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INFINITE FINITELY GENERATED GROUPS

For example: The group Z2, with the operation + is generated by
(1, 0) and (0, 1).

The free group on two generators F2.

Non-example: The group of rational numbers with operation +
is not finitely generated.
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INTRODUCTION: CAYLEY GRAPHS

Given a group G with a finite generating set S, we define the Cayley
graph Γ(G, S) as follows:

Γ has a vertex vg for each element g ∈ G.
There is an edge between vg and vgs for each pair g, s with g ∈ G
and s ∈ S.

Z2
A4

F2
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COGROWTH

Let G be a group with generating set S and Cayley graph Γ(G, S).
The cogrowth sequence l0, l1, . . . of G is defined as follows:

For each n ∈ Z≥0, let ln be the number of walks of length 2n in Γ
starting and ending at the root vertex.

Equivalently, ln is the number of words w of length 2n over the
alphabet S ∪ S−1 which are equal to the identity in G.
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AMENABILITY

A group G, with Cayley graph Γ is amenable if any of the following
(equivalent) conditions hold:

There exists a left invariant, finitely additive probability measure
on G.

Something about Folner sets.

The cogrowth sequence l0, l1, . . . satisfies

lim
n→∞

n
√

ln = 4|S|2 = lim
n→∞

ln
ln−1

.

Surprisingly, this does not depend on the choice of Cayley graph.
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EXAMPLE: COGROWTH OF Z2

The Cayley graph for Z2 is the square lattice.

The cogrowth sequence l0, l1, . . . is given by

ln =

(
2n
n

)2

,

the number of loops of length 2n on the square lattice.

Z2 is amenable because

lim
n→∞

n

√(
2n
n

)2

= 16.
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EXAMPLE: COGROWTH OF F2

The Cayley graph for F2 (the free group on 2 generators) is the
infinite 4-regular tree.

The cogrowth sequence l0, l1, . . . is given by the generating
function

∞∑
n=0

lntn =
3

1 + 2
√

1− 12t
,

F2 is not amenable because

lim
n→∞

n
√

ln = 12 < 16.
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VON NEUMANN CONJECTURE

The Von Neumann conjecture states that a finitely generated
group is non-amenable if and only if it contains F2 as a subgroup.

The if direction is easy to prove.

The other direction is false. If you’re interested in counter
examples, Google the Lodha-Moore groups.
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THOMPSON’S GROUP F

Thompson’s group F is defined by

F = 〈a, b|aaba−1a−1 = baba−1b−1, aaaba−1a−1a−1 = baaba−1a−1b−1〉.

Interesting facts:

does not contain F2 as a subgroup.

might not be amenable.

Big question: Is Thompson’s group F amenable?
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SOME HISTORY ABOUT THOMPSON’S GROUP

(1967) Richard Thompson introduced the group F, hoping that it
is non-amenable, since then it would disprove the Von Neumann
conjecture.

(1980) Ol’shanskii disproves the Von Neumann conjecture
anyway.

(2009) Akhmedov announces a proof that Thompson’s group is
not amenable.

(2009) Akhmedov withdraws his claim.

(2009) Moore proves that if Thompson’s group is amenable, the
Folner sets have to grow extremely quickly.
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SOME HISTORY ABOUT THOMPSON’S GROUP

(2010) Shavgulidze announces a proof that Thompson’s group is
amenable.

(2011) Moore points out that Shavgulidze’s method is hopeless,
because the Folner sets wouldn’t grow extremely quickly.

(2012) Moore announces a proof the Thompson’s group is
amenable.

(2012) Moore retracts his proof.

(2014) Wajnryb and Witowicz announce a proof that
Thompson’s group is not amenable.

(2015) Wajnryb and Witowicz retract their proof.
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PLAN TO DETERMINE WHETHER F IS AMENABLE

We know that Thompson’s group F is amenable if and only if its
cogrowth sequence t0, t1, t2, . . . has exponential growth rate 16.

