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Graphs on Surfaces

• Let Sg be the orientable surface of genus g

• Graphs on Sg

= Graphs that are embeddable on Sg

= Graphs that can be drawn on Sg without crossing edges

Examples include

B Forests = acyclic graphs

B Planar graphs = graphs that are embeddable on the sphere S0

. . . . . .

• Vertex-labelled graphs on Sg with vertex set [n] := {1, · · · , n}
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Recursive Method

How many trees ( = acyclic connected graphs) are there?

t(i)

1

2

t(n−i)
n−i

2

Let t(n) be the number of rooted trees with vertex set [n]

t(n)

n
=
∑

i

(
n − 2
i − 1

)
t(i)

t(n − i)
n − i

B Polynomial time algorithm to compute the exact number

• planar graphs [ BODIRSKY–GRÖPL–K. 07]
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Recursive Method

B Uniform sampling algorithm [ FLAJOLET–ZIMMERMAN–VAN CUTSEM 94 ]

Generate(n): returns a random tree on [n]

choose a root vertex r with probability 1
n

return Generate(n, r)

Generate(n, r): returns a random tree on [n] with the root vertex r

choose the order i of the subtree with prob. n
t(n)

(n−2
i−1

)
t(i) t(n−i)

(n−i)

let s = min([n] \ {r})
choose a random subset {s} ⊆ {w1, . . . ,wi} ⊆ [n]\{r} (with rel. order)

let {v1, . . . , vn−i} = [n] \ {w1, . . . ,wi} (with relative order)

T1 = Generate(i); relabel vertex j in T1 with wj ( r ′ = root vertex of T1)

T2 = Generate(n − i, r); relabel vertex j 6= r in T2 with vj

return T1 ∪ T2 ∪ {(r ,wr ′ )} with marked r

• planar graphs [ BODIRSKY–GRÖPL–K. 07]



Generating Function for Rooted Trees

Let T (z) be the exponential generating function for rooted trees:

T (z) =
∑

n

t(n)

n!
zn

Then

T (z) = z
(

1 + T (z) +
T (z)2

2!
+

T (z)3

3!
+ · · ·

)
= z eT (z)
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Singularity Analysis for Rooted Trees

[ FLAJOLET–SEDGEWICK 09 ]

View T : z → T (z) as a complex-valued function (which is analytic at z = 0).

Let z = ψ(u) be the functional inverse of u = T (z), i.e.

ψ ◦ T = T ◦ ψ = Id.

Then we have ψ(u) = ue−u , since T (z) = z eT (z), and

∃ u0 ∈ (0,∞) with ψ′(u0) = 0, ψ′′(u0) 6= 0,

in fact, u0 = 1, z0 = ψ(1) = e−1, ψ′(1) = 0, ψ′′(1) = −e−1.

The Taylor expansion of the function ψ : u → ue−u at u0 = 1

ψ(u) = ψ(u0) +
1
2
ψ′′(u0)(u − u0)2 + · · · =

1
e
− 1

2e
(u − 1)2 + · · ·
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Singularity Analysis for Rooted Trees

From local quadratic dependency between z = ψ(u) and u = T (z)

(T (z)− 1)2 =

(u − 1)2 ∼ −2e
(
ψ(u)− 1

e

)

= 2
(

1− ez
)

and the property that T (z) is increasing along the real axis, we obtain

T (z)− 1 ∼ −
√

2 (1− ez).

Applying Transfer Theorem to ∆-analytic function T (z), we obtain

t(n)

n!
= [zn] T (z) ∼ − [zn]

(
2 (1− ez)

)1/2
=

1√
2π

n−3/2 en

and the number t(n) of rooted trees with vertex set [n] satisfies

t(n) ∼ 1√
2π

n−3/2 en n!
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Generating Functions for Planar Graphs

Graphs = set of connected components

G(z) = exp(C(z))

Connected graphs ⇐⇒ block structure [ HARARY–PALMER 78 ]

zC′(z) = z exp(B′(zC′(z)))

2-connected graphs ⇐⇒ networks [ TRAKHTENBROT 58; TUTTE 63; WALSH 82 ]
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∂B(z,y)
∂y = z2(1+N(z,y))

2(1+y)

zN2

1+zN − log 1+N
1+y + M(z,N)

2zN2 = 0

3-conn. planar graphs ⇐⇒ c-nets [ MULLIN–SCHELLENBERG 68 ]

