Workshop "2D-Quantum Gravity and Statistical Mechanics"

Erwin Schrödinger Institute, Wien, Juni 20

Summing Planar Graphs in 0, 1, 2, 3 and 4 Dimensions

Vladimir Kazakov (ENS,Paris)

Unterstützt von / Supported by

Alexander von Humboldt

Outline

- The topological classification of ribbon (Feynman) graphs in matrix models and quantum field theories in terms of $1 / \mathrm{N}$ expansion w.r.t. size of NxN matrix fields was introduced by Gerard 't Hooft in 70's. He hoped to solve in this interesting, planar limit $(N=\infty)$ the $S U(N)$ non-abelian gauge theory which, at $N=3$, describes the strong interactions. We are still not yet there but...
- 't Hooft's limit was successfully used in variety of math. and physical problems: graph counting, topological characteristics of moduli space, stat. mech. models on random surfaces, non-critical string theory and 2D quantum gravity, 2D black hole, superstring theory and M-theory, AdS/CFT correspondence etc.
- In dimensions $D>1$ it gets tough (famous $c=1$ barrier). A "theorem" says that graphs (surfices degenerate into trees)
- A rare 2D matrix field theory solvable at any N is the $S U(N) \times S U(N)$ principal chiral field (PCF). I will briefly discuss its large N limit.
- Recent developments: Unique higher D examples of solvable planar QFT's: 3D ABJM gauge theory ($\mathrm{N}=4$ super-Chern-Simons) and, the most important, $N=4$ Super-Yang-Mills - a superconformal 4D gauge theory, exactly solvable at any 't Hooft coupling (fugacity of vertices of Feynman graphs). Summing genuine 4D Feynman diagrams for most important physical quantities: anomalous dimensions, correlation functions, Wilson loops, gluon scattering amplitudes...
- Important common feature: Integrability. Hirota equation and its Wronskian determinant solutions in terms of Baxter-like Q-functions give a general point of view on these models.

Planar graphs in $\mathrm{D} \leq 1$: Matrix Models and
Matrix Quantum Mechanics

$$
Z\left(t, t^{*}\right)=\sum_{G} \prod_{v_{q}, v_{q}^{*} \in G} t_{q}^{\# v_{q}} t_{q}^{* \# v_{q}^{*}}
$$

't Hooft
Brezin, Itzykson, Parizi, Zuber

$$
\begin{gathered}
Z=\int d^{N^{2}} M \exp [-N \operatorname{tr} V(M)] \\
V(M)=\frac{1}{2} M^{2}-\sum_{n} \frac{t_{n}}{n}(A M)^{n}
\end{gathered}
$$

- Number of planar graphs - via one-matrix model or loop equations
- Number of dually weighted graphs - via character expansion methods
- Spins on dynamical planar graphs (Ising, Potts, O(N),...) - via multi-matrix models, loop equations, orthogonal polynomials, integrability, Hirota eqs.
$t_{n}^{*}=\frac{1}{N} \operatorname{tr} A^{n}$
- Double scaling: big graphs of fixed topology:
- Describes non-critical strings and 2d quantum gravity + CFT(c<1) etc

Planar graphs in $\mathrm{D}=1$

- Solvable via matrix quantum mechanics.

$$
\begin{gathered}
Z_{M Q M}=\int D^{N^{2}} M(t) \exp -\frac{N}{g^{2}} \int_{0}^{\beta} d t \operatorname{tr}\left[\dot{M}^{2}+V(M)\right] \quad V(M)=\frac{1}{2} M^{2}-\frac{1}{3} M^{3} \\
M(\beta)=\Omega^{-1} M(0) \Omega \\
\log Z=\beta \sum_{h=0}^{\infty} N^{2-2 h} \sum_{n=1}^{\infty} g^{2 n} \sum_{G_{n}^{(h)}} \int d t_{2} \cdots d t_{n} e^{-\sum_{<a b>_{G}}\left|t_{a}-t_{b}\right|}
\end{gathered}
$$

- In double scaling (critical) regime one can estimate the sum of graphs of any fixed topology

$$
\frac{\log Z_{\text {sphere }}}{N^{2}} \sim-\frac{\Delta^{2}}{|\log \Delta|}, \quad \Delta=g_{c r i t}-g \rightarrow 0
$$

v.א., Migdal

- Describes non-critical strings in $\mathrm{D}=1$. Effective string theory has 2 dimensional background, one coming from labeling of eigenvalues (Liouville field in Polyakov string formulation)
- Compactification of time leads to Berezinsky Kosterlitz-Thouless vortices coupled to 2d gravity: Sine-Liouville string theory. Dual to Witten's black hole with cigar background

