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The fundamental question

How to quantize some gravity + matter action in D dimensions:
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Random Discrete Geometries

Quantum Gravity = summing random geometries.

Proposal: build the geometry by gluing discrete blocks, “space time
quanta”.

X

topologies

Z
Dg(metrics) !

X

random discretizations

Fundamental interactions of few “quanta” lead to e↵ective
behaviors of an ensemble of “quanta”.

But what measure should one use over the random discretizations?

We know the answer in two dimensions! (G. ’t Hooft, E. Brezin, C. Itzykson, G. Parisi,

J.B. Zuber, F. David, V. Kazakov, D. Gross, A. Migdal, M. R. Douglas, S. H. Shenker, etc.)
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The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional
surfaces. The theory of strong interactions, string theory, quantum gravity in D = 2, conformal

field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann

hypothesis, etc.

Field theories: no ad hoc restriction of the topology! loop equation, KdV hierarchy,

topological recursion, etc.

Generalize matrix models to higher dimensions

First proposals in the 90s: Tensor Models (Ambjorn, Sasakura) and Group Field
Theories (Boulatov, Ooguri, Rovelli, Oriti). Some technical di�culties were
encountered an progress has been somewhat slow.
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Introduction Tensor Models The quartic tensor model The 1/N expansion and the continuum limit Conclusions

The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional
surfaces. The theory of strong interactions, string theory, quantum gravity in D = 2, conformal

field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann

hypothesis, etc.

Field theories: no ad hoc restriction of the topology! loop equation, KdV hierarchy,

topological recursion, etc.

Generalize matrix models to higher dimensions

First proposals in the 90s: Tensor Models (Ambjorn, Sasakura) and Group Field
Theories (Boulatov, Ooguri, Rovelli, Oriti).

Some technical di�culties were
encountered an progress has been somewhat slow.

6



Tensor Models in the large N limit, ESI 2014 Răzvan Gurău,
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Twenty five years later

We have today a good definition of tensor models.

Tensor Models are probability measures (field theories) for

a tensor field Ta1...aD obeying a tensor invariance principle.

They are from the onset field theories:

I the field (tensor T
a

1...aD ) is the fundamental building block.

I the action defines a model.

I the scale is the size of the tensor (T
a

1...aD has ND components).

I the UV degrees of freedom: large index components.

I Tensor invariance ) random discretizations.
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Introduction Tensor Models The quartic tensor model The 1/N expansion and the continuum limit Conclusions

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)

T 0
b

1...bD

=
X

a

U
(1)
b

1
a

1 . . .U
(D)
b

D

a

D

T
a

1...aD T̄ 0
p

1...pD

=
X

q

Ū
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Introduction Tensor Models The quartic tensor model The 1/N expansion and the continuum limit Conclusions

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)

T 0
b

1...bD

=
X

a

U
(1)
b

1
a

1 . . .U
(D)
b

D

a

D

T
a

1...aD T̄ 0
p

1...pD

=
X

q

Ū
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Introduction Tensor Models The quartic tensor model The 1/N expansion and the continuum limit Conclusions

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor
product of D fundamental representations of U(N)

T 0
b

1...bD

=
X

a

U
(1)
b

1
a

1 . . .U
(D)
b

D

a

D

T
a

1...aD T̄ 0
p

1...pD

=
X

q

Ū
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Ū
(1)
p

1
q

1 . . . Ū
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Invariant Actions for Tensor Models

The most general single trace invariant tensor model

S(T , T̄ ) =
X

T
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1...aD T̄q

1...qD
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c=1

�
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c

q

c +
X

B
tBTrB(T̄ ,T )

Z (tB) =

Z
[dT̄dT ] e�N

D�1
S(T ,T̄ )

Feynman graphs: “vertices” B. Gaussian integral: Wick contractions of T and T̄
(“propagators”) ! dashed edges to which we assign the fictitious color 0.

Graphs G with D + 1 colors.

Represent triangulated D dimensional spaces.
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Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges
with colors 0, 1 . . .D.

Vertex $ colored D
simplex .

Edges $ gluings along
D � 1 simplices respecting
all the colorings

The invariants TrB have a double interpretation:
- Graphs with D colors: D � 1 dimensional boundary triangulations.

