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Galois theory describes the possible

algebraic and differential relations

among solutions of functional equations
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The Gamma Function is Transcendental
Elementary Proof:

Γ(x + 1) = xΓ(x). Assume Γ(x) is algebraic over C(x).

Γ(x)n + an−1(x)Γ(x)n−1 + . . .+ a0(x) = 0

with n minimal, so a0(x) 6= 0.

Change x to x + 1

xnΓ(x)n + an−1(x + 1)xn−1Γ(x)n−1 + . . .+ a0(x + 1) = 0.

Multiply the first equation by xn and subtract

xn−1(an−1(x + 1)− xan(x))Γ(x)n−1 + . . .+ (a0(x + 1)− xna0(x)) = 0.

Minimality⇒ a0(x + 1) = xna0(x) which is impossible.

Galoisian Proof:

If Γ(x) is algebraic over C(x) then from Galois theory we know that for some
n 6= 0

y(x + 1) = xny(x)

has a nonzero solution in C(x), which is impossible.
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Classical Galois theory of polynomial equations

f (y) = 0, f ∈ k [y ] of degree n and irreducible

Galois group = the group of transformations of the roots of f that preserve
all algebraic relations among them.

More formally:

Splitting Ring: K = k [y1, . . . , yn, (
∏

i<j (yi − yj ))−1]/M = k [α1, . . . , αn],

M a max ideal containing (f (y1), . . . , f (yn))

Note: K is a field and all such are isomorphic.

Galois group: Gal(K/k) = {σ : K → K | σ is a k -autom.}

Gal(K/k) permutes the roots⇒ ρ : Gal(K/k)→ Sn

The size of Gal(K/k) measures relations among the roots.

The relations defining Gal(K/k) give us the relations among the roots.
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Ex.

f (y) = y3 + py + q irreducible over k , K = splitting field, Gal(K/k) ⊂ S3

The roots satisfy obvious relations:∑3
i=1 αi = 0,

∑
i 6=j αiαj = p

∏3
i=1 αi = −q

The size of Gal(K/k) measures relations among the roots.

There are other relations⇔ Gal(K/k) ( S3 ⇔ Gal(K/k) ⊂ A3

The relations defining Gal(K/k) give us the relations among the roots.

A3 = {σ ∈ S3 | σ leaves
∏

i <j (Xi − Xj ) invariant }

Gal(K/k) ⊂ A3 ⇔
∏
i<j

(αi − αj ) ∈ k

⇔ −4p3 − 27q2 = (
∏
i<j

(αi − αj ))2 = a2, a ∈ k
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Galois theory of linear difference equations

Def. A difference field (K , σ) is a field K together with an automorphism
σ : K → K . The constants are Kσ = {a ∈ K | σ(z) = a}.

σ-ring, σ-morphism, σ-subfield, σ-field extension, . . . defined similarly.

Exs.

1. K = C(x), σ(f (x)) = f (x + 1), Kσ = C

2. K = C(x), σ(f (x)) = f (qx) for |q| 6= 1, Kσ = C

3. K = C(x), σ(f (x)) = f (xp) for p ∈ N, p > 1 σ is NOT surjective

4. K = ∪∞n=1C(x1/pn
), σ(x1/pn

) = x1/pn−1
Kσ = C

5. Let Λ = Zω1 + Zω2 ⊂ C a lattice K = (ω1, ω2)- periodic functions
Let ω3 ∈ C, nω3 /∈ Λ ∀n ∈ N and σ(f (ω)) = f (ω + ω3) Kσ = C

6. Let (E ,⊕) be an elliptic curve, e.g., zeros of y2 = x3 − ax − b
K = function field of E , σ(f (X )) = f (X ⊕ Ω), Ω a nontorsion pt.,
Kσ = C. Note: 5. and 6. are the same.
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Matrix Equations and Solutions

Let (K , σ) be a σ-field and g a solution of

L(y) = σn(y) + an−1σ
n−1(y) + · · ·+ a0y = 0,

with a0 6= 0, ai ∈ K . Then, Z :=


g

σ(g)

...
σn−1(g)

 satisfies σ(Y ) = ALY with

AL =



0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1

− a0
an

− a1
an

· · · · · · −
an−1

an

 ∈ GLn(K ).

