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Abstract. We give a combinatorial proof that [Z:l [lﬂ — Lk j‘_ 1:l l: l—f 1] is

q q q q
a polynomial in g with nonnegative coefficients for nonnegative integers a, b, k, / with

azb and /> k. In particular, for a=b=n and [=Fk, this implies the

g-log-concavity of the Gaussian binomial coefficients [Z] , which was conjectured

q
by BUTLER (Proc. Amer. Math. Soc. 101 (1987), 771—775).

1. Introduction

A sequence (p,(9))i.r of polynomials p,(g) in g is called
g-log-concave if p,(q)* — pr_1(q) Prsi1(g) is a polynomial with
nonnegative coefficients. In a recent paper BUTLER [2] conjectured
that the rank numbers of the lattice of subgroups of a finite abelian
g-group are g-log-concave. Even in the special case of the g-group
being of type 1 = (1”) this conjecture was not settled. ((1”) is the
partition consisting of n parts equal to 1.) Here we have to prove that
the Gaussian binomial coefficients

[n] __ (g9,

kl, @@ e,

where (;9),=(1—-a)(1 —agq)...(1 —aq™™"), are g-log-concave.
That means we have to show that

L[] [ ]

is a polynomial in ¢ with nonnegative coefficients.
The first proof of g¢-log-concavity of Gaussian binomial

coefficients was found by BUTLER herself [3]. When being confronted
23*
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with Butler’s (combinatorial) proof, SAGAN [5] supplied an inductive
proof by extending his work begun in [4]. Being unaware of both, we
devised an alternative combinatorial proof, which we present in this
paper. Moreover, we prove the following stronger theorem:

Theorem 1. Let a,b,k,! be nonnegative integers with a= b and

[= k. Then
[Z]q [ﬂq B [ki 1]q[1£ 1]q (1.1)

is a polynomial in g with nonnegative coefficients.

Once having proved Theorem 1 (which is done in section 2), the
special case @ = b = n, | = k furnishes g-log-concavity of Gaussian
binomial coefficients. Besides, writing

HiHEBARIRE
SO (P P [

we obtain from Theorem 1:

Corollary 2. Let a, b, k, I, r be nonnegative integers with a = b and

1> k. Then
[Z]q [ﬂq B [k . r]q [li r]q (1.2)

is a polynomial in q with nonnegative coefficients.
As is well-known (cf. e.g. [1, p.48]) the Gaussian binomial
coefficient [Z:I is a symmetric, unimodal polynomial with degree
q
k(n — k). The product of symmetric, unimodal polynomials again
is symmetric and unimodal [1, Theorem 3.9], hence both expres-
sions in (1.2) are symmetric and unimodal, and the degree of the

first expression exceeds the degree of the second by
2r{l — k + r) + r(a — b). Therefore we may generalize Corollary 2 to
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Corollary 3. Let a, b, k, [, v, s be nonnegative integers with a > b,
IZkands<2r(l—k+r)+r(a—b). Then

[Zl, m -7 [k i ”l [1 i rl (1.3)

is a polynomial in q with nonnegative coefficients.

Both, BUTLER’s [3] and SAGAN’s [5] papers, contain the case a = b
of Corollary 3, and besides, the discussion of related problems.

2. Proof of Theorem 1

Since the cases k = 0 and [ > b are trivial we may concentrate on
O0<k<lI<b.

Let P, (n) denote the set of k-element subsets of {1,2,...,n}. For
Se P.(n) we write || S]] for the sum of all the elements of S. Then it
is well-known (this is seen e.g. equating coefficients in [1, (3.3.6)]) that

) k+1

For pairs of integer subsets (C, D) let ||(C,D)|| = || Cl{ + || D]
We are going to construct an injection ¢ from P,_,(a)x P, (b)
into P, (a) x P,(b) with weight property
le((4,B)=1(4B)I~(U~k+1) 2.2)
for (4, Bye P,_,(a) x P, (D). Let us write F(4) for the generating

function }'¢"©?" where the sum is over all (C, D)e.. Suppose ¢
given, then (2.1) would imply

) (L] [ﬂ -l 24| : )

= ¢ F(B(a) x B(B)) — F(Pey (@)% Ppyy (B)) =
= ¢ F(B(a)x B(B)\im, P,_, (a)x By, (D)) + (2.3)
+ ¢'"* F(im, P_, (a) x Py (B)) ~ F(B_ (a)x Py 1 (B),

where im, P, (a) x P,,,(b) is the image of P,_,(a)x P, ,(b) under
application of ¢. But, by (2.2) the expressions in the last line of (2.3)
cancel, hence
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NOREY ([k] m 24 ? 1]) -

=g~ F(P(@)x P(B)\im, P,_(@)x Py, (B), P

which proves that (1.1) is a polynomial with nonnegative coefficients.

Leaves to construct the injection ¢. First, for a given pair (C, D) of
integer subsets, we introduce an integer-valued function K p, acting
on positive integers by

ke = 3 1(GeC) = 3 1(eD) @.5)

where y (&) = 1 if . is true, y (&/) = 0 otherwise.

Suppose (4, B)e P,_,(a)x P,_,(b). The simplest way, one can
imagine, in obtaining an injection satisfying (2.2) is removing an
element from B, subtracting (/ — k + 1) from it and putting it into the
set A. Of course, there are some difficulties. First of all, we have to
take an element, say e, of Bwhich islarger than (/ — & + 1). Secondly,
e — (I — k + 1) must not occur in 4. And last, but really not least, this
has to become an injection. But nevertheless, we succeed in finding
such a procedure, which we introduce in three steps.

Step 1. Add (I — k + 1) to each element of A4, thus obtaining the
pair (4,, B,), where B, = B.

