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Part |
® Decomposition along connectivity

> Recursive method
> Singularity analysis

> Saddle-point method

Part Il
® Core-Kernel approach

> Combinatorial Laplace’s method

® Gaussian matrix integral method



Graphs on Surfaces
® Let Sy be the orientable surface of genus g

® Graphs on Sy
= Graphs that are embeddable on Sy
= Graphs that can be drawn on Sy without crossing edges

Examples include

> Forests = acyclic graphs

> Planar graphs = graphs that are embeddable on the sphere Sy



Graphs on Surfaces
® Let Sy be the orientable surface of genus g

® Graphs on Sy
= Graphs that are embeddable on Sy
= Graphs that can be drawn on Sy without crossing edges

Examples include

> Forests = acyclic graphs

> Planar graphs = graphs that are embeddable on the sphere Sy

e \Vertex-labelled graphs on Sy with vertex set [n] := {1,--- ,n}



Recursive Method

How many trees ( = acyclic connected graphs) are there?
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Recursive Method

How many trees ( = acyclic connected graphs) are there?

t(n—i) ,
n—i t(i)

1

Let t(n) be the number of rooted trees with vertex set [n]

-2 N Hn—i
Do (i)

i

> Polynomial time algorithm to compute the exact number

® planar graphs [ BODIRSKY-GROPL-K. 07]



Recursive Method

> Uniform sampling algorithm [ FLAJOLET-ZIMMERMAN—VAN CUTSEM 94 ]

Generate(n): returns a random tree on [n]
choose a root vertex r with probability 15
return Generate(n, r)
Generate(n, r): returns a random tree on [n] with the root vertex r
choose the order i of the subtree with prob. ﬁ (’,’:12) t(1) t((::/i))
let s = min([n] \ {r})
choose a random subset {s} C {wy,...,w;} C[n]\{r} (with rel. order)
let {vq,...,vp_i} =[]\ {ws, ..., w;} (with relative order)

Ty = Generate(/); relabel vertex jin Ty with w; ( r’ = root vertex of Ty)

T, = Generate(n — i, r); relabel vertex j # r in T, with v;
return Ty U To U {(r, w,»)} with marked r

® planar graphs [ BODIRSKY-GROPL—K. 07]
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Let T(z) be the exponential generating function for rooted trees:
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Generating Function for Rooted Trees

Let T(z) be the exponential generating function for rooted trees:

T(2) = > {n) ,n

n!

Then




Singularity Analysis for Rooted Trees
[ FLAJOLET-SEDGEWICK 09 ]

View T : z — T(z) as a complex-valued function (which is analytic at z = 0).
Let z = ¢ (u) be the functional inverse of u = T(z), i.e.
YpoT =Toyp=1d

Then we have ¢(u) = ue™, since T(z) = ze'®, and

3 we(0,00) with /() =0, %" () #0,

infact, up=1, zZ=v(1)=e"', ' (1)=0,¢"(1) = —e".



Singularity Analysis for Rooted Trees
[ FLAJOLET-SEDGEWICK 09 ]

View T : z — T(z) as a complex-valued function (which is analytic at z = 0).
Let z = ¢ (u) be the functional inverse of u = T(z), i.e.
YpoT =Toyp=1d

Then we have ¢(u) = ue™, since T(z) = ze'®, and

3 e (0,00) with o'(up) =0, " (up) %0,
infact, =1, 2 =(1)=e ", /(1) =0, ¢"(1) = —e~".
The Taylor expansion of the function ¢ : u — ue™" at uy = 1

1 2
_E(u_‘l) + ...

W(b) = V(o) + 20" ()~ o)+ =



Singularity Analysis for Rooted Trees

From local quadratic dependency between z = v(u) and u = T(2)

(u—1)~ —2e(v(u) 1)

e
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From local quadratic dependency between z = ¥(u) and u = T(z)

(T(2) =1 = (W=17 ~ —2e(v() = 1) = 2(1 - e2)

and the property that T(z) is increasing along the real axis, we obtain

T(Z) =1 ~ —2(1=e2).



Singularity Analysis for Rooted Trees

From local quadratic dependency between z = ¥(u) and u = T(z)

(T(2) =1 = (W=17 ~ —2e(v() = 1) = 2(1 - e2)

and the property that T(z) is increasing along the real axis, we obtain

T(z)—1 ~ —y/2(1-ez).

