From Matrix Models to the theory of
fundamental interactions

Harold Steinacker

Department of Physics, University of Vienna

miversnat LLI F

ESI, june 18, 2014

H. Steinacker From Matrix Models to the theory of fundamental interactions



Motivation

Motivation and background

@ aim: quantum theory of fundamental interactions incl. gravity
@ present state:

working “standard models” (el.part., cosmology)

big mysteries: dark matter, dark energy;

@ theoretical/conceptual challenges (hard): reconcile quantum
mechanics & gravity

classical geometry breaks down at Planck scale

“naturalness” problems (separation of scales): Planck scale vs.
electroweak scale, cosm. constant

... more radical approach needed?!

matrix models: simple yet far-reaching, pre-geometric
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Motivation

quantized geometry?

combine quantum mechanics & general relativity:

@ superposition of massive objects — superposition of
geometries

@ measure short length Ax < Lppne :
AXAE > h & AX > Rschwarzschild ~

LPlanck
= (AX)Z Z Ll%lanck
@ more rigorous: Fredenhagen Doplicher Roberts 1994

= space-time must be quantized in some way
(cf. string thy, LQG )
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IKKT model, NC branes

Matrix Models as fundamental theory

1996: BFSS model, IKTT model proposed as
non-perturbative definition of M-theory / IIB string theory
focus on IKKT: Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

SIX, W] = Tr(IX% XEIX XY Tnaamesr + T a[X°, W])
X2= X3 € Mat(N,C), a=0,..,9

Nap - SO(9,1), I ... Clifford alg.
V¥ € Mat(N,C) ® C3* ... Majorana-Wey! spinor

gauge symmetry X2 — U~'X2U, ISO(9, 1), SUSY

1) nonpert. def. of IIB string theory (on R'%)  (/KKT)
2) N =4 SUSY Yang-Mills gauge thy. on “noncommutative* Rg

dynamical NC branes M c R'® | relation w/ string theory

— brane-world scenarios (— 4D gravity ?  H.S. 2007 ff)
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IKKT model, NC branes

quantization is understood:

7= / dX3d g~ SIX1-SIV]

(Tr([X, X]..)Tr(...))) = %/dX"’d\U Tr([X, X]...)Tr(...)) e~ SXI=S¥I

...suitable for non-perturbative approach

@ integral exists (in Euclidean setting) Krauth, Staudacher 1998

@ proposal for regularization in Minkowski setting
"Monte-Carlo” studies: Nishimura etal 2012 arXiv:1108.1540 [hep-th]
hints for “expanding universe” behavior, 3+1 dimensions

@ simplified models:
eigenvalue distribution +» (mass) renormalization, phase trans.
H.S. hep-th/0501174, A. Polychronakos arXiv:1306.6645 [hep-th] etc.

RG analysis (Grosse-Wulkenhaar), multiscale analysis (Rivasseau,
Vignes-Tourneret, Gurau, ...), ...
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IKKT model, NC branes

Here: perturbative approach:

@ choose background solution (e.g. R%), study fluctuations
look for “effective action” (=generating function)
in suitable (semi-classical?) limit

@ expansion around R¢:
noncommutative gauge theory, Filk rules, (non-)planar diagrams
(— combinatorics ...!)

@ almost all models (probably) pathological (UV/IR mixing)

@ ONE model expected to be well-behaved (perturbatively finite):
N =4NC SYMon R} < (IKKT) model, in 9+1 dimensions

@ includes integral over geometries !!
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IKKT model, NC branes

basic solutions: branes

eom.: 0S=0 = [X.[X2X0]=0, [DV=raX,w]=0
basic solutions: (allow N — o)
@ flat “branes” R2" embedded in R

XH
a __ —
X <0> , n=1,..,2n

[XH, XY] =i 1 “Moyal-Weyl quantum plane”
@ generic (curved) branes M?2"
X2 ~x%: M?2" e RO

... quantized embedding map
(M2 w) ... symplectic manifold

non-commutative, w = 16, (x)dx*dx” = B -field

12
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IKKT model, NC branes

stacks of branes in M.M.

@ assume X(E;T) ... solutions of e.o.m.

