) + 4(a+ b + +m)m(a

2

+ b� 1)

if a is odd.

Again, the reader should notie that the only di�erenes between formulas (12.2) and

(1.3) are in some hyperfatorials involving (a + b)=2 and (a + )=2, in the polynomial

P

2

(a; b; ;m), whih does not appear in (1.3), and in the fator 1=16 in front of (12.2).

Conjetured results about the (�1)-enumeration of the above two families of lozenge

tilings ould be easily worked out as well, and would have similar appearane, i.e.,

the result would be a quotient of produts of many \nie" fators times an irreduible

polynomial of small degree. However, if one moves the triangle farther away from the

enter, then, for both ordinary and (�1)-enumeration, the irreduible polynomial fator

seems to grow rather quikly in degree, and is therefore diÆult to predit in general.

For a proof of Conjetures 1 and 2, one might go through onsiderations analogous

to those in Setion 5, i.e., onvert the lozenge tilings into families of noninterseting

lattie paths, and, by means of the Lindstr�om{Gessel{Viennot theorem (Lemma 14),

obtain a determinant for the number of lozenge tilings. This determinant, whih then

must be evaluated, is

det

1�i;j�a+m

0

B

B

�

�

b + +m

b� i + j

�

1 � i � a

�

b+

2

b+a

2

� i+ j + "

�

a+ 1 � i � a+m

1

C

C

A

; (12.3)

with " = 1 and " = 3=2, respetively. (The determinants in Lemmas 15 and 16 are the

respetive speial ases " = 0 and " = 1=2 of (12.3).)

2) A multidimensional analogue of Watson's

3

F

2

-summation, and some variants.

There is another possible way to approah the evaluation of the determinants in Lem-

mas 15 and 16. This approah onsists of applying Laplae expansion to these de-

terminants. More preisely, we write an (a +m) � (a +m) determinant (suh as the

determinant in Lemma 15 or 16) as a (signed) sum of produts of a minor formed of

elements of the �rst a rows times the omplementary minor formed of elements of the

last m rows. That is, given an (a +m)� (a+m) matrix M , we write

detM =

X

K

(�1)

s(K)

�

detM

K

�

(detM

K

0

) ; (12.4)

where the sum is over all a-element subsets K of f1; 2; : : : ; a + mg, where s(K) =

P

k2K

k �

�

a+1

2

�

, M

K

denotes the submatrix of M determined by the �rst a rows and

the olumns with indies in K, K

0

denotes the omplement of K in f1; 2; : : : ; a +mg,

and M

K

0

denotes the submatrix of M determined by the last m rows and the olumns

with indies in K

0

.

The gain in applying (12.4) to our determinants in Lemmas 15 and 16 is that the

entries of the resulting minors whih then appear on the right-hand side of (12.4) have

now a uniform de�nition (in ontrast to the original determinants), and an in fat
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easily be evaluated in losed form, by means of the determinant evaluation

det

1�i;j�n

��

A

L

j

� i

��

=

Q

1�i<j�n

(L

j

� L

i

)

Q

n

i=1

(A� L

i

+ n)!

Q

n

i=1

(A+ i� 1)!

Q

n

i=1

(L

i

� 1)!

: (12.5)

(This determinant evaluation is easily proved, e.g., by means of a general determinant

lemma from [17, Lemma 2.2℄; see also [20, Se. 2.2 and (3.12)℄). Thus, on the right-hand

side of (12.4) we obtain a multiple (hypergeometri) series for our determinants. If an

evaluation of this multiple sum would appear in the existing literature, then we would

be immediately done. Unfortunately, this does not seem to be the ase. On the other

hand, we did evaluate the determinants in Setions 7 and 8. Thus, omparison of the

results with the right-hand side in (12.4) establishes summation theorems for multiple

hypergeometri series. The summation theorem that results, after some replaement of

parameters, from the evaluations in Setion 7 of the determinant in Lemma 15 is the

following.