M(z, y) = z2y2

(
1

1 + zy
+

1
1 + y

− 1−
(1 + u)2(1 + v)2

(1 + u + v)3

)
u = zy(1 + v)2, v = y(1 + u)2



Singularity Analysis

Difficulty: analytic integration of implicitly defined function

B(z, y) =
z2

2

∫ y

0

1 + N(z, t)
1 + t

dt ,
zN2

1 + zN
− log

1 + N
1 + y

+
M(z,N)

2z2N
= 0

N(z, y) = analytic part + g(y)(1− z/ρ(y))3/2

B inverse function of y [ BODIRSKY–GIMÉNEZ–K.–NOY 07 (SP); GIMÉNEZ–NOY 09 (PLANAR) ]

y = y(z,N) := −1 + (1 + N) exp
( zN2

1 + zN
+

M(z,N)

2z2N

)
B(z, y) = analytic part + h(y)

(
1− z/ρ(y)

)5/2

B ‘meta-theorem’ with help of implicit functions [ DRMOTA 09 ]

B dissymmetry theorem for tree-like structures [ CHAPUY–FUSY–K.–SHOILEKOVA 08 ]

C(z) = C◦(z) + C◦−◦(z) − C◦→◦(z)

‘combinatorial ’ integration instead of analytic one C(z) =
∫ z

0 C′(t) dt
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Asymptotic Number of Graphs on Surfaces

[ Giménez–Noy 09 ]

The number p(n) of planar graphs with vertex set [n] satisfies

p(n) ∼ α n−
7
2 γn n!

where α > 0 and γ .
= 27.23 are analytic constants.

[ Chapuy–Fusy–Giménez–Mohar–Noy 11 ]

The number sg(n) of graphs on Sg with vertex set [n] satisfies

sg(n) ∼ αg n
5g
2 −

7
2 γn n!

where αg > 0 is an analytic constant and γ is the same as for the planar case.
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Decomposition along connectivity

• Recursive method

• Singularity analysis

• Saddle-point method



Block-Stable Graphs

• A block of a graph G is a maximal 2-connected subgraph of G.

• A class G of graphs is block-stable if it

(1) contains a graph consisting of one edge and its two end vertices

(2) satisfies property that G belongs to G iff all its blocks belong to G

• Examples of classes of block-stable graphs include

classes of graphs specified by a finite list of forbidden 2-conn. minors

B Forests = class of graphs with K3 as a forbidden minor

B Planar graphs = class of graphs with K5, K3,3 as forbidden minors

. . . . . .

• Classes of vertex-labelled block-stable graphs with vertex set [n]
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Generating Functions for Block-Stable Graphs

Let S(n) denote a class of block-stable graphs with vertex set [n] and

let S(z) =
∑

n
|S(n)|

n!
zn be its exponential generating function.

Then S(z) features a universal behaviour

S(z) = G(φ(z))

G(z) = exp(z − zB′(z) + B(z))

f (z) = exp(B′(z))

φ(z) = z f (φ(z))

where B(z) = generating function for 2-connected ones

B Forests: B(z) = z2

2

B Planar graphs:

B(z) = B0 + B2

(
1−

z
ρ

)
+ B4

(
1−

z
ρ

)2
+ B5

(
1−

z
ρ

)5/2
+ · · ·
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Lagrange Inversion and Cauchy’s Coefficient Formula

Let f (z), φ(z) and G(z) be power series with f0 6= 0 that satisfy

φ = z f (φ(z)).

By Lagrange Inversion Formula we have

[zn]φ(z) =
1
n

[zn−1] f (z)n

[zn] G(φ(z)) =
1
n

[zn−1] G′(z)f (z)n.

Furthermore, by Cauchy’s coefficient formula we have

[zn]φ(z) =
1
n

1
2πi

∮
|z|=r

z−n f (z)n dz

[zn] G(φ(z)) =
1
n

1
2πi

∮
|z|=r

G′(z) z−n f (z)n dz

for r > 0 smaller than the radii of convergence of f (z) and G(z).
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Saddle-Point Method I

From φ = z f (φ(z)) we have

[zn]φ(z) =
1
n

[zn−1] f (z)n =
1
n

1
2πi

∮
|z|=r

z−n f (z)n dz

=
1
n

1
2πi

∮
|z|=r

exp (n (− log z + log f (z))) dz

we let r > 0 be a simple saddle-point of a(z) = − log z + log f (z), i.e.

