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Background and Motivation
» Partition Identities

» Little Gollnitz family

» Capparelli family

» Boulet's four-variable generating function



Partition Identities

Original: Partitions of n with parts satisfying condition A are equinumerous with
partitions of n with parts satisfying condition B. Euler's Distinct—Odd,
Rogers-Ramanujan, etc. The prototype for condition A is “Gap
condition”, and for B “Modular condition”.
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Partition Identities

Original:

Refine:
Bounded:

_ompanion:

Partitions of n with parts satisfying condition A are equinumerous with
partitions of n with parts satisfying condition B. Euler's Distinct—Odd,
Rogers-Ramanujan, etc. The prototype for condition A is “Gap
condition”, and for B “Modular condition”.

G: partitions of n into distinct parts with alternating sum m;
M: partitions of n into m odd parts.

G: partitions of n into distinct parts with the largest part < m;
M: partitions of n into odd parts such that #of parts 4 ‘2&stpart=l <

With the same or similar Modular condition, but with different Gap
condition.



Little Gollnitz family

» Gollnitz (1967)
G1: parts differing by at least 2 and no consecutive odd parts;
M1: parts congruent to 1,5,6 (mod 8).
G2: parts > 2 differing by at least 2 and no consecutive odd parts;
M2: parts congruent to 2,3,7 (mod 8).
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» Gollnitz (1967)
G1: parts differing by at least 2 and no consecutive odd parts;
M1: parts congruent to 1,5,6 (mod 8).
G2: parts > 2 differing by at least 2 and no consecutive odd parts;
M2: parts congruent to 2,3,7 (mod 8).
» Savage-Sills (2011)
G1: distinct parts in which even-indexed parts are even;
M1: parts congruent to 1,5,6 (mod 8).
G2: distinct parts in which odd-indexed parts are even;
M2: parts congruent to 2,3,7 (mod 8).
» Berkovich-Uncu (2016)
G: distinct parts with i odd-indexed odd parts and j even-indexed odd
parts;
M: distinct parts with /i parts congruent to 1 (mod 4) and j parts
congruent to 3 (mod 4).



Capparelli family

» Capparelli (1988), related to representations of twisted affine Lie algebras.
>2 if 3| A+ Aiq,

>4 otherwise.

M1: distinct parts congruent to 0,2,3,4 (mod 6).

>2 if 3| A+ A,

> 4 otherwise.

M2: distinct parts congruent to 0,1,3,5 (mod 6).

Gl: parts # 1 with A\j — A\jt1

G2: parts # 2 with \j — A\jj1
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Capparelli family

» Capparelli (1988), related to representations of twisted affine Lie algebras.
>2 if 3| A+ Aiq,

>4 otherwise.

M1: distinct parts congruent to 0,2,3,4 (mod 6).

>2 if 3| Ai + Aiqa,

> 4 otherwise.

M2: distinct parts congruent to 0,1,3,5 (mod 6).

> Alladi-Andrews-Gordon (1995)
G: as previous G1 or G2 with exactly i parts congruent to 1 (mod 3) and
J parts congruent to 2 (mod 3);
M: as previous M1 or M2 with exactly i parts congruent to 1 (mod 3)
and j parts congruent to 2 (mod 3).

» Berkovich-Uncu (2015)
G1: distinct parts with odd-indexed parts # 1 (mod 3), even-indexed
parts £ 2 (mod 3), and no (3/+ 2,3/ + 1) as consecutive parts;
M1: the same as previous M1.
G2: distinct parts with odd-indexed parts # 2 (mod 3), even-indexed
parts 1 (mod 3), and no (3/+ 2,3/ + 1) as consecutive parts;
M2: the same as previous M2.

