Tensor Models in the large N limit

Răzvan Gurău

ESI 2014

Introduction

Tensor Models

The quartic tensor model

The $1 / N$ expansion and the continuum limit

Conclusions

The fundamental question

The fundamental question

How to quantize some gravity + matter action in D dimensions:

$$
\begin{aligned}
& Z \sim \sum_{\text {topologies }} \int \mathcal{D} g_{\text {(metrics) }} \mathcal{D} X_{\text {matter }} e^{-S} \\
& S \sim \kappa_{R} \int \sqrt{g} R-\kappa V \int \sqrt{g}+\kappa_{m} S_{m} \quad ?
\end{aligned}
$$

The fundamental question

How to quantize some gravity + matter action in D dimensions:

$$
\begin{aligned}
& Z \sim \sum_{\text {topologies }} \int \mathcal{D} g_{\text {(metrics) }} \mathcal{D} X_{\text {matter }} e^{-S} \\
& S \sim \kappa_{R} \int \sqrt{g} R-\kappa_{V} \int \sqrt{g}+\kappa_{m} S_{m} \quad ?
\end{aligned}
$$

For instance, in $D=2$ how do we quantize the Polyakov string action?

$$
\begin{aligned}
& S \sim \kappa_{R} \int \sqrt{g} R-\kappa_{V} \int \sqrt{g}+\kappa_{m} \int d^{2} \xi \sqrt{g} g^{a b} \partial_{a} X^{\mu} \partial_{b} X^{\nu} G_{\mu \nu}(X) \\
& Z \sim \sum_{\text {topologies }} \int \mathcal{D} g_{(\text {worldsheet metrics) }} \mathcal{D} X_{\text {(target space coordinates) }} e^{-S}
\end{aligned}
$$

Random Discrete Geometries

Random Discrete Geometries

Classical gravity $=$ geometry.
QFT $=$ summing random configurations．

Random Discrete Geometries

Quantum Gravity $=$ summing random geometries．

Random Discrete Geometries

Quantum Gravity $=$ summing random geometries.

Proposal: build the geometry by gluing discrete blocks, "space time quanta".

$$
\sum_{\text {topologies }} \int \mathcal{D} g_{(\text {metrics })} \rightarrow \sum_{\text {random discretizations }}
$$

Random Discrete Geometries

Quantum Gravity $=$ summing random geometries.

Proposal: build the geometry by gluing discrete blocks, "space time quanta".

$$
\sum_{\text {topologies }} \int \mathcal{D} g_{(\text {metrics })} \rightarrow \sum_{\text {random discretizations }}
$$

Fundamental interactions of few "quanta" lead to effective behaviors of an ensemble of "quanta".

Random Discrete Geometries

Quantum Gravity $=$ summing random geometries.

Proposal: build the geometry by gluing discrete blocks, "space time quanta".

$$
\sum_{\text {topologies }} \int \mathcal{D} g_{(\text {metrics })} \rightarrow \sum_{\text {random discretizations }}
$$

Fundamental interactions of few "quanta" lead to effective behaviors of an ensemble of "quanta".

But what measure should one use over the random discretizations?

Random Discrete Geometries

Quantum Gravity $=$ summing random geometries.

Proposal: build the geometry by gluing discrete blocks, "space time quanta".

$$
\sum_{\text {topologies }} \int \mathcal{D} g_{(\text {metrics })} \rightarrow \sum_{\text {random discretizations }}
$$

Fundamental interactions of few "quanta" lead to effective behaviors of an ensemble of "quanta".

But what measure should one use over the random discretizations?
We know the answer in two dimensions!
(G. 't Hooft, E. Brezin, C. Itzykson, G. Parisi, J.B. Zuber, F. David, V. Kazakov, D. Gross, A. Migdal, M. R. Douglas, S. H. Shenker, etc.)

Introduction

Tensor Models

The quartic tensor model

The $1 / N$ expansion and the continuum limit

Conclusions

Răzvan Gurău,
Conclusions

The Tensor Track

The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional surfaces. The theory of strong interactions, string theory, quantum gravity in $D=2$, conformal field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann hypothesis, etc.

The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional surfaces. The theory of strong interactions, string theory, quantum gravity in $D=2$, conformal field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann hypothesis, etc.

Field theories: no ad hoc restriction of the topology! loop equation, KdV hierarchy, topological recursion, etc.

The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional surfaces. The theory of strong interactions, string theory, quantum gravity in $D=2$, conformal field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann hypothesis, etc.

Field theories: no ad hoc restriction of the topology! loop equation, KdV hierarchy, topological recursion, etc.

Generalize matrix models to higher dimensions

The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional surfaces. The theory of strong interactions, string theory, quantum gravity in $D=2$, conformal field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann hypothesis, etc.

Field theories: no ad hoc restriction of the topology! loop equation, KdV hierarchy, topological recursion, etc.

Generalize matrix models to higher dimensions

First proposals in the 90s: Tensor Models (Ambjorn, Sasakura) and Group Field Theories (Boulatov, Ooguri, Rovelli, Oriti).

The Tensor Track

A success story: Matrix Models provide a measure for random two dimensional surfaces. The theory of strong interactions, string theory, quantum gravity in $D=2$, conformal field theory, invariants of algebraic curves, free probability theory, knot theory, the Riemann hypothesis, etc.

Field theories: no ad hoc restriction of the topology! loop equation, KdV hierarchy, topological recursion, etc.

Generalize matrix models to higher dimensions

First proposals in the 90s: Tensor Models (Ambjorn, Sasakura) and Group Field Theories (Boulatov, Ooguri, Rovelli, Oriti). Some technical difficulties were encountered an progress has been somewhat slow.

Răzvan Gurău,
Conclusions

Twenty five years later

Twenty five years later

We have today a good definition of tensor models.

Twenty five years later

We have today a good definition of tensor models.
Tensor Models are probability measures (field theories) for a tensor field $T_{a^{1} \ldots a^{D}}$ obeying a tensor invariance principle.

Twenty five years later

We have today a good definition of tensor models.
Tensor Models are probability measures (field theories) for a tensor field $T_{a^{1} \ldots a^{D}}$ obeying a tensor invariance principle.

