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p Talk 1: An Introduction to the Galois theory of difference
equations



Galois theory describes the possible
algebraic and differential relations

among solutions of functional equations
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An Introduction to the Galois theory of difference equations

» A Warmup - the Gamma function
» Classical Galois theory of polynomial equations
» Galois Theory of linear difference equations

» Applications to differential transcendence

» Applications to P-recursive/holonomic sequences

» General differential Galois theory of linear difference equations



The Gamma Function is Transcendental

Elementary Proof:

M(x 4+ 1) = xI'(x). Assume I'(x) is algebraic over C(x).

F(X)" 4+ an10)F(xX)"" + ...+ ao(x) =0
with n minimal, so ag(x) # 0.
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Elementary Proof:

M(x 4+ 1) = xI'(x). Assume I'(x) is algebraic over C(x).

r(x)"+ 21,7_1(x)r(x)"’1 +...+a(x)=0
with n minimal, so ag(x) # 0. Change x to x + 1

1
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The Gamma Function is Transcendental

Elementary Proof:

M(x 4+ 1) = xI'(x). Assume I'(x) is algebraic over C(x).

r(x)" + a,7_1(x)r(x)”’1 +...+a(x)=0
with n minimal, so ag(x) # 0. Change x to x + 1

X))+ an_1(x+ )X 'T(x)" "+ ...+ a(x+1)=0.

Multiply the first equation by x" and subtract

X" (@n—1(x + 1) — xan(x))F (x)""

+...+ (a(x +1) — x"ap(x)) = 0.
Minimality = ao(x + 1) = x"ao(x) which is impossible.
Galoisian Proof:

If [(x) is algebraic over C(x) then from Galois theory we know that for some
n#0

y(x +1) = x"y(x)
has a nonzero solution in C(x), which is impossible.
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Classical Galois theory of polynomial equations

f(y) =0, f € k[y] of degree n and irreducible

Galois group = the group of transformations of the roots of f that preserve
all algebraic relations among them.

More formally:
Splitting Ring: K = k[y1, ..., ¥n, (IT,;(¥i = %)) '1/M = Klew, ..., au),
M a max ideal containing (f(y1), ..., f(¥a))

Note: K is a field and all such are isomorphic.
Galois group: Gal(K/k) = {c : K — K| o is a k-autom.}
Gal(K/k) permutes the roots = p : Gal(K/k) — Sn

The size of Gal(K/k) measures relations among the roots.

The relations defining Gal(K/k) give us the relations among the roots.
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f(y) = y® + py + g irreducible over k, K= splitting field,

The roots satisfy obvious relations:

Gal(K/k) C S
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Ex.
f(y) = y® + py + g irreducible over k, K= splitting field, Gal(K/k) C Ss

The roots satisfy obvious relations:
Yiiai=0, Y ae=p [lija=-q

The size of Gal(K/k) measures relations among the roots.

There are other relations < Gal(K/k) C S; & Gal(K/k) C As

The relations defining Gal(K/k) give us the relations among the roots.

As = {0 € S5 | o leaves [[; _;(X; — X;) invariant }

Gal(K/k) C As & [](ei—a) €k
i<j
& —4p°-27¢° = ([[(ci —oy))’ =& ack
i<j
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Galois theory of linear difference equations

Def. A difference field (K, o) is a field K together with an automorphism

o: K — K. The constants are K° = {a€ K | o(z) = a}.

o-ring, o-morphism, o-subfield, o-field extension, ... defined similarly.

Exs.

1.

2
3
4.
5

K =C(x), o(f(x))=f(x+1), K“=C

- K=C(x), o(f(x)) = f(gx) for |g| #1, K7 =C
. K=C(x), o(f(x))=f(xP)forpe N,p>1 ois NOT surjective

n—1

K = Uz, C(x'?"), o(x'/P"y=x"/P"" K7 =C

. Let A = Zw1 + Zw» C C alattice K = (w1, w2)- periodic functions

Letws € C,nws ¢ A Vne Nand o(f(w)) = f(w+ws) K7 =C

Let (E, ®) be an elliptic curve, e.g., zeros of y2 = x* —ax — b
K = function field of E, o(f(X)) = f(X & Q), Q a nontorsion pt.,
K? = C. Note: 5. and 6. are the same.



