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Descents and cyclic descents

Descents and cyclic descents of permutations

Let π = π1 . . . πn ∈ Sn be a permutation.

The descent set of a π is

Des(π) = {i ∈ [n − 1] : πi > πi+1},

where [m] := {1, 2, . . . ,m}.

The cyclic descent set of π is

cDes(π) :=

{
Des(π) ∪ {n}, if πn > π1,

Des(π), otherwise.

Introduced by Cellini ’95; further studied by Dilks, Petersen and
Stembridge ’09 among others.
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Descents and cyclic descents of permutations

Examples
π = 23154 : Des(π) = {2, 4} ,

cDes(π) = {2, 4, 5}.
π = 3415 : Des(π) = {2, 4} , cDes(π) = {2, 4}.
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Descents and cyclic descents of permutations

Examples
π = 23154 : Des(π) = {2, 4} , cDes(π) = {2, 4, 5}.
π = 34152 : Des(π) = {2, 4} ,

cDes(π) = {2, 4}.
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Descents and cyclic descents

Properties of cDes

For D ⊆ [n], let D + 1 be the subset of [n] is obtained from D by
adding 1 mod n to each element.

The map cDes : Sn → 2[n] has two properties:

(a) cDes(π) ∩ [n − 1] = Des(π) ∀π ∈ Sn,

(b) there exists a bijection φ : Sn → Sn such that

cDes(φ(π)) = cDes(π) + 1.

Indeed, we can just define φ by

π1π2 . . . πn−1πn
φ7−→ πnπ1π2 . . . πn−1
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Young diagrams

A partition of n is a sequence λ = (λ1, λ2, . . . ) such that
λ1 ≥ λ2 ≥ · · · ≥ 0 and λ1 + λ2 + · · · = n. We write λ ` n.

λ can be represented as Young diagram.

Example: λ = (4, 3, 1)

If the diagram of µ is contained in the diagram of λ, then the
difference of these diagrams is a diagram of skew shape λ/µ.

Example: λ/µ = (5, 3, 3, 1)/(2, 1)

When µ is the empty partition, λ/µ is simply λ.
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Standard Young Tableaux

A standard Young tableau (SYT) of shape λ/µ is a filling of the
diagram of λ/µ with the numbers 1, . . . , n (where n = #boxes)
so that entries increase along rows and along columns.

Examples:

λ = (4, 3, 1)
1 2 4 8
3 5 7
6

λ/µ = (5, 3, 3, 1)/(2, 1)

2 3 9
1 5

4 7 8
6

Denote the set of all SYT of shape λ/µ by SYT(λ/µ).
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Descents of SYT

The descent set of a standard Young tableau T is

Des(T ) = {i : i + 1 is in a lower row than i}.

Examples:

T =
1 2 4 8
3 5 7
6

∈ SYT((4, 3, 1)) Des(T ) = {2, 4, 5}

T =

2 3 9
1 5

4 7 8
6

∈ SYT((5, 3, 3, 1)/(2, 1)) Des(T ) = {3, 5}

Motivating Problem:
Define a cyclic descent set for SYT of any shape λ/µ.
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SYT of rectangular shapes

For r | n, let λ = (r , . . . , r) ` n be a rectangular shape.

Theorem (Rhoades ’10)
For λ = (r , . . . , r), there exists a cyclic descent map
cDes : SYT(λ)→ 2[n] satisfying
(a) cDes(T ) ∩ [n − 1] = Des(T ) ∀T ∈ SYT(λ),
(b) there is a bijection φ : SYT(λ)→ SYT(λ) such that

cDes(φ(T )) = cDes(T ) + 1.

Here, φ is Schützenberger’s jeu-de-taquin promotion operator p.
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SYT of rectangular shapes

1 3 4
2 5 6

→ 1 3 4
2 5

→ 1 3 4
2 5

→ 1 4
2 3 5

→ 1 4
2 3 5

→ 1 2 5
3 4 6

p

p−1

5 /∈ Des 6 /∈ cDes

Rhoades’ definition of cDes for T ∈ SYT(r , . . . , r) declares that

n ∈ cDes(T ) iff n − 1 ∈ Des(p−1(T )).

In fact, p determines a Zn-action. Here it is for λ = (3, 3):

T 1 3 4
2 5 6

p7→ 1 2 5
3 4 6

p7→ 1 2 3
4 5 6

p

cDes(T ) {1, 4} {2, 5} {3, 6}

1 3 5
2 4 6

p7→ 1 2 4
3 5 6

p

{1, 3, 5} {2, 4, 6}
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Reformulation

Definition
Given a set T and map Des : T → 2[n−1],
a cyclic descent extension is a pair (cDes, φ), where
cDes : T −→ 2[n],
φ : T −→ T is a bijection,

satisfying the following conditions for all T ∈ T :
(a) cDes(T ) ∩ [n − 1] = Des(T ),
(b) cDes(φ(T )) = cDes(T ) + 1.