Plan: find a recursive formula for tn and analyse the asymptotics.
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OUTLINE OF ALGORITHM

For each group element g ∈ F and n ∈ Z≥0, let pg,n be the
number of paths of length n from the identity vertex vε to vg.

Then p2
g,n is the number of loops of length 2n whose midpoint is

vg. So,
tn =

∑
g∈F

p2
g,n.

We can calculate pg,n recursively by

pg,n = pga,n−1 + pga−1,n−1 + pgb,n−1 + pgb−1,n−1.

but the number of group elements g with pg,n > 0 is about 2.618n, so
this algorithm takes a lot of memory.
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OUTLINE OF ALGORITHM

Our less memory intensive version:

While calculating tn, only store values pg,j in memory for
j ≤ k = dn/2e.
To calculate pg,n, use the formula

pg,n =
∑
h∈F

ph,kph−1g,n−k.

Now it only takes O(2.618n/2) = O(1.618n) memory.
It still takes O(2.618n) time though...
Using this algorithm we calculated tn for n < 32. (It took about a
month running on about 60 cores on the hpc cluster at the U of Melb.).
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HAUSDORFF MOMENT PROBLEM

Let the moments cn of a given measure φ(x) be given by

cn =

∫ b

a
xndφ(x) =

∫ b

a
xnµ(x)dx, n = 1, 2, . . . .

The measure is unique.

The Stieltjes transform of φ is

S(z, µ) =

∫ b

a

µdx
z− x

=
1
z

∑
k≥0

ck

zk =
∑
i≥1

λi

z− xi
.

[N − 1,N] Padé approximant converges to the Stieltjes transform.
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HAUSDORFF MOMENT PROBLEM II

The denominator zeros of the PAs provide rigorous bounds on
the support [a, b].

Such a measure exists if the Hankel determinants are all
non-negative. ∣∣∣∣∣∣∣∣

c0 c1 · · · cm

c1 c2 · · · cm+1
· · · · · · · · · · · ·
cm cm+1 · · · c2m

∣∣∣∣∣∣∣∣ ≥ 0.

This is a stringent condition, but when satisfied, it buys a lot.
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RELEVANCE TO THOMPSONS GROUP?

Haagerup, Haagerup and Ramirez-Solano proved that the
cogrowth sequence for F is the moment sequence of a
probability measure.

In fact their proof applies to the cogrowth sequence of any
(locally finite) Cayley graph.

We have extended this to apply to any locally finite graph.

Applied to Thompson’s group F, we get the bound 13.269.

Subject to a plausible, but unproved addtional condition, this can
be improved to 13.706.

The growth of groups, with application to Thompson’s group F. Tony Guttmann
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GROUPS TO STUDY

Z2. Then cn =
(2n

n

)2
, and C(x) = 2K

(
4
√

x
π

)
.

Discrete Heisenberg group. cn ∼ 16n/(2n2), and
CH(x) ∼ 1

2(1− 16x) log(1− 16x).

Lamplighter group. cn ∼ c · 9n · κn1/3 · n1/6. Stretched
exponential.

Z o Z. cn ∼ const · 16n · κn1/3 log2/3 n · ng.

Navas-Brin group. An amenable sub-group of Thompson F.
cn ∼ c.16n, and more slowly than cn ∼ c.16n · κnσ · ng.

The growth of groups, with application to Thompson’s group F. Tony Guttmann
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SERIES ANALYSIS 101.

Given f (z) =
∑

cnzn, the Cauchy-Hadamard theorem tells us

r =
1

lim supn→∞ |cn|1/n
.