a′(r) = 0, a′′(r) 6= 0

⇐⇒ f (r) = r f ′(r), f ′′(r) 6= 0

Then we have

[zn]φ(z) =
1
n

1
2πi

∮
|z|=r

exp (n a(z)) dz

=
1
n

1
2πi

∮
|z|=r

exp
(

n a(r) +
n a′′(r)

2
(z − r)2 + · · ·

)
dz

∼ 1√
2πa′′(r)

n−3/2 exp(n a(r))

=
1√

2π f ′′(r)/f (r)
n−3/2 (r−1 f (r))n
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Application to Rooted Trees

The generating function T (z) =
∑

n
t(n)
n!

zn for rooted trees satisfies

T (z) = z eT (z)

By Lagrange Inversion Formula we have

t(n)

n!
= [zn] T (z) =

1
n

[zn−1] en z =
1
n

[zn−1]
∑

k

(n z)k

k !
=

1
n

nn−1

(n − 1)!

and so we obtain Cayley’s formula for rooted trees

t(n) = nn−1

Applying the saddle-point method we obtain

t(n)

n!
= [zn] T (z) ∼ 1√

2π f ′′(r)/f (r)
n−3/2 (r−1 f (r))n =

1√
2π

n−3/2 en

because f (z) = ez and r = 1, and thus

t(n) ∼ 1√
2π

n−3/2 en n!



Saddle-Point Method II

By Lagrange inversion formula and Cauchy’s coefficient formula, we have

[zn]G(φ(z)) =
1
n

[zn−1] G′(z) f (z)n

=
1
n

1
2πi

∮
|z|=r

G′(z) z−n f (z)n dz

=
1
n

1
2πi

∮
|z|=r

G′(z) exp (n (− log z + log f (z))) dz.

If f (r) = r f ′(r), f ′′(r) 6= 0, G′(r) = 0 and G′′(r) 6= 0,

then
[zn]G(φ(z)) =

1
n2

1
2πi

∮
|z|=r

h(z) z−n f (z)n dz

∼ h(r)√
2π f ′′(r)/f (r)

n−5/2
(

r−1f (r)
)n
,

where h(z) =
d
dz

z G′(z)

1− zf ′(z)/f (z)
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Generating Functions for Block-Stable Graphs

For the generating function S(z) for a class of block-stable graphs we have

S(z) = G(φ(z))

G(z) = exp(z − zB′(z) + B(z))

f (z) = exp(B′(z))

φ(z) = z f (φ(z))

where B(z) = generating ftn for 2-conn. ones (with dominant singularity ρ)

• subcritical class

B ρB′′(ρ) > 1 =⇒ ∃ r ∈ (0, ρ) s.t. r B′′(r) = 1, 1 + r 2 B′′′(r) > 0

B forests, series-parallel graphs, . . .

• the other class

B ρB′′(ρ) ≤ 1 =⇒ ∀ r ∈ (0, ρ), r B′′(r) 6= 1

B planar graphs
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Saddle-Point Method for Subcritical Classes

[ Hwang–K. 17+ ]
Subcritical class

=⇒ ∃ r ∈ (0, ρ) s.t. r B′′(r) = 1, 1 + r 2 B′′′(r) > 0

=⇒ ∃ r ∈ (0, ρ) s.t. f (r) = r f ′(r), f ′′(r) 6= 0, G′(r) = 0, G′′(r) 6= 0

=⇒ [zn]G(φ(z)) ∼ h(r)√
2π f ′′(r)/f (r)

n−5/2
(

r−1f (r)
)n
,

where h(z) =
(
1 + z

(
1− zB′′(z)

))
exp

(
z − zB′(z) + B(z)

)
For any subcritical class of block-stable graphs

[zn]G(φ(z)) ∼ r exp(r − rB′(r) + B(r))√
2π (1 + r 2B′′′(r))

n−5/2
(

r−1 exp(B′(r))
)n

e.g. for forests,
f (n) ∼ e−1/2

√
2π

n−5/2 en n!
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Saddle-Point Method for Planar Graphs

The class of planar graphs does not belong to the subcritical class, i.e.

