A Galoisian Approach to Counting Walks

Michael F. Singer

Department of Mathematics North Carolina State University Raleigh, NC 27695-8205 singer@math.ncsu.edu

Workshop on "Enumerative Combinatorics" Erwin Schrödinger International Institute for Mathematics and Physics

October 16 - 20, 2017

- Talk 1: An Introduction to the Galois theory of difference equations
- > Talk 2: Walks, Difference Equations and Elliptic Curves

Galois theory describes the possible algebraic and differential relations among solutions of functional equations

A Warmup - the Gamma function

- A Warmup the Gamma function
- Classical Galois theory of polynomial equations

- A Warmup the Gamma function
- Classical Galois theory of polynomial equations
- Galois Theory of linear difference equations

- A Warmup the Gamma function
- Classical Galois theory of polynomial equations
- Galois Theory of linear difference equations
- Applications to differential transcendence

- A Warmup the Gamma function
- Classical Galois theory of polynomial equations
- Galois Theory of linear difference equations
- Applications to differential transcendence
- Applications to P-recursive/holonomic sequences
- General differential Galois theory of linear difference equations

Elementary Proof:

 $\Gamma(x + 1) = x\Gamma(x)$. Assume $\Gamma(x)$ is algebraic over $\mathbb{C}(x)$.

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0$$

with *n* minimal, so $a_0(x) \neq 0$.

Elementary Proof:

 $\Gamma(x + 1) = x\Gamma(x)$. Assume $\Gamma(x)$ is algebraic over $\mathbb{C}(x)$.

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0$$

with *n* minimal, so $a_0(x) \neq 0$. Change *x* to x + 1

$$x^{n}\Gamma(x)^{n} + a_{n-1}(x+1)x^{n-1}\Gamma(x)^{n-1} + \ldots + a_{0}(x+1) = 0.$$

Elementary Proof:

 $\Gamma(x + 1) = x\Gamma(x)$. Assume $\Gamma(x)$ is algebraic over $\mathbb{C}(x)$.

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0$$

with *n* minimal, so $a_0(x) \neq 0$. Change *x* to x + 1

$$x^{n}\Gamma(x)^{n} + a_{n-1}(x+1)x^{n-1}\Gamma(x)^{n-1} + \ldots + a_{0}(x+1) = 0.$$

Multiply the first equation by x^n and subtract

 $x^{n-1}(a_{n-1}(x+1)-xa_n(x))\Gamma(x)^{n-1}+\ldots+(a_0(x+1)-x^na_0(x))=0.$

Minimality $\Rightarrow a_0(x+1) = x^n a_0(x)$ which is impossible.

Elementary Proof:

 $\Gamma(x + 1) = x\Gamma(x)$. Assume $\Gamma(x)$ is algebraic over $\mathbb{C}(x)$.

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0$$

with *n* minimal, so $a_0(x) \neq 0$. Change *x* to x + 1

$$x^{n}\Gamma(x)^{n} + a_{n-1}(x+1)x^{n-1}\Gamma(x)^{n-1} + \ldots + a_{0}(x+1) = 0.$$

Multiply the first equation by x^n and subtract

$$x^{n-1}(a_{n-1}(x+1)-xa_n(x))\Gamma(x)^{n-1}+\ldots+(a_0(x+1)-x^na_0(x))=0.$$

Minimality $\Rightarrow a_0(x+1) = x^n a_0(x)$ which is impossible.

Galoisian Proof:

If $\Gamma(x)$ is algebraic over $\mathbb{C}(x)$ then **from Galois theory** we know that for some $n \neq 0$

$$y(x+1) = x^n y(x)$$

has a nonzero solution in $\mathbb{C}(x)$, which is impossible.

Classical Galois theory of polynomial equations

 $f(y) = 0, f \in k[y]$ of degree *n* and irreducible

Galois group = the group of transformations of the roots of f that preserve all algebraic relations among them.