Summing exactly planar graphs in 2D: Principal Chiral Field Model

$\operatorname{SU}(N)_{L} \times \operatorname{SU}(N)_{R} \quad$ principal chiral field

$$
\mathcal{S}=\frac{N}{2 g^{2}} \int d \sigma d \tau \operatorname{Tr}\left(G^{-1} \partial_{\mu} G\right)^{2}, \quad G(\tau, \sigma) \in S U(N)
$$

-1/N-expansion \rightarrow sum of planar Feynman graphs embedded in 2D:

$$
G=e^{i M}=I+i M-\frac{1}{2} M^{2}+\cdots
$$

Zamolodchikov\&Zamolodchikov
Karowski
Polyakov, Wiegmann;
Wiegmann

- Integrable: S-matrix, N-1 types of particles with masses

$$
m_{a}=m \frac{\sin \frac{\pi a}{N}}{\sin \frac{\pi}{N}}
$$

$$
m=\frac{\Lambda}{g} e^{-\frac{4 \pi}{g^{2}}}
$$

$$
a=1, \ldots, N-1
$$

- An interesting solvable matrix problem: PCF on a cylinder.
- Methods: Integrability, Thermodynamical Bethe Ansatz (TBA), Analytic Y-system, T-system (Hirota bi-linear difference equation), Wronskian solution of T-system in terms of Baxter's Q-functions, Riemann-Hilbert problem, etc .
- Numerical results at any coupling available for $\mathrm{N}=2,3,4$
- Riemann-Hilbert equations are available at any N .

Balos, Hegedus
Gromov, V.K. Vieira
V.K., Leurent To analyse their large N limit is our current research project.

SU(3) PCF numerics
V.K.,Leurent’09

- Infinite volume, External magnetic field (element of Cartan algebra):

$$
\begin{gathered}
\partial_{\mu} G \rightarrow D_{\mu} G=\partial_{\mu} G-\frac{i}{2} \delta_{\mu, 0}\left(H_{L} G+G H_{R}\right) \\
H_{R(L)}=\left\{h_{1}, h_{2}-h_{1}, \cdots, h_{N-1}-h_{N-2},-h_{N-1}\right\}
\end{gathered}
$$

- Explicit result in planar limit, for the choice $h_{a}=h \frac{m_{a}}{m}$

$$
\frac{\log Z}{N^{2}}=-\frac{h m}{8 \pi} B I_{1}(B), \quad \frac{m}{h}=B K_{1}(B)
$$

- Parameter B reminds the Fermi level for eigenvalues in MQM

$$
\text { and is related to renormalized charge of PCF as } \quad \bar{g}^{2}(h)=\frac{4 \pi}{B}
$$

- Weak coupling - Feynman perturbation theory, asymptotic freedom:

$$
16 \pi \frac{\log Z}{N^{2}}=-h^{2}\left(\log \frac{h}{m}+\frac{1}{2} \log \log \frac{h}{m}+\frac{1}{2} \log \frac{\pi}{2}+\mathcal{O}\left(\log ^{-1} \frac{h}{m}\right)\right), \quad \frac{h}{m} \gg 1
$$

- Strong coupling - non-perturbative critical regime near threshold, big planar graphs:

$$
16 \pi \frac{\log Z}{N^{2}} \simeq-\frac{\Delta}{|\log \Delta|}, \quad \Delta=\frac{h}{m}-1 \rightarrow 0
$$

- Strongly reminds $D=1$ MQM scaling! Another non-critical string theory, but in 2D?
- A third dimension comes from Dynkin labels

Planar graphs in D>2

Quantum integrability for
3D planar N=6 ABJM model
(super-Chern-Simons model)
and

4D planar $\mathrm{N}=4$ Super-Yang Mills theory

$\mathrm{N}=4 \mathrm{SYM}$ and a string in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ metric

 $\mathcal{S}_{S Y M}=\frac{N}{g^{2}} \int d^{4} x \operatorname{Tr}\left(F^{2}+(\mathcal{D} \Phi)^{2}+\bar{\Psi} \mathcal{D} \Psi+\bar{\Psi} \Phi \Psi+[\Phi, \Phi]^{2}\right)$$\mathcal{O}(x)=\operatorname{Tr}[\mathcal{D} \mathcal{D} \Psi \Psi \Phi \Phi \mathcal{D} \Psi \ldots](x)$