Applying Transfer Theorem to A-analytic function T(z), we obtain

n /2 1 am o
Eﬂ) [z]T(z)~—[z](2(1—ez)) = Ens/ze

and the number t(n) of rooted trees with vertex set [n] satisfies

tn) ~ 1 pszgn

Var



Generating Functions for Planar Graphs
Graphs = set of connected components
G(z) = exp(C(2))

Connected graphs <= block structure [ HARARY-PALMER 78 ]
zC'(z) = zexp(B'(zC'(2)))

2-connected graphs <= networks [ TRAKHTENBROT 58; TUTTE 63; WALSH 82 ]
8B(zy) _ Z(1+N(z.y)
ay - 2(1+y)
N2 14N | MzN) _
v oo, + ome = 0
3-conn. planar graphs <= c-nets [ MULLIN-SCHELLENBERG 68 ]
1 1 1+ u)?(1+v)?
M(Z,y) — 22}/2 _1_( -I—U) ( +V)
14+zy 14y (1+u+v)3

u = zy(1+v): v=y(+u)?



Singularity Analysis

Difficulty: analytic integration of implicitly defined function

2 Y14 N N2 1+N  M(z,N
2 P1EN@e o 2 og 1T (2.N) _

B(z.y) :

1+zN_ 1+y
3/2

2 0 14+t
N(z,y) = analyticpart+g(y)(1 — 2/o(y))

222N

=0



Singularity Analysis

Difficulty: analytic integration of implicitly defined function

22 (Y14 N(z,t) ZN? 1+N  M(z,N)
— —— 1 dt —1 - =0
B(z.) 2 Jo 1+t ’ 142N © 1+y 222N
N(z,y) = analytic part+ g(y)(1 — z/p(y))*/?
> inverse function of y [ BODIRSKY-GIMENEZ—K.—NOY 07 (SP); GIMENEZ-NOY 09 (PLANAR) ]
zN? M(z, N)
= N) = —1 1+ N
y = yzN) ++Nexp (755 + o)
. 5/2
B(z,y) = analytic part+ h(y)(1 - z/p(y)>
> ‘meta-theorem’ with help of implicit functions [ DRMOTA 09 ]

> dissymmetry theorem for tree-like structures [ CHAPUY-FUSY-K.~SHOILEKOVA 08 ]
C(2) = Co(2) + Co-o(2) — Comro(2)

‘combinatorial " integration instead of analytic one C(z) = [, C'(t) dt



Asymptotic Number of Graphs on Surfaces

[ Giménez—Noy 09 ]

The number p(n) of planar graphs with vertex set [n] satisfies
7
p(n) ~ an"24"nl

where a > 0 and v = 27.23 are analytic constants.



Asymptotic Number of Graphs on Surfaces

[ Giménez—Noy 09 ]

The number p(n) of planar graphs with vertex set [n] satisfies
_7 5
p(n) ~ an 24"n
where a > 0 and v = 27.23 are analytic constants.
[ Chapuy—Fusy—Giménez—Mohar—Noy 11 ]
The number sy(n) of graphs on Sy with vertex set [n] satisfies
Sg(n) ~ ag n%-% 4" nl

where ag > 0 is an analytic constant and - is the same as for the planar case.



Part |

Decomposition along connectivity

® Recursive method
e Singularity analysis

® Saddle-point method



Block-Stable Graphs

® A block of a graph G is a maximal 2-connected subgraph of G.

® A class G of graphs is block-stable if it
(1) contains a graph consisting of one edge and its two end vertices
(2) satisfies property that G belongs to G iff all its blocks belong to G

o Examples of classes of block-stable graphs include

classes of graphs specified by a finite list of forbidden 2-conn. minors

> Forests = class of graphs with K3 as a forbidden minor

> Planar graphs = class of graphs with Ks, K; 3 as forbidden minors



Block-Stable Graphs

A block of a graph G is a maximal 2-connected subgraph of G.