Classical Galois theory of polynomial equations

 $f(y) = 0, f \in k[y]$ of degree *n* and irreducible

Galois group = the group of transformations of the roots of f that preserve all algebraic relations among them.

More formally:

Splitting Ring: $K = k[y_1, \dots, y_n, (\prod_{i < j} (y_i - y_j))^{-1}]/M = k[\alpha_1, \dots, \alpha_n],$ *M* a max ideal containing $(f(y_1), \dots, f(y_n))$

Note: K is a field and all such are isomorphic.

Galois group: Gal(K/k) = { $\sigma : K \to K \mid \sigma$ is a *k*-autom.}

Gal(K/k) permutes the roots $\Rightarrow \rho : Gal(K/k) \rightarrow S_n$

Classical Galois theory of polynomial equations

 $f(y) = 0, f \in k[y]$ of degree *n* and irreducible

Galois group = the group of transformations of the roots of f that preserve all algebraic relations among them.

More formally:

Splitting Ring: $K = k[y_1, \dots, y_n, (\prod_{i < j} (y_i - y_j))^{-1}]/M = k[\alpha_1, \dots, \alpha_n],$ *M* a max ideal containing $(f(y_1), \dots, f(y_n))$

Note: K is a field and all such are isomorphic.

Galois group: Gal(K/k) = { $\sigma : K \to K \mid \sigma$ is a *k*-autom.}

Gal(K/k) permutes the roots $\Rightarrow \rho : Gal(K/k) \rightarrow S_n$

The size of Gal(K/k) measures relations among the roots. The relations defining Gal(K/k) give us the relations among the roots. <u>Ex.</u>

 $f(y) = y^3 + py + q$ irreducible over k, K= splitting field, $Gal(K/k) \subset S_3$

The roots satisfy obvious relations:

$$\sum_{i=1}^{3} \alpha_i = \mathbf{0}, \qquad \sum_{i \neq j} \alpha_i \alpha_j = \mathbf{p} \qquad \prod_{i=1}^{3} \alpha_i = -\mathbf{q}$$

<u>Ex.</u>

 $f(y) = y^3 + py + q$ irreducible over k, K= splitting field, $Gal(K/k) \subset S_3$

The roots satisfy obvious relations:

$$\sum_{i=1}^{3} \alpha_i = \mathbf{0}, \qquad \sum_{i \neq j} \alpha_i \alpha_j = \mathbf{p} \qquad \prod_{i=1}^{3} \alpha_i = -\mathbf{q}$$

The size of Gal(K/k) measures relations among the roots.

There are other relations \Leftrightarrow Gal $(K/k) \subsetneq S_3 \Leftrightarrow$ Gal $(K/k) \subset A_3$

<u>Ex.</u>

 $f(y) = y^3 + py + q$ irreducible over k, K= splitting field, $Gal(K/k) \subset S_3$

The roots satisfy obvious relations:

$$\sum_{i=1}^{3} \alpha_i = \mathbf{0}, \qquad \sum_{i \neq j} \alpha_i \alpha_j = \mathbf{p} \qquad \prod_{i=1}^{3} \alpha_i = -\mathbf{q}$$

The size of Gal(K/k) measures relations among the roots.

There are other relations \Leftrightarrow Gal $(K/k) \subsetneq S_3 \Leftrightarrow$ Gal $(K/k) \subset A_3$

The relations defining Gal(K/k) give us the relations among the roots.

$$\mathcal{A}_{3} = \{ \sigma \in \mathcal{S}_{3} \mid \sigma \text{ leaves } \prod_{i < j} (X_{i} - X_{j}) \text{ invariant } \}$$

$$\mathsf{Gal}(K/k) \subset \mathcal{A}_{3} \quad \Leftrightarrow \quad \prod_{i < j} (\alpha_{i} - \alpha_{j}) \in k$$

$$\Leftrightarrow \quad -4p^{3} - 27q^{2} = (\prod_{i < j} (\alpha_{i} - \alpha_{j}))^{2} = a^{2}, a \in k$$

<u>Def.</u> A difference field (K, σ) is a field K together with an **automorphism** $\sigma : K \to K$. The constants are $K^{\sigma} = \{a \in K \mid \sigma(z) = a\}$.