$\left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(0)\right\rangle=\frac{\delta_{i j}}{|x|^{2 \Delta_{j}(g)}}$
Dimension of a local operator $=$ Energy of a string state
Global superconformal symmetry $\rightarrow \operatorname{psu}(2,2 \mid 4) \leftarrow$ isometry of background
It is an integrable theory: the spectrum is defined by the AdS/CFT Y-system|

Dilatation operator in SYM perturbation theory

- Dilatation operator \hat{D} from point-splitting and renormalization

$$
\mathcal{O}_{j}^{\Lambda^{\prime}}(x)=\left[\left(\frac{\Lambda^{\prime}}{\Lambda}\right)^{\tilde{D}}\right]_{j k} \mathcal{O}_{k}^{\hat{k}}(x)
$$

Cylindric world-sheet

- Conformal dimensions are eigenvalues of dilatation operator

$$
\hat{D}_{j k} \mathcal{O}_{k}(x)=\Delta_{j} \mathcal{O}_{j}
$$

- Can be computed from perturbation theory in $g^{2} \equiv N g_{Y M}^{2}$

$$
\begin{aligned}
& \hat{D}=\hat{D}^{(0)}+g^{2} \hat{D}^{(2)}+g^{4} \hat{D}^{(4)}+\ldots \\
& \Delta=\Delta^{(0)}+g^{2} \Delta^{(2)}+g^{4} \Delta^{(4)}+\ldots
\end{aligned}
$$

- $\quad \tau \sim \log \wedge$ corresponds to AdS time

Exact spectrum at one loop (su(2)-sector)

- Dilatation operator $=$ Heisenberg Hamiltonian, integrable by Bethe ansatz!
$\operatorname{Tr} Z^{L}(x)$ - vacuum:

$$
\hat{D}=L+\frac{\lambda}{16 \pi^{2}} \sum_{l=1}^{L}\left(1-\sigma_{l} \cdot \sigma_{l+1}\right)
$$

$$
\lambda=16 \pi^{2} g^{2}
$$

Beisert, Kristijansen,Staudacher

- One loop Bethe equations for the $\mathrm{N}=4 \mathrm{SYM}$ spectrum:

$$
\left(\frac{u_{k}+i / 2}{u_{k}-i / 2}\right)^{L}=\prod_{(k \neq) j=1}^{J} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}
$$

$$
\mathrm{e}^{i p}=\frac{u+i / 2}{u-i / 2}
$$

Bethe'31

Anomalous dimension: $\quad \Delta-L=\frac{\lambda}{8 \pi^{2}} \sum_{k=1}^{J} \frac{1}{u_{k}^{2}+1 / 4}+\mathcal{O}\left(\lambda^{2}\right)$

- To go to higher loops one has to use the Y-system and Thermodynamic Bethe Ansatz (TBA)

Perturbative Konishi: integrability versus Feynman graphs

- Integrability allows to sum exactly enormous numbers of Feynman diagrams of $\mathrm{N}=4 \mathrm{SYM}$

$$
\begin{array}{ll}
\quad \Delta= & 4+12 g^{2}-48 g^{4}+336 g^{6}+96 g^{8}\left(-26+6 \zeta_{3}-15 \zeta_{5}\right)
\end{array} \quad Z \quad \text { D }
$$

- Confirmed up to 5 loops by direct graph calculus (6 loops promised)

AdS string quasiclassics and numerics in $\mathrm{SL}(2)$ sector: twist-L operators of spin $S \quad \operatorname{Tr}^{\mathrm{D}} \mathrm{Z}^{\mathrm{L}}$

- 3 leading strong coupling terms were calculated for any S and L
- Numerics from Y-system, TBA, FiNLIE, at any coupling:
- for Konishi operator $\quad S=2, \quad L=2, \quad n=1$
- and twist-3 operator $\quad S=2, \quad L=3, \quad n=1$

They perfectly reproduce the TBA/Y-system or FiNLIE numerics

- AdS/CFT Y-system passes all known tests!

3 point function of classical operators

$$
\left\langle\mathcal{O}_{i}\left(x_{1}\right) \mathcal{O}_{j}\left(x_{2}\right) \mathcal{O}_{k}\left(x_{3}\right)\right\rangle=\frac{C_{i j k}(g)}{\left|x_{12}\right|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}\left|x_{23}\right|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}\left|x_{31}\right|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}}
$$

- Strong coupling limit: The problem reduces to finding the classical solution: minimal surface in AdS space

$$
d s^{2}=\frac{d x^{\mu} d x_{\mu}+d z^{2}}{z^{2}}
$$

- Perturbation theory: summing graphs ("spin chain" integrability helps...)

