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INTRODUCTION 

Gessel and Viennot have developed a powerful technique for enumerat- 
ing various classes of plane partitions [GVl, 21. There are two fundamen- 
tal ideas behind this technique. The first is the observation that most 
classes of plane partitions that are of interest--either by association with 
the representation theory of the classical groups, or for purely combinatorial 
reasons+an be interpreted as configurations of nonintersecting paths in a 
digraph (usually the lattice Z’). The second is the observation that the 
number of r-tuples of nonintersecting paths between two sets of r vertices 
can (often) be expressed as a determinant. 

The purpose of this article is to show by similar means that one may use 
pfaflians to enumerate configurations of nonintersecting paths in which the 
initial and/or terminal vertices of the paths are allowed to vary over 
specified regions of the digraph. This leads to the possibility of enumerating 
classes of plane partitions in which the shape is allowed to vary, whereas 
the previous applications of Gessel and Viennot were largely confined to 
plane partitions of a given shape. 

We have made no attempt to catalogue all possible classes of plane 
partitions that one could enumerate by these techniques; rather, we have 
confined ourselves to providing new, simple, unified proofs of a diverse 
collection of known results, including identities of Gansner, Jozetiak and 
Pragacz, Gordon, Gordon and Houten, Goulden, Lascoux and Pragacz, 
and Okada. In one instance, we give a new result; namely, a pfaffian for the 
number of totally symmetric, self-complementary plane partitions. It seems 
likely that the number of plane partitions belonging to the other symmetry 
classes for which there are only conjectured formulas (see [St3]) could also 
be expressed as pfafhans. We will not pursue this further here, except to 
note that Okada has already done this for the totally symmetric case [O]. 

A more detailed summary follows. 
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The first half of the paper (Sects. l-4) is concerned with the general 
problem of enumerating r-tuples of nonintersecting paths in an acyclic 
digraph D. In Section 1 we review the basic methods of Gessel and Viennot 
for enumerating sets of nonintersecting paths in which the initial and 
terminal vertices are specified. We should point out (as do Gessel and 
Viennot) that the fundamental idea behind this technique occurs earlier in 
the work of Lindstrom [L], although Lindstriim did not use it for 
enumerative purposes. In Section 2, we give a combinatorial definition of 
the pfaffian, and assemble a collection of some of its useful properties. The 
main results of the paper are in Sections 3 and 4. The first result 
(Theorem 3.1) shows that the number (or generating function) of noninter- 
secting r-tuples of paths from a set of r vertices to a specified region of D 
can, under favorable circumstances, be expressed as a pfaffian. We also give 
a related result, suggested by the work of Jozefiak and Pragacz [JP], in 
which one specifies the terminal points of some of the r paths. The other 
main result (Theorem 4.1) concerns the number (or generating function) of 
r-tuples of nonintersecting paths between two specified regions of D. Again 
assuming favorable circumstances, we show that this number can be 
expressed as the coefficient of t’ in the pfaffian of a matrix whose entries are 
quadratic in t. This result is closely related to Okada’s pfallian for the sum 
of all minors of an arbitrary matrix [0], although the proof we give is 
independent of this. 

The second half of the paper (Sects. 5-9) is concerned with applications. 
In our first application (Theorem 5.1), we obtain Gansner’s generating 
function for shifted tableaux (also known as shifted reverse plane parti- 
tions) of a given shape, weighted by the sum of their entries [Gal. A 
corollary of this result in the hook length formula for shifted tableaux. In 
Section 6, we consider Schur’s Q-functions. These symmetric polynomials, 
originally defined via pfaffians, were used by Schur in his analysis of projec- 
tive representations of symmetric groups [S]. More recently, it has became 
known that these Q-functions possess a natural combinatorial description, 
even though this description is not transparent from Schur’s definition. We 
show (Theorem 6.1) that in fact, the methods of Section 3 do provide a 
simple way to reconcile Schur’s definition with the combinatorial one. We 
also use the same methods to express the skew Q-functions as pfaffians, 
thus proving a recent result of Jozeliak and Pragacz [JP]. In Section 7, we 
give a simple proof of a result of Gordon [Gol] which (although not 
originally expressed in this form) amounts to a determinant for the sum of 
all Schur S-functions with at most k rows. These determinants have been 
used by Gessel [G], Goulden [Gl], and others to derive formulas for the 
number of standard tableaux with a bounded number of rows. We also 
show that Gordon’s determinants are closely related to branching rules for 
the groups SOZ,+ i and Spzn, and this observation leads to a reconciliation 
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between the two seemingly dissimilar proofs of the Bender-Knuth conjec- 
ture by Gordon [Go21 and Macdonald [M, p. 521. In Section 8, we show 
that the number of totally symmetric, self-complementary plane partitions 
in a 2n x 2n x 2n prism can be expressed as a pfaffian. If this pfaffian could 
be evaluated explicitly, it would resolve the conjecture of Mills, et al. 
[MRR]. Finally in Section 9, we give a proof of the Giambelli determinant 
that expresses an arbitrary Schur function as a determinant of Schur 
functions indexed by hook shapes. This answers a question raised by 
Egecioglu and Remmel [ER], who gave a different proof of this determinant 
but noted that there did not seem to exist any known proof based on the 
methodology of Gessel and Viennot. The proof we give also applies to the 
skew version of Giambelli’s determinant due to Lascoux and Pragacz 
[LPI. 

1. THE GESSEL-VIENNOT METHOD 

Let D = (P’, E) be an acyclic directed graph. Since there will be no 
genuine loss of generality caused by forbidding multiple edges in what 
follows, we will identify the edge set E as a subset of Vx P’. The notation 
u --f v will be used to indicate that there is an edge directed from u to v. 

For any pair of vertices U, v E V, let @(u, v) denote the set of (directed) 
D-paths from u to v. If u = u, then Y(u, u) consists of a single path of length 
zero. Given any pair of r-tuples u = (ui, . . . . u,) and v = (v,, . . . . u,) of vertices, 
let Y(u, v) denote the set of r-tuples of paths (PI, . . . . P,) with Pie @(ui, uj). 
Two directed paths P and Q will be said to intersect if they share a com- 
mon vertex. We will write PO((u, v) for the subset of P(u, v) consisting of 
nonintersecting r-tuples of paths. 

DEFINITION 1.1. If I and J are ordered sets of vertices of D, then I is 
said to be D-compatible with J if, whenever u < U’ in I and v > u’ in J, every 
path P E P(u, u) intersects every path Q E P(u’, v’). 

The essential point of this condition is that if u is D-compatible with v, 
then the only r-tuples of nonintersecting paths from u to some permutation 
of v must connect ui to vi for i= 1, . . . . r. 

To facilitate the enumeration of various types of D-paths, it will be 
convenient to choose a weight-function w: E + R that assigns values in 
some commutative ring R to each edge of D. In all applications likely to 
be interesting, R will be a polynomial or power series ring over Z, and the 
weights will be monomials. It would thus suffice to choose an indeter- 
minate x, for each e E E, and work over the formal power series ring 
R = Z[ [x,: e E E]]; all other weight-functions of interest could be obtained 
by specializing this one. 
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Once a particular weight-function w  has been chosen, extend w  multi- 
plicatively to multisets of edges, so that w(M) = neeM w(e) for any such 
multiset M. (The empty set has unit weight.) The weight of a D-path or 
r-tuple of D-paths is defined as the weight of the underlying multiset of 
edges. Given any family 9 of edge multisets, we will write GF[s] for the 
generating function according to the weight w; i.e., GF[F] = CME F w(M). 
In particular, let us define 

h(u, v) = GF[B(u, v)] = c w(P). 
P E P(u, 0) 

In order to guarantee that h(u, u) is well-defined, we will always assume 
that the number of paths in 9(u, v) of a given weight is finite. 

A result nearly identical to the following theorem was proved by 
Lindstriim [L], although it was originally stated (incorrectly) without the 
assumption that D is acyclic. The enumerative ramifications of Lindstrlim’s 
theorem have been developed to a great extent by Gessel and Viennot 
[GVl, 21. It is interesting to note that LindstrSm used his result not for 
enumeration, but for studying representability of matroids. 

THEOREM 1.2. Let u = (q, ,.,, u,) and v = (vl, . . . . v,) be two r-tuples of 
vertices in an acyclic digraph D. If u is D-compatible with v, then 

Proof. We may interpret 

Whbiy oj)l= 1 sgn(71)h(ul,v,(1))...h(u,, v,(,)) 
nes, 

(1.1) 

as a generating function for (r + l)-tuples (n, PI, . . . . P,) with 7c E S, and 
Pi E 9(ui, vzCij) in which the weight assigned to (n, P,, . . . . P,) is 
sgn(n) w(P1) ... w(P,). We will show that the Lindstriim-Gessel-Viennot 
involution acts on the configurations (n, P,, . . . . P,) with at least one pair of 
intersecting paths in a way that changes the sign of the weight. 

To describe this involution, first choose a fixed total order of the vertices, 
and consider an arbitrary configuration (rc, P,, . . . . P,) with at least one pair 
of intersecting paths. Among all vertices that occur as points of intersection 
among the paths Pi, let v denote the least vertex with respect to the chosen 
total order. Such a minimum exists since the number of points of intersec- 
tion must be finite. Among the paths that pass through v, assume that Pi 
and Pi are the two whose indices i and j are smallest. Using the notation 
P,(-w) and Pi(v+) to denote the subpaths of Pi from ui to v and v to vzCij 
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(and similarly for P,), we define (rc’, Pi, . . . . P;) to be the configuration 
where Pi = Pk for k # i, j, 

P( = P,(-w) P,(o-), P, = P,(-v, Pi(m), 

and rc’ = rc 0 (i, j). 
Note that the multisets of edges appearing in (P, , . . . . P,) and (Pi, . . . . P:) 

are identical. Since D is assumed to be acyclic, it follows that the operation 
(7-b PI > . . . . P,) H (d, P; ) . ..) P:) preserves the set of vertices of intersection, 
and hence is an involution. Since this involution changes the sign of the 
associated weight, one may cancel all of the terms appearing in (1.1 ), aside 
from those with nonintersecting paths. Since u is assumed to be D-com- 
patible with v, the configurations of nonintersecting paths that appear in 
(1.1) occur only when n: = id, and thus are counted with a positive 
weight. 1 

If we did not assume that D is acyclic, then we could no longer assert 
that the above involution preserves the set of intersection vertices in a 
given configuration. For example, an intersection between a pair of paths 
could become part of a cycle in a single path. 