Gl: parts # 1 with A\j — A\jt1

G2: parts # 2 with \j — A\jj1



Boulet's four-variable

enerating function
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Boulet's four-variable generating function

alblal|bla|b|la|blalb alplclalb|c b
cld|c|d|c|d|c|d|c|d dle|f|d|e d d
alb|lal|b|a|b|a alplclalpb|c
cldlcl|d]|c dle|f|d]|e
alp alb

w2(a, b, c,d) = a"°b°cBd’ wi(a,b,c,d e, f)=ah°c>d%*f*
Boulet (2006):

(—a,—abc; Qe
®(a, b, c,d): —éwﬂ(a b,c,d) = (035,20, Q0o Q :=abcd, (1)
V(a,b,c,d):= > wi(ab,c,d) = %7 Q= abcd.  (2)
TeD

Where P (resp. D) denotes the set of ordinary (resp. strict) partitions.

(a:9)o:=1, (a;q)k:= H(l —ag™), keN"U{oo}

i=1

(a1, a2, .., ami q)s := (a1; )s(a2; )s - - - (am; q)s-




Boulet's four-variable generating function

alb|lal|blalblalblalb alblclal|b]|c b
cld|c|d|c|d|c|d|c|d die|f|d|e d d
alb|lal|b|a|b|a alplclalpb|c
cldlcl|d]|c dle|f|d]|e
alp alb

w2(a, b, c,d) = a"°b°cBd’ wi(a,b,c,d e, f)=ah°c>d%*f*
Boulet (2006):

—a, — bC;Q)oo

®(a,b,c,d) = 3 Wl = CazabeiQu

(a7 7C7 ) 7;)“’”(27 b7 C7 d) (Q7 ab7 aC; Q)oo b Q ade7 (1)

W(a, b, c,d) ;:Zwi(abm,d):%, Q= abcd.  (2)

weD

V(q,9,9,9) = (—4; @)oo,

(=xt, =x*yz; X*y*) oo
(% x2y?) o0 )

Savage-Sills: x=y=q,t=00rz=0,

V(xt,x/t,yz,y/z) =

Berkovich-Uncu: x =y =gq.




k-strict partition
» definition
» wX-weight and a key decomposition

» weighted generating function
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Denote the set of all k-strict partitions as S¥.



Definition
For k> 1, we call a partition m “ k-strict” if for any integers ri, r», with
1<n<n<k-1,
mk+nr and mk+r, do not appear together as parts in 7. (*)

Denote the set of all k-strict partitions as S¥.
» 1-strict: ordinary partition.

» 2-strict: partitions with odd parts distinct

Zpod ((qq)oo_(z(ln2n+n)

n=—o0



Definition
For k> 1, we call a partition m “ k-strict” if for any integers ri, r», with
1<n<n<k-1,
mk+nr and mk+r, do not appear together as parts in 7. (*)

Denote the set of all k-strict partitions as S¥.
» 1-strict: ordinary partition.

» 2-strict: partitions with odd parts distinct
ZPOd (qq)OO_(Z(ln2n+n
For example, there are nine 3-strict partitions of 10:

(10),(9,1),(8,2),(7,3),(6,4),(6,3,1),(5,3,2),(4,3,3),(3,3,3,1).



Definition
For k> 1, we call a partition m “ k-strict” if for any integers ri, r», with
1<n<n<k-1,
mk+nr and mk+r, do not appear together as parts in 7. (*)
Denote the set of all k-strict partitions as S¥.

» 1-strict: ordinary partition.

» 2-strict: partitions with odd parts distinct
ZPOd (qq)OO_(Z(ln2n+n 1.
For example, there are nine 3-strict partitions of 10:

(10),(9,1),(8,2),(7,3),(6,4),(6,3,1),(5,3,2),(4,3,3),(3,3,3,1).

Note that DNS'=DNS?2 =D, but DNS*#D for k > 3. Denote
DS¥ =D NS and EX as the set of partitions into parts as mk each
appearing an even number of times.