Riemann-Hilbert problem for spectrum of planar $\mathrm{N}=4$ SYM

Y-system and T-system: discrete integrability

- From TBA equations we get the AdS/CFT Y-system in psu(2,2|4) T-hook:

- Equivalent to the T-system (Hirota eq.):

$$
T_{a, s}\left(u+\frac{i}{2}\right) T_{a, s}\left(u-\frac{i}{2}\right)=T_{a, s-1}(u) T_{a, s+1}(u)+T_{a+1, s}(u) T_{a-1, s}(u)
$$

- Integrable system, solvable in terms of Wronskians of Baxter's Q-functions
- Example: solution for right band via two functions:

$$
T_{1, s}(u)=\mathbf{P}_{1}\left(u+\frac{i s}{2}\right) \mathbf{P}_{2}\left(u-\frac{i s}{2}\right)-\mathbf{P}_{1}\left(u-\frac{i s}{2}\right) \mathbf{P}_{2}\left(u+\frac{i s}{2}\right)
$$

- It's a quantum analogue of Weyl formula for $\mathrm{U}(2)$ characters: $\mathbf{P}_{j}(u) \rightarrow e^{i u \phi_{j}}$
- Complete solution described by Q-system - full set of $2^{8} \quad$ Q-functions All of them can be expressed through 8 basic Q-functions

Spectral Riemann-Hilbert equations ($\mathrm{P} \mu$-system)

- 4-vector of functions with cut $[-2 g, 2 g] \quad \mathbf{P}(u)=\left\{\mathbf{P}_{1}(u), \mathbf{P}_{2}(u), \mathbf{P}_{3}(u), \mathbf{P}_{4}(u)\right\}$

$$
\begin{array}{cl}
\tilde{\mathbf{P}}_{a}=\mu_{a b} \mathbf{P}^{b} & \tilde{\mu}_{a b}(u)=\mu_{a b}(u+i) \\
\tilde{\mu}_{a b}-\mu_{a b}=\mathbf{P}_{a} \tilde{\mathbf{P}}_{b}-\mathbf{P}_{b} \tilde{\mathbf{P}}_{a} & \mu^{a b} \equiv \mu_{a b}^{-1}=-\frac{1}{2} \epsilon^{a b c d} \mu_{c d}, \quad \operatorname{Pf}(\mu)=1
\end{array}
$$

$\widetilde{\mathbf{P}}$ is the analytic continuation of \mathbf{P} through the cut:

$\left.\begin{array}{r}\text { - "Left-Right symmetric" case, e.g. twist } L \text { operators } \operatorname{Tr}\left(\nabla^{S} Z^{L}\right) \\ \mu^{-1}=\chi \mu \chi \\ \mu_{23}=\mu_{14}\end{array} \gg \begin{array}{cccc}0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$

- Cut structure on defining sheet and asymptotics at $u \rightarrow \infty$

$$
\left(\begin{array}{l}
\mathbf{P}_{1} \\
\mathbf{P}_{2} \\
\mathbf{P}_{3} \\
\mathbf{P}_{4}
\end{array}\right) \sim\left(\begin{array}{c}
A_{1} u^{-L} \\
A_{2} u^{-L+2} \\
A_{3} u^{\frac{L}{L}} \\
A_{4} u^{\frac{L-2}{2}}
\end{array}\right) \quad\left(\begin{array}{l}
\mu_{12} \\
\mu_{13} \\
\mu_{14} \\
\mu_{24} \\
\mu_{34}
\end{array}\right) \sim\left(\begin{array}{l}
u^{\wedge-L} \\
u^{\wedge+1} \\
u^{\wedge} \\
u^{\wedge-1} \\
u^{\wedge+L}
\end{array}\right), \quad \wedge=0, \pm \Delta, \pm(S-1)
$$

Y-system, T-system
 and

Integrable Hirota dynamics

gl(K|M) (super)characters

- Character can be presented as a matrix integral, e.g. for "rectangular" irreps $\lambda=a^{s}$:

$$
\chi_{a, s}(g)=\int \frac{[d h]_{U(a)}}{(\operatorname{det} h)^{s+1}} \operatorname{sdet}(1-h \otimes g)^{-1},
$$

$$
g \in g l(K \mid M) \quad \text { a }[\underbrace{}_{\mathrm{s}}
$$

- A curious property of $\mathrm{gl}(\mathrm{K} \mid \mathrm{M})$ representations with rectangular Young tableaux:

- For characters - simplified Hirota eq.: $\quad \chi_{a, s}^{2}=\chi_{a+1, s} \chi_{a-1, s}+\chi_{a, s+1} \chi_{a, s-1}$
- Boundary conditions for Hirota eq.: gl(K|M) representations in "fat hook":

Compact $\mathrm{u}(\mathrm{K} \mid \mathrm{M})$ versus non-compact $\mathrm{u}\left(\mathrm{K}_{1}, \mathrm{~K}_{2} \mid \mathrm{M}\right)$

- Generating function for symmetric irreps:

$$
w(z) \equiv \operatorname{sdet}(1-z g)^{-1} \equiv \frac{\prod_{m=1}^{M}\left(1-z x_{\widehat{m}}\right)}{\prod_{n=1}^{N}\left(1-z x_{n}\right)}=\sum_{s=1}^{\infty} \chi_{1, s}(g) z^{s}
$$

S

$$
g=\operatorname{diag}\left\{x_{1}, \cdots, x_{M} \mid x_{\hat{1}}, \cdots, x_{\hat{N}}\right\}
$$

- Solution of Hirota: Gambelli-Jacobi-Trudi formula for $\mathrm{GL}(\mathrm{K} \mid \mathrm{M})$ characters

$$
\begin{gathered}
\chi_{\{\lambda\}}[g]=\operatorname{det}_{1 \leq i, j \leq a} \chi_{1, \lambda_{i}-i+j}[g], \quad g \in G L(K \mid M) . \\
\chi_{1, s}=\oint \frac{d z}{2 \pi i} z^{-s-1} w(z ; g)
\end{gathered}
$$

- Important example: superconformal su(2,2|4): $\quad g=\operatorname{diag}\left\{x_{1}, x_{2}, x_{3}, x_{4} \mid y_{\hat{1}}, y_{\hat{2}}, y_{\hat{3}}, y_{\hat{4}}\right\}$

$$
U(4 \mid 4) \quad U(2,2 \mid 4)
$$

fat hook

∞ - dim. unitary highest weight representations of $u(2,2 \mid 4)$!

Q-system

- One-form on N single indexed Q-functions:

$$
Q_{(1)} \equiv \sum_{j=1}^{N} Q_{j}(u) \xi^{j}, \quad\left\{\xi^{i}, \xi^{j}\right\}=0
$$

- l-form encodes all Q-functions with inllices:

$$
Q_{(l)} \equiv Q_{(1)}^{[-l+1]} \wedge Q_{(1)}^{[-l+3]} \wedge \ldots \wedge Q_{(1)}^{[l-1]}
$$

$$
\begin{gathered}
\text { Notations: } \\
Q^{[n]} \equiv Q\left(u+\frac{i n}{2}\right) \\
Q^{ \pm} \equiv Q\left(u \pm \frac{i}{2}\right)
\end{gathered}
$$

- Multi-index Q-functions: coefficient of

$$
\xi_{i_{1}} \wedge \xi_{i_{2}} \wedge \ldots \wedge \xi_{i_{l}}
$$

$$
Q_{j_{1}, \ldots, j_{k}}=\operatorname{det}_{1 \leq m, n \leq k} Q_{j_{m}}^{[-1-k+2 n]}
$$

- Example for $\mathrm{N}=2: \quad Q_{(2)}=2 Q_{12} \xi_{1} \wedge \xi_{2}, \quad Q_{12}=Q_{1}^{+} Q_{2}^{-}-Q_{1}^{-} Q_{2}^{+}$
- Notations in terms of sets of indices:

$$
\mathrm{Q}_{j_{1}, \ldots, j_{k}} \equiv \mathrm{Q}_{I}, \quad I=\left\{j_{1}, \ldots, j_{k}\right\} \subset\{1,2, \ldots, N\}
$$

