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Standard Young Tableaux

Irreducible representations of S,:

Specht modules Sy, for all A+ n.
Basis for Sy: Standard Young Tableaux of shape A:
A =(2,2,1): :
1314] [3]5] [2]4] [2]5] [2]5]
51 [4 [B] [4] [3]

Hook-length formula [Frame-Robinson-Thrall]:

A 51
[Toenhu 4#3%2x1x1

dim Sy = #{SYTs of shape A} = =

Hook length of box u = (i,j) € A: hu:A;—j—l—)\J’.—i—&-l:# [ 5
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Counting skew SYTs

Outer shape A, inner shape p, e.g. for A = (5,4,4,2),u = (3,2,1) 4]

00| 1| N

719

Jacobi-Trudi[Feit 1953]:
ey

M= |\ p|! - det | —————— .
M= =i+
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Counting skew SYTs

Outer shape A, inner shape p, e.g. for A = (5,4,4,2),u = (3,2,1) 4]

00| 1| N

719

Jacobi-Trudi[Feit 1953]:
1 £(2)
FMB = | \/p|! - det {—] .
(Ai_ﬂj_""f)! ij=1

Littlewood-Richardson:

="y F
v
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Counting skew SYTs

Outer shape A, inner shape p, e.g. for A = (5,4,4,2),u = (3,2,1) 4]

00| 1| N

719

Jacobi-Trudi[Feit 1953]:
ey

1
A/ul (N = pj =i+ j)! ij=1

Littlewood-Richardson:
="y F
174

No product formula, e.g. A/ = 0p42/6n: | Font2/0n — Eonta:

x2 3 Xt
14+ Eix+ EQE + E3§ + E4H + ... = sec(x) + tan(x).

Euler numbers: 2,5,16,61....
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Hook-Length formula for skew shapes

Theorem (Naruse, SLC, September 2014)

A=/t > 1 h(lu),

De&(N/u) ueA\D

where E(A\/p) is the set of excited diagrams of A/ .

Excited diagrams:

E(M/p) ={D C X\: obtained from p via B} g EE}
| L E ] |

3 5 5 7 9

q q q q q

1 1 1 1 1
f£(4321/21) :7!( =61
14,33+13433,5+13.3345+12.33.52+12432,52‘7
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Hook-Length formula for skew shapes

¢ ¢ He q ¢’

3 5
2 = Tl _ q q
sa/u(l,9,9%,..) = E q = 33 T2 % - — 4.
TESSYT(4321/21) (1-9)*1—-q%) (1—q)3(1 —q%)3*(1 —q°

Theorem (Morales-Pak-P)
For skew SSYTs, we have that

Ni—i
2 _ Tl — _9’
s\/u(liq,9%..) = Z g7l = Z H [1_qh(i,j)]
(i.))ENND

TESSYT(M\ /1) DeEN /1) (ir]

Theorem (Morales-Pak-P)

For (reverse) plane partitions of skew shape \/u we have that

> are >

TERPP(X/ ) SEPD(N/p) ueS
where PD(A\/p) :={S C [A\]: S C [A\]\ D, for some D € E(A\/p)} is the set of
“pleasant diagrams”.
Other recent proof by [M. Konvalinka]
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Algebralc proof for SSYTs:

6
5 6 6 g «y , ¥
© |
4 5 S &
51,7 s
,\g.? .\S'J
P E S S
2 3 4 4 A YA
Y
1 2 3 W
R e
: 2 s

-
v = 245613, w = 361245

[Ikeda-Naruse, Kreiman]:

Let w =< v be Grassmannian permutations whose
unique descent is at position d with corresponding
partitions 4t C A C d X (n—d). Then the Schubert
class X,, for w at point v is:

[XWHVZ Z H (yV(d+j)*yV(d—i+1))~

De&(N/p) (i)€D
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Algebralc proof for SSYTs:

[Ikeda-Naruse, Kreiman]:

5 16 SIS . .
T 6 «,’N} &/q Let w =< v be Grassmannian permutations whose
T 15 S S unique descent is at position d with corresponding
S partitions 4t C A C d X (n—d). Then the Schubert
2 3 4 SRS . .
40 class Xy, for w at point v is:
1 73 o[ ]
o i Xdl= > TI Owasp = vo@—isn)-

De&(X/p) (i j)eD
v = 245613, w = 361245

Factorial Schur functions:

d
D) o= L0920~ Aol

H1§i<j§d (xi — ;)

[Knutson-Tao, Lakshmibai—Raghavan—Sankaran] Schubert class at a point:

[XW]|V: 1)Z (yv( 1)» "'7yv(d)|_y17---7}/n—1)-
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Algebralc proof for SSYTs:

[Ikeda-Naruse, Kreiman]:

¢ 6 6/@&/& Let w =< v be Grassmannian permutations whose
T 15 S S unique descent is at position d with corresponding
— \ 2 e J ¥ o partitions 4 C A C d.>< (n - d). Then the Schubert
40 class Xy, for w at point v is:
1 PRES o |
J K ¥ [XW]}V= Z H (Vu(d4i) = Yo(d—i+1))-

De&(X/p) (i j)eD
v = 245613, w = 361245

Factorial Schur functions:

d
D) o= L0920~ Aol

H1§i<j§d (xi = x;)

[Knutson-Tao, Lakshmibai—Raghavan—Sankaran] Schubert class at a point:

[XW]|V: 1)Z (yv( 1)» "'7yv(d)|_y17---7}/n—1)-

Evaluationat y =1,9,6%,..., v(d +1 =) =X+ d+1—i, x — Yo(iy = gritdti=i
— Jacobi-Trudi

pj+d—j ; —i
D(q®, . |1 )= detll ]2 (M - 4l _
Sp @b G ) = H,<,(q/\+d+17f_q>\j+d+1—j) o
i<j

-..[simplifications]... = det[hx,_j—,,;+j(1,q, ... )] = sxzu(l,q,- - )
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Combinatorial proofs:

Hillman-Grassl map ®: Reverse Plane Partitions of shape A to Arrays of shape A:

071 s [O]OT1] s [O]OTT].[0]0]0]
0

RRP P = [0[1]2] [0 —[0
T[1[3] [TI[3] ' [0[0[3] ' [0[0[2] 01/ [0]0[0]

|
%ﬁeﬁa%: Array A = ®(P)

Weight(P) = |P|=0+1+2+14+1+3+4+2=10=
=2 jAijhook(i,j)=1%5+1%2+2x1+1x1=: weight(A)

|
N
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Combinatorial proofs:

Hillman-Grassl map ®: Reverse Plane Partitions of shape A to Arrays of shape A:

RRP P = [O]1]2] - [O[T]2] s [O]OTT]  [O[O[T] — [O[OT],[O]0[0]
1113  [I[L13] [0[0]3] [0[0[2]  [0]O[L] [O[0][0]

%ﬁﬁﬁﬁﬁﬁﬁ%_%m A= o(P)

Weight(P) = |P|=0+14+2+1+14+3+2=10=

=2 jAijhook(i,j)=1%5+1%2+2x1+1x1=: weight(A)

[0] 010 0 010 0 010

(1] @ [o]1 (1] @ [o]1 (1] @ [1]0
0]2 01 12 1]0 2|2 110
1] 1] 2] 1] 13] 1]

Theorem (Morales-Pak-P)

The restricted Hillman-Grassl map is a bijection from the SSYTs of shape A/ to the
excited arrays (diagrams in E(\/p) with nonzero entries on the broken diagonals) .

dy
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Combinatorial proofs:

[0] 0J0 [0] 0J0 [0] 0Jo0
1] @ Jo[1 1] @ _Jo[1 1 @ _[1]0
0]2 o[1] [1]2 1[0 2] 2 1]o
L1 L1 2] L1 13 L1

Theorem (Morales-Pak-P)