Theorem 27. Let a be a positive integer and M be a nonnegative integer. The multiple

series

X

0�k

1

<k

2

<���<k

a

Y

1�i<j�a

(k

i

� k

j

)

2

a

Y

i=1

(�M)

k

i

(C)

k

i

(B)

k

i

k

i

!

�

a

2

�

M

2

+

C

2

�

k

i

(2B + a� 1)

k

i

(12.6)

equals

(�1)

a=2

2

a

2

�a�aM

M !

a

Q

a

i=1

(B)

i�1

�

a

2

+

C

2

�

M

2

�

a

M=2�a=2

�

a=2

Y

i=1

(i� 1)!

2

�

1

2

+

C

2

�

2

i�1

�

B �

C

2

+ i� 1

�

M=2�a=2+1

�

B �

C

2

+ i

�

M=2�a=2

�

M

2

� i

�

!

�

M

2

� i+ 1

�

!

�

a

2

+B �

1

2

�

2

M=2�i+1

�

a

2

+B

�

2

i�1

�

1 +

C

2

� i+

M

2

�

2i�1

(12.7)

if a and M are even, it equals

(�1)

a=2

2

a

2

�a�aM

M !

a

Q

a

i=1

(B)

i�1

�

a

2

+

C

2

�

M

2

�

a

M=2�a=2+1=2

a=2

Y

i=1

(i� 1)!

2

�

M

2

� i +

1

2

�

!

2

�

a=2

Y

i=1

�

C

2

�

i�1

�

C

2

�

i

�

B �

C

2

+ i�

1

2

�

2

M=2�a=2+1=2

�

a

2

+B �

1

2

�

M=2�i+1=2

�

a

2

+B �

1

2

�

M=2�i+3=2

�

a

2

+B

�

2

i�1

�

1 +

C

2

� i+

M

2

�

2i�1

(12.8)

if a is even and M is odd, it equals

(�1)

M=2

2

a

2

�a�aM

M !

a

�

B �

C

2

+

a

2

�

M=2�a=2+1=2

Q

a

i=1

(B)

i�1

�

M

2

�

!

�

a

2

+B

�

M=2

�

a

2

+

C

2

�

M

2

�

a

M=2�a=2+1=2

�

(a�1)=2

Y

i=1

(i� 1)! i!

�

C

2

�

2

i

�

B �

C

2

+ i�

1

2

�

2

M=2�a=2+1=2

�

M

2

� i

�

!

2

�

a

2

+B �

1

2

�

2

i

�

a

2

+B

�

2

M=2�i

�

1

2

+

C

2

� i+

M

2

�

2i

(12.9)

if a is odd and M is even, and it vanishes if both a and M are odd.
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There are two interesting features of this summation theorem to be observed. First,

if we set a = 1, the theorem redues to a terminating ase of Watson's

3

F

2

-summation

(see [36, (2.3.3.13); Appendix (III.23)℄),

3

F

2

�

A;C;B

1+A+C

2

; 2B

; 1

�

=

�

�

1

2

�

�

�

1

2

+B

�

�

�

1

2

+

A

2

+

C

2

�

�

�

1

2

�

A

2

�

C

2

+B

�

�

�

1

2

+

A

2

�

�

�

1

2

+

C

2

�

�

�

1

2

�

A

2

+B

�

�

�

1

2

�

C

2

+B

�

;

whih is a summation formula whih is not so often met. Seond, however, the above

theorem is an unusual multidimensional analogue of Watson's

3

F

2

-summation, beause

of the term

Q

1�i<j�a

(k

i

�k

j

)

2

appearing in the summand. Whereas for series ontaining

a term like

Q

1�i<j�a

(k

i

�k

j

) (i.e., the same term, but without the square) there is now

an extensive theory of summation and transformation formulas (suh a series is alled

a hypergeometri series in U(a) or an A

a

hypergeometri series), mainly thanks to

Milne and Gustafson (see for example [14, 29, 30, 31, 35℄, and the referenes ontained

therein), it is only oasionally that series ontaining the square

Q

1�i<j�a

(k

i

� k

j

)

2

appear. Most of the time, they arise from series featuring Shur funtions (see [21,

Theorem 6℄ for suh an example). However, our Theorem 27 does not seem to extend

to a \Shur funtion theorem."