Step 2. Let L (A, B) be the largest integer greater than (/ — k) where
k4, 5y reaches its largest value. To be precise, for an integer n,
n>[— k, we have

n> L(A, B) implies k4 py(n) <k, p,(L(4, B)),

n< L(A,B) implies k4, ) () < k4, 5y (L(4, B)).
Obviously, by definition of L (4, B), we have (L(A4, B) + 1)e B, \ 4,.
Removing (L(4,B) + 1) from B, and putting it into A4,, we get

the pair (A4,,B,) where A,=A,0{L(4,B)+ 1} and B,=
= B\ {L(4,B) + 1}.

Step 3. Subtract (I — k + 1) from each element of A4,.

To give an example take a=11, =10, /=6, k=15 and
(4,B) = ({2,4,6,11}, {1,2,4,5,7,8,10}). Performing Step 1 we
obtain (4,, B, = ({4,6,8,13}, {1,2,4,5,7,8,10}). Here the largest
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integer greater than / — k = 1 where K, ) reaches its largest value
is L(4,B) =6 (since k4, 5,()) = — 2 for i=2,3,4,6, ki, 5,(i) =
= —3 for i=5,7,8,9,13 and k,, 5,() = — 4 for i=10,11,12).
Therefore (4,,B,) = ({4,6,7,8,13}, {1,2,4,5,8,10}). Finally, by
Step 3, we obtain ¢ ({2,4, 6,11}, {1,2,4,5,7,8,10}) = ({2,4, 5,6, 11},
{1,2,4,5,8,10}).

Because of
k(A1,B1)(l_k+ 1)> "(1—k+ 1)>k—[-—2=
== k(A],Bx)(a—i- l— k+ 1),

the largest value of k4, 5, is attained for integers being smaller than
(a+ 1~k + 1) only. This shows the existence of L(4,B) for all
(4,B)e P,_,(a) x P (b). Therefore Step 2 always can be performed.
Obviously ¢, by definition, satisfies (2.2).
In order to show that ¢ is injective, we claim that the image of ¢
is given by the set of all pairs (C, D)€ P, (a) x P,(b) which satisfy the
following condition:

(C) There exists an integer j, / — k + 1 <j < b with

I—k+1

k(C1,D1)(i)> - Z Z(ieDl)a
i=1

where (C;, D;) comes out of (C, D) by adding (/ — k + 1) to each
element of C, and D, = D.

In our preceding example, a = 11,6 =10,/=6, k=5, (C,D) =
= ({2,4,5,6,11}, {1,2,4,5,8,10}) we have (C,, D)) = ({4,6,7, 8, 13},
{1,2,4,5,8,10}). Indeed ki, py(7) = — 1> —2=3" y(ieD)).

Our claim may be settled by establishing the inverse map ¢ of ¢.
Again, this is done in three steps. Consider (C, D)e P,(a) x P,(b)
which satisfies condition (C).

Step 1. Add (I — k + 1) to each element of C, thus obtaining the
pair (C,, D)), where D, = D.

Step 2. Let S(C,D) be the smallest integer with [/ — k <
< §(C, D) < b where k, p, reaches its largest value. To be precise,
for all integers n, with / — k < n< b, we have
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n< 8(C,D) implies ki, p, (1) < k¢, py(S(C, D)),
nz S(C,D) implies ke, p,(n) < ki, py(S(C, D)).

Removing S(C, D) from C, and putting it into D,, we get (C;, Dy)
where C; = C;\ {S(C, D)} and D, = D, v {S(C, D)}.

Step 3. Subtract (/ — k + 1) from each element of C,.

In our example, a=11, b=10, I=6, k=5 (C,D)=
= ({2,4,5,6,11}, {1,2,4,5,8,10}), we get (C, D)) = ({4,6,7,8,13},
{1,2,4,5,8,10}), S(C.,D) =7 (since ki, py()) = — 1 for i=7,8,9,
ki, py(@® = —2fori=2,3,4,6,10 and k¢, p,(5) = — 3) and there-
fore, by Step 2 and 3,

#({2,4,5,6,11}, {1,2,4,5,8,10}) = ({2,4,6, 11}, {1,2,4,5,7,8,10}).

Step 2, for pairs (C, D) satisfying condition (C), always can be
performed, since (C) and the definition of S(C, D) guarantee
S(C,D)e C,\ D,. Hence ¢((C,D))e P,_,(a)x P_,(b) for (C,D)e
€ P, (a) x P,(b) and satisfying (C).

Given (4,B)e P,_,(a)x P, (b) we have to prove that ¢((4, B))

satisfies (C). Because of
I-k+1

kg py—k+1)=— Z x (i€ B)),
g

we must have
ks, 5y (L(A,B) + 1) =k, 5, (L(4, B+ 1)+2=

I—k+1

= ke 5y (L(4,B)) + 1> — Y y(i€B),
i=1

the inequality being true because of maximality of k4, p, (L (4, B)).
But, since L(A4, B) + 1 > [ — k + 1 this implies that ¢ ((4, B)) satisfies
condition (C).

@o ¢ = id is shown by observing S(¢((4, B))) = L(4, B) + 1. The
details are left to the reader.

Summarizing, we have ¢ which maps elements of P,_, (a) x P, , (b)
into elements of P, (a) x P,(b) which satisfy condition (C). We have ¢
mapping elements of P, (a)x P,(b) satisfying (C) into elements of
P._(a)x P_,(b), and gop =id. Hence, ¢ is a bijection between
P._(@)x P, (b) and im,P,_(@)x P ,(b), and therefore, in
particular, injective, which completes the proof of the Theorem.
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