Let us further consider whether the acyclic property is actually necessary 
for Theorem 1.2 to be valid. In a digraph with cycles there are (at least) 
three possible ways to interpret what a directed path should be: one inter- 
pretation would forbid repetition of vertices, another would forbid repeti- 
tion of edges, and a third would offer no such restrictions. However, the 
digraph illustrated in Fig. 1 can be used to show that Theorem 1.2 fails for 
each of these interpretations. The vertex pairs (u,, u2) and (u,, u2) are 
clearly compatible in the sense of Definition 1.1, and there is exactly one 
pair of nonintersecting paths that connect ui to vi (i= 1,2), regardless of 
the interpretation of “path.” If we assign unit weight to each of the edges 
in this example, the matrix H= [h(q, u,)] is either [: i] (distinct vertices) 
or [: i] (distinct edges). In either case, det(H) does not yield the correct 
number of paths. If we impose no restrictions, then there are infinitely 
many paths, and so one must assign non-unit weights to the edges to 

FIGURE 1 
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obtain well-defined generating functions. Again, one may check that det(H) 
is not the desired quantity. 

A troublesome aspect of Theorem 1.2 is the fact that it gives no informa- 
tion about which sets of vertices are D-compatible. However, if D happens 
to be planar (as will be the case for all the applications we have in mind), 
it is often possible to take advantage of the underlying topology. For exam- 
ple, suppose that one may pass a Jordan curve C through two sets of ver- 
tices Z and J so that all D-paths from Z to J are contained in the interior 
of C. If the vertices of Z and J are arranged along two disjoint segments of 
C, then Z must be D-compatible with J (according to the order one obtains 
from the position of the vertices on the segments). 

The following yields an algebraic method for identifying D-compatible 
sets of vertices. 

DEFINITION 1.3. A partial order (I’, < ) is D-compatible if it satisfies the 
following for all vertices U, U, u’, u’ E V: 

(Al) u--ru, u’+u’, and U<U’ implies u<u’, or u<u’, or u<u’. 

(A2) If u < u’ < u then u’ is incident with every D-path from u to u or 
u to u. 

PROPOSITION 1.4. Zf (V, < ) is a D-compatible partial order, then any 
any two chains of this partial order are D-compatible. 

Proof. Assume to the contrary that there exists a pair of noninter- 
secting paths (P, Q) with P E P(u, o), Q E 9(u’, u’), u < u’, and u > u‘. 
Among all such counterexamples, let us assume that we have chosen a pair 
for which the sum of the lengths l(P) + Z(Q) is minimal. If both f(P) and 
Z(Q) are positive, then there exist vertices u0 E P and ub E Q such that u + u. 
and u’ + ub. According to (Al), this forces u < ub, uo< u’, or u. < ub. 
(Strict inequality occurs because P and Q do not intersect.) We may there- 
fore delete u from P and/or U’ from Q to obtain a smaller counterexample. 
Hence, we must have Z(P) = 0 or Z(Q) = 0. In the former case, we have u = u 
and thus u’ < u < u’. Since Q is a D-path from u’ to u’, (A2) implies that u 
is incident with Q, a contradiction. A similar contradiction occurs when 
l(Q)=O. 1 - 

2. PFAFFIANS 

Let v = (ul, . . . . u,) be an ordered list of n objects, and assume that 
n is even. By a l-factor of v we mean a perfect matching; i.e., a set of 
(undirected) edges on the vertex set v with the property that each ui is 
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incident with exactly one edge. We will write F(v) for the set of l-factors 
of v, and Rn for the l-factors of (1, 2, . . . . n). 

By convention, we will always list the edges of a l-factor rc E 9(v) in the 
form (vi, u,) with i< j. Two such edges (vi, oj) and (v,, u,) will be said to 
be crossed if i < k < j < 1 or k -C i < I < j. This condition can be interpreted 
geometrically if we embed the vertices along the x-axis in the plane and 
represent the edges by curves in the upper half plane-crossed edges must 
intersect in such an embedding. Define the sign of rc to be (- l)k, where k 
denotes the number of crossed pairs of edges in 7r. Note that this quantity 
depends particularly on the order chosen for the elements of v. 

LEMMA 2.1. Let x E 9(v) and assume that vi and uj are nonadjacent in 7c 
and i< j. Let TC’ denote the l-factor obtained by interchanging ui and uj. If 
neither u, nor u, is adjacent (in 7~) to any vk with i < k < j, then sgn(rr) = 
- sgn(rc’). 

Proof Let S denote the set of vertices consisting of vi, uj, and the two 
vertices to which they adjacent in rc. Designate any edge whose endpoints 
are both in S as special. Pairs of nonspecial edges are crossed in rc if and 
only if they are crossed in 7~‘~ so these pairs do not affect sgn(rc) sgn(n’). A 
nonspecial edge (u,, 0,) will cross an odd number of special n-edges (resp., 
rc’-edges) if and only if an odd number of vertices of S lie between the 
endpoints vk and uI. Since this quantity is the same for rc and rc’, we con- 
clude that sgn(rc) sgn(n’) = + 1 or - 1, according to whether the crossing 
status of the two special edges is or is not the same in z and rr’. In other 
words, we may restrict our attention to the four vertices of S, and regard 
z and n’ as l-factors of S. In that case, the assumption that no vertex ok 
between ui and uj belongs to S implies that ui and vi are consecutive as 
members of S (in the ordering inherited from v). It is now easy to check 
that interchanging vi and v, does change the crossing status of the two 
special edges (cf. Fig. 2). 1 

We remark that interchanging two arbitrary (nonadjacent) vertices need 
not change the sign of a l-factor. For example, consider the consequences 
of exchanging 1 and 3 in the l-factor { (1,2), (3,4) ). 

IfA=Ca,jl,si<j.. is an upper triangular array, we define the pfaffn 
of A as follows: 

@(A) = 1 en(n) n q. 
ne2Fn (i,ilen 

no J--z-ix l/T+?l 
1 2 3 4 1 2 3 4 1 2 3 4 

FIGURE 2 
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It is more conventional to regard the pfafian as a function defined on the 
space of antisymmetric matrices. The following well-known result shows 
that the above definition does agree with the usual one. (Although the 
proof we give is probably nor the usual one.) 

PROPOSITION 2.2. Zf A is an antisymmetric matrix, then pf(A)2 = det(A). 

Proof Let E, c S, denote the set of permutations in which every cycle 
is of even length. Given CJ E S, - E,,, let c = CJ~ ... (T, denote the disjoint 
cycle decomposition of (T, labeled so that g1 is the odd-length cycle whose 
smallest element is smaller than the elements of all other odd-length cycles 
of 0. In these terms, the map r~ H 0’ = 0; lo2 . . .o, defines an involution on 
S, -E,. If Ic { 1, 2, . . . . n} is the orbit of gl, then antisymmetry implies 

so it follows that a, = -a,,, using the notation a, as an abbreviation for 
U,,,(l). . . %7+7(n). Since CJ and 6’ have the same sign, it follows that the net 
contributions of (r and 6’ to det(A) cancel each other, and hence, det(A) = 
c meEn w(ab,. 

There is a natural bijection (rr, z’) H (r from %n x %n to E, as follows. 
Given a pair rc, 7~’ E %n, the graph formed by 71 v 7~’ is regular of degree 2 
and bipartite, and hence, a disjoint union of even-length cycles. We obtain 
the corresponding permutation r~ by orienting each cycle in a canonical 
direction; namely, by starting at the smallest element of the cycle and 
traversing from there the edge of rc incident to this smallest element. Under 
these circumstances, we claim that 

w(n) sgnb') I-l uij= sgn(a)u,. (2-l) 
(i. j) e x v x' 

Once proved, the proposition will follow, since the terms on the left side 
are clearly those of pf(A)2, while we have already shown that those on the 
right yield det(A). 

To prove the claim, let us define e(o) = /(i: o(i) < i>l and note that 
(2.1) is equivalent to the assertion sgn(n) sgn(rr’) = sgn(c)( - l)e(o). Now 
hypothesize that this assertion is true for some particular u E E,, and con- 
sider the effect of conjugating c by the transposition (i, i + 1). Of course, 
this is equivalent to interchanging the positions of i and i+ 1 in the orbits 
of 6. If i and i + 1 appear consecutively (in either order) within some orbit 
of 0, then this conjugation will change the parity of e(a). Meanwhile, it will 
fix one of the l-factors II or R’ (the one containing the edge (i, i+ l)), while 
changing the sign of the other (cf. Lemma 2.1). Otherwise, if i and i+ 1 are 
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nonconsecutive or in different orbits of cr, then conjugation will preserve 
e(a) while changing the sign of both rc and rc’. In either case, we conclude 
that the validity of (2.1) is preserved by conjugation, so we need only to 
consider one choice of o for each possible cycle-type. For example, if c is 
the n-cycle (1, 2, . . . . n), then e(a) = 1, z = ((1, 2), . . . . (n - 1, n)}, and 
7T’ = { (2, 3), . . . . (n - 2, n - l), (1, n)}, so the claim is clearly true in this case. 
Since (2.1) is multiplicative with respect to (disjoint) cycles of this type, the 
result follows. 1 

The practical significance of Proposition 2.2 is that it shows that the 
number of arithmetic operations required to compute a pfaffian is at worst 
a polynomial function of n. 

We close this section with a collection of useful properties of pfaflians 
and related determinants. In the identities below, A = [aii] denotes an n x n 
antisymmetric matrix. 

PROPOSITION 2.3. Assume that n is even. 

(a) pf[x,xja,i] = x, .. .x, pf[aV]. 

(b) pf[XTAX] =det(X) pf(A). 

tc) PfC1lI<i<j<n = 1, or equivalently, Cncyn sgn(n) = 1. 

(d) det[a,-+ txix,] =det[aV]. 

(e) PfC(xi-xj)/(l-x,xj)]=FIi<j(xi--Xj)/(l-X,Xj). 