ρB′′(ρ) < 1 =⇒ ∀ r ∈ (0, ρ), r B′′(r) 6= 1

[ Hwang–K. 17+ ]Applying the singular expansion of B(z)

B(z) = B0 + B2

(
1−

z
ρ

)
+ B4

(
1−

z
ρ

)2
+ B5

(
1−

z
ρ

)5/2
+ · · ·

we obtain that the number of planar graphs with vertex set [n] satisfies

[zn]G(φ(z))

=
1
n2

1
2πi

∮
|z|=r

h(z) z−n f (z)n dz

=
1
n2

1
2πi

∮
|z|=r

(
1 + z

(
1− zB′′(z)

))
ez−zB′(z)+B(z) z−n eB′(z)n dz

∼
B5eρ+B0+B2

Γ(−5/2)

(
1−

2B4

ρ

)−5/2
n−7/2

(
ρeρ
−1B2

)−n

∼ α n−7/2 γn
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Part I

• Decomposition along connectivity

B Recursive method

B Singularity analysis

B Saddle-point method

Part II

• Core-Kernel approach

B Combinatorial Laplace’s method

• Gaussian matrix integral method



Graphs on Surfaces

Sg = the orientable surface of genus g ≥ 0

Sg(n,m) = { graphs embeddable on Sg with vertex set [n] and m edges }

where m = d n
2 for the average degree d ∈ (0, 6)



Dense Graphs on Sg

Let d ∈ (2, 6) be a constant (independent of n).

[ Giménez–Noy 09 ] for g = 0

[ Chapuy–Fusy–Giménez–Mohar–Noy 11 ] for g ≥ 1

The number of graphs on Sg with vertex set [n] and m = d n
2 edges satisfies

∣∣∣Sg

(
n, d

n
2

) ∣∣∣ ∼ αg(d) n
5
2 g−4 γ(d)n n!

where αg(d) > 0 and γ(d) is the same as the planar case

d
2

27.22 •
γ(d)

e •

256/27 •



Sparse Graphs on Sg

Let F(n,m) = { acylic graphs with vertex set [n] and m edges }

Sg(n,m) = { graphs on Sg with vertex set [n] and m edges }

G(n,m) = { graphs with vertex set [n] and m edges }

Note that
F(n,m) ⊂ Sg(n,m) ⊂ G(n,m)

For d ∈ (0, 1) we have∣∣∣G (n, d
n
2

) ∣∣∣ ∼ ∣∣∣F (n, d
n
2

) ∣∣∣ ∼ c(d) n−3 β(d)n n!

and therefore ∣∣∣Sg

(
n, d

n
2

) ∣∣∣ ∼ c(d) n−3 β(d)n n!



Sparse Graphs on Sg

[ K.–Łuczak 12 ] for g = 0 ; [ K.–Moßhammer–Sprüssel 17+ ] for g ≥ 0

Let d = d(n) ∈ (1− ε, 2 + ε) for ε = ε(n) > 0 with ε = o(1).

• (1) If (d − 1)n1/3 → −∞, then . . .

(2) If (d − 1)n1/3 → c ∈ R, then . . .

(3) If n−1/3 � d − 1 � 1, then∣∣∣Sg

(
n, d

n
2

) ∣∣∣ =
( e

2− d

)(2−d) n
2 nd n

2−
1
2 eO((d−1)n1/3).

• (4) If d converges to a constant in (1, 2), then∣∣∣Sg

(
n, d

n
2

) ∣∣∣ =
( e

2− d

)(2−d) n
2 nd n

2 eO(n1/3).

• (5) If (d − 2)n2/5 → −∞, then . . .

(6) If (d − 2)n2/5 → c ∈ R, then . . .

(7) If n−2/5 � d − 2 � (log n)−2/3, then∣∣∣Sg

(
n, d

n
2

) ∣∣∣ =
(

d − 2
)− 3

4 (d−2)n
nn eO((d−2)n).



Component Structure of Graphs on Sg

Component structure of a graph from Sg(n,m)

tree components unicyclic compopnents complex components

Sg(n,m) = # graphs on Sg with vertex set [n] and m edges

=
∑

k,`

(
n
k

)
Cg(k , k + `) U(n − k ,m − k − `)

Cg(k , k + `) = # complex graphs with vertex set [k ] and k + ` edges

U(n− k ,m− k − `) = # graphs consisting of tree or unicyclic components

with vertex set [n − k ] and m − k − ` edges
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Core-Kernel Approach

• Complex graph G

=⇒ 2-Core = maximal subgraph of G with minimum degree at least two

=⇒ Kernel = obtained from 2-core by replacing each path by an edge

• G is embeddable on Sg if and only if its kernel is embeddable on Sg
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Core-Kernel Approach

• Complex graph G

=⇒ 2-Core = maximal subgraph of G with minimum degree at least two

=⇒ Kernel = obtained from 2-core by replacing each path by an edge

• G is embeddable on Sg if and only if its kernel is embeddable on Sg



Complex Graphs on Sg

• Construct complex graph G on Sg

by

B choosing the kernel of G from the set of possible candidates

B putting on its edges vertices of degree two to obtain the 2-core of G

B adding a forest rooted at vertices of the 2-core of G

Cg(k , k + `) = # complex graphs on Sg with vertex set [k ] and k + ` edges

=
∑

i,j

Kg(2`− j)
(k)i

(2`− j)!