 σ -ring, σ -morphism, σ -subfield, σ -field extension, ... defined similarly.

<u>Def.</u> A difference field (K, σ) is a field K together with an **automorphism** $\sigma : K \to K$. The constants are $K^{\sigma} = \{a \in K \mid \sigma(z) = a\}$.

 σ -ring, σ -morphism, σ -subfield, σ -field extension, ... defined similarly.

Exs.

1.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1), \ K^{\sigma} = \mathbb{C}$$

<u>Def.</u> A difference field (K, σ) is a field K together with an **automorphism** $\sigma : K \to K$. The constants are $K^{\sigma} = \{a \in K \mid \sigma(z) = a\}$.

 σ -ring, σ -morphism, σ -subfield, σ -field extension, ... defined similarly.

Exs.

1.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1), \ K^{\sigma} = \mathbb{C}$$

2.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(qx) \text{ for } |q| \neq 1, \ K^{\sigma} = \mathbb{C}$$

<u>Def.</u> A difference field (K, σ) is a field K together with an **automorphism** $\sigma : K \to K$. The constants are $K^{\sigma} = \{a \in K \mid \sigma(z) = a\}$.

 σ -ring, σ -morphism, σ -subfield, σ -field extension, ... defined similarly.

Exs.

1.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1), \ K^{\sigma} = \mathbb{C}$$

2.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(qx) \text{ for } |q| \neq 1, \ K^{\sigma} = \mathbb{C}$$

3. $K = \mathbb{C}(x), \ \sigma(f(x)) = f(x^p)$ for $p \in \mathbb{N}, p > 1$ σ is NOT surjective

<u>Def.</u> A difference field (K, σ) is a field K together with an **automorphism** $\sigma : K \to K$. The constants are $K^{\sigma} = \{a \in K \mid \sigma(z) = a\}$.

 σ -ring, σ -morphism, σ -subfield, σ -field extension, ... defined similarly.

Exs.

1.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1), \ K^{\sigma} = \mathbb{C}$$

2.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(qx) \text{ for } |q| \neq 1, \ K^{\sigma} = \mathbb{C}$$

3.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(x^p)$$
 for $p \in \mathbb{N}, p > 1$ σ is NOT surjective

4.
$$K = \bigcup_{n=1}^{\infty} \mathbb{C}(x^{1/p^n}), \ \sigma(x^{1/p^n}) = x^{1/p^{n-1}} \ K^{\sigma} = \mathbb{C}$$

<u>Def.</u> A difference field (K, σ) is a field K together with an **automorphism** $\sigma : K \to K$. The constants are $K^{\sigma} = \{a \in K \mid \sigma(z) = a\}$.

 σ -ring, σ -morphism, σ -subfield, σ -field extension, ... defined similarly.

Exs.

1.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1), \ K^{\sigma} = \mathbb{C}$$

2.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(qx) \text{ for } |q| \neq 1, \ K^{\sigma} = \mathbb{C}$$

3. $K = \mathbb{C}(x), \ \sigma(f(x)) = f(x^p)$ for $p \in \mathbb{N}, p > 1$ σ is NOT surjective

4.
$$K = \bigcup_{n=1}^{\infty} \mathbb{C}(x^{1/p^n}), \ \sigma(x^{1/p^n}) = x^{1/p^{n-1}} \ K^{\sigma} = \mathbb{C}$$

5. Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$ a lattice $K = (\omega_1, \omega_2)$ -periodic functions Let $\omega_3 \in \mathbb{C}$, $n\omega_3 \notin \Lambda \ \forall n \in \mathbb{N}$ and $\sigma(f(\omega)) = f(\omega + \omega_3)$ $K^{\sigma} = \mathbb{C}$

<u>Def.</u> A difference field (K, σ) is a field K together with an **automorphism** $\sigma : K \to K$. The constants are $K^{\sigma} = \{a \in K \mid \sigma(z) = a\}$.