A class G of graphs is block-stable if it
(1) contains a graph consisting of one edge and its two end vertices
(2) satisfies property that G belongs to G iff all its blocks belong to G

Examples of classes of block-stable graphs include
classes of graphs specified by a finite list of forbidden 2-conn. minors

> Forests = class of graphs with K3 as a forbidden minor

> Planar graphs = class of graphs with Ks, K; 3 as forbidden minors

Classes of vertex-labelled block-stable graphs with vertex set [n]



Generating Functions for Block-Stable Graphs

Let S(n) denote a class of block-stable graphs with vertex set [n] and

let S(z) = >, ‘5(”‘ z" be its exponential generating function.

Then S(z) features a universal behaviour
S(z) = G(¢(2))
G(z) = exp(z - zB'(2) + B(2))
f(z) = exp(B'(2))
$(2) = zf(#(2))

where B(z) = generating function for 2-connected ones
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Generating Functions for Block-Stable Graphs

Let S(n) denote a class of block-stable graphs with vertex set [n] and

let S(z) = >, ‘5(”‘ z" be its exponential generating function.

Then S(z) features a universal behaviour

S(z) = G(¢(2))
G(z2) = exp(z — zB'(z2) + B(2))
f(z) = exp(B'(2))

¢(2) = zH(¢(2))

where B(z) = generating function for 2-connected ones

> Forests: B(z)=%

> Planar graphs:

2 5/2
B(z):Bo+Bz(1—5)+B4(1—5) +Bs(1—5) 4o
P p P



Lagrange Inversion and Cauchy’s Coefficient Formula

Let f(z2), ¢(z) and G(z) be power series with fy # 0 that satisfy

¢ = zf(¢(2)).
By Lagrange Inversion Formula we have
n 1 n— n
[2"16(2) =~ [2"'11(2)

[2"] G(6(2)) = 15 [2""1G (2)f(2)".



Lagrange Inversion and Cauchy’s Coefficient Formula

Let f(z2), ¢(z) and G(z) be power series with fy # 0 that satisfy

¢ = zf(¢(2)).
By Lagrange Inversion Formula we have
2" 6(2) =+ 12" ]1(2)"
(2" G(¢(2)) = % [2"'1G (2)f(2)".

Furthermore, by Cauchy’s coefficient formula we have

1 ‘% —n n

— z " f(2)" dz

2mi |z|=r ( )

1 / —n n
o ?\{d:r G(z)z7"f(2)" dz

for r > 0 smaller than the radii of convergence of f(z) and G(z).

(2" 6(2) =

SI= 3=

(2" G(4(2)) =



Saddle-Point Method |

From ¢ = zf(¢(z)) we have

11

—n n
e L z " f(2)" dz

2" f(2)" =

L4 exp(n (—logz+logf(z))) dz

2mi \2|=r

(2" ¢(2) =

1
n
1
n



Saddle-Point Method |

From ¢ = zf(¢(z)) we have

11

n _ 1 n—1 n _ ' —n n
210 = [ = Sanp e d
1 1
= o5 " exp (n (—logz +logf(z))) dz
we let r > 0 be a simple saddle-point of a(z) = —log z + log f(2), i.e.

a(r)=0, a'(r)#0

Then we have

3
_\_] -

2 6(2) = 1 f;rwpndﬂ)

% ?‘{ﬂ:r exp (na(r) + 2(r) (z—r?+-- ) dz
1

2ma’(r)

SI= SI=

n=3/2 exp(na(r))




Saddle-Point Method |

From ¢ = zf(¢(z)) we have
11

n _ 1 n—1 n _ ' —n n
210 = [ = Sanp e d
1 1
= o5 L exp (n (—logz +logf(z))) dz
we let r > 0 be a simple saddle-point of a(z) = —log z + log f(2), i.e.

air =0, a'(nN#0 <« f(r)=rf(r), '(r#£0

Then we have

‘ —

2100) = [ o . ewna@) o

N
3

i

%7\{4:, exp (na(r) + (z—r)? +> dz

2ra’(r) 7 exp(na(r) = 2 17(r)/f(r)

na’(r)

SI= SI=

n 32 (r " f(r)"

~




Application to Rooted Trees

The generating function T(z) = 3, X ad ) 2" for rooted trees satisfies

T(z) = ze™®
By Lagrange Inversion Formula we have

t(n)