They are from the onset field theories:

Twenty five years later

We have today a good definition of tensor models.
Tensor Models are probability measures (field theories) for a tensor field $T_{a^{1} \ldots a^{D}}$ obeying a tensor invariance principle.

They are from the onset field theories:

- the field (tensor $T_{a^{1} \ldots a^{D}}$) is the fundamental building block.

Twenty five years later

We have today a good definition of tensor models.
Tensor Models are probability measures (field theories) for a tensor field $T_{a^{1} \ldots a^{D}}$ obeying a tensor invariance principle.

They are from the onset field theories:

- the field (tensor $T_{a^{1} \ldots a^{D}}$) is the fundamental building block.
- the action defines a model.

Twenty five years later

We have today a good definition of tensor models.
Tensor Models are probability measures (field theories) for a tensor field $T_{a^{1} \ldots a^{D}}$ obeying a tensor invariance principle.

They are from the onset field theories:

- the field (tensor $T_{a^{1} \ldots a^{D}}$) is the fundamental building block.
- the action defines a model.
- the scale is the size of the tensor ($T_{a^{1} \ldots a^{D}}$ has N^{D} components).

Twenty five years later

We have today a good definition of tensor models.
Tensor Models are probability measures (field theories) for a tensor field $T_{a^{1} \ldots a^{D}}$ obeying a tensor invariance principle.

They are from the onset field theories:

- the field (tensor $T_{a^{1} \ldots a^{D}}$) is the fundamental building block.
- the action defines a model.
- the scale is the size of the tensor ($T_{a^{1} \ldots a^{D}}$ has N^{D} components).
- the UV degrees of freedom: large index components.

Twenty five years later

We have today a good definition of tensor models.
Tensor Models are probability measures (field theories) for a tensor field $T_{a^{1} \ldots a^{D}}$ obeying a tensor invariance principle.

They are from the onset field theories:

- the field (tensor $T_{a^{1} \ldots a^{D}}$) is the fundamental building block.
- the action defines a model.
- the scale is the size of the tensor ($T_{a^{1} \ldots a^{D}}$ has N^{D} components).
- the UV degrees of freedom: large index components.
- Tensor invariance \Rightarrow random discretizations.

Răzvan Gurău,

Tensor invariants as Colored Graphs

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum_{a} U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}} \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum_{q} \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum_{a} U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}} \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum_{q} \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Invariants ("traces") $\sum_{a^{1}, q^{1}} \delta_{a^{1} q^{1} \ldots} \ldots T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D} \ldots}$

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum_{a} U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}} \quad \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum_{q} \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Invariants ("traces") $\sum_{a^{1}, q^{1}} \delta_{a^{1} q^{1} \ldots} T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D} \ldots}$ represented by colored graphs
\mathcal{B}.

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum_{a} U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}} \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum_{q} \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Invariants ("traces") $\sum_{a^{1}, q^{1}} \delta_{a^{1} q^{1} \ldots} T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D} \ldots}$ represented by colored graphs
\mathcal{B}.

$$
D=3, \quad \sum_{T_{a^{1} a^{2} a^{3}} T_{b^{1} b^{2} b^{3}} \delta_{c^{1} c^{1} c^{2} c^{3}} \delta_{a^{2}} \bar{T}_{p^{1} p^{2} p^{3}} \delta_{a^{3}} \bar{T}_{q^{1} q^{2} q^{3}} \delta_{r^{1} r^{1} r^{2} r^{3}} \delta_{c^{2} p^{2}} \delta_{b^{3} 3}} \delta_{c^{1} q^{1}} \delta_{c^{2} r^{2}} \delta_{c^{3} p^{3}}
$$

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum_{a} U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}} \quad \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum_{q} \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Invariants ("traces") $\sum_{a^{1}, q^{1}} \delta_{a^{1} q^{1} \ldots} T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D} \ldots}$ represented by colored graphs \mathcal{B}.

$$
D=3, \quad \sum_{T_{a^{1} a^{2} a^{3}} T_{b^{1} b^{2} b^{3}} T_{c^{1} c^{2} c^{3}} \bar{T}_{a^{1}} \delta_{p^{1} p^{2} p^{2}} \bar{T}_{q^{1} q^{2} q^{2} q^{3}} \bar{T}_{r^{1} r^{2} r^{3}}}
$$

White (black) vertices for $T(\bar{T})$.

$$
\overline{\mathrm{T}}_{\mathrm{q} 1 \mathrm{q} 2 \mathrm{q} 3} \cdot 0^{\mathrm{T}_{\mathrm{clc} 2 \mathrm{c} 3}}
$$

$$
\mathrm{T}_{\mathrm{ala2a3}} \bigcirc \quad \bullet \overline{\mathrm{~T}}_{\mathrm{rlr} 2 \mathrm{r} 3}
$$

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum_{a} U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}} \quad \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum_{q} \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Invariants ("traces") $\sum_{a^{1}, q^{1}} \delta_{a^{1} q^{1} \ldots} T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D} \ldots}$ represented by colored graphs \mathcal{B}.

$$
\begin{array}{ll}
D=3, & \sum_{a^{2} p^{1}} \delta_{a^{2} q^{2}} \delta_{a^{3} r^{3}} \\
T_{a^{1} a^{2} a^{3}} \delta_{b^{1} b^{2} b^{3} r^{3}} T_{c^{1} c^{2} c^{2}} \delta_{b^{2} p^{2}} \bar{T}_{p^{1} p^{2} p^{2} b^{3} q^{3}} \bar{q}_{q^{1} q^{2} q^{3}} \delta_{c^{1} q^{2} r^{2}{ }^{1}} \delta_{c^{2} r^{2}} \delta_{c^{3} p^{3}}
\end{array}
$$

White (black) vertices for $T(\bar{T})$.
Edges for $\delta_{a^{c} q^{c}}$

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum_{a} U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}} \quad \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum_{q} \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Invariants ("traces") $\sum_{a^{1}, q^{1}} \delta_{a^{1} q^{1} \ldots} T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D} \ldots}$ represented by colored graphs \mathcal{B}.

