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Cyclic descents of standard Young tableaux



Permutations

Descents and cyclic descents

Descents and cyclic descents of permutations

Let r =m ... T, €S, be a permutation.

The descent set of a 7 is
Des(m)={ie[n—1]: m > mit1},

where [m] :={1,2,..., m}.
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Permutations

Descents and cyclic descents

Descents and cyclic descents of permutations

Let r =m ... T, €S, be a permutation.

The descent set of a 7 is

Des(m)={ie[n—1]: m > mit1},
where [m] :={1,2,..., m}.
The cyclic descent set of 7 is

Des(m) U {n}, if mp > 1,
Des(7), otherwise.

cDes(7) := {
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Permutations

Descents and cyclic descents

Descents and cyclic descents of permutations

Let r =m ... T, €S, be a permutation.

The descent set of a 7 is

Des(m)={ie[n—1]: m > mit1},
where [m] :={1,2,..., m}.
The cyclic descent set of 7 is

Des(m) U {n}, if mp > 1,
Des(7), otherwise.

cDes(7) := {

Introduced by Cellini '95; further studied by Dilks, Petersen and
Stembridge '09 among others.
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Permutations

Descents and cyclic descents

Descents and cyclic descents of permutations

Examples
m=23154 : Des(7) ={2,4} ,
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Permutations

Descents and cyclic descents

Descents and cyclic descents of permutations

Examples
m=23154 : Des(m) ={2,4}, cDes(m)={2,4,5}.
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Permutations

Descents and cyclic descents

Descents and cyclic descents of permutations

Examples
7w =23154 : Des(m) ={2,4}, cDes(m)={2,4,5}.
m=234152 : Des(m) = {2,4},
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Permutations

Descents and cyclic descents

Descents and cyclic descents of permutations

Examples
m=23154 : Des(m) ={2,4}, cDes(m)={2,4,5}.
m=34152 : Des(m) ={2,4} , cDes(mw)={2,4}.
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Permutations

Descents and cyclic descents

Properties of cDes

For D C [n], let D 4 1 be the subset of [n] is obtained from D by
adding 1 mod n to each element.
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Permutations

Descents and cyclic descents

Properties of cDes

For D C [n], let D 4 1 be the subset of [n] is obtained from D by
adding 1 mod n to each element.

The map cDes : S, — 2! has two properties:

(a) cDes(m) N [n — 1] = Des(n) vV € Sp,
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Permutations

Descents and cyclic descents

Properties of cDes

For D C [n], let D 4 1 be the subset of [n] is obtained from D by
adding 1 mod n to each element.

The map cDes : S, — 2! has two properties:
(a) cDes(m) N [n — 1] = Des(n) vV € Sp,
(b) there exists a bijection ¢ : S, — S, such that

cDes(¢(m)) = cDes() + 1.
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Permutations

Descents and cyclic descents

Properties of cDes

For D C [n], let D 4 1 be the subset of [n] is obtained from D by
adding 1 mod n to each element.

The map cDes : S, — 2! has two properties:
(a) cDes(m) N [n — 1] = Des(n) vV € Sp,
(b) there exists a bijection ¢ : S, — S, such that

cDes(¢(m)) = cDes() + 1.

Indeed, we can just define ¢ by

¢
17D ... Th—1Tn > TaT17T2...Tp—1
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Young diagrams

A partition of n is a sequence A = (A1, A2,...) such that
AM > X >--->0and A\ + X0+ --- =n. We write A\ n.

A can be represented as Young diagram.
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Young diagrams

A partition of n is a sequence A = (A1, A2,...) such that
AM > X >--->0and A\ + X0+ --- =n. We write A\ n.

A can be represented as Young diagram.

Example: A = (4,3,1)
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Young diagrams

A partition of n is a sequence A = (A1, A2,...) such that
AM > X >--->0and A\ + X0+ --- =n. We write A\ n.

A can be represented as Young diagram.

Example: A = (4,3,1)

If the diagram of i is contained in the diagram of ), then the
difference of these diagrams is a diagram of skew shape \/pu.
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Young diagrams

A partition of n is a sequence A = (A1, A2,...) such that
AM > X >--->0and A\ + X0+ --- =n. We write A\ n.