We will consider matrix equations σ(Y ) = AY , A ∈ GLn(K ).

A fundamental solution matrix of σ(Y ) = AY is a U ∈ GLn(K ) with σ(U) = AU

Fact: If U1, U2 ∈ GLn(K ) are fund. solution matrices of σ(Y ) = AY , then

U1 = U2D

for some D ∈ GLn(Kσ).
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Picard-Vessiot extensions = “splitting rings”

(K , σ) - σ-field, Ex. C(x), σ(x) = x + 1, σ(x) = qx

Difference Equation: σ(Y ) = AY A ∈ GLn(K )

Splitting Ring: K [Y , 1
det(Y )

], Y = (yi,j ) indeterminates, define σ(Y ) = AY ,

Let M = max σ-ideal in K [Y , 1
det(Y )

]

R = K [Y ,
1

det(Y )
]/M = k [Z ,

1
det(Z )

] = σ-Picard-Vessiot Ring

• M is radical⇒ R is reduced

• If C = Kσ = {c ∈ K | σ(c) = c} is alg closed⇒ R is unique
and Rσ = C

Ex. k = C σ(y) = −y

R = C[y ,
1
y

]/(y2 − 1) = C[y ,
1
y

]/(y − 1)⊕ C[y ,
1
y

]/(y + 1)

R has zero divisors: (y − 1)(y + 1) = 0.

10/28



Picard-Vessiot extensions = “splitting rings”

(K , σ) - σ-field, Ex. C(x), σ(x) = x + 1, σ(x) = qx

Difference Equation: σ(Y ) = AY A ∈ GLn(K )

Splitting Ring: K [Y , 1
det(Y )

], Y = (yi,j ) indeterminates, define σ(Y ) = AY ,

Let M = max σ-ideal in K [Y , 1
det(Y )

]

R = K [Y ,
1

det(Y )
]/M = k [Z ,

1
det(Z )

] = σ-Picard-Vessiot Ring

• M is radical⇒ R is reduced

• If C = Kσ = {c ∈ K | σ(c) = c} is alg closed⇒ R is unique
and Rσ = C

Ex. k = C σ(y) = −y

R = C[y ,
1
y

]/(y2 − 1) = C[y ,
1
y

]/(y − 1)⊕ C[y ,
1
y

]/(y + 1)

R has zero divisors: (y − 1)(y + 1) = 0.

10/28



Galois group

Def. Let R be a Picard-Vessiot field extension for σ(Y ) = AY over K and let
C = Kσ. The Galois group G(R/K ) of R over K is defined to be

Gal(R/K ) = {τ : R → R | τ is a K -σ-automorphism}

Let U ∈ GLn(R) be a fund. sol. matrix and τ ∈ Gal(R/K ). Then

σ(τ(U) = A τ(U)

So τ(U) is a fund. sol. matrix and so ∃ [τ ]U ∈ GLn(C) s.t. τ(U) = U[τ ]U .

Fact: The map ρ : Gal(R/K )→ GLn(C) given by ρ(τ) = [τ ]U is a group
homomorphism whose image is a linear algebraic group, that is, there is a set
of polynomials P ⊂ C[xi,j ,

1
det(xi,j )

] such that

Gal(KA|K ) = {g ∈ GLn(C) | p(g) = 0 for all p ∈ P}
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σ(τ(U) = A τ(U)

So τ(U) is a fund. sol. matrix and so ∃ [τ ]U ∈ GLn(C) s.t. τ(U) = U[τ ]U .