Alternatively, the ratio test tells us that

r = lim
n→∞

∣∣∣∣ cn

cn−1

∣∣∣∣ .
If f (z) ∼ C · Γ(γ) · (1− z/zc)

−γ , then cn ∼ C · z−n
c · nγ−1.

|cn|1/n ∼ C1/n

zc

(
1 +

(γ − 1) log n
n

+ O
(

log2 n
n2

))
.

cn

cn−1
=

1
zc

(
1 +

γ − 1
n

+ o(
1
n

)

)
.
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Test series f (z) = exp (−z) · (1− π · z)2/3.
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RATIOS ARE BETTER!

Note: If cn ∼ C · µn · ng, ratios eliminate the leading constant.
rn = µ

(
1 + g

n + o(1
n)
)
.

Ratios of ratios eliminates the growth constant µ.
rrn = rn

rn−1
= 1− g

n2 + o( 1
n2 ).

Modified ratios gets rid of the O(1
n) term.

r(1)n = n · rn − (n− 1) · rn−1 = µ
(
1 + o(1

n)
)
.
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SERIES ANALYSIS 101. DIFFERENTIAL APPROXIMANTS.

∑M
k=0 Qk(z)(z d

dz)kF̃(z) = P(z)

The singularities of F̃(z) are approximated by the zeros
zi, i = 1, . . . ,NM of QM(z).

Exponents γi from the indicial equation. If only a single root at
zi,

γi = M − 1− QM−1(zi)

ziQ′M(zi)
.

The growth of groups, with application to Thompson’s group F. Tony Guttmann



MIN2Col

SERIES ANALYSIS 101. DIFFERENTIAL APPROXIMANTS.

∑M
k=0 Qk(z)(z d

dz)kF̃(z) = P(z)

The singularities of F̃(z) are approximated by the zeros
zi, i = 1, . . . ,NM of QM(z).

Exponents γi from the indicial equation. If only a single root at
zi,

γi = M − 1− QM−1(zi)

ziQ′M(zi)
.

The growth of groups, with application to Thompson’s group F. Tony Guttmann



MIN2Col

SERIES ANALYSIS 101. DIFFERENTIAL APPROXIMANTS.

∑M
k=0 Qk(z)(z d

dz)kF̃(z) = P(z)

The singularities of F̃(z) are approximated by the zeros
zi, i = 1, . . . ,NM of QM(z).

Exponents γi from the indicial equation. If only a single root at
zi,

γi = M − 1− QM−1(zi)

ziQ′M(zi)
.

The growth of groups, with application to Thompson’s group F. Tony Guttmann



MIN2Col

EXAMPLE OF DIFFERENTIAL APPROXIMANTS.

Critical point and exponent estimates for self-avoiding polygons. Numbers in
parentheses give the uncertainty in the last quoted digits.

L Second order DA Third order DA
x2

c 2 − α x2
c 2 − α

0 0.29289321854(19) 1.50000065(41) 0.29289321865(12) 1.50000040(28)
5 0.29289321875(21) 1.50000010(59) 0.29289321852(48) 1.50000041(99)
10 0.29289321855(23) 1.50000060(48) 0.29289321878(32) 1.49999999(97)
15 0.29289321859(19) 1.50000054(43) 0.29289321861(37) 1.50000035(67)
20 0.29289321866(15) 1.50000038(33) 0.29289321860(21) 1.50000049(43)

Not all series behave as nicely as this!
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GETTING MORE RATIOS – THE METHOD OF SERIES

EXTENSION.

In many cases, for example Thompson F, we need more terms.
Not realistic to get vastly more terms exactly, but we can get them
approximately with high enough precision for our purposes by using
the method of series extension.
The idea is simply to use the method of differential approximants to
predict subsequent ratios/terms.
Every differential approximant naturally reproduces exactly all
coefficients used in its derivation.
Being a D-finite differential equation, it implies the value of all
subsequent coefficients.
These subsequent coefficients will usually be approximate.
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GETTING MORE RATIOS II

The first approximate coefficient will be the most accurate, with
accuracy declining with increasing order of predicted coefficients.
In practice we construct many DAs. We then calculate the average of
the predicted coefficients (or ratios) across all constructed DAs, as
well as their standard deviation.
We have experimentally found the true error to be between 1 and 2
standard deviations.
The number of terms we can predict varies from problem to problem.
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COGROWTH SERIES OF INFINITE, FINITELY-GENERATED

GROUPS.