$$
\begin{array}{ll}
D=3, & \sum_{a^{2} p^{1}} \delta_{a^{2} q^{2}} \delta_{a^{3} r^{3}} \\
T_{a^{1} a^{2} a^{3}} T_{b^{1} b^{2} b^{3}} T_{c^{1} c^{2} c^{3}} \delta_{b^{1} r^{1}} \delta_{p^{2} p^{2} p^{2} p^{2}} \delta_{b^{3} q^{3}} \bar{T}_{q^{1} q^{2} q^{3}} \delta_{c^{1} q^{1} r^{1} r^{3}} \delta_{c^{2} r^{2}} \delta_{c^{3} p^{3}}
\end{array}
$$

White (black) vertices for $T(\bar{T})$.
Edges for $\delta_{a^{c} q^{c}}$ colored by c, the position of the index.

$$
\overline{\mathrm{T}}_{\mathrm{q} 1 \mathrm{q} 2 \mathrm{q} 3} \cdot \circ^{\mathrm{T}_{\mathrm{clc} 2 c 3}}
$$

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum_{a} U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}} \quad \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum_{q} \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Invariants ("traces") $\sum_{a^{1}, q^{1}} \delta_{a^{1} q^{1} \ldots} T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D} \ldots}$ represented by colored graphs \mathcal{B}.

$$
\begin{array}{ll}
D=3, & \sum_{a^{2} p^{1}} \delta_{a^{2} q^{2}} \delta_{a^{3} r^{3}} \\
T_{a^{1} a^{2} a^{3}} \delta_{b^{1} b^{2} b^{3}} \delta_{c^{1} c^{2} c^{3}} \delta_{b^{1} r^{1}} \delta_{p^{2} p^{2} p^{2} p^{2}} \delta_{b^{3} q^{3}} \overline{T q}_{q^{1} q^{2} q^{3}} \delta_{c^{1} q^{1}{ }^{1} \delta_{c^{2} r^{2}} \delta_{c^{3} p^{3}}}
\end{array}
$$

White (black) vertices for $T(\bar{T})$.
Edges for $\delta_{a^{c} q^{c}}$ colored by c, the position of the index.

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum_{a} U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}} \quad \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum_{q} \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Invariants ("traces") $\sum_{a^{1}, q^{1}} \delta_{a^{1} q^{1} \ldots} T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D} \ldots}$ represented by colored graphs \mathcal{B}.

$$
\begin{array}{ll}
D=3, & \sum_{a^{2} p^{1}} \delta_{a^{2} q^{2}} \delta_{a^{3} r^{3}} \\
& \delta_{b^{1} r^{1}} \delta_{b^{2} p^{2}} \delta_{b^{3} q^{3}}
\end{array} \delta_{c^{1} q^{1}} \delta_{c^{2} r^{2}} \delta_{c^{3} p^{3}}
$$

White (black) vertices for $T(\bar{T})$.
Edges for $\delta_{a^{c} q^{c}}$ colored by c, the position of the index.

Tensor invariants as Colored Graphs

Rank D complex tensor, no symmetry, transforming under the external tensor product of D fundamental representations of $U(N)$

$$
T_{b^{1} \ldots b^{D}}^{\prime}=\sum_{a} U_{b^{1} a^{1}}^{(1)} \ldots U_{b^{D} a^{D}}^{(D)} T_{a^{1} \ldots a^{D}} \quad \bar{T}_{p^{1} \ldots p^{D}}^{\prime}=\sum_{q} \bar{U}_{p^{1} q^{1}}^{(1)} \ldots \bar{U}_{p^{D} q^{D}}^{(D)} \bar{T}_{q^{1} \ldots q^{D}}
$$

Invariants ("traces") $\sum_{a^{1}, q^{1}} \delta_{a^{1} q^{1} \ldots} T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D} \ldots}$ represented by colored graphs \mathcal{B}.

$$
\operatorname{Tr}_{\mathcal{B}}(T, \bar{T})=\sum \prod_{v} T_{a_{v}^{1} \ldots a_{v}^{D}} \prod_{\bar{v}} \bar{T}_{q_{\bar{v}}^{1} \ldots q_{v}^{D}} \prod_{c=1}^{D} \prod_{e^{c}=(w, \bar{w})} \delta_{a_{\bar{w}} q_{\bar{v}}^{c}}
$$

White (black) vertices for $T(\bar{T})$.
Edges for $\delta_{a^{c} q^{c}}$ colored by c, the position of the index.

Răzvan Gurău,

Invariant Actions for Tensor Models

Invariant Actions for Tensor Models

The most general single trace invariant tensor model

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}+\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Invariant Actions for Tensor Models

The most general single trace invariant tensor model

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}+\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Feynman graphs: "vertices" \mathcal{B}.

$$
\int_{\overline{\bar{T}}, T}
$$

$$
e^{-N^{D-1}\left(\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}\right)}
$$

$\operatorname{Tr}_{\mathcal{B}_{1}}(\bar{T}, T) \operatorname{Tr}_{\mathcal{B}_{2}}(\bar{T}, T) \ldots$

Invariant Actions for Tensor Models

The most general single trace invariant tensor model

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}+\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Feynman graphs: "vertices" \mathcal{B}.

$$
\int_{\bar{T}, T}
$$

$$
\left.e^{-N^{D-1}\left(\sum T_{a^{1} \ldots a} D \bar{T}_{q^{1} \ldots q^{1}} D \prod_{c=1}^{D} \delta_{a} c_{q} c\right.}\right)
$$

$$
\sum\left(\prod \delta \ldots\right) T_{a^{1} a^{2} a^{3}} \bar{T}_{p^{1} p^{2} p^{3}} \ldots
$$

Invariant Actions for Tensor Models

The most general single trace invariant tensor model

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}+\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Feynman graphs: "vertices" \mathcal{B}. Gaussian integral: Wick contractions of T and \bar{T} ("propagators") \rightarrow dashed edges to which we assign the fictitious color 0 .

$$
\begin{aligned}
\int_{\bar{T}, T} & \left.e^{-N^{D-1}\left(\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a} c_{q} c\right.}\right) \\
& \sum\left(\prod \delta \ldots\right) \underbrace{\frac{1}{N^{D-1} \delta_{a^{1} p^{1}} \delta_{a^{2} p^{2}} \delta_{a^{3} p^{3}}}}_{\sim} \prod_{a^{1} a^{2} a^{3}} \bar{T}_{p^{1} p^{2} p^{3}}
\end{aligned} .
$$

Invariant Actions for Tensor Models

The most general single trace invariant tensor model

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}+\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Feynman graphs: "vertices" \mathcal{B}. Gaussian integral: Wick contractions of T and \bar{T} ("propagators") \rightarrow dashed edges to which we assign the fictitious color 0 .