- Plücker's QQ-relations:

$$
Q_{I} Q_{I, i, j}=Q_{I, i}^{+} Q_{I, j}^{-}-Q_{I, i}^{-} Q_{I, j}^{+}
$$

(K|M)-graded Q-system

- Split the full set of $K+M$ indices as $\{B\} \cup\{F\}$

$$
B=\{1,2, \ldots, K\}, \quad F=\{K+1, K+2, \ldots, K+M\}
$$

- Grading $=$ re-labeling of F-indices (subset \rightarrow complimentary subset of F)

$$
Q_{I \mid J} \equiv Q_{I, F \backslash J}, \quad I \in B, \quad J \in F \quad \begin{aligned}
& \text { We impose for AdS/CFT } \\
& Q_{Q \mid Q}=Q_{1234 \mid 5678}=1
\end{aligned}
$$

- Examples for (4|4): $\quad Q_{j \mid Q}=Q_{j 5678}, \quad j=1,2,3,4, \quad Q_{12 \mid 57}=\mathrm{Q}_{1268}$
- Graded forms:

$$
Q_{(n \mid p)}=\sum_{\{b\} \in B} \sum_{\{f\} \in F} Q_{b_{1}, b_{2}, \ldots, b_{n} \mid f_{1}, f_{2}, \ldots, f_{p}} \cdot \xi^{b_{1}} \wedge \xi^{b_{2}} \wedge \cdots \wedge \xi^{b_{n}} \wedge \xi^{f_{1}} \wedge \xi^{f_{2} \wedge \cdots \wedge \xi^{f_{p}}}
$$

- New type of QQ-relations involwing 2 indices of opposite grading:

$$
Q_{I \mid J, j} Q_{I, i \mid J}=Q_{I, i \mid J, j}^{+} Q_{I \mid J}^{-}-Q_{I, i \mid J, j}^{-} Q_{I \mid J}^{+}
$$

- Hodge duality is a simple relabeling: $\quad Q^{I \mid J} \equiv Q_{B \backslash I \mid F \backslash J}$
- Example for (4|4): $Q^{1 \mid 134}=Q_{234 \mid 2}$

Now we can label:

$$
F=\{1,2, \ldots, M\}
$$

Wronskian solution of Hirota eq.

- Example: solution of Hirota equation in a band of width N in terms of exterior full-forms via 2 N arbitrary functions $Q_{j}(u), \widetilde{Q}_{j}(u)$
Krichever,Lipan, Wiegmann,Zabrodin

$$
T_{a, s}=Q_{(a)}^{[s]} \wedge \widetilde{Q}_{(N-a)}^{[-s]}
$$

- For $\operatorname{su}(\mathrm{N})$ spin chain (half-strip) we impose:

$$
\widetilde{Q}(u)=Q^{[N]}
$$

$$
\widetilde{Q}_{(0)}=Q_{(0)}=1
$$

- Solution of Hirota eq. for $(2,2 \mid 4)$ T-hook V.K.,Leurent,Volin

$$
Q_{I_{1}, I_{2} \mid J} \quad\left\{I_{1}, I_{2} \mid J\right\} \subset\left\{B_{1}, B_{2} \mid F\right\}
$$

$$
T_{a, s}=\left\{\begin{array}{lll}
Q_{(a, 0 \mid 0)}^{[+s]} & \wedge Q_{(2-a, 2 \mid 4)}^{[-s]} & s \geq a \\
Q_{(2,0 \mid 2-s)}^{[+a]} & \wedge Q_{(0,2 \mid 2+s)}^{[-a]} & a \geq|s| \\
Q_{(2,2-a \mid 4)}^{[-s]} & \wedge Q_{(0, a \mid 0)}^{[++s]} & s \leq-a
\end{array}\right.
$$

Conclusions and prospects

- We have exact solutions for non-trivial physical models summing planar graphs embedded into $\mathrm{D}>1$ dimensions. AdS/CFT correspondence relates them to string theory.
- Solutions are achieved using quantum integrability. Integrability (normally 2D...) is a window into D>2 physics.
- TBA and Y-system describe the Hirota integrable dynamics: T-functions can be expressed through Wronskian determinants of Baxter's Q-functions.
- $\quad \mathrm{N}=4$ SYM is a first 4D QFT with calculable spectrum of anomalous dimensions (sum of non-trivial 4D Feynman graphs!); bears some common features with QCD, in particular, in Balitsky-Fadin-Lipatov-Kuraev approximation (BFKL)
- Efficient system of Riemann-Hilbert equations - quite a step w.r.t. the original functional integral!
- Another example of solvable AdS/CFT duality: 3D ABJM gauge theory
- In my opinion, the way to self-consistent 4D quantum gravity goes through new models of strings/planar graphs embedded into higher dimensions