A can be represented as Young diagram.

Example: A = (4,3,1)

If the diagram of i is contained in the diagram of ), then the
difference of these diagrams is a diagram of skew shape \/pu.

Example: A\/u=(5,3,3,1)/(2,1)

When p is the empty partition, \/u is simply .



Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Standard Young Tableaux

A standard Young tableau (SYT) of shape A/u is a filling of the
diagram of A/u with the numbers 1,..., n (where n = #boxes)
so that entries increase along rows and along columns.

Examples:

2]4]8]

A=(431)

‘O\wl—l
(6]
\l
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Standard Young Tableaux

A standard Young tableau (SYT) of shape A/u is a filling of the
diagram of A/u with the numbers 1,..., n (where n = #boxes)
so that entries increase along rows and along columns.

Examples:
1/2[4]8]
A=(4,3,1) 3/5|7
6]
213]9]
_ 115
6
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Standard Young Tableaux

A standard Young tableau (SYT) of shape A/u is a filling of the
diagram of A/u with the numbers 1,..., n (where n = #boxes)
so that entries increase along rows and along columns.

Examples:
1/2[4]8]
A=(4,3,1) 3/5|7
6]
213]9]
_ 1|5
6

Denote the set of all SYT of shape A/u by SYT(A/ ).
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Descents of SYT

The descent set of a standard Young tableau T is

Des(T)={i: i+ 1isin a lower row than i}.
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Descents of SYT

The descent set of a standard Young tableau T is
Des(T)={i: i+ 1isin a lower row than i}.

Examples:

2[4]8]

T =

€ SYT((4,3,1))  Des(T) = {2,4,5}

‘oan—t
(6]
\'
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Descents of SYT

The descent set of a standard Young tableau T is

Des(T)={i: i+ 1isin a lower row than i}.

Examples:
1/2]4]8]
T=3|5/7] €SYT((4,3,1)) Des(T) = {2,4,5}
16
2[3]9]
T=r € SYT((5,3,3,1)/(2,1))  Des(T) = {3,5}
16
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Descents of SYT

The descent set of a standard Young tableau T is

Des(T)={i: i+ 1isin a lower row than i}.

Examples:
1/2]4]8]
T=3|5/7] €SYT((4,3,1)) Des(T) = {2,4,5}
16
2[3]9]
T=r € SYT((5,3,3,1)/(2,1))  Des(T) = {3,5}
16

Motivating Problem:
Define a cyclic descent set for SYT of any shape \/p.
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

SYT of rectangular shapes

For r|n, let A\=(r,...,r)F nbe a rectangular shape.
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

SYT of rectangular shapes

For r|n, let A\=(r,...,r)F nbe a rectangular shape.

Theorem (Rhoades '10)

For A= (r,...,r), there exists a cyclic descent map
cDes : SYT(\) — 2l satisfying

(a) cDes(T)N[n—1] = Des(T) VT € SYT()),
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

SYT of rectangular shapes

For r|n, let A\=(r,...,r)F nbe a rectangular shape.

Theorem (Rhoades '10)

For A= (r,...,r), there exists a cyclic descent map

cDes : SYT(\) — 2l satisfying

(a) cDes(T)N[n—1] = Des(T) VT € SYT()),

(b) there is a bijection ¢ : SYT(A) — SYT(A) such that
cDes(¢(T)) = cDes(T) + 1.
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

SYT of rectangular shapes

For r|n, let A\=(r,...,r)F nbe a rectangular shape.

Theorem (Rhoades '10)

For A= (r,...,r), there exists a cyclic descent map

cDes : SYT(\) — 2l satisfying

(a) cDes(T)N[n—1] = Des(T) VT € SYT()),

(b) there is a bijection ¢ : SYT(A) — SYT(A) such that
cDes(¢(T)) = cDes(T) + 1.

Here, ¢ is Schiitzenberger's jeu-de-taquin promotion operator p.
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

SYT of rectangular shapes

3

134_>134 1134 1 4 14 1125
4
!
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

SYT of rectangular shapes

3

1134 1/3/4 1134 1 4 14 1125
4
!