_ n _ 1 n—17 .nz __ 1 n—1 (nz) 1 n”‘1
n! _[Z]T(Z)_n[Z e _n[z ]; k n (n—1)!
and so we obtain Cayley’s formula for rooted trees
t(n) =
Applying the saddle-point method we obtain
t(n) n 1 _3/2 3/
=~ = 1"1"T(2) ~ — n e
= EITE 27 (r)/#(r) ()" \/27

because f(z) = € and r =1, and thus

t(n) ~ 1 g3z
iy




Saddle-Point Method Il
By Lagrange inversion formula and Cauchy’s coefficient formula, we have

(z"1G(¢(2)) (2" G(2) f(2)"

1
2mi z|=r
1
2mi z)=r

SI= SI=3=

G(2) z7"f(2)" dz

G'(z) exp(n (—log z + log f(2))) dz.



Saddle-Point Method i

By Lagrange inversion formula and Cauchy’s coefficient formula, we have

21G((2) = © 12" G'(2) ()"

_ 152%” » G(2) 2" K(2)" dz

- % 2%” » G (z) exp(n (—logz + log f(z))) dz.
L () =rf(r), (N#0, G)=0 and G'(r)#0,
then 2]1G(6(2)) = 5 h(z) 2" 1(2)" dz

m 2ni Ji, -,

N h(r) —5/2 ( 1 n
2r F(N)JHD) | (r f(r))’

d zG(2)

where  h(z) = dz 11— zf'(2)/f(z)



Generating Functions for Block-Stable Graphs

For the generating function S(z) for a class of block-stable graphs we have
S(2) = ( (2))
G(2) = exp(z —zB'(2) + B(2))
f(z) = exp(B (2)
¢(2) = zH(¢(2))

where B(z) = generating ftn for 2-conn. ones (with dominant singularity p)



Generating Functions for Block-Stable Graphs

For the generating function S(z) for a class of block-stable graphs we have
S(2) = G(#(2))
G(2) = exp(z - 2B/(2) + B(2))

f(z) = exp(B'(2))

#(2) = z£(¢(2))

where B(z) = generating ftn for 2-conn. ones (with dominant singularity p)

z
V4

® subcritical class
> pB'(p) >1 = 3re(0,p) st rB'(r)=1,1+r*B"(r)>0
> forests, series-parallel graphs, . ..

e the other class

> pB’(p) <1 = Vre(0,p), rB'(r) #1

> planar graphs



Saddle-Point Method for Subcritical Classes

. [ Hwang—K. 17+]
Subcritical class

= 3Jre(0,p) st. rB'(r)=1,1+r*B"(r)>0
= 3re(0,p) st f(r)y=rf(r), {'(r)#0, G'(r)=0, G"(r) #0

h(r) —5/2 (1 n
2wf”(r)/f(r)n (r f(r)) ’

= [2"]G(¢(2)) ~
where  h(z) = (1+z(1-2B"(2)))exp(z - zB(2) + B(2))

For any subcritical class of block-stable graphs

n _ rexp(r—rB'(r)+B(r)) sz (-1 y n
[21G(o(2)) sy " eR(B ()




Saddle-Point Method for Subcritical Classes

. [ Hwang—K. 17+]
Subcritical class

= 3Jre(0,p) st. rB'(r)=1,1+r*B"(r)>0
= 3re(0,p) st f(r)y=rf(r), {'(r)#0, G'(r)=0, G"(r) #0

h(r) n5/2 (r"f(r))n,

— [1606@) ~ s

where  h(z) = (1+z(1-2B"(2)))exp(z - zB(2) + B(2))

For any subcritical class of block-stable graphs

n _ rexp(r—rB'(r)+B(r)) sz (-1 y n
[21G(o(2)) sy " eR(B ()

e.g. for forests, -
9 f(n) ~ &= n52¢ n



Saddle-Point Method for Planar Graphs

The class of planar graphs does not belong to the subcritical class, i.e.

pB'(p) <1 = VYre(0,p), rB'(r)#1



Saddle-Point Method for Planar Graphs

The class of planar graphs does not belong to the subcritical class, i.e.

pB'(p) <1 = VYre(0,p), rB'(r)#1

Applying the singular expansion of B(z) [ HwangK. 17 ]