 σ -ring, σ -morphism, σ -subfield, σ -field extension, ... defined similarly.

Exs.

1.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1), \ K^{\sigma} = \mathbb{C}$$

2.
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(qx) \text{ for } |q| \neq 1, \ K^{\sigma} = \mathbb{C}$$

3. $K = \mathbb{C}(x), \ \sigma(f(x)) = f(x^p)$ for $p \in \mathbb{N}, p > 1$ σ is NOT surjective

4.
$$K = \bigcup_{n=1}^{\infty} \mathbb{C}(x^{1/p^n}), \ \sigma(x^{1/p^n}) = x^{1/p^{n-1}} \ K^{\sigma} = \mathbb{C}$$

- 5. Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$ a lattice $K = (\omega_1, \omega_2)$ -periodic functions Let $\omega_3 \in \mathbb{C}$, $n\omega_3 \notin \Lambda \quad \forall n \in \mathbb{N}$ and $\sigma(f(\omega)) = f(\omega + \omega_3) \quad K^{\sigma} = \mathbb{C}$
- Let (E, ⊕) be an elliptic curve, e.g., zeros of y² = x³ ax b
 K = function field of E, σ(f(X)) = f(X ⊕ Ω), Ω a nontorsion pt.,
 K^σ = C. Note: 5. and 6. are the same.

Matrix Equations and Solutions

Let (K, σ) be a σ -field and g a solution of

$$\mathcal{L}(y) = \sigma^{n}(y) + a_{n-1}\sigma^{n-1}(y) + \dots + a_{0}y = 0,$$

with $a_{0} \neq 0, a_{i} \in K$. Then, $Z := \begin{pmatrix} g \\ \sigma(g) \\ \vdots \\ \sigma^{n-1}(g) \end{pmatrix}$ satisfies $\sigma(Y) = A_{\mathcal{L}}Y$ with
$$A_{\mathcal{L}} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -\frac{a_{0}}{a_{n}} & -\frac{a_{1}}{a_{n}} & \dots & \dots & -\frac{a_{n-1}}{a_{n}} \end{pmatrix} \in GL_{n}(K).$$

We will consider matrix equations $\sigma(Y) = AY$, $A \in GL_n(K)$.

A fundamental solution matrix of $\sigma(Y) = AY$ is a $U \in GL_n(K)$ with $\sigma(U) = AU$

Matrix Equations and Solutions

Let (K, σ) be a σ -field and g a solution of

$$\mathcal{L}(y) = \sigma^{n}(y) + a_{n-1}\sigma^{n-1}(y) + \dots + a_{0}y = 0,$$

with $a_{0} \neq 0, a_{i} \in K$. Then, $Z := \begin{pmatrix} g \\ \sigma(g) \\ \vdots \\ \sigma^{n-1}(g) \end{pmatrix}$ satisfies $\sigma(Y) = A_{\mathcal{L}}Y$ with
$$A_{\mathcal{L}} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & 1 \\ -\frac{a_{0}}{a_{0}} & -\frac{a_{1}}{a_{0}} & \dots & \dots & -\frac{a_{n-1}}{a_{n}} \end{pmatrix} \in GL_{n}(K).$$

We will consider matrix equations $\sigma(Y) = AY$, $A \in GL_n(K)$.

A fundamental solution matrix of $\sigma(Y) = AY$ is a $U \in GL_n(K)$ with $\sigma(U) = AU$ Fact: If U_1 , $U_2 \in GL_n(K)$ are fund. solution matrices of $\sigma(Y) = AY$, then

$$U_1 = U_2 D$$

for some $D \in \operatorname{GL}_n(K^{\sigma})$.

