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Abstract. Many explicit determinant evaluations can be automatically conjectured, and then
rigorously automatically proved, once we suspect that they belong to the Holonomic Ansatz.
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Prerequisites

I assume that readers have read [Z1].

Experimental Mathematics: From Computer-Assisted to Computer-Generated
Mathematics

In a wonderful essay [W] on Experimental Mathematics, Herb Wilf outlines the four
steps of doing Experimental Mathematics, in the way it is usually practiced today.

1. Wondering, by a human, what a “particular situation looks like in detail”.
2. Some computer experimentation to show the structure of that situation for a selec-

tion of small values of the parameters.
3. The [human] mathematician gazes at the computer output, attempting to see or to

codify some pattern, that hopefully leads him or her to formulate a conjecture.
4. Human-made proof of the human-made conjecture (that was computer-inspired).

∗ http://www.math.rutgers.edu/˜zeilberg/.
Accompanied by the Maple package DET available from
http://www.math.rutgers.edu/~zeilberg/tokhniot/DET.
Supported in part by the NSF.

241



242 D. Zeilberger

Under this scheme, only step 2 employs the computer. In the present series of
articles, I illustrate, by example, how computers can be used, without any human
intervention, to also do steps 3 and 4. As for step 1, the wondering, this can also
be done by machinekind — it is not too hard to teach the computer how to wonder.
All that we, humans, ultimately would have to do is meta-wonder. In other words,
make up new ansatzes and write once and for all computer programs teaching the
computer how to wonder in these ansatzes, then gaze at the pattern, then formulate
a conjecture (within the given ansatz) and then, finally, prove the conjecture, all by
itself, without any human intervention! No longer just computer-assisted but fully
computer-generated.

The Art of Determinant Evaluations

To find out about the state of the art in contemporary explicit determinant evaluations,
by homo sapiens, the reader should consult Christian Krattenthaler’s beautiful surveys
[K1] and [K2].

Shalosh B. Ekhad vs. Some Great Human Mathematicians

Consider the determinant evaluation

det
((

µ+ i+ j
2i− j

))

0≤i, j≤n−1
=

n−1

∏
i=1

Nice(µ, n, i), (MRR)

where Nice is some explicit expression whose exact form I omit right now in order
not to distract from the general ideas. This determinant-evaluation, discovered and
first proved by William Mills, David Robbins, and Howard Rumsey [MRR1], was so
attractive that other great mathematicians, notably George Andrews and Dennis Stanton
[AS], Marko Petkovšek and Herb Wilf [PW], and Christian Krathenthaler [K1] took the
trouble to find other proofs.

But if you have Maple, and downloaded the Maple package DET into your computer,
and gotten into Maple by typing maple, and typed read DET:, then typing:

RproofP(binomial(m+n+p,2*m-n+1),m, n,N, 30,R, p, 40,60): ,
and waiting 256 seconds of CPU time will, completely ab initio, conjecture (MRR)

and immediately proceed to prove it fully rigorously.
Once written, DET can discover(!) and prove(!!) countless other determinant evalu-

ations, provided they belong to the right ansatz, the holonomic ansatz in our case. You
are welcome to look at the webpage of this article
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ansatzII.html

for numerous examples of input and output, in addition to the Mills-Robbins-Rumsey
evaluation mentioned above. If you have Maple, you can generate many more examples
on your own.

Caveat

Unlike WZ theory, where the computer is guaranteed to give an output (time and space
permitting), this is not the case here. It is not known, and is probably false, that it is
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always the case that if a(i, j) is holonomic, and setting A(n) := det(a(i, j))0≤i, j≤n−1,
then B(n) := A(n + 1)/A(n) is holonomic in n. But it happens often enough to justify
asking the computer to give it a try.

The General Idea

Of course, the seed of the method did originate from humans. It can be formulated in
two equivalent ways. We have:

Problem: Given some explicit expression m(i, j), define the n×n matrix Mn to be

Mn := (m(i, j))0≤i, j≤n−1.

Find an explicit (in some sense) evaluation (in n) for

A(n) := detMn.

George Andrews’s Approach

George Andrews pulls out of a hat an upper-triangular matrix Un whose entries are
“nice”, and whose diagonal entries are all 1’s, and such that Ln := MnUn is lower-
triangular and has a “nice” diagonal (but the other entries are possibly ugly). Then since
det(Mn) = det(Ln)/det(Un), and det(Un) = 1, we can express det(Mn) as a product of
nice things, and hence it is nice itself.

Of course, the reader is never told how Un was conjectured, it is just pulled out of
the blue. To prove the assertion one has to prove that Ln is indeed lower-triangular, i.e.,
the entries of MnUn above the diagonal are all 0, which boils down to (usually) proving
a hypergeometric identity. Next, one has to prove that the diagonal entries of Ln are as
claimed, which involves another hypergeometric identity. These are sometimes proved
by computer, using the Zeilberger algorithm, but still in a piecemeal, human-centric,
way.