2 5/2
V4 V4 V4
B(z) = By + By (177>+B4(1——> +35(177) 4o
P P P

we obtain that the number of planar graphs with vertex set [n] satisfies

[2"1G(4(2))
1 1
= -5 — h T f(z)" d.
pol }\{z\:r (2) z (2)" dz
- (142 (1 8"(2)) ) &8~ (D+B@) 7= g8 (@0 g7

n2 ﬁ |z|=r
—5/2
~ w< _%> g (pep”Bz)’"
r(=5/2) p
~ n77/2 ,yn



Part |
® Decomposition along connectivity

> Recursive method
> Singularity analysis

> Saddle-point method

Part Il
® Core-Kernel approach

> Combinatorial Laplace’s method

® Gaussian matrix integral method



Sg(n, m)

Graphs on Surfaces

the orientable surface of genus g > 0

{ graphs embeddable on S, with vertex set [n] and m edges }

where m=d  forthe average degree d € (0, 6)



Dense Graphs on S,

Let d € (2,6) be a constant (independent of n).

[ Giménez-Noy 09] forg =0
[ Chapuy—Fusy—Giménez—Mohar-Noy 11] forg > 1

The number of graphs on Sy with vertex set [n] and m = d § edges satisfies
n 54
’sg (n.d E) ‘ ~  ag(d) n#97* 4(d)" !

where ay(d) > 0 and ~(d) is the same as the planar case
v(d)
27.22

256 /27

e

Nl



Sparse Graphs on S,

Let F(n,m) = {acylic graphs with vertex set [n] and m edges }
Sg(n,m) = {graphs on S, with vertex set [n] and m edges }
G(n,m) = {graphs with vertex set [n] and m edges }

Note that

F(n,m) C Sg(n,m) < G(n,m)

For d € (0,1) we have
]g(n,dg)] ~ ‘ (n.d )‘ ~ c(d)n~ B(d)" !

and therefore
]sg (n.d )‘ ~ c(d) n~3 B(d)" n!



Sparse Graphs on S,
[K—tuczak 12] forg=10, [ K—MoBhammer—Sprussel 17+] forg > 0

Letd =d(n) € (1 —¢,2+4¢€) fore=¢e(n) > 0 with e = o(1).

® (1)If (d—1)n'/3 - —oo, then ...
() 1If (d —1)n'/3 = c € R, then ...
(3 1in"3 « d—1 < 1, then
n| o e \@=dz 40 1 o(d—1)n'/3)
)Sg<"’d§)‘_<2_d> nese :
® (4) If d converges to a constant in (1, 2), then
n N e (2-d)§ d2 ,o(n'/?)
s (mag)| = (z25) T rte
® (5)If (d —2)n?/5 — —oo, then ...
(6) If (d —2)n?/® — c € R, then . ..
(7)Ifn=2/5 <« d—2 <« (logn)—2/3, then

s (n )| = (a-2) 10



Component Structure of Graphs on S,

Component structure of a graph from Sy(n, m)

Lo AR

tree components unicyclic compopnents complex components



Component Structure of Graphs on S,

Component structure of a graph from Sy(n, m)

-
S

tree components unicyclic compopnents complex components

Sy(n,m) = 4 graphs on Sy with vertex set [n] and m edges
_ZH< > Co(k,k+0)U(n—k,m—k— 1)

Cy(k,k+¢) = 4 complex graphs with vertex set [k] and k + ¢ edges
U(n—k,m—k—{) = +# graphs consisting of tree or unicyclic components

with vertex set [n — k] and m — k — ¢ edges



Core-Kernel Approach

® Complex graph G
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Core-Kernel Approach

® Complex graph G

= 2-Core = maximal subgraph of G with minimum degree at least two

— Kernel = obtained from 2-core by replacing each path by an edge

® G is embeddable on Sy if and only if its kernel is embeddable on S,



Complex Graphs on S,

® Construct complex graph G on Sy

Cy(k, k 4+ £) = # complex graphs on Sy with vertex set [k] and k + ¢ edges



Complex Graphs on S,

® Construct complex graph G on Sy by

> choosing the kernel of G from the set of possible candidates

Cy(k, k 4+ £) = # complex graphs on Sy with vertex set [k] and k + ¢ edges

=" Ko(2t—))
ij



Complex Graphs on S,

® Construct complex graph G on Sy by

> choosing the kernel of G from the set of possible candidates

> putting on its edges vertices of degree two to obtain the 2-core of G

Cy(k, k 4+ £) = # complex graphs on Sy with vertex set [k] and k + ¢ edges

_ . (k),’ i—at—1
_Z/: Ko0 =) =i (3@1'1)