(f) Pf[xj-il,<;<,i,n = detCyty]lGi,,<n,Z, where y, = xli-,l+l + 

xli-jl+3+ ... +xi+jpl. 

Proof (a) This is a special case of (b). 

(b) Proposition 2.2 implies pf[XTAX] = +det(X) pf(A). Choosing X 
to be the identity matrix shows that the positive branch must be correct. 

(c) Proceed by induction on n. It is clear when n = 2. For n > 2, let 
Fi c 9” denote the set of l-factors in which i is adjacent to 1 (1 < i< n). 
Given n E Fj, the number of edges in rt that cross (1, i) agrees (mod 2) 
with i, so by induction we have xzeF, sgn(rc) = (- 1)‘. Hence, the total 
contributed by each Fi amounts to x, <is n ( - 1)’ = 1. 

(d) (See also the proof of Theorem 2 in [JP].) Let f(t)= 
det [aij + txixj] . The coefficient of t’ in f can be expressed as a sum of (z) 
determinants corresponding to each of the ways of selecting r rows from 
[xixj] and the complementary set of n - r rows from [aO]. Since [xixj] is 
of rank one, any such matrix with r > 1 will be singular, so we deduce that 
f is a linear function of t. Since [aii] is antisymmetric and n is even, we 
obtain f(t) = det [aji + txjxi] = det[+ - txixj] = f ( -t), so f is an even, 
linear function of t, i.e., a constant. 
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(e) The following argument was suggested by I. G. Macdonald. By 
Proposition 2.2 and part (d), we have 

pf[~~=det[l+~]=det[(l’~~~~x’)] 

=n (1 -x?).det 1 
i [ 1 1 - xixj 

The last equality is a special case of Cauchy’s determinant [M, p. 383. To 
complete the proof, we must show that the desired pfalfian is indeed the 
“positive” square root of the above expression, rather than its negative. For 
this, observe that the coefficient of x6 = xl-lx’;-’ . . *XI) in the claimed 
product (as a formal power series) is clearly 1. Meanwhile, since 
(x-YMl -xY)=CkX k+lYk-XkYk+l, it follows that the only terms in the 
expansion of the pfallian that contribute to the coefficient of x8 must arise 
from the l-factor (( 1, 2), . . . . (n - 1, n)>. Furthermore, it is not hard to show 
that the coefficient of x6 in this single term is also 1, as desired. 

(f) This result is due to B. Gordon (see Lemma 1 of [Go1 ] ). 1 

We remark that if I = (A, 2 . . . > A,) is any partition with at most n 
rows, then the coefficient of xl+’ in pf[(x,- xj)/(l - x,xj)] is either 0 or 
1, the latter occurring if and only if A1 = A,, 1, =&, and so on (cf. the 
reasoning used in part (e)). A corollary of this observation and Proposi- 
tion 2.3(e) is Littlewood’s well-known Schur function identity 

n L=CSr, 
i<j 1 -xixj 1 

in which the sum ranges over partitions 1 with columns of even length 
CM, P. 461. 

3. NONINTERSECTING PATHS AND PFAFFIANS 

Continuing the setting of Section 1, let D = (I’, E) be an acyclic directed 
graph. For any vertex u E V and subset Zc V, let Y(u; I) denote the set of 
D-paths from u to any u E Z, and let Q,(U) denote the associated generating 
function; i.e., 

Q,(u) = GF[P(u; Z)] = 1, w(P) = c h(u, u). 
PE.qU;I) vtr 

Given any r-tuple u = (u,, . . . . u,) of vertices, let B(u; I) denote the set of 
r-tuples of paths (Pi, . . . . P,) such that P,gB(ui; I), and let pO(u; I) denote 
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the subset consisting of nonintersecting r-tuples. Similarly extend the 
Q,-notation by defining 

Q,(u) = Q,(ul> . . . . u,) = GF[Yf( u; Z)]. 

Note that in the case r = 2, assuming u is D-compatible with some total 
order of Z, Theorem 1.2 implies 

where the sum extends to all pairs for which u, precedes u2 in the ordering 
of I. 

THEOREM 3.1. Let II = (u,, . . . . u,) be an r-tuple of vertices in an acyclic 
diagraph D, and assume that r is even. If I c V is a totally ordered subset of 
the vertices such that u is D-compatible with I, then 

Remark. In case r is odd, we may adjoin a phantom vertex u,+ , to V, 
with no incident edges, and include u,+ , in I. In that case, we have 
QAui, ur+ 1 ) = Q,(uj). If we order all other vertices of I before U, + i, then 
u* = (241, . ..) u,+1 ) will be D-compatible with Z, and so Theorem 3.1 can be 
used to provide a pfafian of order r + 1 for Q[(u). 

Proof: We may interpret 

PfCQAu,, y)l= c sgn(7c) n Q,(q, u,) 
XEF(U) (U,,U,)E7[ 

(3.2) 

as a generating function for (r + 1 )-tuples (rc, P, , . . . . P,) in which 
P,Ec!?(u;; I), rt is a l-factor of II, and for each edge (ui, u,) of rc, Pi and P, 
must not intersect. Of course, the weight assigned to (rr, P, , . . . . P,) shall be 
sgn(rt) w(P,) ... w(P,). We will show that there is a sign-reversing involu- 
tion that acts on the configurations (rr, P,, . . . . P,) with at least one pair of 
intersecting paths. 

To describe this involution, first choose a fixed total order of the vertices. 
Since D is acyclic, we may also insist that this order be consistent with the 
edges of D; i.e., if u --f u, then u must precede v in the total order. Now 
we proceed as in the proof of Theorem 1.2. Given a configuration 
(rr, P,, . . . . P,) with at least one pair of intersecting paths, let u be the unique 
vertex of intersection that precedes all other points of intersection with 
respect to the chosen total order. Among the paths that pass through u, 
assume that Pi and Pi are the two whose indices i and j are smallest. 
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Following the notation of Theorem 1.2, deline a new r-tuple (Pi, . . . . Pi), 
where P~=Pi(+u)Pi(u+), P~=P,(+u)P,(v-+), and P;=P, for k#i,j. 
Also, let X’ denote the l-factor obtained by interchanging ui and uj in IC. 

We claim that (n’, Pi, . . . . P:) is one of the configurations that appears in 
(3.2); i.e., we claim that for each edge (u,, ut) E n’, the paths P; and Pi do 
not intersect. The only cases for which this is not immediate are those 
involving the modified paths Pi and Pi. However, the minimality of u 
implies that there are no points of intersection (other than u) on the sub- 
paths Pi( + u) and Pj( + u). Hence, the path Pk will intersect Pi (resp., Pi) 
if and only if Pb intersects Pi (resp., Pi), and so the claim follows. Thus we 
conclude that the operation (n, P,, . . . . P,) H (n’, Pi, . . . . Pi) is an involution 
on the intersecting configurations appearing in (3.2). 

To prove that this involution is sign-reversing, it is enough to show (by 
Lemma 2.1) that neither ui nor ui is adjacent in n to any uk with i < k <j. 
For this, it suffices to show that if i-c k < j, then Pk must intersect Pi and 
Pi. For these values of k, to prove that Pk intersects Pi, let vi, uk E Z denote 
the terminal vertices of Pi and Pk. If vi = ok, there is nothing more to 
prove. Otherwise, recall that Z is totally ordered, and consider the two cases 
ui > uk and ui c uk. If vi > a?&, then the fact that u is D-compatible with Z 
forces Pi and Pk to intersect. If vi < uk, then the D-compatibility of Z forces 
PJ = Pj( -+ u) Pi(u + ) to intersect Pk. However, as noted above, u is the 
only intersection point in Pi( + u), so P, must intersect PJ in the subpath 
P,(u +); i.e., P, intersects Pi. One may establish that P, must intersect Pi 
by similar reasoning. 

The existence of this sign-reversing involution shows that we may delete 
all of the terms of (3.2) involving intersecting configurations of paths; i.e., 

PfCQ,(u;, uj)l= GFC%‘,(u; 01. C w(n). 
ne9. 

Apply Proposition 2.3(c) to complete the proof. 1 

We remark that one may derive Theorem 3.1 by applying Okada’s 
pfalfian for the sum of the r x r minors of an r-rowed matrix (Theorem 3 
of [0] ) to Theorem 1.2. However, the above proof more clearly reveals the 
underlying combinatorial structure. 

We next consider a result that generalizes both Theorem 1.2 and 
Theorem 3.1. Suppose that v = (ui , . . . . us) is an ordered list of vertices of I’, 
and let Z c V be a totally ordered set that is disjoint from v. We define v 0 Z 
to be the union of v and Z, ordered so that each ui precedes each u EZ. 
Given any r-tuple u = (ui, . . . . u,) with r 2 s, we define YO(u, v; Z) to be the 
set of all r-tuples of nonintersecting paths (PI, . . . . P,) such that 
Pi~9(ui,ui) for l<i<s and Pi~9’(ui;Z) for s<i<r. 
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Note that there is no loss of generality in assuming that r + s is even. If 
it is odd, merely adjoin a phantom vertex u,, , to u and Z, with no incident 
edges, and order all other vertices of I before U, + 1. 

For convenience, we define Q,(uj, u,) = -Ql(ui, uj) for i<j, 

THEOREM 3.2. Let u = (u, , . . . . u,) and v = ( vl, . . . . u,) be sequences of 
vertices in an acyclic digraph D, and assume that r + s is even. If I is a totally 
ordered subset of V such that u is D-compatible with v @ I (disjoint union), 
then 

Q H 
GF[I%Pu, v; 111 =pf -H o [ 1 > 

where Q= [Q,(u,,u,)] for l<i,j<r, and H= Ch(ui,v,+,-,)lfor 16idr, 
1 <j<s. 

Proof. We have 

Pf QH f =Csgn(n) fl QAui, uj) n Mu,, u,), (3.3) [ 1 n (u,.u,)tn lu,,u,)sn 
summed over ail l-factors z of (u,, . . . . u,, us, . . . . v,) in which there are no 
edges connecting any two vertices of v. This may be interpreted as the 
generating function for all (r + l)-tuples (7c, P,, . . . . P,) such that 
(1) Pin 9(ui, vi) if there is an edge (ui, vi) E rc, (2) P, E 9(ui; I) if there is no 
such edge, and (3) for each edge (ui, u,) E n, Pi and P, must not intersect. 