Graphs \mathcal{G} with $D+1$ colors.

Invariant Actions for Tensor Models

The most general single trace invariant tensor model

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}+\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& Z\left(t_{\mathcal{B}}\right)=\int[d \bar{T} d T] e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

Feynman graphs: "vertices" \mathcal{B}. Gaussian integral: Wick contractions of T and \bar{T} ("propagators") \rightarrow dashed edges to which we assign the fictitious color 0 .

Graphs \mathcal{G} with $D+1$ colors.
Represent triangulated D dimensional spaces.

Colored Graphs as gluings of colored simplices

Colored Graphs as gluings of colored simplices

White and black $D+1$ valent vertices connected by edges with colors $0,1 \ldots D$.

Colored Graphs as gluings of colored simplices

White and black $D+1$ valent vertices connected by edges with colors $0,1 \ldots D$.

Vertex \leftrightarrow colored D simplex .

Edges \leftrightarrow gluings along
$D-1$ simplices respecting
all the colorings

Colored Graphs as gluings of colored simplices

White and black $D+1$ valent vertices connected by edges with colors $0,1 \ldots D$.

Vertex \leftrightarrow colored D simplex .

Edges \leftrightarrow gluings along
$D-1$ simplices respecting
all the colorings

The invariants $\operatorname{Tr}_{\mathcal{B}}$ have a double interpretation:

Colored Graphs as gluings of colored simplices

White and black $D+1$ valent vertices connected by edges with colors $0,1 \ldots D$.

Vertex \leftrightarrow colored D simplex .

Edges \leftrightarrow gluings along
$D-1$ simplices respecting
all the colorings

The invariants $\operatorname{Tr}_{\mathcal{B}}$ have a double interpretation:

- Graphs with D colors: $D-1$ dimensional boundary triangulations.

Colored Graphs as gluings of colored simplices

White and black $D+1$ valent vertices connected by edges with colors $0,1 \ldots D$.

Vertex \leftrightarrow colored D simplex .

Edges \leftrightarrow gluings along
$D-1$ simplices respecting
all the colorings

The invariants $\operatorname{Tr}_{\mathcal{B}}$ have a double interpretation:

- Graphs with D colors: $D-1$ dimensional boundary triangulations.
- Subgraphs:

Colored Graphs as gluings of colored simplices

White and black $D+1$ valent vertices connected by edges with colors $0,1 \ldots D$.

Vertex \leftrightarrow colored D simplex .

Edges \leftrightarrow gluings along $D-1$ simplices respecting all the colorings

The invariants $\operatorname{Tr}_{\mathcal{B}}$ have a double interpretation:

- Graphs with D colors: $D-1$ dimensional boundary triangulations.
- Subgraphs:

vertex $\leftrightarrow D$ simplex

Gluing along all $D-1$ simplices except 0: "chunk" in D dimensions

Răzvan Gurău,
Conclusions

The general framework

The general framework

Observables $=$ invariants $\operatorname{Tr}_{\mathcal{B}}$ encoding boundary triangulations.

The general framework

Observables $=$ invariants $\operatorname{Tr}_{\mathcal{B}}$ encoding boundary triangulations.
Expectations =

$$
\left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}}\right\rangle=\frac{1}{Z\left(t_{\mathcal{B}}\right)} \int[d \bar{T} d T] \operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}} e^{-N^{D-1} S(T, \bar{T})}
$$

correlations between boundary states given by sums over all bulk triangulations compatible with the boundary states

The general framework

Observables $=$ invariants $\operatorname{Tr}_{\mathcal{B}}$ encoding boundary triangulations.
Expectations =

$$
\left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}}\right\rangle=\frac{1}{Z\left(t_{\mathcal{B}}\right)} \int[d \bar{T} d T] \operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}} e^{-N^{D-1} S(T, \bar{T})}
$$

correlations between boundary states given by sums over all bulk triangulations compatible with the boundary states

- $\left\langle\operatorname{Tr}_{\mathcal{B}}\right\rangle: \mathcal{B}$ to vacuum amplitude
$-\left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}}\right\rangle_{c}=\left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}}\right\rangle-\left\langle\operatorname{Tr}_{\mathcal{B}_{1}}\right\rangle\left\langle\operatorname{Tr}_{\mathcal{B}_{2}}\right\rangle$: transition amplitude between the boundary states \mathcal{B}_{1} and \mathcal{B}_{2}

The general framework

Observables $=$ invariants $\operatorname{Tr}_{\mathcal{B}}$ encoding boundary triangulations.
Expectations =

$$
\left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}}\right\rangle=\frac{1}{Z\left(t_{\mathcal{B}}\right)} \int[d \bar{T} d T] \operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}} e^{-N^{D-1} S(T, \bar{T})}
$$

correlations between boundary states given by sums over all bulk triangulations compatible with the boundary states

- $\left\langle\operatorname{Tr}_{\mathcal{B}}\right\rangle: \mathcal{B}$ to vacuum amplitude
$-\left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}}\right\rangle_{c}=\left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}}\right\rangle-\left\langle\operatorname{Tr}_{\mathcal{B}_{1}}\right\rangle\left\langle\operatorname{Tr}_{\mathcal{B}_{2}}\right\rangle$: transition amplitude between the boundary states \mathcal{B}_{1} and \mathcal{B}_{2}

Remarks:

- The path integral yields a canonical measure over the discrete geometries.
- Weight of a triangulation: discretized $\mathrm{EH}, B \wedge F$, etc.
- Need to take some kind of limit in order to go from discrete triangulations to continuum geometries.