Complex Graphs on S,

® Construct complex graph G on Sy by

> choosing the kernel of G from the set of possible candidates
> putting on its edges vertices of degree two to obtain the 2-core of G

> adding a forest rooted at vertices of the 2-core of G

Cy(k, k 4+ £) = # complex graphs on Sy with vertex set [k] and k + ¢ edges

- o (k),’ i—atl—1 c o k—i—1
—;Kg(% Dar—pi\se—j—1)'%




Combinatorial Laplace’s method

In order to to analyse a sum of the form

S(n) = > Q(i)R(n-i)

i€lp



Combinatorial Laplace’s method

In order to to analyse a sum of the form

S(n) = " QU)R(n—i) = 3" exp(log(Q(i) R(n - )))
ich i€l
we let An(i) = log(Q(i) R(n —i)) and r > 0 be a simple ‘saddle-point’ of A(/)
A(r)=0, A (r)#0 (in fact A, (r) < 0)

and estimate

S = 3 e (A(i) = 3 exp (An(r) A0 Gy +...))
(

i€ln i€ln

~ exp (An(r)) 3 exp (_ |A’n’2r)\(,_r)z+m)
i=r+0(/1/1A{ (1] )

2r

~ PO Ay




Combinatorial Laplace’s method

In order to to analyse a sum of the form

sy = 3" Qi) R(n—i) = 3 exp(log(Q(i) Rn— 1)),

ich i€l
we let An(i) = log(Q(i) R(n —i)) and r > 0 be a simple ‘saddle-point’ of A(/)
A(r)=0, A (r)#0 (in fact A, (r) < 0)

and estimate

Z exp (An(i)) = Z exp (An(r) + Ai{z(r)(l.i r? +- ..))
(

S(n)
i€ln i€l
exp (An(r)) 3 exp (_ |An2r)\(,-_ Py +>

i=r+0(/1/1A{ (1] )

2

exp (An(r)) | A%?r)| ( this would be an ideal scenario)

i




Hunt for Optimal Main Contribution

[ K.— MOSSHAMMER—SPRUSSEL 17+ ]

In order to to analyse a sum of the form

= 3" exp(An(i)

i€lp
we determine an optimal interval J, C I, in the sense that it should be

> large enough so as to provide the main contribution to S(n) , i.e.

S Adli) = o(S(m))

i€lp\dJn

> as small as possible so as to yield stronger concentration results



Complex Graphs on S,

Cy(k,k + £) = # complex graphs on Sy with vertex set [k] and k + ¢ edges

. K)i f—al—1\ . x_i_
:E{/: Ky(20 —j) (22_)/.)! (I?,Z—aj—1>’kk 1

in which the main contribution comes from the terms

core-size i = (1+ O(\/¢/k)+ O(1/V))V3kt and j= @(\//37)



Graphs on S,

|Sg(n,m)| = # graphs on Sy with vertex set [n] and m = d § edges

forn P <«d-—1«1

>, (:) Colk,k+ ) U(n— k,m— k — €)

e \C-d2 4o 1 o(d—1)n'/3)
= (— n‘z"ze
(=4)

[N

in which the main contribution comes from the terms

complex-size k = (1+o(1))(d—1)n
excess & kernel-size ¢ = ©((d —1)n'’?)

core-size i =O((d —1)n??)



Two Critical Periods in ’Evolution’ of R,(n, m)

L(d) = # vertices in largest component in Rg(n, m) with m=d §

where d € (0,6
(0.6) [K—tuczak 12] forg =0

[ K—MoBhammer—Sprissel 17+] forg > 1

IL(d)l/n IL(a)l/n
14 1
0.5 1 0.5
0 / , ; 0 ‘ : :
0 1 2 3 d 0 1 2 3 d
G(n, m) Rg(n, m)
critical period: d =1+ O(n’%) first critical period: d =1+ O(n’%)

second critical period: d =2+ O(n‘g)