- Subgraphs: vertex $ D simplex Gluing along all D � 1 simplices
except 0: “chunk” in D
dimensions
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The general framework

Observables = invariants TrB encoding boundary triangulations.
Expectations =

D
TrB1TrB2 . . .TrBq

E
=

1

Z (tB)

Z
[dT̄dT ] TrB1TrB2 . . .TrBq

e�N

D�1
S(T ,T̄ )

correlations between boundary states given by sums over all bulk triangulations
compatible with the boundary states

I
D
TrB

E
: B to vacuum amplitude

I
D
TrB1TrB2

E

c

=
D
TrB1TrB2

E
�
D
TrB1

ED
TrB2

E
: transition amplitude between

the boundary states B1 and B2

Remarks:
I The path integral yields a canonical measure over the discrete geometries.
I Weight of a triangulation: discretized EH, B ^ F , etc.
I Need to take some kind of limit in order to go from discrete triangulations to

continuum geometries.
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The quartic tensor model

Tensor Models compute correlations
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The simplest quartic invariants correspond to
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Amplitudes and Dynamical Triangulations

Expand in � (Feynman graphs):

D 1

N
TrB(2)

E
=

X

D+1 colored graphs G
AG(N)

Each graph is dual to a triangulation. Two parameters � and N.

AG(N) = eD�2(�,N)Q
D�2�

D

(�,N)Q
D

with Q
D

the number of D-simplices and Q
D�2 the number of (D � 2)-simplices

D 1

N
TrB(2)

E
=

X

all D dimensional triangulations

with boundary B(2)

h
eR

R p
gR�

V

R p
g

i
discretized on

equilateral triangulation

Discretized Einstein Hilbert action on an equilateral triangulation with fixed
boundary!
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Tensor invariance revisited

Due to tensor invariance we always obtain a sum over colored graphs, hence a sum
over triangulations:

D 1

N
TrB(2)

E
=

X

all D dimensional triangulations

with boundary B(2)

AG(�,N)

The weight of a triangulation,AG(�,N), is model dependent and contains the
physical interpretation of the model.

The metric assigned to a combinatorial triangulation is encoded in the choice of
AG(�,N).
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Introduction Tensor Models The quartic tensor model The 1/N expansion and the continuum limit Conclusions

Tensor invariance revisited

Due to tensor invariance we always obtain a sum over colored graphs, hence a sum
over triangulations:

D 1

N
TrB(2)

E
=

X

all D dimensional triangulations

with boundary B(2)

AG(�,N)

The weight of a triangulation,AG(�,N), is model dependent and contains the
physical interpretation of the model.

The metric assigned to a combinatorial triangulation is encoded in the choice of
AG(�,N).

15



Tensor Models in the large N limit, ESI 2014 Răzvan Gurău,
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The 1/N expansion

Two parameters: � and N.

1) Feynman expansion: K2 = 1� D�� 1
N

D�2D�+
P

G AG(N) AG(N) ⇠ �2

2) 1/N expansion: K2 =
(1+4D�)

1
2 �1

2D� +
P

G AG(N) AG(N)  1
N

D�2

3) non perturbative: K2 =
(1+4D�)

1
2 �1

2D� + . . .+R(p)
N

(�)

R(p)
N

(�) analytic in � = |�|eı' in
the domain

|R(p)
N

(�)| 
1

N

p(D�2)

|�|p⇣
cos '

2

⌘2p+2 p! A Bp
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The N ! 1 limit

lim
N!1 |R(1)

N

(�)| = 0, hence

lim
N!1

K2 =
(1 + 4D�)

1
2 � 1

2D�

I is the sum of an infinite family of graphs of spherical topology (“melons”)
I becomes critical for � ! �(4D)�1

I in the critical regime infinite graphs (representing infinitely refined geometries)
dominate

A continuous random geometry emerges! Seen as equilateral triangulations, the
“melons” are branched polymers...

I Give up the field theory framework: CDT, spin foams, etc.
I Change the covariance (propagator)
I Take the branched polymers seriously: a first phase transition to branched

polymers can be followed by subsequent phase transitions to smoother spaces.
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I Change the covariance (propagator)
I Take the branched polymers seriously: a first phase transition to branched

polymers can be followed by subsequent phase transitions to smoother spaces.