We wish to determine if Thompsons group F is amenable.

To that end, we study the asymptotics of some amenable groups.

We develop techniques to deal with all known behaviour.

Recall that if Thompsons group F is amenable, it is only just
amenable.

If the growth constant of the cogrowth series is 16, the group is
amenable, otherwise not.

We find the growth constant to be very close to 15.0, implying
that the group is not amenable.

The growth of groups, with application to Thompson’s group F. Tony Guttmann
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THE GROUP Z2.

For this group the coefficients of the cogrowth series are just
cn =

(2n
n

)2 ∼ 16n

nπ .
So the ratio of successive terms is

rn =
cn

cn−1
= 16

(
1− 1

n
+

1
4n2

)
.

A ratio plot, based on the first 50 coefficients is clearly going to
the expected limit of 16. The exponent should be −1,
corresponding to a logarithmic singularity of the generating
function, CZ2(x) ∼ c · log(1− 16x).
For this simple example from the first 20 or so coefficients one
immediately obtains

CZ2(x) =
∑

cnxn = 2K
(

4
√

x
π

)
,

where K is the complete elliptic integral of the first kind.
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THE GROUP Z2.

Plot of Z2 ratios against 1/n.
Estimators of exponent g for Z2 vs.
1/n.
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THE HEISENBERG GROUP.

The coefficient asymptotics are cn ∼ 16n/(2n2), from the OGF

CHeisenberg ∼
1
2

(1− 16x) log(1− 16x).

A ratio plot, based on the first 90 coefficients is clearly going to
the expected limit of 16. The exponent should be −2.

Plot of Heisenberg group ratios
against 1/n.

Estimators of exponent g for the
Heisenberg group vs. 1/n.
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THE HEISENBERG GROUP.

We can estimate higher-order asymptotic terms by subtracting
the leading-order term from the coefficients.

Further ratio analysis suggests asymptotics involve increasing
powers of 1/n.

Accordingly, we fit to the assumed form
cn/16n = 1/(2n2) + k1/n3 + k2/n4 + k3/n5.

We find the asymptotics to be

cn = 16n
(

1
2n2 +

0.93341
n3 +

1.530
n4 +

3.30
n5 + O

(
1
n6

))
.

Could do a lot better if worthwhile.
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THE LAMPLIGHTER GROUP.

The lamplighter group L is the wreath product of the group of
order two with the integers, L = Z2 o Z.
For this group,

cn ∼ c · 9n · κn1/3 · n1/6.

Here the presence of a stretched-exponential term, κn1/3
, makes

the analysis more difficult.
We have generated 201 terms of the cogrowth series.
If the series coefficients of a series include a
stretched-exponential term, so that

an ∼ c · µn · κnσ · ng,

with 0 < σ, κ < 1, then the ratios behave as

rn =
an

an−1
∼ µ

(
1 +

σ logκ
n1−σ +

g
n

+ · · ·
)
.
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THE LAMPLIGHTER GROUP.

Experimentally, such a term is signalled by erratic differential
approximants and ratio plots against 1/n exhibiting curvature.

The curvature can be largely eliminated by plotting the ratios
against 1/n1−σ, where σ is roughly estimated by choosing its
value so as to maximise linearity.

We can eliminate the O(1/n) term by calculating the modified
ratios

r(1)n = n · rn − (n− 1) · rn−1 = µ

(
1 +

σ2 logκ
n1−σ + o

(
1
n

))
.
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THE LAMPLIGHTER GROUP.

Modified lamplighter group ratios vs. n−2/3.
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THE LAMPLIGHTER GROUP.

