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Background and Motivation
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Partition Identities

Original: Partitions of n with parts satisfying condition A are equinumerous with
partitions of n with parts satisfying condition B . Euler’s Distinct–Odd,
Rogers-Ramanujan, etc. The prototype for condition A is “Gap
condition”, and for B “Modular condition”.

Refine: G: partitions of n into distinct parts with alternating sum m ;
M: partitions of n into m odd parts.

Bounded: G: partitions of n into distinct parts with the largest part ≤ m ;
M: partitions of n into odd parts such that #of parts + largest part−1

2
≤ m .

Companion: With the same or similar Modular condition, but with different Gap
condition.
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Little Göllnitz family

I Göllnitz (1967)
G1: parts differing by at least 2 and no consecutive odd parts;
M1: parts congruent to 1, 5, 6 (mod 8) .
G2: parts ≥ 2 differing by at least 2 and no consecutive odd parts;
M2: parts congruent to 2, 3, 7 (mod 8) .

I Savage-Sills (2011)
G1: distinct parts in which even-indexed parts are even;
M1: parts congruent to 1, 5, 6 (mod 8) .
G2: distinct parts in which odd-indexed parts are even;
M2: parts congruent to 2, 3, 7 (mod 8) .

I Berkovich-Uncu (2016)
G: distinct parts with i odd-indexed odd parts and j even-indexed odd
parts;
M: distinct parts with i parts congruent to 1 (mod 4) and j parts
congruent to 3 (mod 4) .
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Capparelli family

I Capparelli (1988), related to representations of twisted affine Lie algebras.

G1: parts 6= 1 with λi − λi+1

{
≥ 2 if 3 | λi + λi+1,

≥ 4 otherwise.

M1: distinct parts congruent to 0, 2, 3, 4 (mod 6) .

G2: parts 6= 2 with λi − λi+1

{
≥ 2 if 3 | λi + λi+1,

≥ 4 otherwise.

M2: distinct parts congruent to 0, 1, 3, 5 (mod 6) .

I Alladi-Andrews-Gordon (1995)
G: as previous G1 or G2 with exactly i parts congruent to 1 (mod 3) and
j parts congruent to 2 (mod 3) ;
M: as previous M1 or M2 with exactly i parts congruent to 1 (mod 3)
and j parts congruent to 2 (mod 3) .

I Berkovich-Uncu (2015)
G1: distinct parts with odd-indexed parts 6≡ 1 (mod 3) , even-indexed
parts 6≡ 2 (mod 3) , and no (3l + 2, 3l + 1) as consecutive parts;
M1: the same as previous M1.
G2: distinct parts with odd-indexed parts 6≡ 2 (mod 3) , even-indexed
parts 6≡ 1 (mod 3) , and no (3l + 2, 3l + 1) as consecutive parts;
M2: the same as previous M2.
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Boulet’s four-variable generating function
a b a b a b a b a b

a b a b a b a

a b

c d c d c d c d c d

c d c d c

a b c a b c a b c a

a b c a b c a

a b

d e f d e f d e f d

d e f d e

ω2
π(a, b, c, d) = a10b9c8d7 ω3

π(a, b, c, d , e, f ) = a8b6c5d6e5f 4

Boulet (2006):

Φ(a, b, c, d) :=
∑
π∈P

ω2
π(a, b, c, d) =

(−a,−abc;Q)∞
(Q, ab, ac;Q)∞

, Q := abcd , (1)

Ψ(a, b, c, d) :=
∑
π∈D

ω2
π(a, b, c, d) =

(−a,−abc;Q)∞
(ab;Q)∞

, Q := abcd . (2)

Ψ(q, q, q, q) = (−q; q)∞,

Ψ(xt, x/t, yz , y/z) =
(−xt,−x2yz ; x2y 2)∞

(x2; x2y 2)∞
,

Savage-Sills: x = y = q, t = 0 or z = 0,

Berkovich-Uncu: x = y = q.
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(a; q)0 := 1, (a; q)k :=
k∏

i=1

(1− aqi−1), k ∈ N∗ ∪ {∞}
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k -strict partition
I definition

I ωk -weight and a key decomposition

I weighted generating function



Definition

For k ≥ 1 , we call a partition π “ k -strict” if for any integers r1, r2 , with
1 ≤ r1 ≤ r2 ≤ k − 1 ,

mk + r1 and mk + r2 do not appear together as parts in π. (?)