The quartic tensor model

The $1 / N$ expansion and the continuum limit

Conclusions

The quartic tensor model

The quartic tensor model

Tensor Models compute correlations

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}+\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& \left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}}\right\rangle=\frac{1}{Z\left(t_{\mathcal{B}}\right)} \int[d \bar{T} d T] \operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}} e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

The quartic tensor model

Tensor Models compute correlations

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}+\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& \left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}}\right\rangle=\frac{1}{Z\left(t_{\mathcal{B}}\right)} \int[d \bar{T} d T] \operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}} e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

The simplest quartic invariants correspond to "melonic" graphs with four vertices $\mathcal{B}^{(4), c}$

$$
\sum\left(T_{a^{1} \ldots a \delta} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c^{\prime} \neq c} \delta_{a^{\prime}} q_{c^{\prime}}\right) \delta_{a c_{p c} c} \delta_{b c_{q} c^{c}}\left(T_{b^{1} \ldots b} \bar{T}_{p^{1} \ldots p^{\prime}} \prod_{c^{\prime} \neq c} \delta_{b^{\prime}} p_{c^{\prime}}\right)
$$

The quartic tensor model

Tensor Models compute correlations

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}+\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& \left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}}\right\rangle=\frac{1}{Z\left(t_{\mathcal{B}}\right)} \int[d \bar{T} d T] \operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}} e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

The simplest quartic invariants correspond to "melonic" graphs with four vertices $\mathcal{B}^{(4), c}$

$$
\sum\left(T_{a^{1} \ldots a D} \bar{T}_{q^{1} \ldots q^{D} D} \prod_{c^{\prime} \neq c} \delta_{a^{c^{\prime}}}{ }_{q}^{c^{\prime}}\right) \delta_{a} c_{p c} \delta_{b c} c^{c}\left(T_{b^{1} \ldots b D} \bar{T}_{p^{1} \ldots p^{D}} \prod_{c^{\prime} \neq c} \delta_{b c^{\prime} c^{\prime}}\right)
$$

The simplest interacting theory: coupling constants $t_{\mathcal{B}}= \begin{cases}\frac{\lambda}{2}, & \mathcal{B}=\mathcal{B}^{(4), c} \\ 0, & \text { otherwise }\end{cases}$

The quartic tensor model

Tensor Models compute correlations

$$
\begin{aligned}
& S(T, \bar{T})=\sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}+\sum_{\mathcal{B}} t_{\mathcal{B}} \operatorname{Tr}_{\mathcal{B}}(\bar{T}, T) \\
& \left\langle\operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}}\right\rangle=\frac{1}{Z\left(t_{\mathcal{B}}\right)} \int[d \bar{T} d T] \operatorname{Tr}_{\mathcal{B}_{1}} \operatorname{Tr}_{\mathcal{B}_{2}} \ldots \operatorname{Tr}_{\mathcal{B}_{q}} e^{-N^{D-1} S(T, \bar{T})}
\end{aligned}
$$

The simplest quartic invariants correspond to "melonic" graphs with four vertices $\mathcal{B}^{(4), c}$

$$
\sum\left(T_{a^{1} \ldots a D} \bar{T}_{q^{1} \ldots q^{D} D} \prod_{c^{\prime} \neq c} \delta_{a^{c^{\prime}}}{ }_{q}^{c^{\prime}}\right) \delta_{a} c_{p c} \delta_{b c} c^{c}\left(T_{b^{1} \ldots b D} \bar{T}_{p^{1} \ldots p^{D}} \prod_{c^{\prime} \neq c} \delta_{b c^{\prime} c^{\prime}}\right)
$$

The simplest interacting theory: coupling constants $t_{\mathcal{B}}= \begin{cases}\frac{\lambda}{2}, & \mathcal{B}=\mathcal{B}^{(4), c} \\ 0, & \text { otherwise }\end{cases}$
The simplest observable:

$$
K_{2}=\left\langle\frac{1}{N} \operatorname{Tr}_{\mathcal{B}^{(2)}}\right\rangle=\left\langle\frac{1}{N} \sum T_{a^{1} \ldots a^{D}} \bar{T}_{q^{1} \ldots q^{D}} \prod_{c=1}^{D} \delta_{a^{c} q^{c}}\right\rangle
$$

Amplitudes and Dynamical Triangulations

Amplitudes and Dynamical Triangulations

Expand in λ (Feynman graphs):

$$
\left\langle\frac{1}{N} \operatorname{Tr}_{\mathcal{B}^{(2)}}\right\rangle=\sum_{D+1 \text { colored graphs } \mathcal{G}} A^{\mathcal{G}}(N)
$$

Amplitudes and Dynamical Triangulations

Expand in λ (Feynman graphs):

$$
\left\langle\frac{1}{N} \operatorname{Tr}_{\mathcal{B}^{(2)}}\right\rangle=\sum_{D+1 \text { colored graphs } \mathcal{G}} A^{\mathcal{G}}(N)
$$

Each graph is dual to a triangulation.

Amplitudes and Dynamical Triangulations

Expand in λ (Feynman graphs):

$$
\left\langle\frac{1}{N} \operatorname{Tr}_{\mathcal{B}^{(2)}}\right\rangle=\sum_{D+1 \text { colored graphs } \mathcal{G}} A^{\mathcal{G}}(N)
$$

Each graph is dual to a triangulation. Two parameters λ and N.

Amplitudes and Dynamical Triangulations

Expand in λ (Feynman graphs):

$$
\left\langle\frac{1}{N} \operatorname{Tr}_{\mathcal{B}^{(2)}}\right\rangle=\sum_{D+1 \text { colored graphs } \mathcal{G}} A^{\mathcal{G}}(N)
$$

Each graph is dual to a triangulation. Two parameters λ and N.

$$
A^{\mathcal{G}}(N)=e^{\kappa_{D-2}(\lambda, N) Q_{D-2}-\kappa_{D}(\lambda, N) Q_{D}}
$$

with Q_{D} the number of D-simplices and Q_{D-2} the number of $(D-2)$-simplices

Amplitudes and Dynamical Triangulations

Expand in λ (Feynman graphs):

$$
\left\langle\frac{1}{N} \operatorname{Tr}_{\mathcal{B}^{(2)}}\right\rangle=\sum_{D+1 \text { colored graphs } \mathcal{G}} A^{\mathcal{G}}(N)
$$

Each graph is dual to a triangulation. Two parameters λ and N.

$$
A^{\mathcal{G}}(N)=e^{\kappa_{D-2}(\lambda, N) Q_{D-2}-\kappa_{D}(\lambda, N) Q_{D}}
$$

with Q_{D} the number of D-simplices and Q_{D-2} the number of $(D-2)$-simplices

$$
\left\langle\frac{1}{N} \operatorname{Tr}_{\mathcal{B}^{(2)}}\right\rangle=\sum_{\substack{\text { all } D \\ D \text { dimensional triangulations } \\ \text { with boundar } \mathcal{E}(2)}}\left[e^{\kappa_{R} \int \sqrt{g} R-\kappa V \int \sqrt{g}}\right]_{\substack{\text { equilisereratit tried ongulation }}}
$$

Discretized Einstein Hilbert action on an equilateral triangulation with fixed boundary!