Rhoades’ definition of cDes for T € SYT(r, ..., r) declares that
n € cDes(T) iff n— 1€ Des(p~(T)).
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

SYT of rectangular shapes

p
[ v

17374] [1[3[a] [1]314] [1] |4 174] [12]5

20516 1205 | 121 15 2135 2135 " [3]4l6
A |

5 ¢ Des pt 6 ¢ cDes

Rhoades’ definition of cDes for T € SYT(r, ..., r) declares that
n € cDes(T) iff n— 1€ Des(p~(T)).
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

SYT of rectangular shapes

p
[ v
17374] [1[3[a] [1]314] [1] |4 174] [12]5
20516 1205 | 121 15 2135 2135 " [3]4l6
A |
5 ¢ Des pt 6 ¢ cDes

Rhoades’ definition of cDes for T € SYT(r, ..., r) declares that
n € cDes(T) iff n— 1€ Des(p~(T)).

In fact, p determines a Z,-action. Here it is for A = (3, 3):

P P
¥ ] Yy 1
1(3(4]p[12/5]r [1]2]3 113(5] p [1]2]2
T sl (3416 [4[5]6 21416 [35]6

Des(T) {14} {25} {36} {135} {246}



Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Reformulation

Definition

Given a set 7 and map Des : 7 — 2[n—1],

a cyclic descent extension is a pair (cDes, ¢), where
cDes : T — 2l

¢ : T — T is a bijection,
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Reformulation

Definition

Given a set 7 and map Des : 7 — 21,

a cyclic descent extension is a pair (cDes, ¢), where
cDes : T — 2011,

¢ T — T is a bijection,

satisfying the following conditions for all T € T

(a) cDes(T)N[n—1] = Des(T),
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Reformulation

Definition

Given a set 7 and map Des : 7 — 21,

a cyclic descent extension is a pair (cDes, ¢), where
cDes : T — 2l

¢ T — T is a bijection,

satisfying the following conditions for all T € T
(a) cDes(T)N[n—1] = Des(T),

(b) cDes(¢(T)) = cDes(T) + 1.
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Reformulation

Definition

Given a set 7 and map Des : 7 — 21,

a cyclic descent extension is a pair (cDes, ¢), where
cDes : T — 2l

¢ T — T is a bijection,

satisfying the following conditions for all T € T
(a) cDes(T)N[n—1] = Des(T),

(b) cDes(¢(T)) = cDes(T) + 1.

Examples

» T =8, with Cellini's cDes and ¢ = cyclic rotation.
» T =SYT(r,...,r), with Rhoades' cDes and ¢ = promotion.
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Definitions

Standard Young tableaux Descents and cyclic descents
Rectangular shapes
Cyclic descent extensions

Reformulation

Motivating Problem:

Is there a cyclic descent extension on SYT(\/11)?
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Cyclic descents on SYT(A")

For a partition A\ - n — 1, let A be the skew shape obtained from
A by placing a disconnected box at its upper right corner.

Example

]

(3,3,1) =
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Cyclic descents on SYT(A")

For a partition A\ - n — 1, let A be the skew shape obtained from
A by placing a disconnected box at its upper right corner.

Example

]

(3,3,1) =

Theorem (E.-Roichman '16)

For every A& n — 1, there exists a cyclic descent extension on
SYT(A\P).

Cyclic descents of standard Young tableaux



Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Cyclic descents on SYT(A")

For a partition A\ - n — 1, let A be the skew shape obtained from
A by placing a disconnected box at its upper right corner.

Example

]

(3,3,1) =

Theorem (E.-Roichman '16)

For every A& n — 1, there exists a cyclic descent extension on
SYT(A\P).

What is the definition of cDes and ¢ in this case?
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on SYT(A\")

Example:

4] 1] 2] 3]

{1,4}  {1,2} {2,3} {3,4}
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on SYT(A\")

Example:

4] 1] 2] 3]

2 3 4 4

{1,4}  {1,2} {2,3} {3,4}

For T € SYT(AY), let n € cDes(T) iff
» nis strictly north of 1, or

» n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on SYT(A\")

Example:

4] 1] 2] 3]

2 3 4 4

{1,4}  {1,2} {2,3} {3,4}

For T € SYT(AY), let n € cDes(T) iff
» nis strictly north of 1, or

» n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.