Fact: The map ρ : Gal(R/K )→ GLn(C) given by ρ(τ) = [τ ]U is a group
homomorphism whose image is a linear algebraic group, that is, there is a set
of polynomials P ⊂ C[xi,j ,

1
det(xi,j )

] such that

Gal(KA|K ) = {g ∈ GLn(C) | p(g) = 0 for all p ∈ P}

11/28



Examples of linear algebraic groups

1. GL1(C) = C∗. The only linear algebraic subgroups are

Z/nZ = {(a) ∈ GL1(C) | an = 1} n = 1, 2, . . . and GL1(C)

2. SLn(k) = {g = (gi,j ) | det(g) = 1}

3. (C,+) = {
(

1 a
0 1

)
| a ∈ C}.

4. (Cn,+) =

{


A1 0 0 . . . 0
0 A2 0 . . . 0
...

...
...

...
...

0 0 0 0 An

 | Ai =
(

1 ai
0 1

)
, ai ∈ C}

The linear algebraic subgroups of (Cn,+) are the vector subspaces.

If G is a proper linear algebraic subgroup of (Cn,+) then

G ⊂ {(a1, . . . an) | c1a1 + . . .+ cnan = 0 for some ci ∈ C}
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Examples of Galois groups

Ex. K = C, σ = identity .

σ(y) = −y ⇒ R = C[y , 1
y ]/(y2 − 1)

Gal(R/K ) = Z/2Z

Ex. K = C(x), σ(x) = x + 1

σ2y − xσy + y = 0 ⇒ σY =

(
0 1
−1 x

)
Y

R = K [Y , 1
det(Y )

]/(det(Y )− 1), Gal(R/K ) = SL2(C)

Ex.

σ(y)− y = f , f ∈ K ⇔ σ

(
1 y
0 1

)
=

(
1 f
0 1

)(
1 y
0 1

)
φ ∈ Gal(R/K )⇒ φ(y) = y + cφ, cφ ∈ C

Galσ = (C,+) or {0}
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Main results of Galois theory

(K , σ) a difference field, C = Kσ algebraically closed

σ(Y ) = AY , A ∈ GLn(K ) with PV-ring R and Galois group Gal(R/K )

RG = K , that is, if f ∈ R is left fixed by the Galois group it is in K .

dimC G = Krull dimension of R over K .

When R is a domain this is the transcendence degree of the
quotient field of R

There is also a Galois correspondence between linear algebraic subgroups
of G and certain subfields of the “quotient field” of R.
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Thm. (Roques 2007)

For q ∈ C with |q| > 1. Let y1(x), y2(x) two linearly independent solutions of

y(q2x)− 2ax − 2
a2x − 1

y(qx)− x − 1
a2x − q2x

y(x) = 0

with a /∈ qZ and a2 ∈ qZ. Then, y1(x), y2(x), y1(qx) are algebraically
independent over C(x).

Proof: Roques shows that

the Galois group is SL2(C).

the PV-ring is C(x)[y1(x), y2(x), y1(qx), y2(qx)] and so has
transcendence degree 3.

the element y1(x)y2(qx)− y2(x)y1(qx) ∈ C(x).
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Thm. Let (K , σ) ⊂ (L, σ) be difference fields with C = Kσ algebraically
closed. Let b ∈ K , z ∈ L such that

σ(z) = bz.

If z is algebraic over K , then for some n ∈ N

σ(Y ) = bnY

has a solution in K .

Cor. Γ(x) is not algebraic over C(x).

Proof: K = C(x), L =Mer(C), σ(x) = x + 1, b = x .

Y (x + 1) = xnY (x)

has no solution in C(x).
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Thm. Let (K , σ) ⊂ (L, σ) be difference fields with C = Kσ algebraically
closed. Let b ∈ K , z ∈ L such that

σ(z) = bz. (1)

If z is algebraic over K , then for some n ∈ N

σ(Y ) = bnY

has a solution in K .

Proof: Let R = K [y , 1
y ], σ(y) = by be the PV-ring of (1) and G its Galois gp.

z algebraic over K ⇒ y algebraic over K so tr.deg.K (R) = 0

G ( GL1(C)⇒ G = {c | cn = 1} for some n ∈ N.