Recall r(1)n =∼ µ
(

1 + σ2 logκ
n1−σ

)
.

A plot of ln = log |1− r(1)n /µ| against log(n) should be linear
with gradient σ − 1.

We calculate the local gradient
(ln − ln−1)/(log(n)− log(n− 1)), and plot this against 1/n4/3.

Let’s also estimate σ without assuming the growth constant µ by
taking the ratio of modified ratios.

r(2)n =
r(1)n

r(1)n−1

= 1− σ2(1− σ) logκ
n2−σ + o(nσ−2).

A plot of log |r(2)n − 1| against log n should be linear with
gradient σ − 2.
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THE LAMPLIGHTER GROUP.

Estimates of σ − 1 vs. n−4/3. Estimates of σ − 2 vs. n−2/3.
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THE LAMPLIGHTER GROUP.

Assuming µ = 9, and σ = 1/3, we estimate the remaining parameters
in the asymptotic expression by direct fitting to the logarithm of the
coefficients. From cn ∼ c · 9n · κn1/3 · ng we get

log cn − n · log 9 ∼ n1/3 · logκ+ g · log n + log c.

We fit successive triples of coefficients to estimate the three
unknowns, logκ, g and log c.
We estimate logκ ≈ −2.78, g ≈ 0.17, and log c ≈ −0.6.
Using the known value g = 1/6, we can get logκ ≈ −2.775, and
log c ≈ −0.5.
As far as we are aware, these two constants have not previously been
estimated.
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ANALYSIS OF GROUP Z o Z

This group has coefficients that behave as

an ∼ const · 16n · κnσ logδ n · ng, with σ = 1/3 and δ = 2/3.

The ratios behave as

rn =
an

an−1
∼ 16

(
1 +

σ · logκ · logδ n
n1−σ +

δ · logκ · logδ−1 n
n1−σ +

g
n
· · ·
)
.

We have generated series to order x276 for this group.
A ratio plot against 1/n is strongly concave. Plotting against
1/n2/3 is much closer to linearity, but is still slightly concave.
Again we eliminate the O(1/n) term using modified ratios
r(1)n = n · rn − (n− 1) · rn−1:

= 16
(

1 +
logκ
9n2/3

(
log2/3 n + 4 log−1/3 n− 2 log−4/3 n

)
+ o(n−5/3)

)
.
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ANALYSIS OF GROUP Z o Z

Modified ratios for Z o Z vs. n−2/3.
Modified ratios for Z o Z vs.(

log2/3 n + 4 log−1/3 n− 2 log−4/3 n
)

n−2/3.
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What about estimating µ? One way is from the modified ratio plots.
All are seen to be tracking towards a value very close to 16. To
estimate σ without assuming µ we use ratios of ratios:

rr(1)
n =

rn

rn−1
= 1+

logκ · logδ n
n2−σ

(
σ(σ − 1) +

δ(2σ − 1)

log n
+
δ(δ − 1)

log2 n

)
− g

n2 +o(1/n2).

Next, we eliminate the O(1/n2) term:

rr(2)
n =

n2rr(1)
n − (n− 1)2rr(1)

n−1

2n− 1
= 1 +

c log δn
n2−σ (1 + O(1/ log n)) .

A plot of log |rr(2)
n − 1| against log n should be close to linear, as the

logarithmic term will vary very slowly over the range of n-values at our
disposal, with gradient σ − 2.
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We plot the local gradient against 1/n.
It appears to be going to −1.62 to − 1.61, implying
σ ≈ 0.38 or 0.39, rather than the known value of 1/3.

Estimators of exponent σ − 2 vs. 1/n.The growth of groups, with application to Thompson’s group F. Tony Guttmann
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If we include the confluent logarithmic term log2/3 n in the exponent

of the stretched-exponential term, plotting instead log
(

r(2)
n −1

log2/3 n

)
against log n, the corresponding plot of the local gradient is clearly
going to a limit around −5/3, consistent with the known value
σ = 1/3.