Tensor invariance revisited

Tensor invariance revisited

Due to tensor invariance we always obtain a sum over colored graphs, hence a sum over triangulations:

$$
\left\langle\frac{1}{N} \operatorname{Tr}_{\mathcal{B}^{(2)}}\right\rangle=\sum_{\substack{\text { all } D \\ \text { dimensional triangulations } \\ \text { with boundary } \mathcal{B}^{(2)}}} A^{\mathcal{G}}(\lambda, N)
$$

Tensor invariance revisited

Due to tensor invariance we always obtain a sum over colored graphs, hence a sum over triangulations:

$$
\left\langle\frac{1}{N} \operatorname{Tr}_{\mathcal{B}^{(2)}}\right\rangle=\sum_{\substack{\text { all } D \text { dimensional triangulations } \\ \text { with bundary } \mathcal{B}(2)}} A^{\mathcal{G}}(\lambda, N)
$$

The weight of a triangulation, $A^{\mathcal{G}}(\lambda, N)$, is model dependent and contains the physical interpretation of the model.

Tensor invariance revisited

Due to tensor invariance we always obtain a sum over colored graphs, hence a sum over triangulations:

$$
\left\langle\frac{1}{N} \operatorname{Tr}_{\mathcal{B}^{(2)}}\right\rangle=\sum_{\substack{\text { all } D \text { dimensional triangulations } \\ \text { with bundary } \mathcal{B}^{(2)}}} A^{\mathcal{G}}(\lambda, N)
$$

The weight of a triangulation, $A^{\mathcal{G}}(\lambda, N)$, is model dependent and contains the physical interpretation of the model.

The metric assigned to a combinatorial triangulation is encoded in the choice of $A^{\mathcal{G}}(\lambda, N)$.

Introduction

Tensor Models

The quartic tensor model

The $1 / N$ expansion and the continuum limit

Conclusions

Răzvan Gurău,
Conclusions

The $1 / N$ expansion

The $1 / N$ expansion

Two parameters: λ and N.

The $1 / N$ expansion

Two parameters: λ and N.

1) Feynman expansion: $K_{2}=1-D \lambda-\frac{1}{N^{D-2}} D \lambda+\sum_{\mathcal{G}} A^{\mathcal{G}}(N) \quad A^{\mathcal{G}}(N) \sim \lambda^{2}$

The $1 / N$ expansion

Two parameters: λ and N.

1) Feynman expansion: $K_{2}=1-D \lambda-\frac{1}{N^{D-2}} D \lambda+\sum_{\mathcal{G}} A^{\mathcal{G}}(N) \quad A^{\mathcal{G}}(N) \sim \lambda^{2}$
2) $1 / N$ expansion: $K_{2}=\frac{\left(1+4 D \lambda \lambda^{\frac{1}{2}}-1\right.}{2 D \lambda}+\sum_{\mathcal{G}} A^{\mathcal{G}}(N) \quad A^{\mathcal{G}}(N) \leq \frac{1}{N^{D-2}}$

The $1 / N$ expansion

Two parameters: λ and N.

1) Feynman expansion: $K_{2}=1-D \lambda-\frac{1}{N^{D-2}} D \lambda+\sum_{\mathcal{G}} A^{\mathcal{G}}(N) \quad A^{\mathcal{G}}(N) \sim \lambda^{2}$
2) $1 / N$ expansion: $K_{2}=\frac{(1+4 D \lambda)^{\frac{1}{2}}-1}{2 D \lambda}+\sum_{\mathcal{G}} A^{\mathcal{G}}(N) \quad A^{\mathcal{G}}(N) \leq \frac{1}{N^{D-2}}$
3) non perturbative: $K_{2}=\frac{(1+4 D \lambda)^{\frac{1}{2}}-1}{2 D \lambda}+\ldots+\mathcal{R}_{N}^{(p)}(\lambda)$
$\mathcal{R}_{N}^{(p)}(\lambda)$ analytic in $\lambda=|\lambda| e^{2 \varphi}$ in the domain

$$
\begin{aligned}
& \left|\mathcal{R}_{N}^{(p)}(\lambda)\right| \leq \\
& \frac{1}{N^{p(D-2)}} \frac{|\lambda|^{p}}{\left(\cos \frac{\varphi}{2}\right)^{2 p+2}} p!A B^{p}
\end{aligned}
$$

Răzvan Gurău,
Conclusions

The $N \rightarrow \infty$ limit

The $N \rightarrow \infty$ limit

$\lim _{N \rightarrow \infty}\left|\mathcal{R}_{N}^{(1)}(\lambda)\right|=0$, hence

$$
\lim _{N \rightarrow \infty} K_{2}=\frac{(1+4 D \lambda)^{\frac{1}{2}}-1}{2 D \lambda}
$$

The $N \rightarrow \infty$ limit

$\lim _{N \rightarrow \infty}\left|\mathcal{R}_{N}^{(1)}(\lambda)\right|=0$, hence

$$
\lim _{N \rightarrow \infty} K_{2}=\frac{(1+4 D \lambda)^{\frac{1}{2}}-1}{2 D \lambda}
$$

- is the sum of an infinite family of graphs of spherical topology ("melons")
- becomes critical for $\lambda \rightarrow-(4 D)^{-1}$
- in the critical regime infinite graphs (representing infinitely refined geometries) dominate

The $N \rightarrow \infty$ limit

$\lim _{N \rightarrow \infty}\left|\mathcal{R}_{N}^{(1)}(\lambda)\right|=0$, hence

$$
\lim _{N \rightarrow \infty} K_{2}=\frac{(1+4 D \lambda)^{\frac{1}{2}}-1}{2 D \lambda}
$$

- is the sum of an infinite family of graphs of spherical topology ("melons")
- becomes critical for $\lambda \rightarrow-(4 D)^{-1}$
- in the critical regime infinite graphs (representing infinitely refined geometries) dominate

A continuous random geometry emerges!