For τ ∈ G, τ(y) = cy for some c ∈ C∗

so τ(yn) = cnyn = yn so yn ∈ K and

τ(yn) = τ(y)n = (by)n = bnyn.
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Thm. Let (K , σ) ⊂ (L, σ) be difference fields with C = Kσ algebraically
closed. Let b0, . . . , bn ∈ K and z0, . . . zn ∈ L such that

σ(z0)− z0 = b0, . . . , σ(zn)− zn = bn.

If z0 . . . , zn are algebraically dependent over K , then there exist ci ∈ C and
g ∈ K s.t.

c0b0 + . . .+ cnbn = σ(g)− g.

Cor. For p ∈ N, p ≥ 2,M(x) =
∑∞

n=1 xpn
is not algebraic over C(x).

Proof: Use the Thm. with n = 1.

Let K = ∪∞n=1C(x1/pn
), L = ∪∞n=1C((x1/pn

))σ(x) = xp, b = −x .

z(xp)− z(x) = −x

has no solution in ∪∞n=1C(x1/pn
).
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Thm. Let (K , σ) ⊂ (L, σ) be difference fields with C = Kσ algebraically
closed. Let b0, . . . , bn ∈ K and z0, . . . zn ∈ L such that

σ(z0)− z0 = b0, . . . , σ(zn)− zn = bn. (2)

If z0 . . . , zn are algebraically dependent over K , then there exist ci ∈ C and
g ∈ K s.t.

c0b0 + . . .+ cnbn = σ(g)− g.

Proof: Let R = K [y0, . . . , yn], σ(yi ) = biy be the PV-ring of (2) and G its
Galois gp.

z0, . . . , zn algebraically dependent over K ⇒ y0, . . . , yn algebraically
dependent over K so tr.deg.K (R) < n + 1

G ( (Cn+1,+)⇒ G ⊂ {(d0, . . . , dn) |
∑n

i=0 cidi = 0} for some ci ∈ C.

For τ ∈ G, τ(
∑n

i=0 ciyi ) =
∑n

i=0 ci (yi + di ) =
∑n

i=0 ciyi +
∑n

i=0 cidi

=
∑n

i=0 ciyi , so
∑n

i=0 ciyi = g ∈ K

Apply σ and subtract:

σ(g)− g = σ(
∑n

i=0 ciyi )−
∑n

i=0 ciyi =
∑n

i=0 ci (yi + bi )−
∑n

i=0 ciyi =∑n
i=0 cibi
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Differential transcendence

Thm. (Hölder 1887) The Gamma function is differentially transcendental over
C(x).

Many other proofs: Bank, Bierberbach, Hilbert, Ostrowski, Rosenlicht, . . .

Idea of Galoisian proof:

Γ(x) is differentially algebraic over C(x) ⇔ Φ(x) = Γ′(x)
Γ(x)

is.

Φ(x + 1)− Φ(x) = 1
x ⇒ Φ′(x + 1)− Φ′(x) = −1

x2 ⇒ . . .

⇒ Φ(n)(x + 1)− Φ(n)(x) = (−1)n

xn+1

Can characterize algebraic dependence among solutions of equations of
the form σ(zi )− zi = bi .
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Def. A difference-differential field or σδ-field (K , σ, δ) is a difference field
(K , σ) together with a derivation δ : K → K commuting with σ.

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + aδ(b) and δ(σ(a)) = σ(δ(a)

Exs.

K = C(x), σ(x) = x + 1, δ = d
dx

K = C(x), σ(x) = qx , δ = x d
dx

K = ∪∞n=1C(x1/pn
)(log x), σ(x1/pn

) = x1/pn−1
, δ = x log x d

dx

z =
∞∑

n=0

xpn
satisfies z(xp)− z = −x

K = C((x)), σ(x) = x
x+1 , δ = x2 d

dx

z =
∞∑

n=0

Bnxn satisfies z(
x

x + 1
)− xz(x) = 1

Bn = number of partitions of {1, . . . , n} (Bell numbers)
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Thm. Let K ⊂ L be σδ-fields with C = Kσ algebraically closed. Let b ∈ K and
z ∈ L s.t.