18



Tensor Models in the large N limit, ESI 2014 Răzvan Gurău,
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Beyond branched polymers

K2 =
X trees with up to

p � 1 loop edges
+ O(

1

Np(D�2)
)

Leading order: trees (branched polymers) ! protospace.

Loop edges decorate this tree ! emergent extended space.
Loop e↵ects: fine tunning the approach to criticality (double scaling, triple scaling,
etc.)

But the critical point is on the wrong side!

Major (nonperturbative) challenge: extend the analyticity domain of R(p)
N

(�) to
the disk of radius (4D)�1 minus the negative real axis!
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Introduction Tensor Models The quartic tensor model The 1/N expansion and the continuum limit Conclusions

Beyond branched polymers

K2 =
X trees with up to

p � 1 loop edges
+ O(

1

Np(D�2)
)

Leading order: trees (branched polymers) ! protospace.

Loop edges decorate this tree ! emergent extended space.
Loop e↵ects: fine tunning the approach to criticality (double scaling, triple scaling,
etc.)

But the critical point is on the wrong side!

(4D)−1

critical point

Major (nonperturbative) challenge: extend the analyticity domain of R(p)
N

(�) to
the disk of radius (4D)�1 minus the negative real axis!
19



Tensor Models in the large N limit, ESI 2014 Răzvan Gurău,
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The Double Scaling Limit

In perturbative sense the graphs can be reorganized as

K2 =
p
(4D)�1 + �

X

p�0

c
p⇣

ND�2
⇥
(4D)�1 + �

⇤⌘p

+ Rest

Subleading terms in 1/N are more singular (hence enhanced) when tunning to
criticality! Uniform when we keep x = ND�2

⇥
(4D)�1 + �

⇤
fixed.

Double scaling N ! 1, � ! � 1
4D like � = � 1

4D + x

N

D�2 ,

K2 = N1� D

2

X

p�0

c
p

xp�
1
2

+ Rest Rest < N1/2�D/2

At leading order in the double scaling limit an explicit family of graphs larger than
the “melonic” family emerges!
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Introduction Tensor Models The quartic tensor model The 1/N expansion and the continuum limit Conclusions

Introduction

Tensor Models

The quartic tensor model

The 1/N expansion and the continuum limit

Conclusions

21



Tensor Models in the large N limit, ESI 2014 Răzvan Gurău,
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Advantages vs. Questions

We have an analytic framework to study random discrete geometries!

I canonical path integral formulation.

I built in scales (tensors of size ND).

I sums over discretized geometries.

I with weights the discretized (Einstein Hilbert, B ^ F , etc.) action.

I non perturbative predictions

Question: Is space truly discrete? what we know for sure is that the universe has a
large number of degrees of freedom ) the universe must be composed of a large
number of quanta.

I infinitely refined geometries with simple topology arise at criticality.

I fine structure e↵ects are probed by tuning the approach to criticality.

Question: What precise model in this framework describes our universe?

I we don’t know hence we concentrate on universal predictions.
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Conclusions

The tensor track is largely open and begs to be explored!

A personal list of open questions:
I non perturbative results

I extend the non perturbative treatment to other models.
I extend the analyticity domain of the rest and study the discontinuity of the rest

on the negative real axis (non perturbative cut e↵ects are crucial for unitarity
and the role of time)

I study the geometry of the space emerging under multiple scalings.
I algebra of constraints, Hausdor↵ and spectral dimensions, geodesics.

I E↵ective field theory description of the critical regime.

I Phenomenological implications.

I . . . . . . . . .
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Introduction Tensor Models The quartic tensor model The 1/N expansion and the continuum limit Conclusions

Conclusions

The tensor track is largely open and begs to be explored!

A personal list of open questions:
I non perturbative results

I extend the non perturbative treatment to other models.
I extend the analyticity domain of the rest and study the discontinuity of the rest

on the negative real axis (non perturbative cut e↵ects are crucial for unitarity
and the role of time)

I study the geometry of the space emerging under multiple scalings.
I algebra of constraints, Hausdor↵ and spectral dimensions, geodesics.

I E↵ective field theory description of the critical regime.

I Phenomenological implications.

I . . . . . . . . .

23



Tensor Models in the large N limit, ESI 2014 Răzvan Gurău,
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