Matrix Equations and Solutions

Let (K, o) be a o-field and g a solution of

L(y) = "(y) + ap-10""(y) + -+ @y =0,

g
o(9)
with ag # 0, a@; € K. Then, Z := . satisfies o(Y) = Az Y with
" (g)
0 1 0 0
0 0 1 . .
Ar = : : - - 0 € GLn(K).
0 0 ... 0 1
_&%  _a& . . _%

We will consider matrix equations o(Y) = AY, A € GLn(K).

A fundamental solution matrix of o(Y) = AY is a U € GLn(K) with o(U) = AU



Matrix Equations and Solutions

Let (K, o) be a o-field and g a solution of

L(y) = "(y) + ap-10""(y) + -+ @y =0,

g9
o(9)
with gy # 0, g € K. Then, Z := : satisfies o(Y) = Az Y with
a"(g)
0 1 0 0
0 0 1 . :
Ar = : : - - 0 € GLn(K).
0o 0 - 0 1
& A L o

We will consider matrix equations o(Y) = AY, A € GLn(K).
A fundamental solution matrix of o(Y) = AY is a U € GLn(K) with o(U) = AU
Fact: If Uy, Us € GLn(K) are fund. solution matrices of o(Y) = AY, then
Uy = U,D
for some D € GLn(K?).



Picard-Vessiot extensions = “splitting rings”
(K,o) - o-field, Ex.C(x), o(x)=x+1, o(x) = gx
Difference Equation: o(Y) = AY A € GLx(K)
Splitting Ring: K[Y

,det ] Y = (i) indeterminates, define o(Y) =

Let M = max o-ideal in K[Y, giv]

1

f=KIY ’det(Z)]

——|/M=k[Z = o-Picard-Vessiot Ring

" de t( Y)
e M is radical = R is reduced

e lf C=K? ={ce K|o(c) =c} is alg closed = R is unique
and R° =C

10/28



Picard-Vessiot extensions = “splitting rings”

(K,o) - o-field, Ex.C(x), o(x) =x+1, o(x) = gx
Difference Equation: o(Y) = AY A € GLy(K)
Splitting Ring: K[Y, det ] Y = (i) indeterminates, define o(Y) =
Let M = max o-ideal in K[Y, dew 5]

1

f=KIY ’det(Z)]

——|/M=k[Z = o-Picard-Vessiot Ring

" de t( Y)
e M is radical = R is reduced

e lf C=K? ={ce K|o(c) =c} is alg closed = R is unique
and R° =C

Ex.k=C o(y)=-y

R=Cly, }]/(yz ~1)=cp, }myf 1ecl. }1/(y+ 1)

R has zero divisors: (y —1)(y + 1) =0.
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Galois group

Def. Let R be a Picard-Vessiot field extension for o(Y) = AY over K and let
C = K°. The Galois group G(R/K) of R over K is defined to be

Gal(R/K) = {r: R — R| 7 is a K-o-automorphism}
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Galois group

Def. Let R be a Picard-Vessiot field extension for o(Y) = AY over K and let
C = K°. The Galois group G(R/K) of R over K is defined to be

Gal(R/K) = {r: R — R| 7 is a K-o-automorphism}

Let U € GLs(R) be a fund. sol. matrix and 7 € Gal(R/K). Then

o(r(U) = A7(U)
So 7(U) is a fund. sol. matrix and so 3 [7]y € GL(C) s.t. 7(U) = U[r]u.
Fact: The map p : Gal(R/K) — GLx(C) given by p(7) = [r]u is a group

homomorphism whose image is a linear algebraic group, that is, there is a set
of polynomials P C C[x;, det ] such that