Estimators of exponent σ−2 vs. 1/n, assuming a confluent logarithmic term.The growth of groups, with application to Thompson’s group F. Tony Guttmann
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Assuming µ = 16, σ = 1/3 and κ = 2/3, we again estimate the
remaining parameters by fitting to the log of the coefficients.
From cn ∼ c · 16n · κn1/3 log2/3 n · ng, we get

log cn − n · log 16 ∼ n1/3 · log2/3 n · logκ+ g · log n + log c.

Proceeding as before, we estimate logκ ≈ −1.64. It is difficult to
estimate the other parameters with any certainty.
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Anticipating our analysis of Thompson’s group F, we attempt to
estimate both the exponents σ and δ without knowing the value of µ.
We first form the ratio of ratios rr(1)n to eliminate µ.
If we now form the sequence

tn =
rr(1)n − 1

rr(1)n−1 − 1
(1)

this eliminates the base κ of the stretched-exponential term, since

n(tn − 1) ∼ σ − 2 +
δ

n log n
.

So plot n(tn − 1) against 1/(n log n) to estimate of σ − 2.
We estimate δ, from

n log2 n(n(tn − 1)− (n− 1)(tn−1 − 1)) ∼ −δ + O(1/ log n).
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The estimate of σ − 2 appears to be going to a limit of around -1.6 or
below, c.f. the known exact value of −5/3, while the estimate of δ is
harder to estimate, but the plot is certainly consistent with the known
value 2/3. This exponent is difficult to estimate without many more
terms than we currently have.

Estimates of σ − 2 vs. 1/(n log n)
Estimates of exponent −δ vs.
1/ log n.

The growth of groups, with application to Thompson’s group F. Tony Guttmann
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THE NAVAS-BRIN GROUP B.

This amenable group was introduced independently by Navas
and Brin, and is a subgroup of Thompson’s group F.

It is an infinite wreath product, with an extra generator
conjugating each generator of the wreath product to the next one.

Two generators: Growth rate of the cogrowth sequence is 16.

It also has a sub-exponential growth term that is very close to
exponential, and so makes the growth rate difficult to estimate.

We have generated 128 terms exactly, and used the method of
series extension to predict the next 590 ratios, the last of which
we expect to be accurate to 1 part in 5× 107.
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We have generated 128 terms exactly, and used the method of
series extension to predict the next 590 ratios, the last of which
we expect to be accurate to 1 part in 5× 107.
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THE NAVAS-BRIN GROUP B.

The asymptotic form of the coefficients is not known.
They must grow more slowly than

cn ∼ c · 16n · κnσ · ng,

where 0 < σ < 1, and 0 < κ < 1.
Possible behaviour might be

cn ∼ c · 16n · κn/ log n · ng,

In that case the ratios will be

rn =
cn

cn−1
∼ 16

(
1 +

constant
log n

+
g
n

+ · · ·
)
.

We do not insist the the first correction term is O(1/ log n), it
could be a power of a logarithm. For our purposes it suffices to
take this term to be O(1/ log n).
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MODIFIED RATIO PLOTS, EXACT AND EXTRAPOLATED

TERMS.

The first 128 modified ratios for the
Navas-Brin group B vs. 1/ log n.
Limit 16 far from obvious.

The first 718 modified ratios for the
Navas-Brin group B vs. 1/ log n.
Limit 16 more plausible.
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ESTIMATING σ, EXACT AND EXTRAPOLATED TERMS.

We next try and estimate the exponent σ, which should be 1, without
assuming µ = 16.

Estimates of σ−2 from 128 terms of
the Navas-Brin group B.

Estimates of σ−2 from 256 terms of
the Navas-Brin group B.
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THOMPSON’S GROUP F.

It is known that the series grows exponentially like µn. If
µ = 16, the group is amenable.