Examples
I T = Sn, with Cellini’s cDes and φ = cyclic rotation.
I T = SYT(r , . . . , r), with Rhoades’ cDes and φ = promotion.
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Reformulation

Motivating Problem:

Is there a cyclic descent extension on SYT(λ/µ)?
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Shapes λ�

Strips
Hooks plus a box
Two-row shapes

Cyclic descents on SYT(λ�)

For a partition λ ` n − 1, let λ� be the skew shape obtained from
λ by placing a disconnected box at its upper right corner.

Example

(3, 3, 1)� =

Theorem (E.-Roichman ’16)
For every λ ` n − 1, there exists a cyclic descent extension on
SYT(λ�).

What is the definition of cDes and φ in this case?
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For T ∈ SYT(λ�), let n ∈ cDes(T ) iff
I n is strictly north of 1, or
I n − d ∈ Des(jdt(T − d)), where d is the letter in the

disconnected cell of T .

What is jdt(T − d)?
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A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes,
let T + k be obtained by
adding k mod n to each entry.

T =
6

1 3 5
2 4

T + 3 =
3

4 6 2
5 1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

I Let i be the minimal entry for which the entry immediately
above or to its left is > i .
Switch i with the larger of these two entries.

3
4 6 2
5 1

7→
3

4 1 2
5 6

7→
3

1 4 2
5 6

7→
3

1 2 4
5 6

= jdt(T+3)

Note: promotion is just p(T ) = jdt(T + 1), p−1(T ) = jdt(T − 1).
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1 3
2

1
2 4
3
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1 3
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1 2
4

{1, 4} {1, 2} {2, 3} {3, 4}

For T ∈ SYT(λ�), define n ∈ cDes(T ) iff
I n is strictly north of 1, or
I n − d ∈ Des(jdt(T − d)), where d is the letter in the

disconnected cell of T .

T =
3

1 2
4

T − 3 =
4

2 3
1

7→
4

1 3
2

= jdt(T − 3)

4 ∈ cDes 4− 3 = 1 ∈ Des
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The bijection φ that rotates cDes on SYT(λ�)

The map φ : SYT(λ�)→ SYT(λ�) given by

φ(T ) = jdt ( jdt(T − d) + d + 1 ) ,

where d is the letter in the disconnected cell of T ,
is a bijection such that cDes(φ(T )) = cDes(T ) + 1 for all T .

In fact, φ determines a Zn-action on SYT(λ�).

Example:

6
1 3 5
2 4

φ7→
1

2 4 6
3 5

φ7→
2

1 3 5
4 6

φ7→
3

1 2 4
5 6

φ7→
4

1 3 5
2 6

φ7→
5

1 2 4
3 6

φ

cDes {1, 3, 6} {1, 2, 4} {2, 3, 5} {3, 4, 6} {1, 4, 5} {2, 5, 6}

6
1 3 5
2 4

φ7→
1

2 4 6
3 5

φ7→
2

1 3 5
4 6

φ7→
3

1 2 4
5 6

φ7→
4

1 3 5
2 6

φ7→
5

1 2 4
3 6

cDes {1, 3, 6} {1, 2, 4} {2, 3, 5} {3, 4, 6} {1, 4, 5} {2, 5, 6}
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Shapes λ�

Strips
Hooks plus a box
Two-row shapes

Cyclic descent extensions for other shapes

Theorem (Adin-E.-Roichman ’17)
There exists a cyclic descent extension on SYT(λ/µ) for λ/µ of
each of these shapes:

(strip) (hook plus a box)

(two-row straight) (two-row skew)

In each case we have an explicit combinatorial definition of cDes.
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Definition of cDes on strips

Let λ/µ be a strip of size n, i.e., a shape whose components are
one-row or one-column shapes.

For T ∈ SYT(λ/µ), let n ∈ cDes(T ) iff
I n is strictly north of 1, or
I 1 and n are in the same vertical component.

Equivalently, n ∈ cDes(T ) iff n − 1 ∈ Des(p−1(T )).
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Definition of φ on strips

Let λ/µ be a strip of size n, i.e., a shape whose components are
one-row or one-column shapes.

As in the case of rectangles, the promotion operator
p : T 7→ jdt(T + 1) shifts cDes.

1 2
3
4

p7→
2 3

1
4

p7→
3 4

1
2

p7→
1 4

2
3

p

cDes {2, 3} {3, 4} {1, 4} {1, 2}
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Definition of cDes on hooks plus a box

Let λ = (n − k − 2, 2, 1k), where 0 ≤ k ≤ n − 4.

For T ∈ SYT(λ), let n ∈ cDes(T ) iff
I T2,2 − 1 is in the first column of T .

For this shape, this definition of cDes is unique.

We have a complicated explicit definition of a bijection φ that
shifts cDes. It determines a Z-action, but not a Zn-action.
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Non-uniqueness of cDes

For many shapes, cyclic descent completions are not unique.