The restricted Hillman-Grassl map is a bijection from the SSYTs of shape A/ to the
excited arrays (diagrams in £(A\/u) with nonzero entries on the broken diagonals) .

di

dq (D)

Ap

Ag
Proof sketch:
Issue: enforce Os on p and strict increase down columns on A/p.
Show ®~1(A) is column strict in A\/u + support in A/ via properties of RSK
(Integer partition on kth diagonal
(---, P2otk, Pritk) = shape(RSK(A])) is shape of RSK tableau on the
corresponding subrectangle of A)
Thus, ®~1 is injective: restricted arrays — SSYTs of shape \/p.
Bijective: use the algebraic identity.
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Hillman-Grassl on skew RPPs
Weakly increasing rows:
Skew reverse plane partitions < arrays with support “pleasant diagrams”:

PD(A/p) :={S C[\]:S C[M\D, forsome D € E(A\/pn)}

— subsets of complements of the excited diagrams, identified by the “high peaks”.
1

I ) e

AMp S D* = 01(5)
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Hillman-Grassl on skew RPPs
Weakly increasing rows:
Skew reverse plane partitions < arrays with support “pleasant diagrams”:

PD(A/p) :={S C[\]:S C[M\D, forsome D € E(A\/pn)}

— subsets of complements of the excited diagrams, identified by the “high peaks”.
1

AMp S

Theorem (MPP)

The HG map is a bijection between skew RPPs of shape \/u and arrays with certain
nonzero entries (at the “high peaks”):

SRR ol (F=

TERPP(X/ ) SEPD(N/p) ueS

£, 82 B £ &

With?P- partltlons/llmlt comblnatorlal proof of orlgmal Naruse Hook-Length Formula
for FN K
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Non-intersecting lattice paths

Theorem[Lascoux-Pragacz, Hamel-Goulden] If (61, ...,6x) is a Lascoux—Pragacz
decomposition (i.e. maximal outer border strip decomposition) of A\/u, then

k
Sx/u = det [5'9;#91‘ ],',_,':1'

where sz = 1 and So,#60;, = 0 if the 0;#0; is undefined.

01 — border strip following the inner border of A;

0; — inner border of A\ (61 U---U0;_1) etc until p is hit,

then — border strips from each connected part etc.

Ordering: corners.

Strip 0;#0; := shape of 01 between the diagonals of the endpoints of 6; and 6;.

04603602 01

¥lel5l el i)

=il + 1

T |

= (]

Pel o | 11 det
[ [
it r==HIRR et
HT =
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NHLF for border strips

Lemma (MPP)
For a border strip 8 = \/u with end points (a, b) and (c,d) we have

A'fi

s0(1,9,4°,...,) = > H 1— i)

vi(a, b)—>(c d), (i 71)67
CcA

¢ g
sﬁ (1,4, ... 1(73 i; 13 gl))gl2 2333(21;)411(137)_42) + —9(-a22(-g)(1-q%)

gt q i
4 0=a-a?20-a*)(1-a") | 1-02(1=a)1-e")? | (1-a2(1-a>)(1—c*)?

Proofs: induction on |A/p|, or [multivariate] Chevalley formula for factorial Schurs.
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NHLF for border strips

Lemma (MPP)
For a border strip 8 = \/u with end points (a, b) and (c,d) we have

A'ff

s0(1,9,4°,...,) = > H 1— i)

vi(a, b)—>(c d), (i u)ew
CcA

Excited diagrams for A\/p <> Non-Intersecting Lattice Paths:
Emmmall ] ]

[T 5] [T H |
= P ‘O

E=

\"-l

|
t

[h
=
==

)
—
[
iy
s e Y]
iy
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NHLF for border strips

Lemma (MPP)
For a border strip 8 = \/u with end points (a, b) and (c,d) we have

A'fi

59(17qaq27"'7): Z H l—qh(”J

RECEH b)—>(c d), ()€
CA

Excited diagrams for A\/p <> Non-Intersecting Lattice Paths:

A e e
T i r=Eira
sz S i R
== - - 7 \
i =]
pH ] [0
- FF OfE [ ] =
SECJ e
%] 7] 7]

= k
S\ / ulLascoux-Pragacz det [50/-#9j ]I = 15}_0,(“_, Strip det [ E H
~:(ai,b )_>(ij )UE’Y

Lindstrom— Gessel— Viennot E H (A/ /1) NILP E H

NILP:~y ... u€1U.. DEED(A/ 1) wep 1

Tilings with multivariate weights

—_ qhu
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Asymptotics of the number of skew SYTs

A= T, A/ | =n— oo

Pl R P = G~ 2

Question: What is the asymptotic value of fA#, |\/u| = nas n— co and X, u
change under various regimes:

0. If u =0, then f* ~ /nl(1+ O(1/n)) for X\ ~ Plancherel.
1. [Stanley, 2001]: when p is fixed, A" — (a; b) (Frobenius limit):
P X 5u(0F 0 )1+ O(1/m)),

where pj,p; are the corresponding specializations.
Similar results in [Corteel-Goupil-Schaeffer]
[Okounkov-Olshanski]
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Tool

Naruse Hook-Length formula:
1
B = —.
> T
De&(N/u)ueb

Define the "naive” hook-length formula:

1
Fv/m) = ] =
uex/p
5 ol4 1‘ F((675:57372:27 1)/(3’27 1: 1)) = 544.1.543.2.744é.144.1.442.3.1.1
714]2]1
!
1]
Corollary

F(\p) < £M0 < €N/ ) F(N 1)
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General bounds: size of £(A/u)

F(\ /) < FME < JENm)|F(A/ 1)

E(A/p) = { Non-intersecting Lattice Paths in A/u }
| [ | [ |

| |
15 I e
g EEp) 3
— o o l
K} fang
mgpan 3
o [ l I l l o
g el I 7
o o o
Lemma (MPP)

IfIN/p| = n then E(\/p) < 2".

Lemma (MPP)
If d is the Durfee square size of A\, then E(A\/u) < .
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The “linear” regime

D1

sequences in Ri.

by

a(A) = (a1, a2,...), b(A) = (b1, by, ..
nates of \. Let o = (au,...,ax), B:=(B1,-..,Bk) be fixed

Tilings with multivariate weights

.) — Frobenius coordi-

Thoma—Vershik—Kerov (TVK) limit if a;/n — o and b;/n — (i as n — oo, for all

1<i<k
Theorem (MPP)

Let {\(" /u(M} be a sequence of skew shapes with a TVK limit, i.e. suppose
X" = (a, B), where ay, 81 > 0, and (") — (=, 7) for some a, 8,7, T € ]Ri, Then

log I +o(n) as n— oo,

where

k

c=rlogy— Z(al - 7rl) |°g - 7TI Z(ﬁl - Tl Iog

i=1

and
k

v= (ei+Bi —mi — 7).

i=1

=)
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The stable shape: /n scale

Theorem (MPP)

Let w, 7 : [0,a] — [0, b] be continuous non-increasing functions, and suppose that
area(w/m) = 1. Let {\"/u(M} be a sequence of skew shapes with the stable shape
w/m, ie. [AM]/v/n = w, [W{M]/\/n — 7. Then

n n 1
Iogf)‘( /“()Nﬁnlogn as n— oo.
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The stable shape: /n scale

1

Theorem (MPP)

Suppose (VN — L)w C [MM](V/N + L)w for some L > 0, and similarly for (" wrt T,
then

—(1+c(w/m)) n+o(n) < log A/l —%n logn < —(1+c(w/m)) n+log EAM /umy40(n),

as n — oo, where
c(w/m) = ﬂ log h(x, y)dxdy,
w/m

where h(x, y) is the hook length from (x,y) to w.
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Subpolynomial depth, “thin” shapes

Suppose
> depth:= max e/, hu =: g(n) = n°()
(subpolynomial growth).