(
i − a `− 1
3`− j − 1

)
i k k−i−1
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Combinatorial Laplace’s method

In order to to analyse a sum of the form

S(n) =
∑
i∈In

Q(i) R(n − i)

=
∑
i∈In

exp (log(Q(i) R(n − i))) ,

we let An(i) = log(Q(i) R(n − i)) and r > 0 be a simple ‘saddle-point’ of A(i)

A′n(r) = 0, A′′n (r) 6= 0 (in fact A′′n (r) < 0)

and estimate

S(n) =
∑
i∈In

exp (An(i)) =
∑
i∈In

exp
(

An(r) +
A′′n (r)

2
(i − r)2 + · · · )

)

∼ exp (An(r))
∑

i=r+O
(√

1/|A′′n (r)|
) exp

(
−|A

′′
n (r)|
2

(i − r)2 + · · ·
)

∼ exp (An(r))

√
2π
|A′′n (r)|

( this would be an ideal scenario)
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Hunt for Optimal Main Contribution

[ K.– MOSSHAMMER–SPRÜSSEL 17+ ]

In order to to analyse a sum of the form

S(n) =
∑
i∈In

exp (An(i))

we determine an optimal interval Jn ⊂ In in the sense that it should be

B large enough so as to provide the main contribution to S(n) , i.e.

∑
i∈In\Jn

An(i) = o (S(n))

B as small as possible so as to yield stronger concentration results



Complex Graphs on Sg

Cg(k , k + `) = # complex graphs on Sg with vertex set [k ] and k + ` edges

=
∑

i,j

Kg(2`− j)
(k)i

(2`− j)!

(
i − a `− 1
3`− j − 1

)
i k k−i−1

in which the main contribution comes from the terms

core-size i = (1 + O(
√
`/k) + O(1/

√
`))
√

3k` and j = Θ(
√
`3/k)



Graphs on Sg

|Sg(n,m)| = # graphs on Sg with vertex set [n] and m = d n
2 edges

for n−1/3 � d − 1� 1

=
∑

k,`

(
n
k

)
Cg(k , k + `) U(n − k ,m − k − `)

=
( e

2− d

)(2−d) n
2 nd n

2−
1
2 eO((d−1)n1/3)

in which the main contribution comes from the terms

complex-size k = (1 + o(1)) (d − 1) n

excess & kernel-size ` = Θ( (d − 1) n1/3)

core-size i = Θ( (d − 1) n2/3)



Two Critical Periods in ’Evolution’ of Rg(n,m)

L(d) = # vertices in largest component in Rg(n,m) with m = d n
2

where d ∈ (0, 6)
[ K.–Łuczak 12 ] for g = 0

[ K.–Moßhammer–Sprüssel 17+ ] for g ≥ 1

d

|L(d)|/n

G(n,m)

critical period: d = 1 + O(n−
1
3 )

0 1 2 3
0

0.5

1

d

|L(d)|/n

Rg(n,m)

first critical period: d = 1 + O(n−
1
3 )

second critical period: d = 2 + O(n−
2
5 )

0 1 2 3
0

0.5

1



Part I

• Decomposition along connectivity

B Recursive method

B Singularity analysis

B Saddle-point method

Part II

• Core-Kernel approach

B Combinatorial Laplace’s method

• Gaussian matrix integral method



Gaussian Integral

The Gaussian integral is defined by

〈f 〉 =
1√
2π

∫ ∞
−∞

f (x) e−
x2
2 dx .

For example, we have

〈xn〉 = ??

{
(n − 1)!! if n is even
0 if n is odd



Gaussian Matrix Integral

Let HN = set of N × N Hermitian matrices M = (Mij ), i.e., Mij = M ji

and dM =
∏

i dMii
∏

i<j d Re(Mij )d Im(Mij ) the Haar measure on HN .