Part |

® Decomposition along connectivity

> Recursive method
> Singularity analysis

> Saddle-point method

Part Il
® Core-Kernel approach

> Combinatorial Laplace’s method

® Gaussian matrix integral method



Gaussian Integral

The Gaussian integral is defined by

For example, we have

0 if nis odd

S/

(X" = {(n—1)!! if nis even



Gaussian Matrix Integral

Let Hy = setof N x N Hermitian matrices M = (M), i.e., M; = M;
and dM = [T, dM; [,_; d Re(Mj)d Im(Mj) the Haar measure on Hy.

i<j
The Gaussian matrix integral is defined by

Jray f(M)e ™5 aig

(f)
fHN efNTr(MTZ)dM




Gaussian Matrix Integral

Let Hy = setof N x N Hermitian matrices M = (M), i.e., M; = M;
and dM = [T, dM; [,_; d Re(Mj)d Im(Mj) the Haar measure on Hy.

i<j
The Gaussian matrix integral is defined by

oy, f(M)e N %)

(f) =
fHNe NTr &> )dM

(2
Using the source integral (e"™9)) = e”zf/’,we obtain
g 0 Tr(MS) 0 0 M 5,‘/6/‘/(
MM, —_ = _— _—~ g o — K
< 4 kl) 88,, 88/;( <e > S5=0 88]’/ 88/k € S=0 N

where Mj are the entries of the Hermitian matrix M = (Mj) € Hn.



Gaussian Matrix Integral and Wick’s Theorem

Recall that for a Hermitian matrix M = (M) € Hn we have

0 0 grmsy| _ 0 0 e 0
88,, 8S/k S=0 85‘,’,‘ OS/k S=0 N

(MiMyg) =

[WICK 50 ]
Let M = (Mj;) € Hn and I be a multiset of elements of N x N. Then

Sallw - Ya > T wm

ijel paiting PC 2 (ij,kl)eP

Yo > I

pairing PC 2 (ij,kl)eP




Pictorial Interpretation

['t HOOFT 74; BREZIN-ITZYKSON—PARISI-ZUBER 78; DI FRANCESCO 04 . . .]

Pictorial interpretation of ( MMy ) = %
| o—>——
M = .
j o—<—
. i e—>—e | and /=i
(MM ) = & —

jeo—<—e k and k=j



Pictorial Interpretation for Matrix Integral of Trace

The Gaussian matrix integral of Tr(M") = t<iy i ineN Misip Miig - - - M,

i3
satisfies
(Te(M")) = ( Z Mi i, My - - - Mioiy )

1<iy,ip, -+, in <N

_ Z Z H 6iki1\ }\(/;ilik”

1<it,ip, =+ ,in<N- P (ikiks150i 1) EP

where P is a partition of {iiiz, izi5, - - - , ipi1 } into pairs.

» N

"‘ @ Y

Y

it I

M,

ipig *

(M;

i




Fat Graphs and Maps

[t HOOFT 74; BREZIN-ITZYKSON—PARISI-ZUBER 78; DI FRANCESCO 04 . . .]

Si

5ikil+1 i1
(Te(M™)) = Z Z 11 T

1<y ig, o+ ,in<N (ikikst »itiisq)EP

A pairing P with non-zero contribution to (Tr(M"))
<= a fat graph with one island and n/2 fat edges ordered cyclically.

It defines uniquely an embedding on a surface: a map!

b P S
1 P b



Matrix Integral for Maps
Let F be a map with one vertex, e(F) edges, and f(F) faces.

e The edges contribute N~ since each edge contributes N~".

e The faces contribute N'(F), since each face attains independently any
index from 1 to N.

Thus

<Tr(Mn) ) = Z Z H 5’k’/+1 O’/’k+1 Z

1<iy o+ ,in<N (ikik4150i1)EP F

where the sum is over all maps F with one vertex.



Matrix Integral for Maps and Graphs on Surfaces

For example,
( [Tr(MS)zs} [Tr (M?) z2] Z N(P)=eF) 74 7,3

where the sum is over all maps F with

four vertices of degree 3 and three vertices of degree 2.

[K.—LoEBL 09 ]
The enumeration of graphs embeddable on a surface can be formulated as

the Gaussian matrix integral of an ice-type partition function.



Summary

® Decomposition along connectivity

> Recursive method
> Singularity analysis

> Saddle-point method

® Core-Kernel approach

> Combinatorial Laplace’s method

® Gaussian matrix integral method