8

Theorem (MPP)

Let {v, = )\(")/u(")} be a sequence of skew partitions with a subpolynomial depth
shape associated with the function g(n). Then

log f¥" = nlogn — ©(nlogg(n)) as n— co.
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Thick ribbons

Theorem (MPP)

Let vy := (02x/0k), where 6, = (k — 1,k —2,...,2,1). Then

1 3 1 1 1 1 7

§ 3 log2 4+ 5 log3+0(1) < - (Iogf’*k — 5n|ogn) < i log2+2log 3+ o(1),
where n = |y,| = k(3k — 1)/2.

Question: Does there exist a ¢, s.t. ¢ = limp_ oo % (Iog fYk — %nlog n)?

Answer: Yes (Martin Tassy's and others work in progress)
Jay Pantone’s implementation (method of differential approximants) on 150+ terms
of the sequence {log 7k} to approximate ¢ ~ —0.1842.
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Thin ribbons

Zigzag: py = Ok4+2/0k, En = |{o € Sn: 0(1) < 0(2) > 0(3) < --- }| — Euler numbers,
alternating permutations.

fPr = Eppt1; Em ~ ml(2/m)"4/m(1 4 o(1))
From theorem: F(py) = n!/3%, £(px) = Ck, so
(2k +1)! (2k + 1)!C
T < BEypy1 < T

Problem: If v, := A/ is a border strip (ribbon of thickness 1, n boxes) approaching a
given curve ~ under rescaling by n, what is log {7 — nlog n in terms of 47 Is it true
that M — ¢() for some constant ¢(y)? (Permutations with certain
descent sequences)



Lozenge tilings

Tilings of a domain € (on a triangular lattice) with
elementary rhombi of 3 types (“lozenges”).

<
g
Q

Tilings with multivariate weights

VAV AVAVAY ,VAVAV A VAN
NN NN
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Lozenge tilings <<
Tilings of a domain € (on a triangular lattice) with 5’:{}:
elementary rhombi of 3 types (“lozenges”). ‘g’h
O @
o PR
0 SRS
K
N Ol X
X
5[4]4[4[3]2] <<
5[3[3[2[2[1]
413[2]2]1
3[2(2]1
2|1]1]|1
[1]1]




weights

Tilings with multivariate

NINOINLLNN
AVA.VAVAVAY AVAVAY 4V

EVETANAVETANAVEIN
(5NN N
ETLTNVETONAVANAVETAVAN
L2LNENCLNCINCLNNAN
[P AVAVAVAVAVAVAVAVAVAVAVS
INAVAVASAVAVAVETAVETAVA
IV AVAVAVANAVAVAVEIAV
IPAVAVAVAVAVAVAVAVS
IPAVAVAVAVATAVEY

Lozenge tilings

Tilings of a domain € (on a triangular lattice) with

elementary rhombi of 3 types (“lozenges”).

5[4]4]4]3]2]
5[3[3]2[2[1]

413]|2]2]1

2|1[1[1
1]
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Classical probabilistic questions: limit behavior

Question: Fix Q in the plane and let grid size — 0, what are the properties of
uniformly random tilings of Q7

Frozen regions (polygonal domains), “limit shapes” of the surface of the height

function (plane partition).

([Cohn—Larsen—Propp, 1998], [Kenyon-Okounkov, 2005], [Cohn—Kenyon—Propp, 2001; Kenyon-Okounkov-Sheffield, 2006] and newer via
Schur generating functions [Borodin, Corwin, Bufetov—Gorin, Petrov, etc] )

Behavior near boundary: Gaussian Unitary Ensemble eigenvalues,

conjectured by [Okounkov-Reshetikhin, 2006], proofs — hexagon [Johansson-Nordenstam, 2006], more general shapes [Gorin-Panova, 2012]



Tilings with multivariate weights

Multivariate local weights

weight 29 — y3
5 7
,

Y1 /

Total weight = H (xi —yj)
<>at (M)

(x1 —y1)(x2 — y3)(x3 — y5)(x3 — ¥2) (x5 — ¥5).