Picard-Vessiot extensions = "splitting rings"

$$(K, \sigma)$$
 - σ -field, Ex. $\mathbb{C}(x)$, $\sigma(x) = x + 1$, $\sigma(x) = qx$

Difference Equation: $\sigma(Y) = AY \ A \in GL_n(K)$

Splitting Ring: $K[Y, \frac{1}{\det(Y)}]$, $Y = (y_{i,j})$ indeterminates, <u>define</u> $\sigma(Y) = AY$,

Let $M = \max \sigma$ -ideal in $K[Y, \frac{1}{\det(Y)}]$

$$R = K[Y, \frac{1}{\det(Y)}]/M = k[Z, \frac{1}{\det(Z)}] = \sigma$$
-Picard-Vessiot Ring

- *M* is radical \Rightarrow *R* is reduced
- If $C = K^{\sigma} = \{c \in K \mid \sigma(c) = c\}$ is alg closed $\Rightarrow R$ is unique and $R^{\sigma} = C$

Picard-Vessiot extensions = "splitting rings"

$$(K, \sigma)$$
 - σ -field, Ex. $\mathbb{C}(x)$, $\sigma(x) = x + 1$, $\sigma(x) = qx$

Difference Equation: $\sigma(Y) = AY \ A \in GL_n(K)$

Splitting Ring: $K[Y, \frac{1}{\det(Y)}]$, $Y = (y_{i,j})$ indeterminates, <u>define</u> $\sigma(Y) = AY$,

Let $M = \max \sigma$ -ideal in $K[Y, \frac{1}{\det(Y)}]$

$$R = K[Y, \frac{1}{\det(Y)}]/M = k[Z, \frac{1}{\det(Z)}] = \sigma$$
-Picard-Vessiot Ring

- *M* is radical \Rightarrow *R* is reduced
- If $C = K^{\sigma} = \{c \in K \mid \sigma(c) = c\}$ is alg closed $\Rightarrow R$ is unique and $R^{\sigma} = C$

$$\underline{\mathsf{Ex.}} \ k = \mathbb{C} \ \sigma(y) = -y$$
$$R = \mathbb{C}[y, \frac{1}{y}]/(y^2 - 1) = \mathbb{C}[y, \frac{1}{y}]/(y - 1) \oplus \mathbb{C}[y, \frac{1}{y}]/(y + 1)$$

R has zero divisors: (y - 1)(y + 1) = 0.

Galois group

<u>Def.</u> Let *R* be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over *K* and let $C = K^{\sigma}$. The Galois group G(R/K) of *R* over *K* is defined to be

 $Gal(R/K) = \{\tau : R \rightarrow R \mid \tau \text{ is a } K \text{-}\sigma\text{-automorphism}\}$

Galois group

<u>Def.</u> Let *R* be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over *K* and let $C = K^{\sigma}$. The Galois group G(R/K) of *R* over *K* is defined to be

 $Gal(R/K) = \{\tau : R \to R \mid \tau \text{ is a } K \text{-}\sigma \text{-automorphism}\}$

Let $U \in GL_n(R)$ be a fund. sol. matrix and $\tau \in Gal(R/K)$. Then

 $\sigma(\tau(U) = A\tau(U)$

So $\tau(U)$ is a fund. sol. matrix and so $\exists [\tau]_U \in GL_n(C)$ s.t. $\tau(U) = U[\tau]_U$.

Galois group

<u>Def.</u> Let *R* be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over *K* and let $C = K^{\sigma}$. The Galois group G(R/K) of *R* over *K* is defined to be

 $Gal(R/K) = \{\tau : R \to R \mid \tau \text{ is a } K \text{-}\sigma \text{-automorphism}\}$

Let $U \in GL_n(R)$ be a fund. sol. matrix and $\tau \in Gal(R/K)$. Then

 $\sigma(\tau(U) = A\tau(U)$

So $\tau(U)$ is a fund. sol. matrix and so $\exists [\tau]_U \in GL_n(C)$ s.t. $\tau(U) = U[\tau]_U$.