Gal(KalK) = {g € GLA(C) | p(g) =0 for all p € P}

11/28
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Examples of linear algebraic groups

1. GL1(C) = C*. The only linear algebraic subgroups are
7Z/nZ = {(a) € GLy(C) |a" =1} n=1,2,... and GL{(C)

2. SLa(k) = {g = (g,) | det(g) = 1}
3. (c,+):{(8 f) laeCh

4.(C",+) =

Ao 0O 0 ... O
0 A 0 ... 0

. |A,:(8 ?)7‘3"60}
0 0 0 0 A
The linear algebraic subgroups of (C”, +) are the vector subspaces.
If G is a proper linear algebraic subgroup of (C", +) then
Gc{(a1,...an) | crai + ...+ chan = 0 for some ¢; € C}

12/28



Examples of Galois groups

Ex. K =C, o = identity.

o(y)=-y = R=Cly,;]/(y* - 1)
Gal(R/K) = Z/2Z
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Examples of Galois groups

Ex. K =C, o = identity.

o(y)=-y = R=Cly, ;]]/(¥* - 1)
Gal(R/K) = Z/2Z

Ex. K =C(x),0(x) = x+1

o?y —xoy+y =0 éoYz( 91 )1(>Y

R = K[Y, gyy)/(det(Y) — 1), Gal(R/K) = SLo(C)
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Examples of Galois groups

Ex. K =C, o = identity.

o(y)=-y = R=Cly, ;]]/(¥* - 1)
Gal(R/K) = Z/2Z

Ex. K =C(x),0(x) =x+1
2 o 1
oy —xoy+y=0 30’Y:<71 X>Y

R = K[Y, gyy)/(det(Y) — 1), Gal(R/K) = SLo(C)

U(Y)—y:ﬂfeK@a(é {>:<8 ;)((1) ”

¢ € Gal(R/K)=¢(y)=y+cs,c5€C
Gal, = (C,+) or {0}

13/28
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Main results of Galois theory

(K, o) adifference field, C = K algebraically closed
o(Y) =AY, A € GL,(K) with PV-ring R and Galois group Gal(R/K)

b RE =K, thatis, if f € Ris left fixed by the Galois group it is in K.

» dim¢c G = Krull dimension of R over K.

When R is a domain this is the transcendence degree of the
quotient field of R

There is also a Galois correspondence between linear algebraic subgroups
of G and certain subfields of the “quotient field” of R.
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Thm. (Roques 2007)

Forq € C with |q| > 1. Let y1(x), y=(x) two linearly independent solutions of

Yex) — 222y (gx) -

X —1
Px — x q2XY(X) =0

with a ¢ q* and & € g*. Then, y1(x), y2(X), y1(gx) are algebraically
independent over C(x).
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Thm. (Roques 2007)
Forq € C with |q| > 1. Let y1(x), y=(x) two linearly independent solutions of

2ax — 2 (gx) —
a2x—1yq

y(gx) — 32%;2)( y(x) =0

with a ¢ q* and & € g*. Then, y1(x), y2(X), y1(gx) are algebraically
independent over C(x).

Proof: Roques shows that
» the Galois group is SL»(C).

» the PV-ring is C(x)[y1(x), y2(x), y1(gx), y2(gx)] and so has
transcendence degree 3.

» the element y1(x)y2(gx) — ya2(x)y1(gx) € C(x).
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Thm. Let (K, o) C (L, o) be difference fields with C = K’ algebraically
closed. Letb € K, z € L such that

o(z) = bz.
If z is algebraic over K, then for some n € N
a(Y)=b"Y

has a solution in K.

Cor. ['(x) is not algebraic over C(x).
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Thm. Let (K, o) C (L, o) be difference fields with C = K’ algebraically
closed. Letb € K, z € L such that

o(z) = bz.
If z is algebraic over K, then for some n € N
a(Y)=b"Y

has a solution in K.

Cor. ['(x) is not algebraic over C(x).
Proof: K = C(x), L = Mer(C),o(x) =x+1,b= x.