X8 0 ¢
ion: °= ) -
— new solution: X ( 0 Xa )

(2

- . (Xatm O
@ stacks of ny & no coincident branes X@ = 2
0 X(2)1,,2

breaks U(N) to U(ny) x U(ny)

@ fermions may connect different branes

0 W
Y= ra2) )
(’0(21) 0

(12) transforms in bifundamental (ny) ® (n2)
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IKKT model, NC branes

branes as quantized Poisson (symplectic) manifolds

(M, 6#¥(x)) ... 2n-dimensional manifold with Poisson structure
Its quantization My is NC algebra such that

Q: CM) — ACL(H)
such that
Q(f)Q(g) = Q(fg) + O(9)
[Q(f),Q(9)] = Q(i{f,g}) + O(6?)

(“nice”) ® € Mat(co,C) <« quantized function on M

furthermore:
(2m)"Tr Q(¢) ~ [ w" é(x)
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IKKT model, NC branes

Example: the fuzzy sphere S%

H 2 .
classical 5= : x2:S2 <, RS

P

fuzzy sphere S%, : (Madore, Hoppe)

algebra A = Mat(N, C) ... alg. of functions on S5,
SO(3) action:

su2)xA — A
(J%9) — [J%4]

decompose A = Mat(N, C) into irreps of SO(3):
A =Mat(N,C) = (N) @ (N)

(1) @) @..® (2N —-1)
(YOre (Vi e.. o (YN

... fuzzy spherical harmonics; UV cutoff
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IKKT model, NC branes

quantization map:

Q: C(S?) — A = May(N,C)
. Vi, I<N
Ym = { 0, I>N

in particular X2 := Q(x?) = #CJa ... N— dimirrep of su(2) on CN
N

N
Qfg) = QNQ(9) + Oy),
Q(iff,g}) = 1Q(M),2a) + O(5)

Poisson structure {x2, x°} = 2 3¢ x¢

satisfies

X2, XP] = —Lcaexe  Cy=L(N°-1)
C
Xaxe :ﬁ

S%, ... quantization of (S?, Nwyo), i = 2 EE e J
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IKKT model, NC branes

metric structure on branes:

metric encoded in NC Laplace operator

o: A — A,
0 = [X3[X2,¢]l6ar = 4= J2S%
SO(3) invariant = o¥n =& 10+ 1),

spectrum identical with classical case Ag¢ = \/\? 0.(V/1919"" 0, ¢)

= effective metric of O = round metric on S2 J
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IKKT model, NC branes

generic branes = quantized symplectic (immersed) submanifolds in R0:

@ take some nice manifold x2:  M?27 < R10

o

induced metric g,,, on M ‘

@ equip M with symplectic form w = 0, dx* A€

— quantization of (M, w):
Q: C(M)— A= Mat(x,C)
in particular: X2 := Q(x4) ~ x*
— “noncommutative brane®, matrix geometry

... class of NC spaces under consideration.

© — effective metric G*¥, encoded in matrix Laplacian
O = [X3 X% J]0ap ~ —{x%{x?,.}}dan
Guv ~ G it M almost-Kahler, g,,, # G, for Minkowski sign.
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IKKT model, NC branes

extracting the geometry of matrices: (H.S. Nucl.Phys. B810 (2009) )

X2~ x2: M R0

Lemma: assume dim M > 2. Then
Of(X) ~ —na{x? {x°,f(x)}} = —e’0gf(x)

... Matrix Laplace- operator, effective metric

G'(x) = e 70" (x)0" (x) gu.(x) effective metric (cf. open string m.)
9u(x) = 09,x30,xPna induced metric on M$ (cf. closed string m.)

_ 25 _ |9;11|
€ = o]

follows by coupling to scalar field ¢:
8[9‘9] = Tr [Xav 90] [Xba 90] Gab
~  [d?'x /|G| G"(X) 0,0y = [ dp Axgdep
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NC gauge theory

fluctuations on branes — noncommutative gauge fields J
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NC gauge theory

the Moyal-Weyl quantum plane R}:

[X*, X"l = igm A, wr=1,.,4

.. Heisenberg algebra, interpreted as space of functions on RS
uncertainty relations AX*AXY > |6#|

relation with classical R*: Weyl quantization

Q: [3R* 5 HS(H)

/d“ke'k X h(k) /d‘*kefkﬂ(“(;(k) =: d(X)

note:

X € Mat(co, C) ... quantized coordinate functions on R}
d>(X/”) € Mat(oo C) ... general function on R}

(2m)? Tr = [ w? w = 30, dxtdx”
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NC gauge theory

M.M. fluctuations on a stack of n coincident R} branes
— noncommutative U(n) N = 4 super-Yang-Mills on R}

sketch:

@ background solution: stack of n coinciding Rf branes

X2 = Xﬂ = )_(H o H= Oa a3
& 0 ) i=45,.9

[X*, X*] = i6" ... Heisenberg algebra, generate Ay ~ End(H)
@ add fluctuations:

X 1 2%
X = (X ® 1 +0 A”) € Ay ® Mat(n,C)

OI

A=A X)=A,.(X)\. € End(H") = As ® Mat(n,C)

formally A, = [d*k e X" A, .(K)Ao,  Aa € su(n)
o= [ d*k e X" po (K)o
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NC gauge theory

define derivatives as inner derivations:

[X~, p(X)] =: 10" 9, 6(X), [0,,0,]=0

thus
[X*, o(X)] = 0" D,¢(X), D,=0,+i[Au ]

[X*, X] i0m  i0r 9V (8, Ay — Dy A + [Au, Al
= i 4 i 9 F Ly

F,vr ... Yang-Mills field strength

S = Tr([X? XP][Xa, Xp]) is gauge-invariant: X2 — U~'XaU

— tangential fluctuations ~ X* = X* 4 9**A, transform as
A, — U AU+ iU9,U ..u(n) gauge fields!

— transversal fluctuations ¢’ — U~'¢'U ...u(n) scalar fields!
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NC gauge theory

N = 4 Super-Yang-Mills

= effective action on RY:
S = ASTH(IX% XCI[Xa Xo] + WTalX?, W])
= [ d*xVG tr( 8 (FF)a + §G D, 0'D,®; — 1?0, /][0, @)
(10 + A 1)+ 9T (1,0
where
G =0 0 g, p= /1077

g = pl/2eviy,,
1 A
¢ = et

IKKT on stack of branes — U(n) N =4 SYM coupled to G** J

better: U(1), — dynamical G*, SU(n) SYM coupled to G"*(x)
H.S., JHEP 0712:049 (2007), JHEP 0902:044,(2009)

analogous for finite matrix geometries, A = Mat(N, C)
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NC gauge theory

stack of coincident branes — su(n) gauge thy

generic background branes

Xt @1
Xa: —. n
< ¢' 1, >

general CR [X*, X¥] = i0""(X)

fluctuations:

xa— [ X' et A
- ¢I®1N+¢I

Ar, o' ~ 1, d.of. change background X2, geometrical d.o.f. 647, g, J

write A = 07 A, note [XH, f] ~ i0" 0, f

(Xt X) = igr 4 00 00 (0,0 Ay — 0 A + [Aw. AL))
I'HI“/ 4+ igﬂﬂ/euy/ FM/V/ f|e|d Strength
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NC gauge theory

= effective action on Mj:
S = ATF(IX3 XCI[Xa, Xo] + ol X2, W])
~ [d*xVG trn(;?(ff)(; + 1(DOIDP,) g — Lg?[d, ¥][0;, )]
O (i0,, + [Ap, )0 + gor[o;, ¢]) + [20(0 A0+ try F A F)

where
GM}/(X) — pel“/(x)elﬂ/(x)gu/yl (X)7 p= /|9—1 ‘
;y“(x) — p1/2 6’”“’(X)%, n= Gg
1 N
i?  ~ @npf

IKKT on stack of branes — SU(n) N =4 SYM coupled to G** J

dynamical G**(x) ! (— gravity ?!)
H.S., JHEP 0712:049 (2007), JHEP 0902:044,(2009), Class.Quant.Grav. 27 (2010)
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NC gauge theory

fermions

V¥ ... A - valued Majorana-Weyl spinor of SO(9, 1)

action o _
S[V] = TrUl X3 V] = TrvDv

~  [d**VOT Wiy, + [AL, )V,
,?u — p1/2 raez/uayxa

note , .
{5,5"} = p{la,Tp}0" "0, x30" "0, x>
= 200" 0"
= 2G™W

¥ decomposes into 4 Weyl fermions — N =4 SYM
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Dynamical geometry

result:
@ trace-U(1) sector defines geometry M?" R0

@ SU(n) fluctuations of matrices X4, ¥
— gauge fields, scalar fields, fermions on M27  (NOT 10 dim!)