Denote the set of all k -strict partitions as Sk .

I 1 -strict: ordinary partition.

I 2 -strict: partitions with odd parts distinct

∞∑
n=0

pod(n)qn =
(−q; q2)∞
(q2; q2)∞

= (
∞∑

n=−∞

(−1)nq2n2+n)−1.

For example, there are nine 3 -strict partitions of 10 :

(10), (9, 1), (8, 2), (7, 3), (6, 4), (6, 3, 1), (5, 3, 2), (4, 3, 3), (3, 3, 3, 1).

Note that D ∩ S1 = D ∩ S2 = D , but D ∩ Sk 6= D for k ≥ 3 . Denote
DSk = D ∩ Sk and Ek as the set of partitions into parts as mk each
appearing an even number of times.
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Definition (ωk -weight)

Given a partition π and k ≥ 1 , we label the cells in the odd-indexed (resp.
even-indexed) rows of π′s diagram cyclically from left to right with
a1, a2, . . . , ak (resp. b1, b2, . . . , bk ) and define the product of all the labels on
the diagram as its ωk -weight, denoted by ωk

π

(
(ai ), (bi )

)
.

Previous figures are two examples when k = 2, ω2(a, b, c, d) and
k = 3, ω3(a, b, c, d , e, f ) .

Theorem
For any k ≥ 1 , the map ψk : π 7−→ (π1, π2) is a weight-preserving bijection
from Sk to DSk × Ek such that `(π) = `(π1) + `(π2) and

ωk
π

(
(ai ), (bi )

)
= ωk

π1

(
(ai ), (bi )

)
ωk
π2

(
(ai ), (bi )

)
, (3)

where `(π) stands for the number of parts of π .
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d

a b c
d e f

a b c
d e f d e

a b c a b c
d e f d e f

a b c a b c a b

d e f

a b c
d e f d e f

a b c a b c

d

a b c
d e f d e

a b c a b c a b

7−→
ψ3

,

→
→

→
→

Fig.: Decomposition of π = (8, 6, 6, 5, 3, 3, 3, 1) into (π1, π2) with ω3 -labels



Weighted generating functions

Theorem
For any integer k ≥ 1 , let {a1, a2, . . . , ak , b1, b2, . . . , bk} be 2k commutable
variables, and let

zk = a1 . . . ak , wk = a1b1 . . . akbk ,

xk = a1 + a1a2 + · · ·+ a1 . . . ak−1,

yk = zk(b1 + b1b2 + · · ·+ b1 . . . bk−1).

Then we have ∑
π∈Ek

ωk
π

(
(ai ), (bi )

)
=

1

(wk ;wk)∞
, (4)

∑
π∈Sk

ωk
π

(
(ai ), (bi )

)
=

(−xk ,−yk ;wk)∞
(zk ,wk ;wk)∞

, (5)

∑
π∈DSk

ωk
π

(
(ai ), (bi )

)
=

(−xk ,−yk ;wk)∞
(zk ;wk)∞

. (6)



Four types of blocks when read by columns

a1 . . . a` . . . ak a1 . . . a` . . . ak
b1 . . . b` . . . bk b1 . . . b` . . . bk
...

...
...

...
...

...
b1 . . . b` . . . bk a1 . . . a` . . . ak
a1 . . . a` b1 . . . b`

I II

a1 . . . a` . . . ak a1 . . . a` . . . ak
b1 . . . b` . . . bk b1 . . . b` . . . bk
...