We claim that the sign-reversing involution used in the proof of 
Theorem 3.1 can be applied to this situation as well. To prove this, we 
must show that the operation (rc, P,, . . . . P,) H (z’, P’, , . . . . Pi) preserves the 
domain of configurations described above. For this, suppose that Pi and Pi 
are the two switched paths involved in the application of the involution. 
Note that the interchange of ui and U, in x will not create any edges 
between vertices of v, so rc’ will be a valid l-factor for the new conligura- 
tion. Now if (uj, u,)~rc’, then (u,, u~)E~c, so P,E~‘(u,, vk), which implies 
Pi E 9(ui, vk) as needed. One may similarly argue that (uj, vk) E n’ would 
imply Pi E .!Y(u,, vk). Finally, one may argue that there will be no intersec- 
tion of paths Pi and Pi with (u,, u,) E IT’ for the same reason we used in the 
proof of Theorem 3.1. Hence, the claim follows. 

We may now conclude that (3.3) may be restricted to nonintersecting 
conligurations. Since u is D-compatible with v 0 Z, such configurations arise 
only when P,E~(u~, vi) for ib s and Pi E 9(ui; I) for i> s. In particular, 
this forces (ui, vi) E x for id s, but 71 may otherwise be arbitrary. Since none 
of the edges (ui, vi) can cross any edge of 71 (recall the ordering chosen for 
the vertices of the l-factors), it follows that the sign of x is the same as the 
sign of its restriction to u’ = (u,+ I, . . . . u,). Hence, the right side of (3.3) is 
equal to GFC%o(w v; 01 CrreF,-, sgn(rc). Apply Proposition 2.3(c). 1 



NONINTERSECTING PATHSAND PFAFFIANS 109 

To recover Theorem 1.2 as a special case of Theorem 3.2, take Z= a, 
I =s, and apply the fact that pf[ -9, t] = (-l)(i) det(H) for any r x r 
matrix ZZ. 

4. NONINTERSECTING PATHS BETWEEN Two REGIONS 

The main result of the previous section (Theorem 3.1) provides a 
generating function for the set of r-tuples of nonintersecting paths from 
some specified set of r vertices to some region I. In this section, we consider 
the more general problem of enumerating sets of nonintersecting paths in 
which both the initial and terminal vertices are allowed to vary over 
specified regions of D. 

As in the previous section, we assume that u = (u,, . . . . u,) is a sequence 
of vertices in an acyclic digraph D = (V, E) and Zc I/. For s 6 r, we define 
PF’(u; I) to be the set of s-tuples (Pi, . . . . P,) of nonintersecting D-paths in 
Po(u’; I), where u’ ranges over all s-subsets of u. Let 

Qy)(u) = GF[P’b”‘(u; Z)] = c Q,(u,, . . . . ui,) 
i1-z iis 

denote the corresponding generating function. 
The following result is closely related to Okada’s pfafian for the sum of 

all minors of an arbitrary matrix (Theorem 4 of CO]); in fact, one could 
derive this result by means of Theorem 1.2 and Okada’s pfafhn. Conversely, 

the techniques we give here (particularly Lemma 4.2) can be used to derive 
Okada’s pfaffian. 

THEOREM 4.1. Let u = (ul, . . . . u,) be an r-tuple of vertices in an acyclic 
digraph D, and assume that Zc V is an ordered subset of the vertices that is 
D-compatible with u. 

(a) Zfr is even, then 

r/z 
.go t”Qj’“‘(u)=pf[(-l)‘+‘~‘+ tQ,(ui, ~~)ll~i<,<r. 

(b) Zf r is odd, then 

s$o t”Q~‘(u)=PfC(-‘)‘+‘-‘+t2Q:(~i,~j)l~~i<j~r+~, 

where Q:(uiT uj) = Ql(ui, uj)forj < r, and QF(ui, u~+I)= tCIQ,(ui). 

(c) Zf r is even, then 

s$o t”Q~)(u)=PfC(-l)‘+‘-‘+ t2Qt(ui, Uj)ll<icj<r+>, 

where Q:(ui, uj) is the same as in (b) forj<r+ 1, and Q:(ui, u,+~)=O. 
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Before giving the proof, we first consider two illustrative examples. In the 
first example, suppose Y= 3. In that case, Theorem 4.1(b) asserts that 
Qy’(u) is the coefficient of tS in the pfaffian of the upper triangular array 

[ 

1 + t2q1z - 1 + t2q,, l+*q1 

I+ t2q2j -1+ tqr ) 

1 +&73 1 
where qii = Ql (ui, ui) and qi = Q,(ui). In the second example, suppose r = 4. 
In that case, Theorem 4.1(c) asserts that Q:‘(u) is the coefficient of t’ in the 
pfaflian of 

! 

1 + t2q,* - 1 + t2q,, 1 +t2q,4 -1+ 141 1 

1 + t2q23 - 1 + t’q,, 1+ tq2 -1 

1 + t2q3, - 1 + tq3 1 . 
1+ tq4 -1 

1 1 
Prooj First we derive parts (b) and (c) from (a). 
For (b), we adjoin two phantom vertices u,+ r and u to I’, together with 

a phantom edge u,+r +u of weight tp’. Note that u* = (u,, . . . . u,,,) is 
clearly D-compatible with Z* = Z@ (u}. Furthermore, the 2s-tuples of paths 
in Bp’(u*; I*) that involve the path u,, I -+ u can be identified with the 
2s - 1-tuples in So’“- ‘) (u; I), and so we may obtain the generating function 
C,tsQy’(u) by applying part (a) (with t + t2) to the pair u*, I*. Since 
Ql*(ui, ur+ 1 ) = t-‘Q,(ui), we obtain the claimed result. 

For (c), we may add another phantom vertex u,, 2, with no incident 
edges, to the construction of part (b). Since there will not exist any D-paths 
from u,+~ to Z, this addition will not affect the structure of Pg’(u*; I*), 
and so we may apply part (a) to the pair u** = (ur, . . . . u,,,) and I*. Since 
QP(G ur+ 2) = 0, we obtain the claimed result. 

Before giving the proof of (a), we first require a lemma regarding 
pfaffians of sums. For any array A of order II and JC { 1, . . . . n}, let A, 
denote the subarray obtained by selecting the rows and columns indexed 
by J. We will write a(J) for C, B J j. 

LEMMA 4.2. Assume that n is even. 

(a) Zf A and B are of order n, then 

pf[A+B]=x(-1) “J’-‘J”2 pf[A,] pf[B,,], 
.I 

summed ouer all Jc { 1, . . . . n} with 1 JI even. 

(b) If A=[(-l)i+‘-‘]lciciGM and IJI is euen, then pf[A,]= 
t-11 . o(J)- I J1P 
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Proof: For (a), we have 

PC-4 + 4 = 1 w(nup) fl ag n b,, 
7zvpG.F” (i,j) E x (i.j)EP 

summed over all ways to partition each l-factor in 9n into two l-factors 71, 
p on complementary subsets of { 1, . . . . n}. Suppose that (n, p) is one of 
these pairs and that J= (j, < ... <j, > is the vertex set of IE. If (jr, j,) E x, 
then the number of edges of p that cross (j,,j,) will agree (mod 2) with the 
number of points of p between j, and j,; namely, j, -j, - s + r. The number 
of crossed edges between x and p is therefore 

1 j,-jr-s+r=a(J)+ “; l = o(J) - IJ]/2 (mod 2) 
(jr&) E n ( > 

and so we have sgn(rc u p) = (- l)0(J)-1J1’2 sgn(n) sgn(p). It follows that 

pf[A +B] =I (-l)cr(J)~iJki2 1 sgnfx) fl aV 
J ?TEF(J) (i,i)En 

summed over all J of even cardinality. This is clearly equivalent to the 
claimed formula. 

For (b), note that pf[C] = ( - l)k’2 pf[ -C] for any C of order k. 
Therefore, it suffices to show that pf[ -A,] = ( - 1)“‘J’. However, this 
follows directly from Propositions 2.3(a) and 2.3(c). 1 

To complete the proof of Theorem 4.1(a), we may apply Lemmma 4.2 to 
the pair of arrays A = [ ( - 1) i+i-l] and B= [tQl(ui, ui)] to obtain 

pf[(-l)f+i-l + tQ,tui, uj)l =C t’J”2PfCQf(ui, uj)li<jeJ, 

summed over all Jc { 1, . . . . r} of even cardinality. By Theorem 3.1, the Jth 
term PfCQltui, Ui)li<jeJ may be identified as the generating function for 
nonintersecting paths from (gj :j~ J> to Z, and so the result follows. 1 

APPLICATIONS 

5. SHIFTED TABLEAUX 

Let A= (1, > ... > A,) be a partition of n into 1 distinct, positive parts. 
Associated with A is the sh$ed diagram 
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which we regard as an array of cells in the plane with matrix-style 
coordinates. A shifted tableau of shape 2 is an assignment T: 0; -+ N of 
nonnegative integers to the cells of 0; so that the rows and columns are 
weakly increasing; i.e., 

T(i,j) d T(i,j+ l), T(i,j) 6 T(i+ l,j), 

wherever T is defined. If the tableau also satisfies T(i,j) < T(i+ l,j), then 
it is said to be column-strict. It is more conventional to require these 
tableaux to have positive entries, but we will find that the results described 
below are slightly more elegant when zeros are permitted. In Fig. 3b is an 
example of a column-strict shifted tableau of shape (6, 5, 3). 

To each shifted tableau T, we assign the weight 1 T 1 = I,, ol T(x), and 
let G,(q) denote the associated generating function; i.e., 

G,(q) = c 4”‘s 
T:Dj-N 

where the sum ranges over all shifted tableaux of shape 1. Similarly, let 
G;(q) denote the analogous generating function for column-strict tableaux. 
Note that if T is any shifted tableau, then the tableau T’(i, j) = T(i, j) + 
i- 1 is column-strict, and conversely. Thus we have G;(q) = q”‘“‘G,(q), 
where n(A) = x (i- 1) lli. 