What is jdt(T — d)?



Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, a ?‘
let T + k be obtained by T=|1/3|5 T+3=|4/6/|2
adding k mod n to each entry. 24 5|1
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, a ?‘
let T + k be obtained by T=|1/3|5 T+3=|4/6/|2
adding k mod n to each entry. 24 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

» Let / be the minimal entry for which the entry immediately
above or to its left is > /.
Switch 7 with the larger of these two entries.
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, a ?‘
let T + k be obtained by T=|1/3|5 T+3=|4/6/|2
adding k mod n to each entry. 24 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

» Let / be the minimal entry for which the entry immediately
above or to its left is > /.
Switch 7 with the larger of these two entries.

3]

N~
(@)}
N
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, a ?‘
let T + k be obtained by T=|1/3|5 T+3=|4/6/|2
adding k mod n to each entry. 24 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

» Let / be the minimal entry for which the entry immediately
above or to its left is > /.
Switch 7 with the larger of these two entries.

3] 3]

2 —

S
(@)}
S
[
N
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, a ?‘
let T + k be obtained by T=|1/3|5 T+3=|4/6/|2
adding k mod n to each entry. 24 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

» Let / be the minimal entry for which the entry immediately
above or to its left is > /.
Switch 7 with the larger of these two entries.

3] 3] 3]

2 — 2 =1

S
(@)}
S
[
S
N
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, a ?‘
let T + k be obtained by T=|1/3|5 T+3=|4/6/|2
adding k mod n to each entry. 24 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

» Let / be the minimal entry for which the entry immediately
above or to its left is > /.
Switch 7 with the larger of these two entries.

3] 3] 3] 3]

2 — 2 =1 2 =1

= jdt(T+3)

S
(@)}
S
[
S
N
S

Cyclic descents of standard Young tableaux



Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, a ?‘
let T + k be obtained by T=|1/3|5 T+3=|4/6/|2
adding k mod n to each entry. 24 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

» Let / be the minimal entry for which the entry immediately
above or to its left is > /.
Switch 7 with the larger of these two entries.

3] 3] 3] 3]
4162 w— 412 —|1]4|2] w—|1(2]4] =jdt(T+3)
5|1 5|6 5|6 5|6

Note: promotion is just p(T) = jdt(T +1), p~}(T) = jdt(T —1).



Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on SYT(A\")

4] 1] 2] 3]
1
4]

{1,4}y {1,2} {2,3} {3,4}
For T € SYT(AY), define n € cDes(T) iff

» nis strictly north of 1, or

» n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.

3]

w

T=|1|2
4
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on SYT(A\")

4] 1] 2] 3]
1
4]
(1,4} {12} {23} (3,4

For T € SYT(AY), define n € cDes(T) iff
» nis strictly north of 1, or
» n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.
3] 4]
T=|1]|2 T-3=[2|3
4 1

w
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on SYT(A\")

4] 1] 2] 3]
1
4]
(1,4} {12} {23} (3,4

For T € SYT(AY), define n € cDes(T) iff
» nis strictly north of 1, or
» n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.
3] 4] 4]
T=[1]2 T—-3=[2[3] +~—|1[3] =jdt(T-3)
4 1 2

w
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on SYT(A\")

4] 1] 2] 3]
1
4]
(1,4} {12} {23} (3,4

For T € SYT(AY), define n € cDes(T) iff
» nis strictly north of 1, or

» n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.

3] 4] 4]

1]2 T-3=[2[3] —[1]3 =jdt(T-3)

4] 1] 2]

4 € cDes 4 —3=1¢€ Des

w

T =




Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

The bijection ¢ that rotates cDes on SYT(A")

The map ¢ : SYT(A\Y) — SYT(AY) given by
H(T)=jdt(jdt(T —d)+d+1),

where d is the letter in the disconnected cell of T,
is a bijection such that cDes(¢(T)) = cDes(T)+ 1 for all T.
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

The bijection ¢ that rotates cDes on SYT(A")

The map ¢ : SYT(A\Y) — SYT(AY) given by
H(T)=jdt(jdt(T —d)+d+1),

where d is the letter in the disconnected cell of T,
is a bijection such that cDes(¢(T)) = cDes(T)+ 1 for all T.