...
...

...
...

...
b1 . . . b` . . . bk a1 . . . a` . . . ak
a1 . . . a` . . . ak b1 . . . b` . . . bk

III IV

Fig.: Four possible types of vertical blocks where 1 ≤ ` ≤ k − 1 .



odd-indexed/even-indexed

We use ol(π) (resp. el(π) ) to denote the number of odd-indexed (resp.
even-indexed) parts that are ≡ l (mod k) . Denote by πo (resp. πe ) the
partition consisting of the odd-indexed (resp. even-indexed) parts of π .

Theorem
For any integer k ≥ 1 , we have

∑
π∈DSk

x |πo |y |πe |
k−1∏
l=1

u
ol (π)
l v

el (π)
l =

(
−

k−1∑
l=1

ulx
l ,−xk

k−1∑
l=1

vly
l ; xky k

)
∞

(xk ; xky k)∞
. (7)

Proof.
In (6), simply take al = ulx/ul−1, bl = vly/vl−1 , for l = 1, . . . , k , where
u0 = uk = v0 = vk = 1 .
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A new companion

∑
π∈DS3

x |πo |y |πe |so1(π)to2(π)ue1(π)v e2(π) =
(−sx − tx2,−ux3y − vx3y 2; x3y 3)∞

(x3; x3y 3)∞
.

( − tx2,−ux3y ) and (−sx , − vx3y 2)

Theorem (Berkovich-Uncu, refined)

For integers n, i , j ≥ 0,m ∈ {1, 2} , the number of partitions enumerated by
Am(n) that have exactly i parts ≡ 2 (mod 3) and j parts ≡ 1 (mod 3)
equals the number of partitions enumerated by Cm(n) that have exactly i
parts ≡ 3m − 1 (mod 6) and j parts ≡ 3m + 1 (mod 6) .

(−sx ,−ux3y ) and ( − tx2, − vx3y 2)

Theorem (F.-Zeng)

For integers n, i , j ≥ 0,m ∈ {1, 2} , let D I
m(i , j , n) be the number of partitions

of n into distinct parts 6≡ −m (mod 3) that have exactly i odd-indexed parts
≡ m (mod 3) and j even-indexed parts ≡ m (mod 3) , and D II

m(i , j , n) the
number of partitions of n into distinct parts 6≡ −m (mod 3) that have exactly
i parts ≡ m (mod 6) and j parts ≡ m + 3 (mod 6) . Then

D I
m(i , j , n) = D II

m(i , j , n).
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(x3; x3y 3)∞
.

( − tx2,−ux3y ) and (−sx , − vx3y 2)

Theorem (Berkovich-Uncu, refined)

For integers n, i , j ≥ 0,m ∈ {1, 2} , the number of partitions enumerated by
Am(n) that have exactly i parts ≡ 2 (mod 3) and j parts ≡ 1 (mod 3)
equals the number of partitions enumerated by Cm(n) that have exactly i
parts ≡ 3m − 1 (mod 6) and j parts ≡ 3m + 1 (mod 6) .

(−sx ,−ux3y ) and ( − tx2, − vx3y 2)

Theorem (F.-Zeng)

For integers n, i , j ≥ 0,m ∈ {1, 2} , let D I
m(i , j , n) be the number of partitions

of n into distinct parts 6≡ −m (mod 3) that have exactly i odd-indexed parts
≡ m (mod 3) and j even-indexed parts ≡ m (mod 3) , and D II

m(i , j , n) the
number of partitions of n into distinct parts 6≡ −m (mod 3) that have exactly
i parts ≡ m (mod 6) and j parts ≡ m + 3 (mod 6) . Then

D I
m(i , j , n) = D II

m(i , j , n).