Definition (w*

-weight)

Given a partition m and k > 1, we label the cells in the odd-indexed (resp.
even-indexed) rows of 's diagram cyclically from left to right with

ai, a,...,akx (resp. b1, ba, ..., bx) and define the product of all the labels on

the diagram as its w* -weight, denoted by wk ((ai), (b)) -



Definition (w*

-weight)

Given a partition m and k > 1, we label the cells in the odd-indexed (resp.
even-indexed) rows of 's diagram cyclically from left to right with

ai, a,...,akx (resp. b1, ba, ..., bx) and define the product of all the labels on
the diagram as its w* -weight, denoted by wk ((ai), (b)) -

Previous figures are two examples when k = 2,w2(a, b, c,d) and

k =3,w%(a,b,c,d, e, f).

Theorem
For any k > 1, the map vy : m — (n*,7°) is a weight-preserving bijection
from S* to DS* x £% such that (n) = £(7') + £(7*) and

we ((a1), (bi)) = whi((a1), (b)) wha ((a), (b7)), (3)

where £(7t) stands for the number of parts of 7 .
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abcabca\b‘ abcabc\a\b‘ alblcla
dleFldlelF] Vs [dle[fd]e dlelfld
alplclalp|c alplc alplc
dle[fl|d]e d] - [d]e]f
alplc

dle|f

alplc

4]

Fig.: Decomposition of m = (8,6,6,5,3,3,3,1) into (7!, 72) with w3-labels



Weighted generating functions

Theorem

For any integer k > 1, let {a1,a2,...,ak, b1, b2, ..., bk} be 2k commutable

variables, and let

Zk =ar...ak, Wg=aibi...akbx,

Xk =artaa+---+ar...a-1,

Yk = zk(br + biby 4+ - -+ b1 ... bi—1).

Then we have

(Wk; Wk)oo7

S wh (@), (b)) = S W

reSk (Zk7 Wi, Wk)oo

D wal(a) (b)) = (=X —Yki Wh)oo

TEDSk (Zk; Wk)oo



Four types of blocks when read by columns

at... ag ... dk ar... ag ... dk
bi... be ...bk bi... be ...bxk

b1... b[ ...bk al... aye - e
at... ag b1 bg

I I
at... ag ... dk ar... ag ... dk

bi... by ...bk bi... by ...bxk

b1... b[ bk ar... ag ... dk
ai... ap - b1... bg ...bk
1" \%

Fig.: Four possible types of vertical blocks where 1 < /¢ < k —1.



odd-indexed /even-indexed

We use oy(7) (resp. e(m)) to denote the number of odd-indexed (resp.
even-indexed) parts that are =/ (mod k). Denote by 7, (resp. ) the
partition consisting of the odd-indexed (resp. even-indexed) parts of 7.



odd-indexed /even-indexed

We use oy(7) (resp. e(m)) to denote the number of odd-indexed (resp.
even-indexed) parts that are =/ (mod k). Denote by 7, (resp. ) the
partition consisting of the odd-indexed (resp. even-indexed) parts of 7.

Theorem
For any integer k > 1, we have

o S ek
=2 ux,=x" Y vy Xty
-1 =1

k—1
[mol |7el oi(m) e(m) _ ! 00
x'Tely u"y, = . (M
2 e (i)
Proof.

In (6), simply take aj = uix/uj—1, b = viy/vi—1, for I =1,..., k, where
Uozuk:V(J:Vk:l. O



A new companion

2 3 3,2..33
S xdmelylmel o1 eatm) ) o) (=sx — %, —ux’y — Y5 Xy oo

3. 23,3
TEDS3 (% )oc



A new companion

—uxy —vy? i Py ) o
(% X%y oo '

2
S xmelyirel g geal) ) o) (=sx — &,

TeDS3

( —tx%, —ux®y ) and (—sx , —vx®y?)

Theorem (Berkovich-Uncu, refined)

For integers n,i,j > 0,m € {1,2}, the number of partitions enumerated by
Am(n) that have exactly i parts =2 (mod 3) and j parts =1 (mod 3)
equals the number of partitions enumerated by Cn(n) that have exactly i
parts =3m —1 (mod 6) and j parts =3m+1 (mod 6).