Y(x+1)=x"Y(x)

has no solution in C(x).
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Thm. Let (K, o) C (L, o) be difference fields with C = K° algebraically
closed. Letb € K,z € L such that

o(z) = bz. (1)
If z is algebraic over K, then for some n € N
a(Y)=b"Y
has a solution in K.

Proof: Let R = K[y, ;],a(y) = by be the PV-ring of (1) and G its Galois gp.
» Zz algebraic over K = y algebraic over K so tr.deg.,(R) =0
P GCGLi(C)=G={c|c"=1}forsomeneN.
» Forr e G, 7(y) = cy for some c € C*
soT(y")=c"y"=y"soy" € K and
T(y") =7(y)" = (by)" = b"y".

17/28



Thm. Let (K,o) C (L, o) be difference fields with C = K? algebraically
closed. Let by, ...,bs € K and zy, ...z, € L such that

o(20) — 20 = bo, . ..,0(2n) — Zn = bn.

Ifzy ...,z are algebraically dependent over K, then there exist ¢; € C and
geKst

Cobg + ...+ chbp = o’(g) - g.
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Thm. Let (K,o) C (L, o) be difference fields with C = K? algebraically
closed. Let by, ...,bs € K and zy, ...z, € L such that

o(20) — 20 = bo, . ..,0(2n) — Zn = bn.

Ifzy ...,z are algebraically dependent over K, then there exist ¢; € C and
geKst
Cobg + ...+ chbp = o’(g) - g.

Cor. Forp e N,p >2,M(x) = .22, x*" is not algebraic over C(x).
Proof: Use the Thm. with n = 1.
Let K = U, C(x'/P"), L = U2, C((x'P"))o(x) = xP, b = —x.

z(xP) — z(x) = —x

has no solution in U2, C(x"/?").

18/28



Thm. Let (K,o) C (L, o) be difference fields with C = K? algebraically
closed. Let by, ...,bn € K and zy, ...z, € L such that

o(20) — 20 = bo,...,0(2n) — Zn = bn. )

Ifzy...,z, are algebraically dependent over K, then there exist c; € C and
geKs.t

Cobg + ...+ chbp = a(g) —-Jg.
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Thm. Let (K,o) C (L, o) be difference fields with C = K? algebraically
closed. Let by, ...,bn € K and zy, ...z, € L such that

o(20) — 20 = bo,...,0(2n) — Zn = bn. )

Ifzy...,z, are algebraically dependent over K, then there exist c; € C and
geKs.t
Cobp + ...+ Chbn = o’(g) —-Jg.
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dependent over K so tr.deg.,(R) < n+1

» GC(C™,+)= GC {(th,...,dn) | 37, cidi =0} for some ¢; € C.

P Forre G r(X o cyi) =S ioci(yi+d)=>"0Cyi+>0,Cd
=>1,CYi,s0> L,cyi=g€K

» Apply o and subtract:

0(9) —g=0(> ocy) — XioCVi= > Cilyi+bi) =Y cyi=
Yo Cibi
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Differential transcendence

Thm. (H6lder 1887) The Gamma function is differentially transcendental over
C(x).

Many other proofs: Bank, Bierberbach, Hilbert, Ostrowski, Rosenlicht, .. .
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Differential transcendence

Thm. (H6lder 1887) The Gamma function is differentially transcendental over
C(x).

Many other proofs: Bank, Bierberbach, Hilbert, Ostrowski, Rosenlicht, .. .

Idea of Galoisian proof:

» T(x) is differentially algebraic over C(x) < ®(x) = rr/((xx)) is.

P Ox+1)—d(x)=1 = P(x+1)-d(X)=7 =
= oM (x+1)— oM (x) = &I

Xt

» Can characterize algebraic dependence among solutions of equations of
the form o(z;) — z; = b;.
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Def. A difference-differential field or od-field (K, o, §) is a difference field
(K, o) together with a derivation ¢ : K — K commuting with o.

o(a+ b) =4d(a) + d(b), é(ab) = d(a)b+ ad(b) and §(o(a)) = o(é(a)
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(K, o) together with a derivation ¢ : K — K commuting with o.