Dave Robbins’s Approach

Although mathematically equivalent to George Andrews’s LU approach, I find Dave
Robbins’s approach, described in [MRR2], more conducive for teaching a computer.

Consider the n+1 by n+1 matrix (a(i, j)), for 0≤ i, j ≤ n. Let A(n, j) (0≤ j ≤ n),
be the cofactor of the (n, j) entry. Then of course

det(a(i, j))0≤i, j≤n =
n

∑
j=0

A(n, j)a(n, j).

Now the n+1 unknowns A(n, j), j = 0, . . . , n are uniquely determined, up to a normal-
ization factor (that only depends on n), by the n linear homogeneous equations

n

∑
j=0

A(n, j)a(i, j) = 0, i = 0, . . . , n−1.
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The normalized cofactors A′(n, j) defined by A′(n, j) = A(n, j)/A(n, n), are then
determined uniquely, for each specific n, by the system of linear equations

n

∑
j=0

A′(n, j)a(i, j) = 0, i = 0, . . . , n−1, (Dave1)

subject to
A′(n, n) = 1. (Dave2)

Now the human can ask the computer to crank out A′(n, j) for 0 ≤ j, n ≤ N for
some N (say 100), gaze at the output, and conjecture some ‘explicit’ form for A′(n, j)
and then prove that they indeed satisfy (Dave1) and (Dave2).

Finally, if in luck,

B(n) :=
n

∑
j=0

A′(n, j)a(n, j), (Dave3)

turns out to be ‘explicit’ , and the human is clever enough to prove it. Since A(n, n) =
det(a(i, j))0≤i, j≤n−1, it follows that

det(a(i, j))0≤i, j≤n

det(a(i, j))0≤i, j≤n−1
= B(n),

that finally entails that

det(a(i, j))0≤i, j≤n =
n

∏
j=0

B( j),

which should be considered ‘nice’ if B( j) is.

The Limit of Humans

If A′(n, j) turns out to be closed-form then some clever humans can gaze at it and
conjecture an expression for it. Other humans will ‘cheat’ and use a computer program
(like Krattenthaler’s rate) to do the guessing, but in an interactive way.

If nothing nice emerges, then these humans use some tricks of the trade, that only
they know, and are unwilling (and usually also unable) to divulge, to express the nor-
malized co-factor A′(n, j) as a single- or double- hypergeometric sum. Then go through
excruciating pain to verify (Dave1) and evaluate B(n), using (Dave3). This is indeed
the most challenging case, when A′(n, j) does not happen to be a hypergeometric term,
but turns out to be a hypergeometric sum (or even a multisum).

Enter Computers

When A′(n, j) turns out to be closed-form, it is easy enough to teach the computer
to guess it empirically (and later on prove it, see below), but trying to represent it as a
hypergemoetric sum or multisum is an art rather than a science, and does not seem to be
amenable to computerization. But we know, thanks to WZ theory, that hypergeometric
sums and multisums belong to the Holonomic Ansatz (see [Z1]), so why not start there?
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Computers do not play favorites. When instructed to operate within the Holonomic
Ansatz, they have no particular fondness for hypergeometric terms. A discrete function
of two variables being a hypergeometric term is just the special case of the defining re-
currences being first-order. So staying within the holonomic ansatz, once the computer
generated enough numerical data A′(n, j) for 0 ≤ n, j ≤ N for a big enough N, instead
of gazing, it keeps guessing linear recurrence equations with polynomial coefficients
(see [Z1]) in the n direction and in the j direction, not necessarily of the first-order. It
also tries to guess a linear recurrence equation with polynomial coefficients satisfied by
B(n), once enough specific values of B(n), for, say, n ≤ 100 (or whatever), have been
generated by (Dave3).

Once conjectured, the rest, i.e., proving that (Dave1), (Dave2), and (Dave3) hold
when the ‘real’ A′(n, j) and B(n) are replaced by the sequences defined by these con-
jectured recurrences (subject to the obvious initial conditions), is algorithmically decid-
able thanks to [Z2], at least in principle, but thanks to Frederic Chyzak’s beautiful work
[C], probably also in practice. Once this is completed, it follows (rigorously!), by the
uniqueness of the solution to (Dave1) and (Dave2), that the conjectured recurrences
for A′(n, j) are indeed correct, and since (Dave3) uniquely determines B(n), that the
conjectured recurrence for B(n) is indeed true.