In fact, ¢ determines a Z,-action on SYT(\Y).
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

The bijection ¢ that rotates cDes on SYT(A")

The map ¢ : SYT(A\Y) — SYT(AY) given by
H(T)=jdt(jdt(T —d)+d+1),

where d is the letter in the disconnected cell of T,
is a bijection such that cDes(¢(T)) = cDes(T)+ 1 for all T.

In fact, ¢ determines a Z,-action on SYT(\Y).

Example:
¢
¥ |
6, [, @, @, @, [5
1/3|5 —2]4]6 —1]3|5 —[1]2]4 —1]3|5 —11]2]4
214 3/56 416 516 216 36

cDes {1,3,6} {1,2,4} {2,3,5} {3,4,6} {1,4,5} {2,5,6}
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Cyclic descent extensions for other shapes

Theorem (Adin-E.-Roichman '17)

There exists a cyclic descent extension on SYT(A/p) for A/ of
each of these shapes:
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Cyclic descent extensions for other shapes

Theorem (Adin-E.-Roichman '17)

There exists a cyclic descent extension on SYT(A/p) for A/ of
each of these shapes:

E (strip)
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Cyclic descent extensions for other shapes

Theorem (Adin-E.-Roichman '17)

There exists a cyclic descent extension on SYT(A/p) for A/ of
each of these shapes:

[ 1]
E (strip) (hook plus a box)
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Cyclic descent extensions for other shapes

Theorem (Adin-E.-Roichman '17)

There exists a cyclic descent extension on SYT(A/p) for A/ of
each of these shapes:

[ 1]
E (strip) (hook plus a box)

[ ] (two-row straight)
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Cyclic descent extensions for other shapes

Theorem (Adin-E.-Roichman '17)

There exists a cyclic descent extension on SYT(A/p) for A/ of
each of these shapes:

[ 1]
E (strip) (hook plus a box)

[ ] (two-row straight) ] | (two-row skew)
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Shapes Ut
Strips

Main results Hooks plus a box
Two-row shapes

Cyclic descent extensions for other shapes

Theorem (Adin-E.-Roichman '17)

There exists a cyclic descent extension on SYT(A/p) for A/ of
each of these shapes:

[ 1]
E (strip) (hook plus a box)

[ ] (two-row straight) ] | (two-row skew)

In each case we have an explicit combinatorial definition of cDes.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on strips

Let A/ be a strip of size n, i.e., a shape whose components are
one-row or one-column shapes.

0
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on strips

Let A/ be a strip of size n, i.e., a shape whose components are
one-row or one-column shapes.

0

For T € SYT(A/u), let n € cDes(T) iff

» n is strictly north of 1, or

» 1 and n are in the same vertical component.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on strips

Let A/ be a strip of size n, i.e., a shape whose components are
one-row or one-column shapes.

0

For T € SYT(A/u), let n € cDes(T) iff

» n is strictly north of 1, or

» 1 and n are in the same vertical component.

Equivalently, n € cDes(T) iff n—1 & Des(p~1(T)).
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of ¢ on strips

Let A/ be a strip of size n, i.e., a shape whose components are
one-row or one-column shapes.

0

As in the case of rectangles, the promotion operator
p: T jdt(T 4 1) shifts cDes.

P
A7 1

/2] ) [2[3] [3[4] & [1]4
3 =1 =11 =2
4 4 2 3

cDes {2,3} {3,4} {1,4} {1,2}




Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on hooks plus a box

Let A= (n—k —2,2,1%), where 0 < k < n— 4.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on hooks plus a box

Let A= (n—k —2,2,1K), where 0 < k < n— 4.

Tolo

For T € SYT(A), let n € cDes(T) iff

» Tr5 —1lisin the first column of T.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on hooks plus a box

Let A= (n—k —2,2,1K), where 0 < k < n— 4.

Tolo

For T € SYT(A), let n € cDes(T) iff

» Tr5 —1lisin the first column of T.

For this shape, this definition of cDes is unique.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on hooks plus a box

Let A= (n—k —2,2,1K), where 0 < k < n— 4.

Tolo

For T € SYT(A), let n € cDes(T) iff
» Tr5 —1lisin the first column of T.