é(a+ b) =d(a)+ d(b), o(ab) = d(a)b+ ad(b) and é(o(a)) = o(d(a)
Exs.

TK:(C(X), ox)=x+1, =2

P K=C(x), o(x)=0gx, §=x2Z
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Def. A difference-differential field or od-field (K, o, §) is a difference field
(K, o) together with a derivation ¢ : K — K commuting with o.
é(a+ b) =d(a)+ d(b), o(ab) = d(a)b+ ad(b) and é(o(a)) = o(d(a)
Exs.
P K=C(x), o(x)=x+1, 6=4 =
P K=C(x), o(x)=gx, 6= Xa

b K =U2,C(x""")(logx), o(x'/?")y=x"""" §=xlogxZ

o0
2= x" satisfies z(x") — z = —x
n=0
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Def. A difference-differential field or od-field (K, o, §) is a difference field

(K, o) together with a derivation ¢ : K — K commuting with o.

5(a+ b) = 8(a) + 8(b), 5(ab) = 5(a)b + as(b) and 6(o(a)) =

Exs.
P K=C(x), o(x)=x+1, 6=4

— dx

> K=C(x), o(x)=qgx, (S:xa
b K =U2,C(x""")(logx), o(x'/?")y=x"""" §=xlogxZ

o0
2= x" satisfies z(x") — z = —x
n=0

= Z Bnx" satisfies z( ) — xz(x) =1
n=0

X+ 1

B, = number of partitions of {1, ..., n} (Bell numbers)

21/28



Thm. Let K C L be o4-fields with C = K algebraically closed. Let b € K and
zelLst
o(z)—z=bh.

If z is differentially algebraic over K, then there exist ¢, ..., c, € C and
g € K such that

cnd"(b) + ...+ ci6(b) + cob=0o(g) — g.

22/28



Thm. Let K C L be o4-fields with C = K algebraically closed. Let b € K and
zelLst
o(z)—z=b.

If z is differentially algebraic over K, then there exist ¢, ..., c, € C and
g € K such that

cnd"(b) + ...+ ci6(b) + cob=0o(g) — g.

Cor. (Holder 1887) The Gamma function is differentially transcendental over
C(x).

22/28



Thm. Let K C L be o4-fields with C = K algebraically closed. Let b € K and
zelLst
o(z)—z=bh.

If z is differentially algebraic over K, then there exist ¢, ..., c, € C and
g € K such that

cnd"(b) + ...+ ci6(b) + cob=0o(g) — g.

Cor. (Holder 1887) The Gamma function is differentially transcendental over
C(x).

Proof. K = C(x) C L= Mer(C), o(x) =x+1,0=2, b= 1.

d
ax’
(=" 1
Cnapr o+ G #Y(XH1) = g(x).
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Thm. Let K C L be o4-fields with C = K algebraically closed. Let b € K and
zelLst
o(z)—z=b.

If z is differentially algebraic over K, then there exist ¢, ..., c, € C and
g € K such that

Cad"(b) 4 ... + c18(b) + cob = o(g) — 9.

Cor. (Holder 1887) The Gamma function is differentially transcendental over
C(x).

Proof. K = C(x) C L= Mer(C), o(x)=x+1,6 =%, b= 1.

(=1)"

’
Cn o oo+ G0 # X+ 1) = g(x).

Cor. (Klazar 2003) }_, B.x" is differentially transcendental over C(x).
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Proof.
» zDAoverK = z4(z),...,8"(z) alg. dep. over K.
b Fori=0,...,n, o(8'(2)) - (z) =d(b).
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Thm. Let K C L be o4-fields with C = K algebraically closed. Let b € K and
zelLst

o(z)—z=bh.
If z is differentially algebraic over K, then there exist ¢, ..., ¢, € C and
g € K such that
cnd"(b) + ...+ ci6(b) +cob=0o(g) — g.