The summation theorem that results from the evaluations in Setion 8 of the deter-

minant in Lemma 16 is a variant of the preeding theorem.

Theorem 28. Let a be a positive integer and M be a nonnegative integer. The multiple

series

X

0�k

1

<k

2

<���<k

a

Y

1�i<j�a

(k

i

� k

j

)

2

a

Y

i=1

(�M)

k

i

(C)

k

i

(B)

k

i

k

i

!

�

a

2

�

M

2

+

C

2

+

1

2

�

k

i

(2B + a� 2)

k

i

(12.10)

equals

(�1)

a=2

2

a

2

�a�aM

M !

a

Q

a

i=1

(B)

i�1

�

1

2

+

a

2

+

C

2

�

M

2

�

a

M=2�a=2

�

a=2

Y

i=1

(i� 1)!

2

�

C

2

�

i�1

�

C

2

�

i

�

M

2

� i

�

!

�

M

2

� i+ 1

�

!

�

a

2

+B � 1

�

i�1

�

a

2

+B � 1

�

i

�

a=2

Y

i=1

�

B �

C

2

+ i�

3

2

�

M=2�a=2+1

�

B �

C

2

+ i�

1

2

�

M=2�a=2

�

a

2

+B �

1

2

�

M=2�i

�

a

2

+B �

1

2

�

M=2�i+1

�

1

2

+

C

2

� i+

M

2

�

2i

(12.11)

if a and M are even, it equals

(�1)

a=2

2

a

2

�a�aM

M !

a

Q

a

i=1

(B)

i�1

�

1

2

+

a

2

+

C

2

�

M

2

�

a

M=2�a=2�1=2

a=2

Y

i=1

(i� 1)!

2

�

M

2

� i +

1

2

�

!

2

�

a=2

Y

i=1

�

1

2

+

C

2

�

2

i�1

�

B �

C

2

+ i� 1

�

2

M=2�a=2+1=2

�

a

2

+B � 1

�

i�1

�

a

2

+B � 1

�

i

�

a

2

+B �

1

2

�

2

M=2�i+1=2

�

1

2

+

C

2

� i+

M

2

�

2i

(12.12)
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if a is even and M is odd, it equals

(�1)

M=2

2

a

2

�a�aM

M !

a

�

B �

C

2

+

a

2

�

1

2

�

M=2�a=2+1=2

�

C

2

+

M

2

� �

M

2

�

!

�

a

2

+B � 1

�

M=2�a=2+1=2

�

Q

a

i=1

(B)

i�1

�

1

2

+

a

2

+

C

2

�

M

2

�

a

M=2�a=2�1=2

(a�1)=2

Y

i=1

(i� 1)! i!

�

1

2

+

C

2

�

i�1

�

1

2

+

C

2

�

i

�

M

2

� i

�

!

2

�

a

2

+B � 1

�

2

M=2�i+1

�

(a�1)=2

Y

i=1

�

B �

C

2

+ i� 1

�

2

M=2�a=2+1=2

�

a

2

+B �

1

2

�

i�1

�

a

2

+B �

1

2

�

i

�

C

2

� i+

M

2

�

2i+1

(12.13)

if a is odd and M is even, and it equals

(�1)

M=2�1=2

2

a

2

�a�aM

M !

a

�

B �

C

2

�

1

2

�

M=2�a=2+1

�

C

2

+

M

2

� �

M

2

�

a

2

�

!

�

a

2

+B � 1

�

M=2+1=2

�

Q

a

i=1

(B)

i�1

�

1

2

+

a

2

+

C

2

�

M

2

�

a

M=2�a=2

(a�1)=2

Y

i=1

(i� 1)! i!

�

C

2

�

2

i

�

M

2

� i +

1

2

�

!