<u>Fact</u>: The map ρ : Gal(R/K) \rightarrow GL_n(C) given by $\rho(\tau) = [\tau]_U$ is a group homomorphism whose image is a linear algebraic group, that is, there is a set of polynomials $P \subset C[x_{i,j}, \frac{1}{\det(x_{i,j})}]$ such that

 $\operatorname{Gal}(K_A|K) = \{g \in \operatorname{GL}_n(C) \mid p(g) = 0 \text{ for all } p \in P\}$

Examples of linear algebraic groups

Examples of linear algebraic groups

1. $GL_1(C) = C^*$. The only linear algebraic subgroups are

 $\mathbb{Z}/n\mathbb{Z} = \{(a) \in GL_1(C) \mid a^n = 1\}$ n = 1, 2, ... and $GL_1(C)$

Examples of linear algebraic groups

1. $GL_1(C) = C^*$. The only linear algebraic subgroups are

 $\mathbb{Z}/n\mathbb{Z} = \{(a) \in GL_1(C) \mid a^n = 1\}$ n = 1, 2, ... and $GL_1(C)$

2. $SL_n(k) = \{g = (g_{i,j}) \mid det(g) = 1\}$
Examples of linear algebraic groups

1. $\operatorname{GL}_1(C) = C^*$. The only linear algebraic subgroups are $\mathbb{Z}/n\mathbb{Z} = \{(a) \in \operatorname{GL}_1(C) \mid a^n = 1\}$ $n = 1, 2, \dots$ and $\operatorname{GL}_1(C)$

2.
$$SL_n(k) = \{g = (g_{i,j}) \mid det(g) = 1\}$$

3. $(C, +) = \{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in C \}.$

Examples of linear algebraic groups

1.
$$\operatorname{GL}_1(C) = C^*$$
. The only linear algebraic subgroups are
 $\mathbb{Z}/n\mathbb{Z} = \{(a) \in \operatorname{GL}_1(C) \mid a^n = 1\}$ $n = 1, 2, \dots$ and $\operatorname{GL}_1(C)$

2.
$$SL_n(k) = \{g = (g_{i,j}) \mid det(g) = 1\}$$

3. $(C, +) = \{\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in C\}.$
4. $(C^n, +) = \{\begin{pmatrix} A_1 & 0 & 0 & \dots & 0 \\ 0 & A_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & A_n \end{pmatrix} \mid A_i = \begin{pmatrix} 1 & a_i \\ 0 & 1 \end{pmatrix}, a_i \in C\}$

The linear algebraic subgroups of $(C^n, +)$ are the vector subspaces.

If *G* is a proper linear algebraic subgroup of $(C^n, +)$ then $G \subset \{(a_1, \ldots a_n) \mid c_1 a_1 + \ldots + c_n a_n = 0 \text{ for some } c_i \in C\}$

Examples of Galois groups

<u>Ex.</u> $K = \mathbb{C}, \sigma = identity.$

$$\sigma(\mathbf{y}) = -\mathbf{y} \Rightarrow R = \mathbb{C}[\mathbf{y}, \frac{1}{\mathbf{y}}]/(\mathbf{y}^2 - 1)$$
$$Gal(R/K) = \mathbb{Z}/2\mathbb{Z}$$

Examples of Galois groups

Ex.
$$K = \mathbb{C}$$
, $\sigma = identity$.
 $\sigma(y) = -y \Rightarrow R = \mathbb{C}[y, \frac{1}{y}]/(y^2 - 1)$
 $Gal(R/K) = \mathbb{Z}/2\mathbb{Z}$

<u>Ex.</u> $K = \mathbb{C}(x), \sigma(x) = x + 1$

$$\sigma^2 y - x\sigma y + y = 0 \Rightarrow \sigma Y = \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} Y$$
$$R = K[Y, \frac{1}{\det(Y)}] / (\det(Y) - 1), \ \operatorname{Gal}(R/K) = \operatorname{SL}_2(\mathbb{C})$$