The Gaussian matrix integral is defined by

〈f 〉 =

∫
HN

f (M)e−N Tr( M2
2 )dM∫

HN
e−N Tr( M2

2 )dM
.

Using the source integral 〈eTr(MS)〉 = e
Tr(S2)

2N , we obtain

〈MijMkl〉 =
∂

∂Sji

∂

∂Slk
〈eTr(MS)〉

∣∣∣
S=0

=
∂

∂Sji

∂

∂Slk
e

Tr(S2)
2N

∣∣∣
S=0

=
δilδjk

N
.

where Mij are the entries of the Hermitian matrix M = (Mij ) ∈ HN .
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Gaussian Matrix Integral and Wick’s Theorem

Recall that for a Hermitian matrix M = (Mij ) ∈ HN we have

〈MijMkl〉 =
∂

∂Sji

∂

∂Slk
〈eTr(MS)〉

∣∣∣
S=0

=
∂

∂Sji

∂

∂Slk
e

Tr(S2)
2N

∣∣∣
S=0

=
δilδjk

N
.

[ WICK 50 ]

Let M = (Mij ) ∈ HN and I be a multiset of elements of N × N. Then

〈
∑

I

cI

∏
ij∈I

Mij〉 =
∑

I

cI

∑
pairing P⊂I2

∏
(ij,kl)∈P

〈MijMkl〉

=
∑

I

cI

∑
pairing P⊂I2

∏
(ij,kl)∈P

δilδjk

N



Pictorial Interpretation

[ ’t HOOFT 74; BRÉZIN–ITZYKSON–PARISI–ZUBER 78; DI FRANCESCO 04 . . .]

Pictorial interpretation of 〈MijMkl 〉 =
δilδjk

N

〈MijMkl 〉 = 1
N ⇐⇒

i l and l = i

j k and k = j

Mij ⇐⇒
i

j



Pictorial Interpretation for Matrix Integral of Trace

The Gaussian matrix integral of Tr(Mn) =
∑

1≤i1,i2,··· ,in≤N Mi1 i2 Mi2 i3 · · ·Min i1

satisfies
〈Tr(Mn) 〉 = 〈

∑
1≤i1,i2,··· ,in≤N

Mi1 i2 Mi2 i3 · · ·Min i1〉

=
∑

1≤i1,i2,··· ,in≤N

∑
P

∏
(ik ik+1,il il+1)∈P

δik il+1δil ik+1

N

where P is a partition of {i1i2, i2i3, · · · , ini1} into pairs.
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��
〈Mi1 i2 Mi2 i3 · · ·Min i1 〉 ⇐⇒

i1 i2



Fat Graphs and Maps

[ ’t HOOFT 74; BRÉZIN–ITZYKSON–PARISI–ZUBER 78; DI FRANCESCO 04 . . .]

〈Tr(Mn) 〉 =
∑

1≤i1,i2,··· ,in≤N

∑
P

∏
(ik ik+1,il il+1)∈P

δik il+1δil ik+1

N
.

A pairing P with non-zero contribution to 〈Tr(Mn)〉

⇐⇒ a fat graph with one island and n/2 fat edges ordered cyclically.

It defines uniquely an embedding on a surface: a map!
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Matrix Integral for Maps

Let F be a map with one vertex, e(F ) edges, and f (F ) faces.

• The edges contribute N−e(F ), since each edge contributes N−1.

• The faces contribute N f (F ), since each face attains independently any
index from 1 to N.
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i

i

Thus

〈Tr(Mn) 〉 =
∑

1≤i1,i2,··· ,in≤N

∑
P

∏
(ik ik+1,il il+1)∈P

δik il+1δil ik+1

N
=
∑

F

N−e(F ) + f (F )

where the sum is over all maps F with one vertex.



Matrix Integral for Maps and Graphs on Surfaces

For example,
〈
[
Tr(M3)z3

]4 [
Tr(M2)z2

]3
〉 =

∑
F

N f (F )−e(F ) z3
4 z2

3,

where the sum is over all maps F with

four vertices of degree 3 and three vertices of degree 2.

[ K.–LOEBL 09 ]

The enumeration of graphs embeddable on a surface can be formulated as

the Gaussian matrix integral of an ice-type partition function.



Summary

• Decomposition along connectivity

B Recursive method

B Singularity analysis

B Saddle-point method

• Core-Kernel approach

B Combinatorial Laplace’s method

• Gaussian matrix integral method