2

�

a

2

+B � 1

�

2

M=2�i+1=2

�

(a�1)=2

Y

i=1

�

B �

C

2

+ i�

1

2

�

M=2�a=2

�

B �

C

2

+ i�

1

2

�

M=2�a=2+1

�

a

2

+B �

1

2

�

i�1

�

a

2

+B �

1

2

�

i

�

C

2

� i +

M

2

�

2i+1

(12.14)

if both a and M are odd.

In fat, the evaluations in Setion 8 of the determinant in Lemma 16 establish even

a further variant of Theorem 27. This variant is obtained as follows. Reall (see the

Introdution) that the determinant in Lemma 16 arose from the ase when the parity of

a was di�erent from that of b and , so that, in order to have a well-de�ned enumeration

problem, we had to adjust the de�nition of a \entral" triangle of the hexagon. What

we did was to shift the really entral triangle by half a unit in parallel to the sides

of the hexagon of length a and a + m. Now let us suppose that, unlike in that ase,

it is b that has parity di�erent from that of a and , so that the \entral" triangle

in the sense of the Introdution is the really entral triangle shifted by half a unit in

parallel to the sides of the hexagon of length b and b + m. Clearly, our enumeration

results in Theorems 2 and 5 an be still used, we just have to interhange the roles of

a and b. On the other hand, if we go through the onsiderations in Setion 5 (without

interhange of the roles of a and b, i.e., starting and end points of the lattie paths

are hosen on the sides of the hexagon of length a and a + m and on the side of the

triangle whih is parallel), then we obtain a ertain determinant, whih di�ers slightly

from the determinants in Lemmas 15 and 16. Comparison of the enumeration results

with Laplae expansion (12.4) of the determinant establishes the following summation

theorem.

Theorem 29. Let a be a positive integer and M be a nonnegative integer. The multiple

series

X

0�k

1

<k

2

<���<k

a

Y

1�i<j�a

(k

i

� k

j

)

2

a

Y

i=1

(�M)

k

i

(C)

k

i

(B)

k

i

k

i

!

�

a

2

�

M

2

+

C

2

�

k

i

(2B + a� 2)

k

i

(12.15)
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equals

(�1)

a=2

2

a

2

�a�aM

M !

a

Q

a

i=1

(B)

i�1

�

a

2

+B � 1

�

a=2

�

a

2

+

C

2

�

M

2

�

a

M=2�a=2

a=2

Y

i=1

(i� 1)!

2

�

M

2

� i

�

!

�

M

2

� i+ 1

�

!

�

a=2

Y

i=1

�

1

2

+

C

2

�

2

i�1

�

B �

C

2

+ i� 1

�

M=2�a=2

�

B �

C

2

+ i� 1

�

M=2�a=2+1

�

a

2

+B � 1

�

2

i�1

�

a

2

+B �

1

2

�

M=2�i

�

a

2

+B �

1

2

�

M=2�i+1

�

1 +

C

2

� i+

M

2

�

2i�1

(12.16)

if a and M are even, it equals

(�1)

a=2

2

a

2

�a�aM

M !

a

Q

a

i=1

(B)

i�1

�

a

2

+

C

2

�

M

2

�

a

M=2�a=2+1=2

a=2

Y

i=1

(i� 1)!

2

�

M

2

� i+

1

2

�

!

2

�

a=2

Y

i=1

�

C

2

�

i�1

�

C

2

�

i

�

B �

C

2

+ i�

3

2

�

M=2�a=2+1=2

�

B �

C

2

+ i�

1

2

�

M=2�a=2+1=2

�

a

2

+B � 1

�

i�1

�

a

2

+B � 1

�

i

�

a

2

+B �

1

2

�

2

M=2�i+1=2

�

1 +

C

2

� i+

M

2

�

2i�1

(12.17)

if a is even and M is odd, it equals

(�1)

M=2

2

a

2

�a�aM

M !

a

�

B �

C

2

�

1

2

�

M=2�a=2+1=2

Q

a

i=1

(B)

i�1

�

M

2

�

!