For any nonnegative integer r, let (q)r = (1 - q)( 1 - q2) ... (l-q’). A 
result essentially equivalent to the following was conjectured by Stanley 
[Stl, p. 851 and first proved by Gansner [Gal. Another proof was later 
given by Sagan [Sal]. 

THEOREM 5.1. We have 

1 

GA(q) = (S)A, ” ’ (4)1, r<j 

r-I 
1 -qj.t-4 

1 - ql.’ + jY . 

Proof Define a directed graph D on the vertex set N2 with an edge 
directed from u to v whenever u - u = (1,0) or (0, 1 ), unless the first coor- 
dinates of both u and v are 0 (see Fig. 3a). For u = (i,j), we assign the 
weight qj to the edge u -+ v if u - v = (l,O); similarly, assign the weight 1 
if U-V= (0, 1). 

Choose an integer m 2 0 and let u = (u,, . . . . u,) be the I-tuple of vertices 
in which ui= (&, m). If 1 is odd, it will be convenient to define A,,, = 0, 
treat u,+ , = (0, m + 1) as a phantom vertex, and replace 1 by 1+ 1. Note 
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001123 

1 2 3 3 5 

FIGURE 3a FIGURE 3b 

that this has no effect on the formula claimed for G,(q), so we may assume 
for the remainder of the proof that I is even. 

We claim that the column-strict shifted tableaux of shape il with parts 
< m can be identified as the I-tuples of nonintersecting D-paths in gO(u; I), 
where Z = ( (0, i) : i 2 0) denotes the set of vertices in the first column of D. 
To see this, consider the correspondence between tableaux and paths 
illustrated in Fig. 3. The ith path Pi E 9(ui; I) corresponds to the ith row 
of a tableau T. The entries in this row can be obtained by reading the 
second coordinates of the horizontal steps of Pi from left to right. The fact 
that T( i, j) < T( i + 1, j) corresponds to the fact that j - i + 1 st horizontal 
step of Pi (from left to right) must be at a level strictly below the j- ith 
horizontal step of Pi+ 1. 

Thus we have G;(q) = lim, _ to GFIPO(u; Z)]. 
It is clear from the geometry of D that u is D-compatible with Z, 

provided that Z is ordered so that (0, i) < (0,j) iff i < j. Alternatively, one 
may check that the partial order on N’, defined so that (i,j)< (i’,j’) 
whenever i 2 i’ and j <j’, is D-compatible. Thus, we may use Theorem 3.1 
to determine GFIYO(u; Z)]. For this, note that the generating function 
h(u, u) for paths from u = (r, m) to u = (0, i) is essentially a q-binomial 
coefficient. To be precise, we have 

and SO h(u, u) + q”/(q),- 1 in the limit m + co. We may therefore apply 
(3.1) to conclude that if r > s, then 

1 
lim Q,((r, ml by ml) = (q),-, (q)s- 1 icj 1 qri+sj-qsi+rj 

m-cc 

qs - qr 

= (4)r (4)s (1 - qr+S)’ 
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By successive applications of Theorem 3.1 and Propositions 2.3(a) and (e), 
we thus obtain 

Gi(q) = pf [ 

q4 _ qi.’ 

(q)A,(q)k,( 1 - qif+4) 1 1 l-I q4 - qh 
= (q)& . ..(q)., i~j 1 - q”‘f4’ 

The claimed result now follows from the fact that G>(q) = q”“)G,(q). i 

We remark that it is an elementary exercise to verify that 
1 

n 
1 _ qi.’ - 2, 

n l (q)& .‘. (q)/.,i<j 1 -q~,+~J=yEn, 1 -qh’(-x)’ 

where h’(x) denotes the shifted hook length of 0; at the cell x [M, p. 1351. 
A (shifted) tableau with IZ cells is said to be standard if the entries are 

1, 2, ,..) n, in some order. If T is such a tableau, we define the descent set 
D(T) to consist of those integers k (1 <k < n) with the property that k 
appears in a higher row of T than k + 1. The index of T is defined to be 
c kcDCT) n -k, and denoted ind(T). For example, the foilowing is a 
standard tableau with descent set (2, 5, 7, 101 and index 32: 

12 4 5 7 10 
3 6 8 9 14 

11 12 13 

Using Stanley’s theory of P-partitions (cf. Theorem 4.5.8 of [Sta]), one 
may deduce 

COROLLARY 5.2. Zf A is a strict partition of n, then 

; qindCT) = (q)iy:(q),, g, 1”^‘,41,, 

where T ranges over the standard shljled tableaux of shape A. 

Proof Given any column-strict tableau T of shape 1, we may totally 
order the cells of 0; as follows: 

(&A < (i’,j’) iff 
T(i,j) < T(i’,j’), or 
T(i,j) = T(i’,j’) and j<j. 

If we number the cells of 0;. from 1 to n according to this order, we obtain 
a standard tableau S. For example, the standard tableau depicted above is 
obtained via this process from the tableau in Fig. 3b. 
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Let p be the sequence whose ith term is the entry of T in the cell num- 
bered i by S. Note that the map Tct (S, p) is injective. For fixed S, the 
possible sequences p that arise from this correspondence are characterized 
by the constraints pk c pk + i for k E D(S), along with p, b . . . > p1 > 0. For 
such p, subtract 1 from each of Pi, . . . . pk + i for each k E D(S). The result is 
a sequence p* that differs in sum from p by the amount ind(S). Since the 
terms of CL* need only be weakly increasing, it follows that the generating 
function for the tableaux T corresponding to a fixed S is of the form 
4’ ‘“d(S)/(q),. By adding the various choices for S, we obtain G;(q). Apply 
Theorem 5.1. 1 

If we let q + 1 in the above identity we obtain a well-known formula for 
g”, the number of standard shifted tableaux of shape 1 [M, p. 1351. 

COROLLARY 5.3. g~=(n!/~,!...~,!)ni,,(ni-~~)/(ni+lli). 

6. SCHUR’S Q-FUNCTIONS 

In this section we consider a variation of the shifted tableaux of Section 5 
in which the entries are chosen from the ordered alphabet 
P’= (1’~ 1<3’<2<3’< . . . }. We define these shifted P’-tableaux to be 
assignments T: 0; + P’ of elements of P’ to the cells of some shifted 
diagram 0; so that the rows and columns are weakly increasing, and 

(Tl ) For each k = 1, 2, 3, . . . . there is at most one k per column. 

(T2) For each k= 1, 2, 3, . . . . there is at most one k’ per row. 

An example appears in Fig. 4b. 
For any such tableau T, we define the content of T to be the vector 

Y(T) = (~1, ~2, ...T ), where yk denotes the number of cells x E 0; such that 
T(x) = k or k’. Assign the weight xy = xT1xy:. . . to T, and let Q, denote the 
associated generating function; i.e., 

Q, = Q,b,, x2, -.-,I = c 
xYu-) 

, 

T:D;+P’ 

where the sum ranges over all shifted P’-tableaux of shape A. 
In the course of deriving the irreducible projective characters of the 

symmetric groups, Schur defined a family of symmetric polynomials by 
means of certain pfalEans [S]. These polynomials, now known as “Schur’s 
Q-functions,” coincide with the generating functions QA we defined above, 
although the chain of deductions which led to this discovery is quite lenthy. 
It began with an alternative description by Schur of his Q-functions in 
terms of raising operators. This description led D. E. Littlewood [Lw] 
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to define a more general class of symmetric polynomials (the so-called 
“Hall-Littlewood functions”), and these were subsequently found to have 
numerous applications. An explicit description of the Hall-Littlewood func- 
tions as sums of monomials was later obtained by Macdonald [M, (5.1 I)]. 
By specializing Macdonald’s description to the case of Schur’s Q-functions, 
it can be shown that we obtain the generating functions for P’-tableaux 
defined above. 

The tableau description of these Q-functions has been used to redevelop 
Schur’s construction of the irreducible projective characters of S,, and thus 
reveal their underlying combinatorial structure [Stel 1. Under these 
circumstances, it it therefore natural to look for a more direct proof that 
the tableau definition agrees with Schur’s definition. The following result 
forms the basis for such a proof. 

THEOREM 6.1. If II is a partition consisting of 1 distinct parts, then 

Q,l= 
I 

PfCQ(~,,~,,ll<r<,<, if I is even 

pft-Q,,,.,,ll <i<,j</+l if I is odd, 

where A,, I = 0 in case I is odd. 

Proof Define a directed graph D as follows. We begin with the vertex 
set N2, and direct an edge from u to v whenever u - v = (1, 0), (0, 1 ), or 
(1, 1). Subsequently, we delete the edges u -+ u involving points whose first 
coordinates are both zero, as well as those whose second coordinates are 
both zero. For u = (i,j), we assign the weight xj to the edges u -+ u with 
u-v= (1,O) and (1, l), and we assign the weight 1 to the edge with 
u-u = (0, 1). Finally, we split each of the vertices (0,j) withj> 0 into two 
vertices, say (0, j) and (0, j)‘, so that the edge ( 1,j + 1) + (0,j) is redirected 
to (0, j)‘, while the edge (1, j) + (0, j) remains untouched. See Fig. 4a. 

Fix an integer m > 0, and let u = (u,, . . . . uI) be the I-tuple of vertices with 
ui = (A,, m). Without loss of generality, we may assume that f is even (if 1 
is odd, set ;1 ,+ 1 = 0, use u,+, = (0, m)’ as a phantom vertex, and replace 1 
by I+ 1). We claim that the shifted P’-tableaux of shape 1 with parts < m 

FIGURE 4a 

1 1 1 2’ 3’ 4 

2’ 2 2 3 5 

3 4’ 4 

4’ 

FIGURE 4b 
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can be identified with the nonintersecting paths in gO(u; I), where 
Z= { (0, 0), (0, 1 ), (0, 1 )‘,... } denotes the set of vertices in the first column of 
D. To see this, first consider the example in Fig. 4. 