Tt (i j) = 2N — (i +J)

20
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Bijections

Lattice paths Asymptotics of skew SYTs

Lozenge tilings with multivariate weights

Plane partitions with base p, height d

weights of horizontal lozenges = z; — y;

Tilings with multivariate weights

21
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Skew HLF

Bijections

Lozenge tilings with multivariate weights
Plane partitions with base p, height d

weights of horizontal lozenges = z; — y;

>S> Y2
e

XX
X
W
X))

00
0N
%)
N
X

7
()

X
v

/\

X5
N
%

’

Theorem (Morales-Pak-P)
Consider tilings with base p and height d, we have that

ST T (= ) = detlAr G, )20,

TeQ q ()T

Tilings with multivariate weights

£(p) +d,

where
b =y1) 06 Va0 ) when j = £(p) + 1
(xi=xi1) (i —Xgp()) i
Ay d) = q G i) whenj=i—d, ... 0un),

(xi—=xi1) (i —xg4j)’

0, when j < i—d.

21
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Tilings with multivariate weights

Corollary (Krattenthaler, Stanley etc)

Consider the set PP(u, d) of plane partitions of base (v and entries less than or equal
to d. Then their volume generating function is given by the following determinantal

formula
Z glPl = g2rrmr det[C,-,j]fjjl,
PEPP(u,d)
where
) . o (d—ite)(d—i—f—1)
_q)d+e—igld=i)(d+e—j)— 2 .
=1 g @Dare , whenj=/(4+1,...,0+d,
Cij = 4 (_1)tti—i gd—lujra)— (=G .
@ s when j=1i—d,... ¢,
0, when j < i—d,

where (¢;q)m = (1 — q)--- (1 — q™) is the g— Pochhammer symbol.

22



Tilings with multivariate weights

Theorem (Morales-Pak-P)

Consider tilings of the a x b X ¢ X a X b x ¢ (base a x b, height c) hexagon with
horizontal lozenges having weights x; — y;, i.e. tilings Q, p . with rectangular base
w = a X b and height c. The partition function is given by

(i=y1) (i —Yera—j)  op - ate
((Xi*Xr'Jr)l) ( *iw’aj) ifj>a
7 b = i — v;) = det Xi—Y1) " \Xi —Ybtc P —
(a,b,¢) Te; _HT(X %) € (i =Xi41) - (Xi —Xc) ifj=i=c....a
a,b,c (/)€ 0, j<i—-c

ij=1
Consider a path P(d1,...) consisting of vertical lozenges (i.e. not the horizontal
lozenges) passing through the points (i, d;) (ith vertical line, distance of the midpoint
d;i + 1/2 from the top axes) (necessarily |d; — di+1| <1, d; < d;j11 ifi < b and
d,‘ Z d,‘+1 ifi> b, and d1 = a+b)-
The probability that such path exists is given by

det[A; (1, d)] det[A;; (i, ¢ — d — 1)]

Prob(path) = Z

n=31
where d := di, £(u) = b, p1 = a and p is given
by its diagonals — (d1 —d,d» — d, ...), and fi is the
complement of i in a x b. The matrix A is defined =20
as in previous Theorem with the substitution of x;
by Xatct+1—i and y; by ypircr1—j-
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Origins: Excited diagrams and factorial Schur functions
Factorial Schur functions.

d
det[(x —a1) - (x — aHi+d—i)]i,j:1

(d) —
o (o) = H1§i<j§d (xi = xj)

)

where x = (x1,x2,...,%4) and a = (a1, a2, ...) is a sequence of parameters.
Excited diagrams £(\/p): Start with A/p. Move cells of i inside A via:

0w

qr
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Origins: Excited diagrams and factorial Schur functions

Factorial Schur functions.