�

a

2

+B � 1

�

M=2�a=2+1=2

�

a

2

+

C

2

�

M

2

�

a

M=2�a=2+1=2

�

(a�1)=2

Y

i=1

(i� 1)! i!

�

C

2

�

2

i

�

M

2

� i

�

!

2

�

a

2

+B � 1

�

2

M=2�i+1

�

(a�1)=2

Y

i=1

�

B �

C

2

+ i�

1

2

�

2

M=2�a=2+1=2

�

a

2

+B �

1

2

�

i�1

�

a

2

+B �

1

2

�

i

�

1

2

+

C

2

� i+

M

2

�

2i

(12.18)

if a is odd and M is even, and it equals

(�1)

M=2+1=2

2

a

2

�a�aM

M !

a

�

B �

C

2

+

a

2

�

1

2

�

M=2�a=2

Q

a

i=1

(B)

i�1

�

M

2

�

a

2

�

!

�

a

2

+B � 1

�

M=2+1=2

�

a

2

+

C

2

�

M

2

�

a

M=2�a=2

�

(a�1)=2

Y

i=1

(i� 1)! i!

�

1

2

+

C

2

�

i�1

�

1

2

+

C

2

�

i

�

M

2

� i+
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�

!

2

�

a

2

+B � 1

�

2

M=2�i+1=2

�

(a�1)=2

Y

i=1

�

B �

C

2

+ i� 1

�

M=2�a=2

�

B �

C

2

+ i� 1

�

M=2�a=2+1

�

a

2

+B �

1

2

�

i�1

�

a

2

+B �

1

2

�

i

�

1

2

+

C

2

� i +

M

2

�

2i

(12.19)

if both a and M are odd.

The reader should observe that, by similar onsiderations, i.e., by applying Laplae

expansion (12.4) to (12.3), Conjetures 1 and 2 are equivalent to further variations

of Theorem 27. To be preise, Conjetures 1 and 2 ould be proved by establishing
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summation theorems for the multiple series

X

0�k

1

<k

2

<���<k

a

Y

1�i<j�a

(k

i

� k

j

)

2

a

Y

i=1

(�M)

k

i

(C)

k

i

(B)

k

i

k

i

!

�

a

2

�

M

2

+

C

2

+ "

�

k

i

(2B + a� 1� 2")

k

i

; (12.20)

with " = 1 and " = 3=2, respetively.

3) Are there q-analogues of our results? By \q-analogue", we mean, as usual, that

objets x are ounted with respet to a weight q

w(x)

, where w(x) is some statisti de�ned

on the objets. The question of whether there is a q-analogue, say of Theorems 1 and

2, is motivated by two fats: In the ase of m = 0 of Theorems 1 and 2, i.e., if one

ounts lozenge tilings of a hexagon with no triangle removed, or, equivalently, plane

partitions ontained in a given box, there is a well-known q-analogue due to MaMahon

[26, Se. 429; proof in Se. 494℄, in whih every plane partition P is given the weight

q

jP j

, where jP j denotes the number of \boxes" (points, aording to our de�nition of

plane partitions in Setion 3) of P . The result is the q-analogue of formula (1.1) whih

is obtained by replaing all fatorials in (1.1) by the respetive q-fatorials. Similarly, in

the ase m = 1, q-analogues of Theorems 1 and 2 an be gleaned from [32, Theorem 3℄,

by setting x

i

= q

i

, i = 1; 2; : : : ; n+1, respetively x

i

= q

i

, i = 1; 2; : : : ; n, x

n+1

= 0, and

using the hook-ontent formula for the prinipal speialization of Shur funtions (see

[25, I, Se. 3, Ex. 1℄, [9, Ex. A.30, (ii)℄). The question of whether there are q-analogues

for arbitrary m remains open. Furthermore, it would be partiularly interesting if there

were a q-analogue of Theorem 10 that would speialize for m = 0 to the the statement

of the Madonald (ex)onjeture on ylially symmetri plane partitions (f. [27℄).
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