Theorem: Let cn be the number of loops of length 2n in the
standard Cayley graph for Thompson’s group. Then for any real
numbers 0 < a < 1 and 0 < κ < 1, the inequality

cn < 16nκna

holds for all sufficiently large integers n.

Using 4th order DAs, we got 200 further ratios from the 32-term
series. The estimated error is less than 1 part in 4× 105, which is
graphically imperceptible.
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THOMPSON’S GROUP F.

The modified ratios plotted against 1/n display curvature. The same
data plotted against n−1/5 shows curvature in the opposite direction.

Modified ratios vs. 1/n for Thomp-
son’s group F.

Modified ratios vs. n−1/5 for
Thompson’s group F.
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THOMPSON’S GROUP F.

This is strong evidence for the presence of a conventional
stretched-exponential term.

The presence of such a term is incompatible with amenability.
This is our first piece of evidence that the group is not amenable.

This is quite different to the behaviour observed for the
coefficients of the Navas-Brin group B.
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THOMPSON’S GROUP F.

We estimate the exponents in the stretched-exponential term as for
Z o Z. This allows for a stretched-exponential term κnσ logδ n.

Estimators of σ − 2 for Thompson’s
group F vs. 1/n.

Estimators of −δ for Thompson’s
group F vs. 1/n.
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THOMPSON’S GROUP F.

We plot the modified ratios against 1/
√

n. A little curvature is seen.
But a plot against

√
log n/n, is essentially linear.

Extrapolating this we estimate the growth constant, to be 14.8− 15.1.
This is well away from 16, which would be required for amenability.

The first 186 modified ratios for
Thompson’s group F vs. 1/

√
n.

The first 186 modified ratios for
Thompson’s group F vs.

√
log n/n.The growth of groups, with application to Thompson’s group F. Tony Guttmann
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THOMPSON’S GROUP F.

A simple test for amenability is that the ratios of successive
coefficients asymptote to the growth constant µ = 4|S|2.
For the lamplighter group, this ratio behaves as
r(L)n = 9

(
1 + c

n2/3 + o
(

1
n2/3

))
.

For Z o Z one has r(2)n = 16
(

1 + c·log2/3 n
n2/3 + o

(
log2/3 n

n2/3

))
.

For the triple wreath product the corresponding result is
r(3)n = 36

(
1 + c

√
log n

n1/2 + o
(√

log n
n1/2

))
,

For Thompson’s group F all we know is
rn = µ (1 + lower order terms) , and amenable iff µ = 16.
So, a simple test for amenability is to look at the three quotients

9rn

16r(L)n

,
rn

r(2)n

, and
4rn

9r(3)n

.

If Thompson’s group F is amenable, these quotients should all
go to 1.
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THOMPSON’S GROUP F.

Quotient of Thompson
group and lamplighter
group ratios using 200
terms.

Quotient of Thompson
group and Z o Z ratios
using 200 terms.

Quotient of Thompson
group and (Z o Z) o Z
ratios using 200 terms.

All are consistent with a limit around 0.93± 0.02, corresponding to
µ = 14.9± 0.3.
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EXTRAPOLATING BOUNDS.

We can extrapolate the lower bounds {bn}, which are bounds on
√
µ.

Extrapolates to 3.875, so that µ ≈ 15.0.

Plot of bounds bn for Thompson’s
group F against 1/n.

Plot of modified bounds b(1)
n for

Thompson’s group F against 1/
√

n.
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CONCLUSION.

The growth constant for Thompson’s group F is estimated to be close
to 15 by a variety of methods. As a consequence, we conjecture that
Thompson’s group F is not amenable.
With lower confidence, we suggest that the coefficients behave as

cn ∼ c · µn · κnσ logδ n · ng,

where µ ≈ 15, κ ≈ 1/e, σ ≈ 1/2, δ ≈ 1/2, and g ≈ −1.
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