Bounded case

∑
π∈E3

N,∞

ω3
π =

1

(R;R)bN/3c
, R = abcdef ,

S3
3N+µ := S3

3N+µ(a, b, c, d , e, f ) :=
∑

π∈S3
3N+µ,∞

ω3
π,

DS3
3N+µ := DS3

3N+µ(a, b, c, d , e, f ) :=
∑

π∈DS3
3N+µ,∞

ω3
π,

S3
3N =

∑
T

R(t12 )+(t22 )F (T ),

S3
3N+1 = S3

3N(a, b, c, d , e, f ) + a(abc)NS3
3N(d , e, f , a, b, c),

S3
3N+2 = (1 + a + ab)

∑
T

R(t1+1
2 )+(t22 )F (T ),

DS3
3N+µ = (R;R)NS

3
3N+µ for µ ∈ {0, 1, 2},

where the summation
∑

T is over all quadruples T := (t1, t2, t3, t4) ∈ N4 such
that

4∑
j=1

tj = N, and F (T ) :=
(a + ab)t1 (abcd + abcde)t2 (abc)t3

(R;R)t1 (R;R)t2 (R;R)t3 (R;R)t4
.



Idea of the proof

The largest part ≤ 3N , when viewed vertically, means the total number of
blocks with four types is bounded by N . Alternatively, we can think of this
number is exactly N by filling in empty blocks (of type IV) if necessary. Hence
the constraint on the summation t1 + t2 + t3 + t4 = N .

Next we invoke the following identity due to Euler, for dealing with type I and
II blocks.

∞∑
t1=0

(a + ab)t1R(t12 )

(R;R)t1
= (−a− ab;R)∞.
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a = sx , b = tx/s, c = x/t, d = uy , e = vy/u, f = y/v , x = y = q.

P3N+µ(s, t, u, v ; q) :=
∑

π∈DS3
3N+µ

so1(π)to2(π)ue1(π)v e2(π)q|π|,

For N ≥ 0 , µ ∈ {0, 2} we have:

P3N+µ(0, t, u, 0; q) =
(

1 +
µ

2
tq2
)∑[

N
i , j , k, l

]
q6

t iujq3i2+(3µ−1)i+3j2+j+3k , (8)

P3N+µ(s, 0, 0, v ; q) =
(

1 +
µ

2
sq
)∑[

N
i , j , k, l

]
q6

s iv jq3i2+(3µ−2)i+3j2+2j+3k , (9)

P3N+µ(s, 0, u, 0; q) =
(

1 +
µ

2
sq
)∑[

N
i , j , k, l

]
q6

s iujq3i2+(3µ−2)i+3j2+j+3k ,

(10)

P3N+µ(0, t, 0, v ; q) =
(

1 +
µ

2
tq2
)∑[

N
i , j , k, l

]
q6

t iv jq3i2+(3µ−1)i+3j2+2j+3k ,

(11)



and for µ = 1 ,

P3N+1(0, t, u, 0; q) =
∑[

N
i , j , k, l

]
q6

t iujq3i2−i+3j2+j+3k , (12)

P3N+1(s, 0, 0, v ; q) =
∑[

N
i , j , k, l

]
q6

q3i2−2i+3j2+2j+3k
(
s iv j + s j+1v iqi−j+3N+1

)
,

(13)

P3N+1(s, 0, u, 0; q) =
∑[

N
i , j , k, l

]
q6

q3i2−2i+3j2+j+3k
(
s iuj + s j+1uiq3N+1

)
,

(14)

P3N+1(0, t, 0, v ; q) =
∑[

N
i , j , k, l

]
q6

t iv jq3i2−i+3j2+2j+3k . (15)



Definition
For integers N, n, i , j ≥ 0,m ∈ {1, 2} , let D I

m,3N(i , j , n) be the number of
partitions of n into distinct parts such that

i. each part 6≡ −m (mod 3) ;

ii. each part ≤ 3N ;

iii. there are exactly i odd-indexed parts ≡ m (mod 3) ;

iv. there are exactly j even-indexed parts ≡ m (mod 3) .

