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The fundamental question

How to quantize some gravity 4+ matter action in D dimensions:

Z Z Dg(metrics) D Xmatter e ®

topologies

SNKR/\/ER—HV/\/E-i-HmSm ?

For instance, in D = 2 how do we quantize the Polyakov string action?

Razvan Gurau,
Conclusions

S ~ kg / VER — kv / VE + Em / d?¢\/gg™ 0. X 9pX" G (X)

E =5
Z~ Dg(worldsheet metrics) DX(target space coordinates) €
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Random Discrete Geometries

Quantum Gravity = summing random geometries.

Proposal: build the geometry by gluing discrete blocks, “space time
quanta”.

<> [5=]
Z / Dg(metrics) — Z v@
topologies random discretizations
Funda_mental interactions of tew qu?nta lead to effective o
behaviors of an ensemble of “quanta”. &Y
—=

But what measure should one use over the random discretizations?

We know the answer in two dimensions!  (G. 't Hooft, E. Brezin, C. Itzykson, G. Parisi,
J.B. Zuber, F. David, V. Kazakov, D. Gross, A. Migdal, M. R. Douglas, S. H. Shenker, etc.)
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The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional
surfaces. The theory of strong interactions, string theory, quantum gravity in D = 2, conformal
field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann

hypothesis, etc.

Field theories: no ad hoc restriction of the topology! loop equation, KdV hierarchy,
topological recursion, etc.

Generalize matrix models to higher dimensions

First proposals in the 90s: Tensor Models (Ambjorn, Sasakura) and Group Field
Theories (Boulatov, Ooguri, Rovelli, Oriti). Some technical difficulties were
encountered an progress has been somewhat slow.
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Twenty five years later

We have today a good definition of tensor models.

Tensor Models are probability measures (field theories) for
a tensor field T o obeying a tensor invariance principle.

They are from the onset field theories:
> the field (tensor T, o) is the fundamental building block.
> the action defines a model.
> the scale is the size of the tensor (7,1 o has NP components).

» the UV degrees of freedom: large index components.

» Tensor invariance = random discretizations.
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Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)
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Invariant Actions for Tensor Models
The most general single trace invariant tensor model

ZTal N H(sac chZtBTrB (T,T)
tB)—/[deT] _wis(r, T>

Feynman graphs: “vertices’ B. Gaussian integral: Wick contractions of T and T
(“propagators”) — dashed edges to which we assign the fictitious color 0.
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Invariant Actions for Tensor Models
The most general single trace invariant tensor model

D
S(T.T) = Ta o T go [[ Oacae + > tsTrs(T, T)
c=1 B
Z(tg) = /[deT] e N°TIS(T.T)

Feynman graphs: ‘“vertices’ B. Gaussian integral: Wick contractions of T and T
(“propagators”) — dashed edges to which we assign the fictitious color 0.

Graphs G with D + 1 colors.

Represent triangulated D dimensional spaces.
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with colors 0,1...D. \[\)«—"’A

Edges < gluings along
D — 1 simplices respecting /(/‘ﬁ\/
all the colorings

Vertex <> colored D
simplex .

The invariants Trz have a double interpretation:
- Graphs with D colors: D — 1 dimensional boundary triangulations.

- Subgraphs:
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Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges - |
with colors 0,1...D. \[\)."‘"A

Edges < gluings along
D — 1 simplices respecting /(/‘2;/\/
all the colorings P

Vertex <> colored D
simplex .

The invariants Trz have a double interpretation:
- Graphs with D colors: D — 1 dimensional boundary triangulations.

Gluing along all D — 1 simplices

- Subgraphs: vertex <> D simplex except 0: “chunk” in D
oy <> dimensions
2V §
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The general framework

Observables = invariants Trpz encoding boundary triangulations.
Expectations =

1 - B _
<Tr51Tr132 e Tqu> = m /[deT] Trg, Tr, ... Trg, e~ N°TIS(T.T)

correlations between boundary states given by sums over all bulk triangulations
compatible with the boundary states

> <Tr3>: B to vacuum amplitude

> <Tr31Tr32> = <Tr51Tr52> — <Tr31><Tr32>: transition amplitude between
the boundarcy states BB1 and B>

Remarks:
» The path integral yields a canonical measure over the discrete geometries.
» Weight of a triangulation: discretized EH, B A F, etc.