all fields couple to metric G*(x)
determined by 6/*(x), embedding
dynamical = (“emergent”) gravity

matrix e.o.m [X2 [XZ XO||jay =0 <=

.o

Ogx? = 0, “minimal surface”

V"(e"@;l]) = e 7G,0M0un o
n~ VQW

covariant formulation in semi-classical limit (H.S. Nucl.Phys. B810 (2009) )J
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Dynamical geometry

2 interpretations for quantization:

Z = / ax2aw e~ XISVl

Q onRi: Xt =Xt40mwA,, X*..Moyal-Weyl
— NC gauge theory on R}, UV/IR mixing in U(1) sector
IKKT model: N =4 SYM, perturb. finite /(?)

©Q on M* Cc R U(1) absorbed in 6#¥(x), g
— quantized gravity, induced E-H. action

Seft ~ /d4X |G| (A* + cN; R[G] + ...)
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Dynamical geometry

2 interpretations for quantization:

Z = / ax2aw e~ XISVl

Q onRi: Xt =Xt40mwA,, X*..Moyal-Weyl
— NC gauge theory on R}, UV/IR mixing in U(1) sector
IKKT model: N =4 SYM, perturb. finite /(?)

©Q on M* Cc R U(1) absorbed in 6#¥(x), g
— quantized gravity, induced E-H. action

Seft ~ /d4X |G| (A* + cN; R[G] + ...)

@ explanation for UV/IR mixing & U(1) entanglement
@ good quantization for theory with “gravity”! (maximal SUSY)
@ emergence of Einstein equations not established, not clear
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Dynamical geometry

further prospects:

@ well suited for quantization

@ can be put on computer (Monte Carlo; Lorentzian) !
measure effective dimensions Kim, Nishimura, Tsuchiya PRL 108 (2012)
result:

3 out of 9 spatial directions start to expand at some ’critical time’,

3+1 dims at late times
@ intersecting branes — chiral fermions
A. Chatzistavrakidis, H.S., G. Zoupanos (2011)

study compactifications M* x Ky
may get close to standard model (for low/intermediate energies)
J. Zahn, H.S. (2014)
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towards particle physics

towards particle physics

internal Dirac operator <> fermion masses:
[ d'x V@t gire, vl = [ d'x VG try giDw

[Dint = ri[q)iv ]

@ D) =0 ... massless fermion;
4D chirality = internal chirality (Weyl constraint!)

@ D,y = my ... massive (Dirac) fermion
(combining two spinors with opposite internal chirality);

mass m ~ EV of D, J
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towards particle physics

chiral fermions on intersecting NC branes
A. Chatzistavrakidis, H.S., G. Zoupanos (2011)

i
o= (0 ) = (u ) e
¢(2) V(ar)
M.M. Dirac operator on R N R3
PV = [0, Vgl =TV 2) — Y(12) ()
= Dz — DYz
use oscillator basis for (honcommutative!) branes

a = o*—i9%, b= o7
a = (*+ir®), g=5(e+ir’)
[D(U\U = (OéaT+OéTa)\U

DoV = BYb +iwb

DiVi2) =0 & Wz =10,1)1)(0,1 |2

chiral zero mode in R? x R?
localized at intersection (coherent state)
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towards particle physics

fermions on intersection S5 N R3:

i
& — Py ) owe ( \11(12))
<1>(2) Viar)

(/501 0
. i ¢0'2 i 0
1 — I —
with — &f) = ros |’ P = y8
0 y’

@ no Higgs ¢ = 0: 2 points at X = +r
pair of zero modes, both chiralities, at each location
@ switch on Higgs ¢ # 0:
one chiral zero mode localized at each intersection x® = +r
(coherent states)

er =+ LN+ T e, eL=I-NDn=r1lz
massive mirror fermion at each intersection, mass m ~ ¢
eL=+Dn+nTle, ér=I—-hHn{=rtle
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towards particle physics

on S x R2NR?:
@ exact chiral zero modes, e.9. W12 = |+ 0,TL) 1) (+r, 1 |2

@ massive mirror fermions, e.g. \TJ(12) =[+0, L)+ dle »
mass m~ ¢
(opposite chirality on S2, same localization)