Let D II
m,3N(i , j , n) be the number of partitions of n into distinct parts such

that

i. each part 6≡ −m (mod 3) ;

ii. there are exactly i parts ≡ m (mod 6) and these parts are all
≤ 6N + m − 6 ;

iii. there are exactly j parts ≡ m + 3 (mod 6) and these parts are all
≤ 6(N − i) + m − 3 ;

iv. all parts ≡ 0 (mod 3) are ≤ 3(N − i − j) .

Theorem
For integers N, n, i , j ≥ 0,m ∈ {1, 2} ,

D I
m,3N(i , j , n) = D II

m,3N(i , j , n).



The role of conjugation

Proposition

For N and M being any positive integers or ∞ , the operation of conjugation,
denoted as τ , is a bijection from PN,M to PM,N , such that for any
π ∈ PN,M , we have

ω2
π(a, b, c, d) = ω2

τ(π)(a, c, b, d).

In terms of generating function, we have

ΦN,M(a, b, c, d) = ΦM,N(a, c, b, d). (16)



Two expressions for bounded case of k = 2

Ψ2N+ν,∞(a, b, c, d) =
N∑
i=0

[
N
i

]
Q

(−a;Q)N−i+ν(−c;Q)i (ab)i , (17)

Φ2N+ν,∞(a, b, c, d) =
1

(ac;Q)N+ν

N∑
i=0

(−a;Q)N−i+ν(−c;Q)i (ab)i

(Q;Q)N−i (Q;Q)i
, (18)

Ψ2N+ν,∞(a, b, c, d) =
N∑
i=0

[
N
i

]
Q

(−a;Q)i+ν(−abc;Q)i
(ac;Q)N+ν

(ac;Q)i+ν
(ab)N−i ,

(19)

Φ2N+ν,∞(a, b, c, d) =
N∑
i=0

(−a;Q)i+ν(−abc;Q)i (ab)N−i

(Q;Q)i (ac;Q)i+ν(Q;Q)N−i
. (20)



Doubly-bounded case

Theorem
For N,M being non-negative integers, ν, µ = 0 or 1 such that N + ν ≥ 1 , we
have the following expansions:

Φ2N+ν,2M+µ(a, b, c, d) (21)

= δ0µ(ac)M
[
N + M + ν − 1

M

]
Q

+

M+µ−1∑
k=0

(ac)k
[
N + k + ν − 1

k

]
Q

×
N∑

m1,m2,m3,m4≥0
m1+m2+m3+m4=N

[
M − k + m4

m4

]
Q

[
M − k + µ− ν

m1

]
Q

(1 + aν)am1Q(m1+ν
2 )

×
[
M − k + µ− 1 + m2

m2

]
Q

(ab)m2

[
M − k
m3

]
Q

(abc)m3Q(m3
2 ),

ΨN,M(a, b, c, d) (22)

=

bM/2c∑
m=0

(−1)m
m∑

k=0

[
bN/2c

k

]
Q

[
dN/2e
m − k

]
Q

(ac)m−kQk(k+1−m)+(m2)ΦN,M−2m(a, b, c, d).



Recap and final remarks

I New little Göllnitz and new companion of Capparelli fit nicely into the
framework of k -strict partitions.

I Further companions present themselves naturally.

I This combinatorial approach is amenable to bounded cases as well.

I Shed some lights on the connection between two different expansions for
the same weighted generating functions.

I Do the new companion identities possess Lie theoretical implications as
the original Capparelli’s identities?

I Study k -strict partitions ( k ≥ 3 ) for their own sake. For instance, it
appears the sequence enumerating 3 -strict partitions,
(1, 1, 1, 1, 2, 3, 4, 5, . . .) is not registered on OEIS.
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Thank You! Any comments/questions?
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