The Lucky Case

When the conjectured recurrences for the normalized cofactors A′(n, j) turn out to be
first-order, then they can be easily solved explicitly, and A′(n, j) turns out to be (con-
jecturally for now) a hypergeometric term in (n, j). In other words it is closed form,
and verifying that that conjectured closed-form is indeed correct boils down to proving
that (Dave1) and (Dave2) with A′(n, j) replaced by that conjectured expression indeed
hold. Then one also needs to verify that the conjectured expression (or recurrence)
for B(n) is compatible with (Dave3) with the A′(n, j) replaced by the (now proven)
expression for it.

All this can be done with the original ‘fast’ Zeilberger algorithm [Z3] and [Z4],
implemented in my Maple package EKHAD (available from my website), as well as by
the built-in Maple package SumTools. The relevant part of EKHAD has been included
in the Maple package DET. The procedures that handle this lucky case are Rproof and
RproofP. They give fully rigorous proofs of the conjectured expression or recurrence
for B(n) (even when that recurrence is of higher order, all we need is that the conjec-
tured recurrences for A′(n, j) be of first order in order to take advantage of Rproof and
RproofP).

The Unlucky Case

When the conjectured recurrences for the normalized cofactors A′(n, j) turn out to be
of higher order, we need to use Frederic Chyzak’s [C] package instead. Since I am
not familiar enough with it, this case is not yet implemented, and currently Rproof

returns FAIL in that case. Also, it is possible that even once Chyzak’s program will get
interfaced with DET, it will take too long, in which case read the next section.



246 D. Zeilberger

What If It Takes too Long? Let’s Settle for a Semi-Rigorous Proof

Since we know that if we had a big enough computer, and good enough software, we can
prove that (Dave1), (Dave2), and (Dave3) hold when A′(n, j) and B(n) are replaced by
their conjectured ‘explicit expressions’ (in the sense of the Holonomic Ansatz, where
‘explicit expressions’ are given implicitly as solutions of linear recurrence equations
with polynomial coefficients), is it really worth the trouble? We can prove these facts
semi-rigorously as follows.

We can use the conjectured linear recurrences for A′(n, j) and B(n) to crank out
many more conjectured values, much faster than by solving the system of equations
(Dave1), (Dave2) and then computing the B(n) by (Dave3).

Let’s temporarily call these new values A′′(n, j) and B′(n) and once found, plug
them into the analogs of (Dave1), (Dave2), and (Dave3) obtained by replacing A′(n, j)
by A′′(n, j) and B(n) by B′(n). If they turn out to be right for, say, n, j ≤ 10000, then it
means that the conjectured recurrences are right at least for n ≤ 10000, but most likely
we have also proved them for all n, even though we don’t have a rigorous proof that
this is indeed a rigorous proof (but I bet it is!).

It is like proving that two polynomials are the same by plugging-in enough special
values. In the case of polynomials of one variable, there is an easy parameter, the degree
plus 1, that tells you how many special values you have to plug-in in order to rigorously
prove a conjectured identity between two given polynomials. The problem now is that it
is not so easy to find the analog of the degree for a holonomic function, but if we check
them for n ≤ 10000, this is most likely more than enough. The notion of semi-rigorous
proof was introduced in [Z5].

A Note on Guessing

There now exist powerful guessing programs, for examplesuperseeker in Neil Sloane’s
famous site, Bruno Salvy and Paul Zimmermann’s [SZ] Maple packages Gfun and
Mgfun, and Christian Krattenthaler’s Mathematica program rate, that could have been
used as subroutines in the present endeavor. But I found it easier to program everything
ab initio, borrowing freely, of course, from these pioneering programs.

The Maple Package DET

Everything here is implemented in the Maple package DET available from
http://www.math.rutgers.edu/~zeilberg/tokhniot/DET.
As already mentioned, the webpage of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ansatzII.html

contains sample input and output.
The main functions are Rproof, RproofP, SRproof, SRproofI. To find out

about them, in DET, type ezra(FunctionName);. For example, for help with Rproof,
type ezra(Rproof);.

The ‘engines’ driving these functions are procedures DaveH and DaveV, that guess
horizontal and vertical pure recurrences respectively for the normalized cofactors
A′(n, m). Full details can be gotten by reading the source code of DET. Let me just
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mention that DaveH works by conjecturing recurrences, in m, for many rows (i.e., for
fixed n), and then using procedure GR1, that guesses rational functions, in order to ‘in-
terpolate’ them, thereby guessing a unified recurrence, also featuring n symbolically.

Future Directions

DET can be further optimized, and translated into Matlab or C, thereby probably mak-
ing it much faster. It would be also worthwhile to interface it with Frederic Chyzak’s
packages thereby turning the semi-rigorous proofs, that we presently have to contend
with in the unlucky case mentioned above, into fully rigorous proofs.

Finally, it should be relatively easy to write the q-analog of DET, but the running
times would be larger because of the extra symbol q.
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