The ith path Pi E B(u,; I) in a given configuration corresponds to the ith 
row of a tableau T. The entries in this row are obtained by reading the 
second coordinates of the horizontal and diagonal steps of Pi from left to 
right: for each horizontal step with second coordinate j we assign a j to T, 
and for each diagonal step from levels j - 1 to j we assign a j’ to T. Clearly, 
this coding of digraph paths creates tableau rows that are weakly increas- 
ing with respect to P’, and since there can be at most one diagonal step at 
given level, then there will be at most onej’ per row, for eachj (cf. property 
(T2)). We further claim that the conditions T(i,j) < T(i + 1,j) and property 
(Tl) are equivalent to the fact that the paths are nonintersecting. To see 
this, suppose that the j- i + 1 st nonvertical step (from the left) in Pi is at 
level k. If this step is horizontal (so that T(i,j) = k), then the j- ith step 
in Pi+l must occur at level k + 1 or higher to avoid intersection. Otherwise, 
if this step is diagonal (so that T(i, j) = k’), then the j- ith step in Pi+ 1 
must either occur at a level higher than k, or else be a diagonal step at the 
same level (i.e., T(i + 1,j) = k’). 

Note that if we did not split vertex (0, i) into two vertices, then a pair 
of D-paths whose last steps were, e.g., (1,2) + (0, 1) and (1, 1) -+ (0, l), 
would necessarily intersect. However, this corresponds to a legitimate 
tableau configuration of the form [ ! $1, where * denotes a “cell” that is 
outside of the shifted diagram of A. This configuration would be illegitimate 
if * were part of the interior of the diagram since no element of P’ could 
be assigned to * without violating one or more of the rules for P’-tableaux. 

It is clear from the geometry of D that u is D-compatible with Z, so we 
may apply Theorem 3.1 and pass to the limit m + co to complete the 
proof. 1 

Schur formulated his original definition of the Q-functions [S, p. 2241 by 
introducing the formal power series 

Q(z) = ‘! +$ = C Q/Ax,, x2, --,) zk 
k20 

whose coefficients Qk were defined to be the Q-functions indexed by single- 
rowed partitions. It is easy to verify that this agrees with the tableau detini- 
tion we gave earlier. Subsequently, one notes that Q(Z) Q( -z) = 1, and so 
the expression (Q(z,) Q(zz) - l)/(z, + z2) is a well-defined formal power 
series. Schur then used an expansion equivalent to 
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to define the Q-functions indexed by two-rowed partitions. For partitions 
;1 of length > 2, Schur defined Ql. to be the pfallian of [QC1,,i,,,], in agree- 
ment with Theorem 6.1. Hence, to completely verify the equivalence of the 
two definitions, it remains only to address the two-rowed case. We will 
return to this question after the following digression. 

A skew shifted diagram is a set of cells in the plane of the form 
&4 := D>, - DL, where 0; and 0; are any pair of shifted diagrams such 
that 0; c 0;. A skew shifted P/-tableau of shape 21~ is defined to be a map 
T : D;,fl + P’ satisfying the same rules as nonskew P’-tableaux, and we let 

Q,,, = Qj.,~(X,, ~2, . ...) = C x"') 
T  : D;,# - P’ 

denote the associated generating function. These skew Q-functions, like the 
ordinary Q-functions, arise naturally in the study of projective representa- 
tions of symmetric groups. 

Recently, Jozefiak and Pragacz have shown that the skew Q-functions 
can be expressed as pfaffians [JP]. The following proof of their result 
shows that it can also be derived by combinatorial methods. We should 
point out that in their formulation of the, identity, an algebraic definition 
of the skew function Q,, was used, rather than the tableau definition we 
gave above. A proof of the equivalence of the two definitions can be found 
in Proposition 8.2 of [Stel], for example. 

In the following, we set Qpr = 0 for r > 0 and Q(r,s) = - QCs,r) for r d s. 

THEOREM 6.2. Let A and p be strict partitions of lengths I and m, respec- 
tively. If I+ m is odd, then define ir+ 1 = 0 and replace I by I + 1, so that 
l+ m is even. We have 

where Q=[Q,,,.,,l for l<i,j<l, and H=[Qi,,-um-,+,] for 1 <i<Z, 
1 <jQm. 

ProojY Let D be the digraph defined above, and let Z, as before, denote 
the set of vertices with first coordinate zero. Fix an integer n 2 0, and define 
u = (Ul) . ..) u,) and v = (vi, . . . . v,) to be the vertex sequences consisting of 
ui= (&, n) and v, = (,u~, 0). By reasoning analogous to the proof of 
Theorem 6.1, the skew shifted P’-tableaux of shape A/p can be identified 
with gO(u, v; I), i.e., with the Z-tuples (P,, . . . . P,) of nonintersecting paths 
such that Pig 9(u,, vi) for 1 < i< m and Pj~ 9(ui; I) for i > m. Since u is 
clearly D-compatible with v @ Z, we may apply Theorem 3.2 to obtain the 
desired result. l 
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Now consider the question of equivalence between (6.1) and the tableau 
definition of the two-rowed Q-functions. By transferring the factor zr + z2 
to the right side of (6.1) and extracting the coefficient of zy + ’ z’;, we obtain 
the identity 

the latter equality being a special case of Theorem 6.2. Since this recursively 
determines the two-rowed Q-functions, it suffices to verify that the corre- 
sponding tableau generating functions satisfy the same recurrence. For this, 
we may apply the Sagan-Worley jeu de taquin [Sa2, Sect. 1 l] to remove 
the “hole” in each skew P’-tableau of shape (m + 1, n)/l; one finds that the 
resulting tableaux are those of shape (m, n) and (m + 1, n - 1). 

7. PLANE PARTITIONS AND GORDON'S DETERMINANTS 

Let I be a partition of length 1= l(1). The diagram of A consists of the 
array of cells 

DA= {(i,j)EZ*: 1 <j<&, 1 <i<Z}. 

A tableau of shape I is an assignment T : Di. + P of positive integers to the 
diagram of I. so that the row and columns are weakly increasing. A plane 
partition is an analogous map with weakly decreasing rows and columns. 
More generally, if p is a partition for which D, c DA, then the skew 
diagram DAIP is defined to be D, - D,, and a skew tableau of shape n/p is 
a map T: DA,,, + P, subject to the same rules as nonskew tableaux. 

The weight of a tableau or plane partition T is defined to be x;lxp . . . , 
where yk denotes the number of k’s in T. We recall that the generating 
function one obtains for the (skew) column-strict tableaux of shape A/p 
with respect to this weight is the Schur function s,,, [M]. Since Schur 
functions are known to be symmetric functions of x1, x2, . . . . we may also 
regard sl,, as a generating function for (skew) column-strict plane parti- 
tions. 

12 
2 3 3 

13 5 

FIGURE 5a FIGURE Sb 
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One of the primary applications of the Gessel-Viennot technique is the 
interpretation of column-strict tableaux as configurations of noninter- 
secting paths [GV2]. For this, one defines a digraph D with vertex set N2 
and edges directed from u to u whenever Y - u = (0, 1) or (1,O). Note that 
this orientation is in a direction opposite to our previous digraphs; it is 
simply a matter of convenience. For u = (i, j), one assigns the weight xj 
(resp. 1) to the edge with u-u= (LO) (resp., (0, 1)). Under these 
circumstances, one may identify the column-strict tableaux of shape n/p 
having parts dn with the configurations of nonintersecting paths in 
PO(u,v), where u,=(pi+l-i,l) and vi=(I.i+l-ii,n) for i=l,..., 1. An 
example of this correspondence appears in Fig. 5. As in all of the previous 
applications, the ith path encodes the ith row of the tableaux. 

Note that if u = (j, 1) and u = (i, n), then the generating function h(u, u) 
for paths from u to u is the coefficient of tiej in Hz= 1( 1 - -)ck t)-’ (or zero, 
ifj> i). Therefore, in the limit n + c;o, Theorem 1.2 implies the well-known 
determinantal formula 

where h, denotes the coefficient oft’ in nkal (1 --rkt)-’ [M, (5.4)]. 
In an analysis of column-strict plane partitions with at most k rows, 

Gordon and Houten [GH] derived pfaffians for the associated generating 
functions, and Gordon [Gol] later showed that these pfaflians could be 
rewritten as determinants. (See also [SK].) In the following, we show that 
their pfaflians can be easily obtained by combinatorial methods. For com- 
pleteness, we include Gordon’s determinantal reductions. 

THEOREM 7.1. Let h=xihi andg,=g-.=C,h,hi+,. We have 

Proof Using the digraph D defined above, let u denote the vertex 
sequence consisting of u, = (i, 1) for i = 1, . . . . 1. We may identify the column- 
strict tableaux with parts <n and at most 1 rows as the configurations in 
PO(u; I), where I= ((i, n) : iZ 1). Apply Theorem 3.1. In the case I= 2k, we 
obtain 

To evaluate this limit, note that (3.1) implies Q,(uj, u,) + ciP i as n + co, 
where 

c,= 1 hih.,-,- h,hi-,= 1 g,- C gi=g,+g,-,+ ... +g-,,-,,. 
iPi fs-r i>r 
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Proposition 2.3(f) shows that the pfafhan of [c~-~] is the determinant 
of the kxk matrix whose &j-entry is c,~-~,+~+c,~~~,+~+ ... +c~+~-~. 
By subtracting the ith row from the i+ 1 st (i= k - 1, . . . . l), and then 
performing the same operations on the columns, we obtain the determinant 
claimed in (a). 

For the case I= 2k + 1, add a phantom vertex uzk+ 2 to u. Theorem 3.1 
implies 

c S1=PfCqiJ11<i<j<2k+23 
/(1)<2k+ 1 

where qii = cI- i (for i < j < 2k + 2) and qii= h (for i < j = 2k + 2). Treating 
[qo] as an antisymmetric matrix, we now subtract the ith row of [qii] 
from the i - 1 st (i = 2, . . . . 2k + l), and then perform the same operations on 
the columns. This yields a matrix whose i, j entry is gj- i _ 1 - gj- i + 1, except 
in the last row and column; the last column will be zero, except for an h 
in the 2k + 1 st row. Since these row and column operations preserve the 
pfaflian (cf. Proposition 2.3(b)), we may use a Laplace type expansion to 
conclude that 

c s,=h’pf[gj-i-1-gj-i+lll~i<j~2k. (7.1) 
1(A)92k+l 

Apply Proposition 2.3(f) to obtain the determinant claimed in (b). u 

We remark that the same argument can be applied to the nonintersecting 
I-tuples of paths from the vertices ui = (pi + I- i, 1) to Z, and thus one may 
obtain pfaffians for the sums xi sl,,,, where ZJ is fixed and 1 ranges over 
paritions with at most 1 rows. These pfaflians are implicit in Lemma 1 of 
[GH], although the proof given there is unrelated to the one given above. 
Gessel [G] has used these pfafhans to show that for fixed I and p, the 
number of standard Young tableaux of size n with at most 1 rows and any 
shape of the form ~L//.I is a P-recursive function of n. 