For this shape, this definition of cDes is unique.

We have a complicated explicit definition of a bijection ¢ that
shifts cDes. It determines a Z-action, but not a Zp-action.
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Shapes A\

Strips

Hooks plus a box
Two-row shapes

Main results

Non-uniqueness of cDes

For many shapes, cyclic descent completions are not unique.

Example: Let A = (4,2)/(2).

1]4]

1/2]

2|3

314]

1/3]

2]4]

2]3

1314

[1]4

[1]2]

124

113
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Non-uniqueness of cDes

For many shapes, cyclic descent completions are not unique.

Example: Let A = (4,2)/(2).

1]4] 1]2] 2]3] 34] 1]3] 24
2]3 13]4 (1[4 112 2[4 1]3

Our defintion of cDes:

{1} {2} {3} {4} {1,3} {2,4}
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Non-uniqueness of cDes

For many shapes, cyclic descent completions are not unique.

Example: Let A = (4,2)/(2).

1]4] 1]2] 2]3] 34] 1]3] 24
2]3 13]4 (1[4 112 2[4 1]3

Our defintion of cDes:

{1} {2} {3} {4} {1,3} {2,4}

Another possible definition of cDes:

{1} {2,4} {3} {4} {1,3} {2}



Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Non-uniqueness of ¢

Even for shapes where cDes in unique, different definitions of ¢
may give different orbit lengths:
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Non-uniqueness of ¢

Even for shapes where cDes in unique, different definitions of ¢
may give different orbit lengths:

1[3]5]
214t
R
3
5

pl6] 5] vs.
)
1[3]5]

4

4]

LSY N

‘U‘le—\

(cDes in red)
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Non-uniqueness of ¢

Even for shapes where cDes in unique, different definitions of ¢
may give different orbit lengths:

1[3]5] 1[3]5] 1[3]5]
214 214 2167
/6 N2|4] 6 4
1/p[6] 5 vs.
3[4 }
5 1]3]5] 1/2]6] 1]2]4]
- 6 4 6]
4] 5 5

(cDes in red)

Cyclic descents of standard Young tableaux



Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.

For T € SYT(A), let n € cDes(T) iff
> the last two entries in the second row of T are consecutive,

that is, T27k = T27k_1 + 1;
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.

For T € SYT(A), let n € cDes(T) iff
> the last two entries in the second row of T are consecutive,

that is, T27k = T27k_1 +1; and
> Tpi1> Ty forevery 1 <i<k.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.

For T € SYT(A), let n € cDes(T) iff
> the last two entries in the second row of T are consecutive,

that is, T27k = T27k_1 +1; and
> Tpi1> Ty forevery 1 <i<k.

Examples:
9€cDes<1 21315 9> because 8 =7+1,4 > 2 and 6 > 3.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.

For T € SYT(), let n € cDes(T) iff
» the last two entries in the second row of T are consecutive,
that is, T27k = T2,k—1 +1; and
> Tpi1> Ty forevery 1 <i<k.

Examples:
1/2[3]5]9] _
9€cDes<4 ARG >because8—7+1,4>2and6>3.
1/3]4]6]9]
2 .
9¢cDes<2578 )because <3
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row straight shapes

Remarks
» When A = (n — 2,2), the definition of cDes viewed as a
two-row shape coincides with the definition viewed as a hook

plus a box.
RN
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row straight shapes

Remarks

» When A = (n — 2,2), the definition of cDes viewed as a
two-row shape coincides with the definition viewed as a hook

plus a box.
HEEEE

» For A = (r, r), the definition of cDes viewed as a two-row
shape coincides with Rhoades’ definition viewed as a
rectangular shape.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of ¢ on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of ¢ on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.

We have a complicated explicit definition of a map ¢ that shifts
cDes, which determines a Z-action (but not a Z,-action).
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of ¢ on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.

We have a complicated explicit definition of a map ¢ that shifts
cDes, which determines a Z-action (but not a Z,-action).