d
det[(xj - 31) c (Xj - au;+d—i)],-,j:1
H1§i<j§d (xi = xj)

where x = (x1,x2,...,xq4) and a = (a1, a2, ...) is a sequence of parameters.
Excited diagrams £(\/p): Start with A\/p. Move cells of 1 inside A via:

HH —

)

s (x|a) =

Theorem (lkeda-Naruse Multivariate “Hook-Length Formula™)

Let u C A C d X (n—d). Let v be the Grassmannian permutation with unique
descent at position d corresponding to A, i.e. v(d'+1—i)=X;+(d'+1—1i) and
v(j)=d'+j—X}. Then

s,t(td)()/v(l)a Y@ ovee) = Y0 T Gea—ir) = Yetari)
De&(N/p) (i.j)eD
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Origins: Excited diagrams and factorial Schur functions

Excited diagrams £(\/p): Start with A\/p. Move cells of 1 inside A via:

HH —

e ¢ e 7 ¢ 7

Theorem (lkeda-Naruse Multivariate “Hook-Length Formula™)

Let u C A Cd x (n—d). Let v be the Grassmannian permutation with unique
descent at position d corresponding to A, i.e. v(d' +1—i)=X;+(d'+1—1i) and
v(j)=d"+j— A} Then

SO0y, Y@y yn1) = S T Gue=isn) = Yu(a+p)
De&(N/u) (i.j)ED

]
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Simulation 2: base = §,

Weights: "hook” weights (4n — i — j) versus uniform (i.e. 1).

Tilings with multivariate weights

25



Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Tilings with multivariate weights

Product formulas

@ (ii) (i)
®(n) ;=112 (n— 1), W(n) :=111- 311 (2n — 3)I1,
W(nm k)= (k+1)1- (k+3)---(k+2n=3)I1, A(n) :=(n—2)(n—4)!---
Theorem (MPP)

For nonnegative integers a, b, c,d, e, let n be the size of the corresponding skew
shape, then for the shapes in (i), (i), (iii) we have the following product formulas for
the number of skew SYTs:

£sh(i) _ i d(a)d(b)d(c)d(d)P(e)P(a+ b+ c)P(c+d+e)d(a+b+c+e+d)
T d(at+b)d(e+d)P(atct+d)d(b+cte)d(atbt2ctetd)

poniy _ ) PQ)(B)O(C)D(a+ b+ c) W(e)W(a+ b+ <)
T d(a+ b)d(b+c)P(a+c) V(a+c)W(b+c)W(a+ b+2c)’
£ShCi) _ nl ®(a)P(b)P(c)P(a+ b+ c)V(c;d + e)W(a+ b+ c;d + e) A(2a + 2¢c)A(2b + 2¢)
T d(a+ b)d(b+ c)P(a+ c)W(a+ c)W(b+ c)W(a+ b+ 2¢;d + e)A(2a + 2¢c + d)A(2b + 2¢ + e)

26
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Product formula reasons and consequences

g ’ 3
A A
Theorem (MPP)

We have the following identity for multivariate rational functions:

1 1
> II — = > Il = O
F=(y1,-7e)  (if)er ™ ©0=(01,...0c) (ij)ee ™
p:(a+p,1)—(p,bt+c) 0p:(p,1)—(a+p,b+c)

01

LLQH
iy

n-d —d

3

&

where the sums are over non-intersecting lattice paths from the shapes A/ for
1 < Ag —d.

Proof: symmetry of sﬁd)(x\y) in the variables x preserved under the substitution.
Corollaries: Product formulas for certain Schubert polynomial evaluations.



Skew HLF
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More problems?

More precise asymptotics of f2/# in various regimes.
Asymptotics of lozenge tilings using the multivariate weights, new regimes?

sx/u(xl,.“,xk,l”fk) ) i -
f = (Schur generating functions of tilings of
sx/u(1")

Asymptotics o
arbitrary domains)

Asymptotics of Littlewood-Richardson coefficients, cﬁ"u... (e.g. if AF 2n,
W, v F n, when is it maximal)

Maximal f»/# under constraints...

28
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Thank you
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