Let 1’ denote the partition conjugate to 1; one says that 1’ is even if the 
columns of 1 (i.e., the rows of ,.I’) are all of even length. Recently, 
Goulden [GI] has noted that standard techniques from the theory of 
symmetric functions imply the following corollary of (7.1). 

COROLLARY 7.2. We have 

C ‘1=Pf[Igj-----gj-i++]I~j<,~2k. 
&A) s 2k 
I’ eYen 
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In view of Proposition 2.3(f), we may also write write this in the form 

C S).=detCg,-,-gi+j]l~I,,~k. 
K/.b&k 

(7.2) 

Goulden used this observation, together with algebraic techniques, to 
derive some extensions of Gessel’s results on P-recursive sequences of 
standard tableaux. He also noted that the entries in the above pfaflian had 
a nice combinatorial interpretation, and posed the problem of using this as 
the basis of a combinatorial proof. The following argument provides one 
such proof. 

Combinatorial Proof of Corollary 7.2. Let D be the diagraph defined 
above, and fix an integer n > 1. For 1 d i <j 6 2k, define e1 to be the set of 
pairs of nonintersecting paths (P, Q) with PE Y(u, u) and Q E 9(u’, u’), 
where u=(i, l), u‘=(j, l), u=(m,n), and u’=(m+l,n) for some m>,l. 
Note that 

lim GJ'[$l= C h,~,+lh,_,-h,~j+lh,-i=gj~i~l-g,~i+l. 
n-m m>l 

We may interpret 

(7.3) 

as a generating function for configurations (n, Pi ) . . . . P,k) consisting of a 
l-factor rr and a set of 2k paths Pi such that (Pi, Pi) E 9$ whenever (i, j) E 7~. 
Furthermore, we claim that the sign-reversing involution constructed in the 
proof of Theorem 3.1 is stable with respect to intersecting configurations of 
this type. For this, one only needs to check that the involution preserves 
the “adjacency” of the endpoints (i.e., the property that the endpoints of a 
pair of paths in 3, must be of the form (m, n) and (m + 1, n), for some m). 
It is a straightforward exercise to verify this. 

Once verified, we may delete all of the terms in (7.3) that corresond to 
intersecting configurations. Each of the surviving 2k-tuples of noninter- 
secting paths will appear only once in (7.3), since the only possible 
choice for x would be { (1, 2), . . . . (2k- 1, 2k)) (cf. the property of adjacent 
endpoints). Hence, the surviving terms of (7.3) can be identified with the 
configurations in qO(u, v), where ui= (i, l), ui= (c1,, n), and M is any 
increasing sequence with a2 - c1i = 1, K, - t13 = 1, etc. These configurations 
correspond to column-strict tableaux with parts <n, at most 2k rows, and 
columns of even length. In the limit n + cc, the generating function for 
these tableaux is the Schur function sum claimed above. [ 
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The two determinants that appear in Theorem 7.1 are closely related to 
some determinantal formulas for characters of SO*,,+ I(C) and Q,,(C). To 
explain this connection, let us define SOz,+ 1(w) (resp., S&W)) to be the 
character of the representation of SO*,+ i (resp., Sp2,) indexed by the 
highest weight vector o. We choose to regard these characters as Laurent 
polynomials in the variables x1, . . . . x,, where X: ‘, . . . . x’ ’ (and 1, in the 
case of SO 2n + 1) denote the eigenvalues of a generic member of the group 
in question. 

In the following, e, (resp., i,) denotes the rth elementary symmetric 
function of the variables xi, x2, . . . . (resp., x1+‘, . . . . x,“), and we set 
A = n;= 1 (xi/’ +x; ‘12). Also, o, denotes the nth fundamental weight of 
either S02,+ 1 or Sp2,,, depending on the context. 

PROPOSITION 7.3. We have 

(4 SOan+, (2ko,)=det[~,-i+i+P,-i-i+,I,.i,jak. 
(b) S02n+1 ((2k+1)o,)=A.det[t,~i+j-6n-i-j]1Gi,jGk. 

CC) SP2n(kO,)=detCP,--i+j-P,-i-jli~i,j~k. 
Proof Let 1 be a partition of length I < n. The S02,+ 1 character 

indexed by 1 is 

where L;,=t?,+P,-, (see (3.3) of [K], or Sect. A2 of [P2], or [KT]). 
If we subtract the jth column from the j+ 1 st (j= 1, . . . . 1- l), we obtain 
[e,; - i + j + in; _ i _ j + 1 1. For the weight vector 2kw,, the corresponding 
partition 2 is the n-rowed rectangle (k, . . . . k). For this ;1 one has 1; = n, and 
so (a) follows. 

Similarly, the Sp,,-character indexed by I is 

where fr=Pr-k,-, (see (3.3) in [K], Sect. A2 of [P2], or [KT]). 
If we add the jth column to the j+ 2nd (j= 1, . . . . I- 2), we obtain 
[GA;; i+j - GA;- i- j]. For the weight vector km,, the corresponding 
partition is the same as above, and so we obtain (c). 

Finally, recall that if o and o’ denote the highest weight vectors for 
Spzn and SOa, + 1 corresponding to some partition 2, then A . Spz,(w) = 
so 2n+ ,(o’+o,). (This is a corollary of the Weyl character formula; e.g., 
see Proposition A.2.1 of [P2].) Thus, we may obtain (b) as a consequence 
of (cl I 

There is an automorphism of the ring of symmetric functions, denoted o 
in [M], with the property that s1 H So*. This automorphism also inter- 

607/83/l-9 
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changes h, and e,. If we apply this automorphism to g,, and then specialize 
to the variables x = (xi, . . . . x,) (i.e., set x,+ , = -xnfZ = . . = 0), we obtain 

s,-Cei(x)ei+,(x)=( x1 . ..x.) 1 e,(x) enprpi(xel)= (x1 . ..x.) P,-,. 

Similarly, one finds h H (xi . x,,)“’ d. Therefore, this operation trans- 
forms the determinants of Theorem 7.1(a), 7.1 (b), and (7.2) into the deter- 
minants of Proposition 7.3(a), 7.3(b), and 7.3(c), respectively. From this we 
may deduce the following known but difficult-to-prove identities (e.g., see 
[M, p. 511 for (a) and Theorem 4.1 of [Ste2] for (b)). 

COROLLARY 7.4. (a) Ci.,.k sj,(x,, . . . . x,) = (x, . ..x.,)~” SO,,, ,(ko,). 

(b) CL, < 2k S2>.(XI 3 ..., x,) = (x, ‘. .x,,)” Sp,,(ko,). 

The identities of Corollary 7.4(a) and Theorem 7.1 share an interesting 
history related to the MacMahon and Bender-Knuth Conjectures on plane 
partitions. These conjectures gave explicit generating functions for certain 
classes of plane partitions weighted by q”‘, where I T( denotes the sum of 
the entries in the plane partition T. For MacMahon’s Conjecture, the class 
consists of the set of symmetric plane partitions (i.e., T(i,j) = T(j, i)) with 
parts <n and at most k rows; in the BenderrKnuth Conjecture [BK], the 
class consists of shifted plane partitions with parts <n and at most k rows. 
These conjectures were first proved by Andrews [A], Gordon [GOT], and 
Macdonald [M, p. 521 by methods that at first seem to be completely 
unrelated. However, we can show that the proofs of Gordon and 
Macdonald are in fact very closely connected. 

Without violating the spirit of either proof, one could say that both 
proofs begin with the observation that the generating functions for the two 
classes in question can be obtained by applying appropriate specializations 
to the Schur function sums that appear in Theorem 7.1 and/or 
Corollary 7.4(a). In Macdonald’s proof, one then observes that when the 
same specializations are applied to the character SO,,, ,(kw,), one may 
easily obtain an explicit factorization via the Weyl denominator formula. 
Meanwhile, in Gordon’s proof, one directly evaluates the (specialized) 
determinants of Theorem 7.1 via a lengthy calculation. If it had been 
known at the time that Gordon’s determinants were essentially characters 
of SOZn+l, these lengthy calculations could have been avoided. 

It is interesting to note that Corollary 7.4(b) has been used to derive 
explicit generating functions for some other classes of plane partitions (see 
[Pl] or Corollary 4.3 of [Ste2]). These generating functions were also 
obtained independently by Desarmenien CD] using other methods (see 
also [SV] for the case q = 1). 
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8. TOTALLY SYMMETRIC, SELF-COMPLEMENTARY PLANE PARTITIONS 

A plane partition T can be treated as a three-dimensional array of nodes 
in P3 consisting of those points (i,j, k) for which k < T(i,j). From this 
point of view, it is easy to see that there is a 6-fold symmetry group acting 
on plane partitions by permutation of the three coordinates. A plane parti- 
tion is thus said to be totally symmetric if it is invariant under all six of 
these symmetries. 

We remark that Andrews and Robbins have conjectured an explicit 
generating function for totally symmetric plane partitions with parts <n 
(e.g., see [St3]). Furthermore, there is a known bijection (e.g., [0]) 
between totally symmetric plane partitions with parts <n and row-strict 
shifted plane partitions with parts d n. From this it is not difficult to set 
up a correspondence between totally symmetric plane partitions and con- 
figurations of nonintersecting paths in an appropriate digraph. This leads 
(via Theorem 4.1) to a matrix whose pfaffian is the generating function for 
totally symmetric plane partitions with parts ,< n. We will not pursue the 
details here since this has already been done by Okada CO], although his 
methods are slightly different from those we have described here. 