The $N \rightarrow \infty$ limit

$\lim _{N \rightarrow \infty}\left|\mathcal{R}_{N}^{(1)}(\lambda)\right|=0$, hence

$$
\lim _{N \rightarrow \infty} K_{2}=\frac{(1+4 D \lambda)^{\frac{1}{2}}-1}{2 D \lambda}
$$

- is the sum of an infinite family of graphs of spherical topology ("melons")
- becomes critical for $\lambda \rightarrow-(4 D)^{-1}$
- in the critical regime infinite graphs (representing infinitely refined geometries) dominate

A continuous random geometry emerges! Seen as equilateral triangulations, the "melons" are branched polymers...

The $N \rightarrow \infty$ limit

$\lim _{N \rightarrow \infty}\left|\mathcal{R}_{N}^{(1)}(\lambda)\right|=0$, hence

$$
\lim _{N \rightarrow \infty} K_{2}=\frac{(1+4 D \lambda)^{\frac{1}{2}}-1}{2 D \lambda}
$$

- is the sum of an infinite family of graphs of spherical topology ("melons")
- becomes critical for $\lambda \rightarrow-(4 D)^{-1}$
- in the critical regime infinite graphs (representing infinitely refined geometries) dominate

A continuous random geometry emerges! Seen as equilateral triangulations, the "melons" are branched polymers...

- Give up the field theory framework: CDT, spin foams, etc.

The $N \rightarrow \infty$ limit

$\lim _{N \rightarrow \infty}\left|\mathcal{R}_{N}^{(1)}(\lambda)\right|=0$, hence

$$
\lim _{N \rightarrow \infty} K_{2}=\frac{(1+4 D \lambda)^{\frac{1}{2}}-1}{2 D \lambda}
$$

- is the sum of an infinite family of graphs of spherical topology ("melons")
- becomes critical for $\lambda \rightarrow-(4 D)^{-1}$
- in the critical regime infinite graphs (representing infinitely refined geometries) dominate

A continuous random geometry emerges! Seen as equilateral triangulations, the "melons" are branched polymers...

- Give up the field theory framework: CDT, spin foams, etc.
- Change the covariance (propagator)

The $N \rightarrow \infty$ limit

$\lim _{N \rightarrow \infty}\left|\mathcal{R}_{N}^{(1)}(\lambda)\right|=0$, hence

$$
\lim _{N \rightarrow \infty} K_{2}=\frac{(1+4 D \lambda)^{\frac{1}{2}}-1}{2 D \lambda}
$$

- is the sum of an infinite family of graphs of spherical topology ("melons")
- becomes critical for $\lambda \rightarrow-(4 D)^{-1}$
- in the critical regime infinite graphs (representing infinitely refined geometries) dominate

A continuous random geometry emerges! Seen as equilateral triangulations, the "melons" are branched polymers...

- Give up the field theory framework: CDT, spin foams, etc.
- Change the covariance (propagator)
- Take the branched polymers seriously: a first phase transition to branched polymers can be followed by subsequent phase transitions to smoother spaces.

Beyond branched polymers

Beyond branched polymers

$$
K_{2}=\sum_{p-1 \text { loop edges }}^{\text {trees with up to }}+O\left(\frac{1}{N^{p(D-2)}}\right)
$$

Beyond branched polymers

$$
K_{2}=\sum_{p-1 \text { loop edges }}^{\text {trees with up to }}+O\left(\frac{1}{N^{p(D-2)}}\right)
$$

Leading order: trees (branched polymers) \rightarrow protospace.

Beyond branched polymers

$$
K_{2}=\sum_{p-1 \text { loop edges }}^{\text {trees with up to }}+O\left(\frac{1}{N^{p(D-2)}}\right)
$$

Leading order: trees (branched polymers) \rightarrow protospace.
Loop edges decorate this tree \rightarrow emergent extended space.

Beyond branched polymers

$$
K_{2}=\sum_{p-1 \text { loop edges }}^{\text {trees with up to }}+O\left(\frac{1}{N^{p(D-2)}}\right)
$$

Leading order: trees (branched polymers) \rightarrow protospace.
Loop edges decorate this tree \rightarrow emergent extended space.
Loop effects: fine tunning the approach to criticality (double scaling, triple scaling, etc.)

Beyond branched polymers

$$
K_{2}=\sum_{p-1 \text { loop edges }}^{\text {trees with up to }}+O\left(\frac{1}{N^{p(D-2)}}\right)
$$

Leading order: trees (branched polymers) \rightarrow protospace.
Loop edges decorate this tree \rightarrow emergent extended space.
Loop effects: fine tunning the approach to criticality (double scaling, triple scaling, etc.)

But the critical point is on the wrong side!

Beyond branched polymers

$$
K_{2}=\sum_{p-1 \text { loop edges }}^{\text {trees with up to }}+O\left(\frac{1}{N^{p(D-2)}}\right)
$$

Leading order: trees (branched polymers) \rightarrow protospace.
Loop edges decorate this tree \rightarrow emergent extended space.
Loop effects: fine tunning the approach to criticality (double scaling, triple scaling, etc.)

But the critical point is on the wrong side!

Major (nonperturbative) challenge: extend the analyticity domain of $\mathcal{R}_{N}^{(p)}(\lambda)$ to the disk of radius $(4 D)^{-1}$ minus the negative real axis!