Example: Let λ = (4, 2)/(2).

1 4
2 3

1 2
3 4

2 3
1 4

3 4
1 2

1 3
2 4

2 4
1 3

Our defintion of cDes:

{1} {2} {3} {4} {1, 3} {2, 4}

Another possible definition of cDes:

{1} {2, 4} {3} {4} {1, 3} {2}
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Non-uniqueness of φ

Even for shapes where cDes in unique, different definitions of φ
may give different orbit lengths:

1 3 5
2 4
6 1 2 4

3 6
5

1 3 5
2 6
4

1 2 6
3 4
5

v vs.

1 3 5
2 4
6

1 2 6
3 4
5

v

1 3 5
2 6
4

1 2 4
3 6
5

v

(cDes in red)
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Definition of cDes on two-row straight shapes

Let λ = (n − k , k), where 2 ≤ k ≤ n/2.

For T ∈ SYT(λ), let n ∈ cDes(T ) iff
I the last two entries in the second row of T are consecutive,

that is, T2,k = T2,k−1 + 1; and
I T2,i−1 > T1,i for every 1 < i < k .

Examples:

9 ∈ cDes
(

1 2 3 5 9
4 6 7 8

)
because 8 = 7+ 1, 4 > 2 and 6 > 3.

9 /∈ cDes
(

1 3 4 6 9
2 5 7 8

)
because 2 < 3.
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Shapes λ�

Strips
Hooks plus a box
Two-row shapes

Definition of cDes on two-row straight shapes

Remarks
I When λ = (n − 2, 2), the definition of cDes viewed as a

two-row shape coincides with the definition viewed as a hook
plus a box.

I For λ = (r , r), the definition of cDes viewed as a two-row
shape coincides with Rhoades’ definition viewed as a
rectangular shape.
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Shapes λ�
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Two-row shapes

Definition of φ on two-row straight shapes

Let λ = (n − k , k), where 2 ≤ k ≤ n/2.

We have a complicated explicit definition of a map φ that shifts
cDes, which determines a Z-action (but not a Zn-action).

Example:

1 3 5 6 7
2 4 8 9

φ7→ 1 2 4 7 8
3 5 6 9

φ7→ 1 2 3 5 9
4 6 7 8

φ7→ 1 3 4 6 9
2 5 7 8

φ7→ 1 2 5 7 9
3 4 6 8

φ7→ 1 2 3 6 8
4 5 7 9

φ7→ 1 2 3 4 7
5 6 8 9

φ7→ 1 3 4 5 8
2 6 7 9

φ7→ 1 2 4 5 6
3 7 8 9

(cDes in red)
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Definition of cDes on two-row skew shapes

Let λ/µ = (n − k + m, k)/(m) with k 6= m + 1.

We have two different definitions of cDes on λ/µ that work, but
both are complicated.

We do not have an explicit description of φ in this case.
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How about other shapes?

For which shapes λ/µ is there a cyclic descent extension for
SYT(λ/µ)?
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Connected ribbons

Definition
A connected skew shape λ/µ is a ribbon if it does not contain a
2× 2 rectangle.

Examples:

Proposition
If λ/µ is a connected ribbon, then there is no cyclic descent
extension on SYT(λ/µ).
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Other shapes

After running computations for all partitions of size n < 16...

Conjecture (Adin-E.-Roichman ’16)
For every λ that is not a hook, there is a cyclic descent extension
on SYT(λ).

Theorem (Adin-Reiner-Roichman ’17)
For every skew shape λ/µ that is not a connected ribbon, there is a
cyclic descent extension on SYT(λ/µ).

The proof uses affine symmetric functions, Gromov-Witten
invariants, and nonnegativity properties of Postnikov’s toric Schur
polynomials.

Unfortunately, it does not provide an explicit description of cDes on
a given SYT.
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Future work

Problem: For each non-ribbon shape λ/µ:
I Find an explicit combinatorial description of cDes on

SYT(λ/µ).

I Describe an explicit bijection φ that shifts cDes cyclically and,
ideally, generates a Zn-action.

Thanks!
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Deadline for submissions:
November 14, 2017

Also:

Permutation Patterns
Dartmouth College
July 9-14, 2018

Sergi Elizalde Cyclic descents of standard Young tableaux



Permutations
Standard Young tableaux

Main results
Other shapes

Connected ribbons
Future work

Deadline for submissions:
November 14, 2017

Also:

Permutation Patterns
Dartmouth College
July 9-14, 2018

Sergi Elizalde Cyclic descents of standard Young tableaux


	Permutations
	Descents and cyclic descents

	Standard Young tableaux
	Definitions
	Descents and cyclic descents
	Rectangular shapes
	Cyclic descent extensions

	Main results
	Shapes 
	Strips
	Hooks plus a box
	Two-row shapes

	Other shapes
	Connected ribbons
	Future work