Mills, Robbins, and Rumsey have extended the group of symmetry 
operations on plane partitions by introducing the notion of complementa- 
tion. Given a plane partition T that fits inside an a x b x c prism in P3, one 
defines the complement T’ (with respect to (a, b, c)) to be the set of nodes 
(a + 1 -i, b + 1 -j, c + 1 -k), where (i, j, k) ranges over the nodes of T. 
This operation, together with permutation of coordinates, generates a sym- 
metry group G of order 12. This suggested to Stanley the idea of studying, 
for each subgroup H of G, the class of H-invariant plane partitions, and 
this led to several new conjectures and theorems by various people [St3]. 

In particular, Mills et al. [MRR] have studied the class of plane parti- 
tions that are invariant under the full group G (i.e., totally symmetric and 
self-complementary), and conjectured a formula for the number of such 
partitions. To describe their conjecture, first note that for plane partitions 
of this type to exist, it is necessary that the complementing prism be of the 
form 2n x 2n x 2n for some n. Therefore, let us define t, to be the number 
of tsscpp’s of order n; i.e., the number of totally symmetric plane partitions 
that are self-complementary with respect to a 2n x 2n x 2n prism. 

CONJECTURE~.~ [MRR]. t,,=n;:d (3i+ l)!/(n+i)!. 

Recently, W. Doran has shown that there is a natural way to encode 
tsscpp’s by means of nonintersecting configurations of paths [Do]. To 
describe this encoding, we define a digraph D on the vertex set 
V= {(i, j) E 2’ : 1~ i < j}, with an edge directed from u to u whenever 
U-U = (- 1,O) or (0, 1). Assign unit weight to each edge. We prefer to 
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embed D in a plane with matrix-style coordinates, so that the vertices 
occupy the positions on or above the main diagonal. Define u to be the 
vertex sequence consisting of ui= (i 2i) for i= 1, . . . . n - 1, and let 
Z= {(i, i) : i > 1) be the set of vertices on the main diagonal of D. Doran’s 
result can be stated as follows. 

THEOREM 8.2. We have t, = 1 YO(u; Z)I ; i.e., there is a one-to-one corre- 
spondence between the tsscpp’s of order n and sequences of nonintersecting 
paths (P,, . . . . P,- 1) such that P,E~(u~; I). 

We include a proof for the sale of completeness. 

Proof: By a result of Mills et al. (cf. the remarks following the proof of 
Theorem 1 in [MRR]), one knows that a tsscpp of order n is equivalent 
to a shifted tableau T of shape 6 = (n - 1, n - 2, . . . . 1 ), with entires in the 
range { 1, . . . . n}, such that T(i,j) >j. (We should point out that this descrip- 
tion is obtained by reflecting the arrays 6, in [MRR] across a line at a 45” 
angle.) Given one of these tableaux T, let D, denote the shifted partition 
diagram formed by the cells { (i, j) E Db : T( i, j) d k}. The sequence 
(D I, . . . . D,- i) uniquely determines T. ‘Furthermore, these sequences are 
characterized by the fact that the first row of D, has length at most k, 
together with the property D, c D, c ... c D,- , . 

Associate with the shifted diagram Di the D-path Qi from (1, i + 1) to Z 
obtained by arranging the steps of Qj so that the geometric configuration 
of vertices of D that appear northwest of Q, is congruent to the arrange- 
ment of cells in Di. For example, if D, is the shifted diagram of (4, 3, l), 
then the path Q, is the one illustrated in Fig. 6. 

The fact that Di c Di+ 1 implies that the translated path (1, l)+ Q,+i, 
obtained by adding the vector (1, 1) to each vertex of Qi + i, will not inter- 
sect Qi. The converse holds as well. Therefore, if we define Pi = (i - 1, 
i - 1) + Qi for 1 d i < n, we obtain a configuration of nonintersecting paths 
from ui = (i, 2i) to Z; conversely, any such comiguration corresponds to a 
unique tableau of the type described above. 1 

An example consisting of a family of nonintersecting paths, together with 
the corresponding tableau, is illustrated in Fig. 7. 

It is now a simple matter to derive a pfafIian for t,. 

FIGURE 6 
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THEOREM 8.3. Define aV = Czi _ j < r G zj ~ i (i :j) for 0 6 i < j. We have 

t _ 
1 

PfCaulo<i<j<n-l ifn is even 

n- PfCaijl,,i<j4n--l if n is odd. 

Proof: If n is even, adjoin a phantom vertex u,, = (0,O) to the digraph 
D, and include u0 in 1. We may then use Theorems 3.1 and 8.2 to deduce 
that tn = PfCQAui, uj)], w  h ere the indices i <j range from 0 to n - 1 for 
even n, and 1 to n - 1 for odd n. Therefore, we need only to prove 
Q1(ui, uj) = aV. For this, we fix i <j and let bk, denote the number of pairs 
of intersecting paths (P, Q) in which P (resp., Q) runs from ui = (i, 2i) to 
(k, k) (resp., uj to (I, I)). Since the total number of paths from ui to Z is 2’, 
it follows that 2’+j - Q,(ui, uj) is the number of pairs of intersecting paths 
from ui and uj to I. Hence, 

Zi+j-Q,(Ui, Uj)=Cbk/= C b/k+ 1 blk, 
k. I k<l k<l 

the last equality being a consequence of the fact that bk(= blk (cf. the path- 
switching involution of Sect. 1). When k < 1, every path from ui to (I, 1) 
must intersect every path from uj to (k, k), so we have b,k = (,! i)( kij) and 
thus 

2 i+j- Q,(z+, uj) = 

If we apply the substitution I-+ 2i - j - 1 to the first sum, and k + 2i - j - k 
to the second sum, we will obtain 

+ 
’ (2iJjAl)(2i-;-k)’ 

k+l>2i-j 
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For fixed values of Y= k + I, both sums are Vandermonde convolutions, 
and so 

This expression clearly agrees with the definition of a,;. 1 

We have used this result to verify Conjecture 8.1 for n < 30. 

9. THE GIAMBELLI DETERMINANT 

Let E, be a partition with (Durfee) rank r, and let 1= (a / 8) be the 
Frobenius notation. We recall that this means there are Y cells on the main 
diagonal of D,, and that (xi = Ai - i and fi, = 2: - i for 1 d id r. In the par- 
ticular case r = 1, (a 1 b) denotes the hook shaped partition with arm length 
a and leg length b. We define the kth principal hook of D, to be the set of 
cells (i, j) E D, such that i = k < j or j= k < i. The parameters sli and p, can 
be interpreted as the number of cells in the ith principal hook that are 
above or below the main diagonal, respectively. 

We define a digraph D on the vertex set Z x P as follows. Direct an edge 
from u=(i,j) to v if (1) i>O and U-v=(O, 1) or (l,O), or (2) i<O and 
U-v=(O, -1) or (1, -l), or (3) i=O and U-v=(O, 1) or (1, -1). An 
outline of this digraph appears in Fig. 8. We attach weights to the edges 
u + v as follows: if u - v = (0, f 1 ), assign the weight 1; otherwise, assign 
the weight xj, assuming u = (i, j). 

A D-path P from u=(a,n) to v=(-b-l,n+l) can be interpreted as 
a column-strict tableau of shape (a 1 b) with parts 6 n. The entries of the 
tableau are obtained by reading the (indices of the) weights of the nonverti- 
cal edges. Diagonal edges correspond to the entries in the first column of 
the tableau, and the horizontal edges correspond to entries in the first row 
beyond the cell (1, 1). We will use this observation to give a simple proof 
of Giambelli’s Schur function determinant [M, p. 301 (cf. also [ER]); i.e., 

THEOREM 9.1. We have S,r,8)=det[s,,,~,,],~i,,~,. 

Proof Following the above correspondence between hook tableaux 
and paths, we claim that the column-strict tableaux T of shape (~1 (B) with 
parts d n correspond to the r-tuples of nonintersecting paths in YO(u, v), 
where ui= (a,, n) and v, = (-/I- 1, n + 1). In this correspondence, the ith 
path corresponds to the restriction of T to the ith principal hook. An 
example appears in Fig. 8. To prove this, observe that the subpaths from 
u to the region Z= { (- 1, i) : ik 1) correspond to paths in the digraph of 
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Section 5; we know that nonintersecting configurations of this type 
correspond to column-strict shifted tableaux. Similarly, the subpaths from 
the region J= { (0, i) : i 2 1 } to v correspond to paths in the digraph of 
Section 6 in which only diagonal edges are used. We know that these paths 
correspond to shifted P’-tableaux with entries taken from {l’, . . . . n’}, i.e., 
row-strict shifted tableaux. Since an unshifted column-strict tableau can be 
decomposed into a pair consisting of a column-strict and a row-strict 
shifted tableau that share the same diagonal, the claim follows. Apply 
Theorem 1.2 to complete the proof. 1 

For integers r > 0, recall that h, is the Schur function s, corresponding 
to the one-rowed partition r, and similarly, e, is the Schur function s,’ 
corresponding to a single column. By convention, we define h, = e, = 0 
for r < 0. 

An extension of Giambelli’s determinant to skew Schur functions has 
been given by Lascoux and Pragacz [LPI. In the following, we show that 
the above argument can be used to prove their identity as well. 

THEOREM 9.2. rf il = (~1 I 8) has rank r and p = (y ) 6) has rank s, then 

si,,,= (- 1)” det i f , [ 1 
where A= [sc,,,Qj (rxr), H= [h,,-,](rxs), and E= [e@,-J(sxr). 

Proof An (unshifted) column-strict skew tableau can be decomposed 
into a pair consisting of a column-strict and a row-strict shifted skew 
tableau that share their main diagonals. It follows that if we define 
ui=(tLi,n) and ui=(-fli-l,n+l) for l<i<r, and u,+~=(-G~-~, 1) 
and v~+~= (yi, 1) for 1 < i < s, then we may identify the (skew) column- 
strict tableaux having shape n/p and parts <n with the configurations of 
nonintersecting paths (P, , . . . . P, + .) such that Pi E J?( ui, v, + i) for 1 < i < s, 
Pi E S(u,, vi) for s < i < r, and P,, i E p(u,+ i, vi) for 1 < i < s. Even though 
u need not be D-compatible with v, it is still true that the only noninter- 
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setting configurations that connect u to some permutation of v must 
connect ui to II,(~), where n denotes the involution that interchanges i and 
r+i for i=l,...,s. We may therefore apply Theorem 1.2, with the 
conclusion modified to take into account the sign of x. 1 
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