> Need to take some kind of limit in order to go from discrete triangulations to
continuum geometries.
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The quartic tensor model
Tensor Models compute correlations

D
S(T.T) = Ta o Tqrqo [ [ 0acqe + > tsTrs(T, T)
c=1 B

1 = _ -
<Trzg1Tr132 . ..Tr5q> = m /[deT] Trg, Trs, .. Tra, e"VD 1S(T,T)
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The quartic tensor model

Tensor Models compute correlations

ZTal a0 Tt oo Héacc+ZtBTrB (T, T)

<Tr31Tr52...Tqu> / [dTdT] Trs,Trs, ... Trg, e S(TD)

The simplest quartic invariants correspond to
“melonic”’ graphs with four vertices B(*):€

Z(Tal...aD 7—ql.._qD H Sac’qc’)(;acpc‘sbcqc (Tbl...bD 7—P1---PD H Sb‘:/pc/) c ¢
c/#c e
A B = 8(4) c
. . . _ : s,
The simplest interacting theory: coupling constants tg = .
0, otherwise

The simplest observable:
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Amplitudes and Dynamical Triangulations

Expand in A (Feynman graphs):
1 g
<NTrB(2)> = Z A (N)
D+1 colored graphs G
Each graph is dual to a triangulation. Two parameters A and N.

Ag(N) =] eHD—Z()"N)QD—Z*HD()\,N)QD

with Qp the number of D-simplices and Qp_» the number of (D — 2)-simplices

discretized on
all D dimensional triangulations equilateral triangulation

with boundary B(2)

(=& __frerwrnra

Discretized Einstein Hilbert action on an equilateral triangulation with fixed
boundary!
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over triangulations:

<%Tr3<2)> — 3 A9\, N)

all D dimensional triangulations
with boundary B(2)

The weight of a triangulation,A%(\, N), is model dependent and contains the
physical interpretation of the model.

The metric assigned to a combinatorial triangulation is encoded in the choice of
A9\, N).
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Two parameters: A and N.

1) Feynman expansion: Ky =1 — D\ — 55D\ + S gAYN)  AY(N) ~ N

2) 1/N expansion: Ky = %+Z A9(N)  AY(N) < 5

N
3) non perturbative: K = % T Rg\/p)()\)
RS\'I’)()\) analytic in A = [A|e*? in
the domain "
Ry’ (NI <
> % p! A BP

NpP(D—2)
(cos g)
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The N — oo limit
limpy_ o0 \R(,\})()\)| = 0, hence

: _ (144DN)? —1
aim, Ke = 2D\

> is the sum of an infinite family of graphs of spherical topology (“melons™)
» becomes critical for A — —(4D)1

> in the critical regime infinite graphs (representing infinitely refined geometries)
dominate

A continuous random geometry emerges! Seen as equilateral triangulations, the
“melons” are branched polymers...

> Give up the field theory framework: CDT, spin foams, etc.

» Change the covariance (propagator)

» Take the branched polymers seriously: a first phase transition to branched
polymers can be followed by subsequent phase transitions to smoother spaces.
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Beyond branched polymers

trees with up to 1
Ky = -
2 Z p — 1 loop edges (NP(D*Z))
Leading order: trees (branched polymers) — protospace.

Loop edges decorate this tree — emergent extended space.
Loop effects: fine tunning the approach to criticality (double scaling, triple scaling,
etc.)

But the critical point is on the wrong side!

critical point

. (D)~ !

Major (nonperturbative) challenge: extend the analyticity domain of R%’)()\) to

the disk of radius (4D)~! minus the negative real axis!
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The Double Scaling Limit

In perturbative sense the graphs can be reorganized as

K2 = \/(4D)71+)\Z ‘p b + Rest

= (/\/EF2 [(4D)~1 + A})

Subleading terms in 1/N are more singular (hence enhanced) when tunning to
criticality! Uniform when we keep x = NP2 [(4D)_1 + )\] fixed.

Double scaling N — oo, A — fﬁ like A = fﬁ + yo=z

Ko=N'"23" i Rest  Rest < N'/?"P/2

p>0 %X

At leading order in the double scaling limit an explicit family of graphs larger than
the “melonic” family emerges!
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We have an analytic framework to study random discrete geometries!
canonical path integral formulation.
built in scales (tensors of size NP).
sums over discretized geometries.

with weights the discretized (Einstein Hilbert, B A F, etc.) action.

vV V. VvV VY

non perturbative predictions

Question: Is space truly discrete? what we know for sure is that the universe has a
large number of degrees of freedom = the universe must be composed of a large
number of quanta.

» infinitely refined geometries with simple topology arise at criticality.

> fine structure effects are probed by tuning the approach to criticality.

Question: What precise model in this framework describes our universe?

» we don't know hence we concentrate on universal predictions.
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Conclusions

The tensor track is largely open and begs to be explored!

A personal list of open questions:
» non perturbative results

» extend the non perturbative treatment to other models.

> extend the analyticity domain of the rest and study the discontinuity of the rest
on the negative real axis (non perturbative cut effects are crucial for unitarity
and the role of time)

» study the geometry of the space emerging under multiple scalings.
> algebra of constraints, Hausdorff and spectral dimensions, geodesics.

» Effective field theory description of the critical regime.

» Phenomenological implications.
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