Proof.
» zDAoverK = z4(z),...,8"(z) alg. dep. over K.
b Fori=0,...,n, o(8'(2)) - &'(z) = §'(b).
» Galois theory = conclusion.
2y, ...2Zn € L satisfy
o(z9) — 29 = by, .. .,0(2n) — zn = bp.

Ifzy ..., zn are algebraically dependent over K, then there exist c; € C and
geKs.t

cobo+ ...+ cnbn=0(9) — g.
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Thm. Let K C L be oé-fields with C = K algebraically closed. Let b € K and
zelLst.
o(z)—z=b.

If z is differentially algebraic over K, then there exist ¢, ..., ¢, € C and
g € K such that

Cnd"(b) 4 ... + c16(b) + cob = o(g) — g.
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Sequences
C - field

SEQ = {(ao, a1, ...) | & € C} addition, multiplication termwise
o((ao, a1, a,...)) = (ai, a, ...) is a homomorphism, NOT injective
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Sequences

C - field

SEQ = {(ao, a1, ...) | & € C} addition, multiplication termwise
o((ao, a1, a,...)) = (ai, a, ...) is a homomorphism, NOT injective

SI:SEQ/N (80,81,...)N(bo,b1,...)ifa,':b,'VI'>>0
(S, o) is a difference ring

C—S c—(cc,...)

(C(x), x = x + 1) = (S,0) f(x)— (F0),F(1),...)

S is universal for C(x):

For C(x) C S and A € GLy(C(x)),
there exists a PV-ring R for o(Y) = AY with R C S.
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Def. w is the interlacing of u = (up, u1,...) and v = (vo, v1,. . .) if
w = (Uo,Vo,U1,V1,...).
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Thm. Let u, v, € S each satisfy a linear difference equation over C(x) C S.
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Def. w is the interlacing of u = (up, u1,...) and v = (vo, v1,. . .) if
w = (Uo, Vo, U1, V1,...).

Thm. Let u, v, € S each satisfy a linear difference equation over C(x) C S.

) (Larson-Taft) If uv = 0 there exist u1, ..., ut, v, ..., v: € S such that u
(resp. v) is the interlacing of the u; (resp. v;) and for all i either u; = 0 or
vi=0

» (Benzagou-Bézivin) u satisfies a polynomial equation over C(x), then u
is the interlacing of elements of C(x).

» (Conj. of Larson-Taft) If u is invertible in S and 1/u also satisfies a linear
difference equation over C(x) then u is the interlacing of hypergeometric
sequences u;, i.e. o(u;)/u; € C(x).
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General differential Galois theory of linear difference equations
The above Galois theory is good enough to determine differential properties
of solutions of equations of the form

aly)—y=»b or o(y)=0by.

For higher order equations, a Galois theory whose groups are differential
algebraic groups has been developed (Hardouin - S. 2008).
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General differential Galois theory of linear difference equations

The above Galois theory is good enough to determine differential properties
of solutions of equations of the form
o(y)—y=b or o(y)=by.

For higher order equations, a Galois theory whose groups are differential
algebraic groups has been developed (Hardouin - S. 2008).

Ex. Let

__ [ 1ifthe binary rep. of n contains no block of 0’s of odd length
"7 1 O otherwise

be the Baum-Sweet sequence. The generating function fas = Y-, anx”
satisfies B

fas(x*) + xfas(x%) — fas(x) = 0
Thm. (Dreyfus-Hardouin-Roques 2015) The series fzs(x?) and fzs(x) and all
their derivatives are algebraically independent over C(x), i.e., these series
ore differentially independent.
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For general in information on the Galois Theory of Difference equations:

Galois Theories of Linear Difference Equations: An Introduction
Mathematical Surveys and Monographs, Vol. 211, AMS, 2016, 171 pages

e Algebraic and Algorithmic Aspects of Linear Difference Equations - S.
e Galoisian Approach to Differential Transcendence- Hardouin
e Analytic Study of g-Difference Equations - Sauloy
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