A new companion

T xlmelylml o) gl ) ) (=sx — &, —uy — vly? Xy ?)o
x'"ly'"els t u v = 3 3.3 .
rEDS? (% x3y%)eo

( —tx%, —ux®y ) and (—sx , —vx®y?)

Theorem (Berkovich-Uncu, refined)

For integers n,i,j > 0,m € {1,2}, the number of partitions enumerated by
Am(n) that have exactly i parts =2 (mod 3) and j parts =1 (mod 3)
equals the number of partitions enumerated by Cn(n) that have exactly i
parts =3m —1 (mod 6) and j parts =3m+1 (mod 6).

(—sx ,—uxy ) and ( -t —vx®y?)

Theorem (F.-Zeng)

For integers n,i,j > 0,m € {1,2}, let DL(i,j, n) be the number of partitions
of n into distinct parts Z —m (mod 3) that have exactly i odd-indexed parts
=m (mod 3) and j even-indexed parts = m (mod 3), and D!(i,j,n) the
number of partitions of n into distinct parts Z —m (mod 3) that have exactly
i parts = m (mod 6) and j parts = m+ 3 (mod 6). Then

Dy (i, j,n) = Dp(i, j, n).



Bounded case

3 1
> wi = 5m——, R=abcdef,
A= (R: R)iv)
533N+u = 533N+u(a, b,c,d,e, f) = Z wfr,
7l-6533:N+;L,oc
DSiviy = DSiniu(a, byc,d,e f) = > wi,
7r€D33N+,L o

Siv = Z R+ (3 F(T),

Sivi1 = Sin(a, b, c, d, e, ) + a(abc)¥Siy(d, e, f, a, b, c),
Sivia = (14 a+ ab) Z R 12+1)+(122)F(T),
T

DSiniy = (Ri R)nSini, for pe{0,1,2},

where the summation 3°, is over all quadruples T := (t1, t2, t3, t4) € N* such
that

- (a + ab)"(abcd + abcde)®(abc)®

2_ =N and F(T) = = p o) (R R)u(R: Ry (R: R)a

Jj=1




Idea of the proof

The largest part < 3N, when viewed vertically, means the total number of
blocks with four types is bounded by N . Alternatively, we can think of this

number is exactly N by filling in empty blocks (of type 1V) if necessary. Hence
the constraint on the summation t; +to +t3 +ta = N.



Idea of the proof

The largest part < 3N, when viewed vertically, means the total number of
blocks with four types is bounded by N . Alternatively, we can think of this
number is exactly N by filling in empty blocks (of type 1V) if necessary. Hence
the constraint on the summation t; +to +t3 +ta = N.

Next we invoke the following identity due to Euler, for dealing with type | and
Il blocks.

oo

Z (a+ ab)th(tzl)

R R, =(—a—ab;R)w.-

=0



a=sx, b=tx/s, c=x/t,d=uy,e=vy/u, f=y/v,x=y =aq.

Powin(s tuvig) = S s @0 ) ginl

EDSsNJru

For N >0, pe{0,2} we have:

12 N ij 3 i
P3N+,u(07 t,u, 0; q) = (1 + th2) Z |:17 " k7 /:| t u’q3 +(3H Vi 7 +J+3k (8)

Psnip(s,0,0,v; q) = (1 + gsq [ ik l s Vg 3P HBu-2)i+3 T3 (9)

i 3%+ (Bu— 2)l+3j +j+3k
=) [,J,k /} si/q
(10)
oy H, 2 N i J 32 4+(3u—1)i+372+2j+3k

(11)