Example:

1[3[5]6]7] ¢ [1]2]4]7]8] # [1]2]3][5]9] « [1]3]4]6]9] &« [1]2]5]7]9]

2l4[8[0] [3/5/6/9] [46/78 [2/5.78] I3 8
¢ [1]2]3]6]8] ¢ [1]2]3][4]7] 4 [1[3]4]5]8] 4 [1][2]4]5]6]
“lal5[7[0] [5/6/80] [2(6/7]9] [3[7.8]9

(cDes in red)
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row skew shapes

Let \/u=(n—k+ m, k)/(m) with k # m+ 1.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row skew shapes

Let \/u=(n—k+ m, k)/(m) with k # m+ 1.

T
~
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row skew shapes

Let \/u=(n—k+ m, k)/(m) with k # m+ 1.

1 ]
~

We have two different definitions of cDes on \/u that work, but
both are complicated.
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Shapes A\
Strips

Main results Hooks plus a box
Two-row shapes

Definition of cDes on two-row skew shapes

Let \/u=(n—k+ m, k)/(m) with k # m+ 1.

| 1 ]
~

We have two different definitions of cDes on \/u that work, but
both are complicated.

We do not have an explicit description of ¢ in this case.
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Connected ribbons
Future work
Other shapes

How about other shapes?

For which shapes A/ is there a cyclic descent extension for
SYT(A/p)?
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Connected ribbons
Future work
Other shapes

Connected ribbons

Definition
A connected skew shape A/ is a ribbon if it does not contain a

2 x 2 rectangle.

Examples:
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Connected ribbons
Future work
Other shapes

Connected ribbons

Definition
A connected skew shape A/ is a ribbon if it does not contain a
2 x 2 rectangle.

Examples:

Proposition
If A/p is a connected ribbon, then there is no cyclic descent
extension on SYT(A/p).

Cyclic descents of standard Young tableaux



Connected ribbons
Future work
Other shapes

Other shapes

After running computations for all partitions of size n < 16...

Conjecture (Adin-E.-Roichman '16)

For every A that is not a hook, there is a cyclic descent extension
on SYT()).
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Connected ribbons
Future work
Other shapes

Other shapes

After running computations for all partitions of size n < 16...

Conjecture (Adin-E.-Roichman '16)

For every A that is not a hook, there is a cyclic descent extension
on SYT()).

Theorem (Adin-Reiner-Roichman '17)

For every skew shape A/ that is not a connected ribbon, there is a
cyclic descent extension on SYT(\/p).
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Connected ribbons
Future work
Other shapes

Other shapes

After running computations for all partitions of size n < 16...

Conjecture (Adin-E.-Roichman '16)
For every A that is not a hook, there is a cyclic descent extension
on SYT()).

Theorem (Adin-Reiner-Roichman '17)

For every skew shape A/ that is not a connected ribbon, there is a
cyclic descent extension on SYT(\/p).

The proof uses affine symmetric functions, Gromov-Witten
invariants, and nonnegativity properties of Postnikov's toric Schur
polynomials.
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Connected ribbons
Future work
Other shapes

Other shapes

After running computations for all partitions of size n < 16...

Conjecture (Adin-E.-Roichman '16)
For every A that is not a hook, there is a cyclic descent extension
on SYT()).

Theorem (Adin-Reiner-Roichman '17)

For every skew shape A/ that is not a connected ribbon, there is a
cyclic descent extension on SYT(\/p).

The proof uses affine symmetric functions, Gromov-Witten
invariants, and nonnegativity properties of Postnikov's toric Schur
polynomials.

Unfortunately, it does not provide an explicit description of cDes on
a given SYT.



Connected ribbons
Future work
Other shapes

Future work

Problem: For each non-ribbon shape \/pu:

» Find an explicit combinatorial description of cDes on
SYT(\/p).
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Connected ribbons
Future work
Other shapes

Future work

Problem: For each non-ribbon shape \/pu:

» Find an explicit combinatorial description of cDes on
SYT(\/p).

» Describe an explicit bijection ¢ that shifts cDes cyclically and,
ideally, generates a Z,-action.
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Connected ribbons
Future work
Other shapes

Future work

Problem: For each non-ribbon shape \/pu:

» Find an explicit combinatorial description of cDes on
SYT(\/p).

» Describe an explicit bijection ¢ that shifts cDes cyclically and,
ideally, generates a Z,-action.

Thanks!
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Connected ribbons
Future work
Other shapes
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Other shapes
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