The Double Scaling Limit

The Double Scaling Limit

In perturbative sense the graphs can be reorganized as

$$
K_{2}=\sqrt{(4 D)^{-1}+\lambda} \sum_{p \geq 0} \frac{c_{p}}{\left(N^{D-2}\left[(4 D)^{-1}+\lambda\right]\right)^{p}}+\text { Rest }
$$

The Double Scaling Limit

In perturbative sense the graphs can be reorganized as

$$
K_{2}=\sqrt{(4 D)^{-1}+\lambda} \sum_{p \geq 0} \frac{c_{p}}{\left(N^{D-2}\left[(4 D)^{-1}+\lambda\right]\right)^{p}}+\text { Rest }
$$

Subleading terms in $1 / N$ are more singular (hence enhanced) when tunning to criticality!

The Double Scaling Limit

In perturbative sense the graphs can be reorganized as

$$
K_{2}=\sqrt{(4 D)^{-1}+\lambda} \sum_{p \geq 0} \frac{c_{p}}{\left(N^{D-2}\left[(4 D)^{-1}+\lambda\right]\right)^{p}}+\text { Rest }
$$

Subleading terms in $1 / N$ are more singular (hence enhanced) when tunning to criticality! Uniform when we keep $x=N^{D-2}\left[(4 D)^{-1}+\lambda\right]$ fixed.

The Double Scaling Limit

In perturbative sense the graphs can be reorganized as

$$
K_{2}=\sqrt{(4 D)^{-1}+\lambda} \sum_{p \geq 0} \frac{c_{p}}{\left(N^{D-2}\left[(4 D)^{-1}+\lambda\right]\right)^{p}}+\text { Rest }
$$

Subleading terms in $1 / N$ are more singular (hence enhanced) when tunning to criticality! Uniform when we keep $x=N^{D-2}\left[(4 D)^{-1}+\lambda\right]$ fixed.

Double scaling $N \rightarrow \infty, \lambda \rightarrow-\frac{1}{4 D}$ like $\lambda=-\frac{1}{4 D}+\frac{x}{N^{D-2}}$,

$$
K_{2}=N^{1-\frac{D}{2}} \sum_{p \geq 0} \frac{C_{p}}{x^{p-\frac{1}{2}}}+\text { Rest } \quad \text { Rest }<N^{1 / 2-D / 2}
$$

The Double Scaling Limit

In perturbative sense the graphs can be reorganized as

$$
K_{2}=\sqrt{(4 D)^{-1}+\lambda} \sum_{p \geq 0} \frac{c_{p}}{\left(N^{D-2}\left[(4 D)^{-1}+\lambda\right]\right)^{p}}+\text { Rest }
$$

Subleading terms in $1 / N$ are more singular (hence enhanced) when tunning to criticality! Uniform when we keep $x=N^{D-2}\left[(4 D)^{-1}+\lambda\right]$ fixed.

Double scaling $N \rightarrow \infty, \lambda \rightarrow-\frac{1}{4 D}$ like $\lambda=-\frac{1}{4 D}+\frac{x}{N^{D-2}}$,

$$
K_{2}=N^{1-\frac{D}{2}} \sum_{p \geq 0} \frac{C_{p}}{x^{p-\frac{1}{2}}}+\text { Rest } \quad \text { Rest }<N^{1 / 2-D / 2}
$$

At leading order in the double scaling limit an explicit family of graphs larger than the "melonic" family emerges!

Răzvan Gurău,

Tensor Models

The quartic tensor model

The $1 / N$ expansion and the continuum limit

Conclusions

Răzvan Gurău,

Advantages vs. Questions

Advantages vs. Questions

We have an analytic framework to study random discrete geometries!

Advantages vs. Questions

We have an analytic framework to study random discrete geometries!

- canonical path integral formulation.
- built in scales (tensors of size N^{D}).
- sums over discretized geometries.
- with weights the discretized (Einstein Hilbert, $B \wedge F$, etc.) action.
- non perturbative predictions

Advantages vs. Questions

We have an analytic framework to study random discrete geometries!

- canonical path integral formulation.
- built in scales (tensors of size N^{D}).
- sums over discretized geometries.
- with weights the discretized (Einstein Hilbert, $B \wedge F$, etc.) action.
- non perturbative predictions

Question: Is space truly discrete?

Advantages vs. Questions

We have an analytic framework to study random discrete geometries!

- canonical path integral formulation.
- built in scales (tensors of size N^{D}).
- sums over discretized geometries.
- with weights the discretized (Einstein Hilbert, $B \wedge F$, etc.) action.
- non perturbative predictions

Question: Is space truly discrete? what we know for sure is that the universe has a large number of degrees of freedom \Rightarrow the universe must be composed of a large number of quanta.

Advantages vs. Questions

We have an analytic framework to study random discrete geometries!

- canonical path integral formulation.
- built in scales (tensors of size N^{D}).
- sums over discretized geometries.
- with weights the discretized (Einstein Hilbert, $B \wedge F$, etc.) action.
- non perturbative predictions

Question: Is space truly discrete? what we know for sure is that the universe has a large number of degrees of freedom \Rightarrow the universe must be composed of a large number of quanta.

- infinitely refined geometries with simple topology arise at criticality.
- fine structure effects are probed by tuning the approach to criticality.

Advantages vs. Questions

We have an analytic framework to study random discrete geometries!

- canonical path integral formulation.
- built in scales (tensors of size N^{D}).
- sums over discretized geometries.
- with weights the discretized (Einstein Hilbert, $B \wedge F$, etc.) action.
- non perturbative predictions

Question: Is space truly discrete? what we know for sure is that the universe has a large number of degrees of freedom \Rightarrow the universe must be composed of a large number of quanta.

- infinitely refined geometries with simple topology arise at criticality.
- fine structure effects are probed by tuning the approach to criticality.

Question: What precise model in this framework describes our universe?

- we don't know hence we concentrate on universal predictions.

Răzvan Gurău,

 Conclusions
Conclusions

Conclusions

The tensor track is largely open and begs to be explored!

Conclusions

The tensor track is largely open and begs to be explored!
A personal list of open questions:

- non perturbative results
- extend the non perturbative treatment to other models.
- extend the analyticity domain of the rest and study the discontinuity of the rest on the negative real axis (non perturbative cut effects are crucial for unitarity and the role of time)
- study the geometry of the space emerging under multiple scalings.
- algebra of constraints, Hausdorff and spectral dimensions, geodesics.
- Effective field theory description of the critical regime.
- Phenomenological implications.