Psnsu(s,0,u,0; q) = (1 +

N[=



and for p=1,

[N i 37 —it+3/%4j
Psn11(0,t,u,0; q) = Z ik iy ¥ I K (12)
Lo B T g6
Pansa(s,0,0, v: q) = Z ,' ij / q3,-2,2i+3j2+2j+3k (sivj + 5j+lviqifj+3N+1) 7
L7 B T g6
(13)
Pansa(s, 0, u,0; q) = Z ,' ij / q3;2,2i+3j2+j+3k (Siuj + sj+luiq3N+1) 7
L7 B Tl 46
(14)
p N [N i\ g3 i3 23k
3N+1(07 ta 03 Vi q) - Z i J k.| t q . (15)
RENERATI )

q



Definition
For integers N,n,i,j > 0,m € {1,2}, let D;, 3y(i,j,n) be the number of
partitions of n into distinct parts such that

iv.

]

each part Z —m (mod 3);
each part <3N;
there are exactly i odd-indexed parts = m (mod 3);

there are exactly j even-indexed parts = m (mod 3).

Let D,’,’,’a},\,(i,j7 n) be the number of partitions of n into distinct parts such

that
i. each part Z —m (mod 3);
ii. there are exactly i parts = m (mod 6) and these parts are all
<6N-+m-—-6;
iii. there are exactly j parts = m+ 3 (mod 6) and these parts are all
<6(N—i)+m—3;
iv. all parts =0 (mod 3) are <3(N —i—j).
Theorem

For integers N,n,i,j > 0,me {1,2},

Dhan(isj, n) = Dh an(i,j, n).



The role of conjugation

Proposition

For N and M being any positive integers or oo, the operation of conjugation,
denoted as T, is a bijection from Pnm to Pm,n, such that for any

m € Pn,m, we have

wfr(aa ba c, d) = w72'(7r)(87 c, b7 d)
In terms of generating function, we have

CDN,M(a,b,c,d) = ¢M7N(a, [oN b7 d) (16)



Two expressions for bounded case of kK =2

N
Voniv,00(a, b, ¢, d) Z { } N—itv(—c; Q)i(ab), (17)

i=0

. i ,,( c; Q)i(ab)’

Pont,00(a, b, €, d) = o Q e Z: + Q) (18)
Vonivoo(a, b, ¢, d) = Z mo( a; Q)iyv(—abc; Q)i %(ab)m'}

- (19)
Dongv,00(a, b, ¢, d) Z ( Izrauf (,;)b,i,(Q)l( t;?v ,I (20)

i=



Doubly-bounded case

Theorem
For N, M being non-negative integers, v, =0 or 1 such that N+v > 1, we
have the following expansions:

Pontv2mtpu(a, b, ¢, d) (21)
M+p—1
N+ M -1 N+ k -1
:60”,(3C)M |: + JV :| + Z (ac)k |: + 2‘1/ :|
Q k=0 Q

my m

N
S DI [ B Lt Y R

my ,mp,m3,mg >0
my+my+m3+my=N

x {’V’ “hktp—14 ’"2} (e {Mm: k} ) (abe)™ Q(),

ma
Wnu(a, b, ¢, d) (22)
UV’/2J m
Ny N/2 N/Ql (ac)™ £ Q=) @y 1y_om(a, b, c, d).
m=0 k=0 Q Q




Recap and final remarks

> New little Gollnitz and new companion of Capparelli fit nicely into the
framework of k-strict partitions.

» Further companions present themselves naturally.
» This combinatorial approach is amenable to bounded cases as well.

» Shed some lights on the connection between two different expansions for
the same weighted generating functions.



Recap and final remarks

> New little Gollnitz and new companion of Capparelli fit nicely into the
framework of k-strict partitions.

» Further companions present themselves naturally.
» This combinatorial approach is amenable to bounded cases as well.

» Shed some lights on the connection between two different expansions for
the same weighted generating functions.

» Do the new companion identities possess Lie theoretical implications as
the original Capparelli's identities?

» Study k-strict partitions ( k > 3) for their own sake. For instance, it
appears the sequence enumerating 3-strict partitions,
(1,1,1,1,2,3,4,5,...) is not registered on OEIS.
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Thank You! Any comments/questions?
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