4 2 .
on Ky, N Sy:

expect pairs of near-zero eigenmodes of D,
consisting of nearly-localized chiral states
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towards particle physics

can estimate lowest eigenvalues of D, depend on local geometry
near intersections for “projected” Sz x S%, N S5

numerical results: lowest eigenvalues of D;,, (= Yukawas)
for Ny =N,R =1,r=¢ =1:

log(1)
-
L . * <&
: : L] L L] L]
ok
L o A
] A]
—2? ° * /\2
[ )
° —
-3 [ ]
_4 L L L L N
0 5 10 15 20
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towards particle physics

towards the standard model (of particle physics)

@ consider intersecting branes R* x K; ¢ R0

K;... fuzzy spaces (=quantized compact spaces)
e.g. S2, Sy x S3.CP2, ...

— chiral fermions localized at K; N K;, propagate on R*

@ stacks of n; branes — SU(n;) gauge fields
fermions W) in (ny) ® (M2)

@ find explicit brane solution which breaks
SU(N) ~ SU(3)c x U(1)g x U(1)s

@ correct matter content of S.M. + vz at brane intersections
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towards particle physics

standard model fields embedded in adjoint of SU(N):
A. Chatzistavrakidis, H.S., G. Zoupanos (2011)

0> O 0 I QL

0 eg
V= 0 (0 l/[:;) QH
0 0
03
where
_(u ([ _ (dr
a=(g) w=(z) on=(i)
Higgs:
0 0 O 0 0
0, Hy H, 0 O 00%%“00
o _ Ogggzo¢goooo
(H) 0 0 6,/ 0 0 0 S 0
0 0 0 o0 St 0 o0
0O 0 0 O 0 O

S ... sterile Higgs
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towards particle physics

precisely chiral matter content of standard model + vg
Higgs ... intrinsic part of fuzzy internal geometry
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towards particle physics

intersecting brane

need to stabilize compact branes:

@ rotating branes
@ deform model by SO(6)-invariant potential
S — S— Ve,
Vir = F(trn S50 XiX') 2 —mPir(XXT) + A(rXiX)?
OX' = —(2rgp 2 ) X', O=[X,[X.]]

@ better: add cubic potential terms ("soft SUSY breaking, flux®)
Vier = XXX fapo
fape tot. antisymm.
@ branes interact (1-loop — =~ SUGRA, typically attraction)
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towards particle physics

intersecting brane solutions

D, ~ Dgy:
=% (RLs + ¢y}
d)uaé
r,ol - ~
o2, = w3 ~ S % S2
R,L4
R,L>
RIK
0
) | RKI | o
D ~Dg 0= gl [ =8
0
0

solution of eom if

R, = RL/J =R = R// =1y =0u=\ —ngp~'/2f

J. Zahn, H.S. (2014)
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towards particle physics

results:

@ background branes lead to correct symmetry breaking
SU(N) ~» SU(3)¢ x U(1)q x U(1)s (assume appropriate S)
@ resembles S.M. at low energies:

e correct matter content of S.M. (2 generations ...) + vg
coupled to SU(3). x SU(2). x U(1)y
e electroweak SSB SU(2), x U(1)y ~ U(1)q via
two Higgs doublets,
intrinsic part of geometry (minimal fuzzy spheres),
essential for chiral nature of fermions

@ mirror fermions at intermediate energies (above my),

@ gauginos, towers of massive KK modes,
ultimately completing AV = 4 SUSY

H. Steinacker From Matrix Models to the theory of fundamental interactions



towards particle physics

summary, conclusion

@ matrix-models Tr[X2, X?][X?, X?'] sz npe + fermions

dynamical NC branes <« “emergent” gravity

@ fluctuations of matrices — gauge theory on brane
all ingredients for physics

@ rich solutions of IKKT model with R* x I (with extra V)

building blocks for intersecting branes — standard model ?

@ nonperturbative insights very desirable:
eigenvalue distribution, ... 1?
new, adapted methods ??

@ ... very rich model, more to be discovered
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towards particle physics

quantum numbers: adjoint action QW (1) = [to, V(12)] etc.,
e.g.

g3 02
—1 —1

w|—=
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