σ(z)− z = b.

If z is differentially algebraic over K , then there exist c0, . . . , cn ∈ C and
g ∈ K such that

cnδ
n(b) + . . .+ c1δ(b) + c0b = σ(g)− g.

Cor. (Hölder 1887) The Gamma function is differentially transcendental over
C(x).

Proof. K = C(x) ⊂ L =Mer(C), σ(x) = x + 1, δ = d
dx , b = 1

x .

cn
(−1)n

xn+1 + . . .+ c0
1
x
6= g(x + 1)− g(x).

Cor. (Klazar 2003)
∑∞

n=0 Bnxn is differentially transcendental over C(x).
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g ∈ K such that

cnδ
n(b) + . . .+ c1δ(b) + c0b = σ(g)− g.

Proof.

z DA over K ⇒ z, δ(z), . . . , δn(z) alg. dep. over K .

For i = 0, . . . , n, σ(δi (z))− δi (z) = δi (b).

Galois theory ⇒ conclusion.

z0, . . . zn ∈ L satisfy

σ(z0)− z0 = b0, . . . , σ(zn)− zn = bn.

If z0 . . . , zn are algebraically dependent over K , then there exist ci ∈ C and
g ∈ K s.t.

c0b0 + . . .+ cnbn = σ(g)− g.
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Sequences

C - field

SEQ = {(a0, a1, . . .) | ai ∈ C} addition, multiplication termwise

σ((a0, a1, a2, . . .)) = (a1, a2, . . .) is a homomorphism, NOT injective

S := SEQ/ ∼ (a0, a1, . . .) ∼ (b0, b1, . . .) if ai = bi ∀i � 0

(S, σ) is a difference ring

C ↪→ S c 7→ (c, c, . . .)

(C(x), x 7→ x + 1) ↪→ (S, σ) f (x) 7→ (f (0), f (1), . . .)

S is universal for C(x):

For C(x) ⊂ S and A ∈ GLn(C(x)),

there exists a PV-ring R for σ(Y ) = AY with R ⊂ S.
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Def. w is the interlacing of u = (u0, u1, . . .) and v = (v0, v1, . . .) if
w = (u0, v0, u1, v1, . . .).

Thm. Let u, v ,∈ S each satisfy a linear difference equation over C(x) ⊂ S.

(Larson-Taft) If uv = 0 there exist u1, . . . , ut , v0, . . . , vt ∈ S such that u
(resp. v ) is the interlacing of the ui (resp. vi ) and for all i either ui = 0 or
vi = 0

(Benzagou-Bézivin) u satisfies a polynomial equation over C(x), then u
is the interlacing of elements of C(x).

(Conj. of Larson-Taft) If u is invertible in S and 1/u also satisfies a linear
difference equation over C(x) then u is the interlacing of hypergeometric
sequences ui , i.e. σ(ui )/ui ∈ C(x).
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General differential Galois theory of linear difference equations

The above Galois theory is good enough to determine differential properties
of solutions of equations of the form

σ(y)− y = b or σ(y) = by .

For higher order equations, a Galois theory whose groups are differential
algebraic groups has been developed (Hardouin - S. 2008).

Ex. Let

an =

{
1 if the binary rep. of n contains no block of 0’s of odd length
0 otherwise

be the Baum-Sweet sequence. The generating function fBS =
∑

n≥0 anxn

satisfies
fBS(x4) + xfBS(x2)− fBS(x) = 0

Thm. (Dreyfus-Hardouin-Roques 2015) The series fBS(x2) and fBS(x) and all
their derivatives are algebraically independent over C(x), i.e., these series
ore differentially independent.
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For general in information on the Galois Theory of Difference equations:

Galois Theories of Linear Difference Equations: An Introduction
Mathematical Surveys and Monographs, Vol. 211, AMS, 2016, 171 pages

• Algebraic and Algorithmic Aspects of Linear Difference Equations - S.

• Galoisian Approach to Differential Transcendence- Hardouin

• Analytic Study of q-Difference Equations - Sauloy
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