Examples of Galois groups

Ex.
$$K = \mathbb{C}$$
, $\sigma = identity$.
 $\sigma(y) = -y \Rightarrow R = \mathbb{C}[y, \frac{1}{y}]/(y^2 - 1)$
 $Gal(R/K) = \mathbb{Z}/2\mathbb{Z}$
Ex. $K = \mathbb{C}(x), \sigma(x) = x + 1$

$$\sigma^{2} y - x\sigma y + y = 0 \Rightarrow \sigma Y = \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} Y$$
$$R = K[Y, \frac{1}{\det(Y)}]/(\det(Y) - 1), \ \operatorname{Gal}(R/K) = \operatorname{SL}_{2}(\mathbb{C})$$

•	,	
1	٢	•
 _		_

$$\sigma(\mathbf{y}) - \mathbf{y} = \mathbf{f}, \mathbf{f} \in \mathbf{K} \Leftrightarrow \sigma \begin{pmatrix} 1 & \mathbf{y} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{f} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \mathbf{y} \\ 0 & 1 \end{pmatrix}$$
$$\phi \in \operatorname{Gal}(\mathbf{R}/\mathbf{K}) \Rightarrow \phi(\mathbf{y}) = \mathbf{y} + \mathbf{c}_{\phi}, \mathbf{c}_{\phi} \in \mathbf{C}$$
$$\operatorname{Gal}_{\sigma} = (\mathbf{C}, +) \text{ or } \{0\}$$

 (K, σ) a difference field, $C = K^{\sigma}$ algebraically closed $\sigma(Y) = AY, A \in GL_n(K)$ with PV-ring *R* and Galois group Gal(R/K)

 (K, σ) a difference field, $C = K^{\sigma}$ algebraically closed $\sigma(Y) = AY, A \in GL_n(K)$ with PV-ring *R* and Galois group Gal(R/K)

▶ $R^G = K$, that is, if $f \in R$ is left fixed by the Galois group it is in *K*.

 (K, σ) a difference field, $C = K^{\sigma}$ algebraically closed $\sigma(Y) = AY, A \in GL_n(K)$ with PV-ring *R* and Galois group Gal(R/K)

▶ $R^G = K$, that is, if $f \in R$ is left fixed by the Galois group it is in *K*.

• $\dim_C G = Krull dimension of R over K$.

When R is a domain this is the transcendence degree of the quotient field of R

 (K, σ) a difference field, $C = K^{\sigma}$ algebraically closed $\sigma(Y) = AY, A \in GL_{\sigma}(K)$ with PV-ring *R* and Galois group Gal(R/K)

▶ $R^G = K$, that is, if $f \in R$ is left fixed by the Galois group it is in *K*.

• dim_{*C*} G = Krull dimension of *R* over *K*.

When R is a domain this is the transcendence degree of the quotient field of R

There is also a *Galois correspondence* between linear algebraic subgroups of *G* and certain subfields of the "quotient field" of *R*.

<u>Thm.</u> (Roques 2007)

For $q \in \mathbb{C}$ with |q| > 1. Let $y_1(x), y_2(x)$ two linearly independent solutions of

$$y(q^{2}x) - \frac{2ax - 2}{a^{2}x - 1}y(qx) - \frac{x - 1}{a^{2}x - q^{2}x}y(x) = 0$$

with $a \notin q^{\mathbb{Z}}$ and $a^2 \in q^{\mathbb{Z}}$. Then, $y_1(x), y_2(x), y_1(qx)$ are algebraically independent over $\mathbb{C}(x)$.

Thm. (Roques 2007)

For $q \in \mathbb{C}$ with |q| > 1. Let $y_1(x), y_2(x)$ two linearly independent solutions of

$$y(q^{2}x) - \frac{2ax - 2}{a^{2}x - 1}y(qx) - \frac{x - 1}{a^{2}x - q^{2}x}y(x) = 0$$

with $a \notin q^{\mathbb{Z}}$ and $a^2 \in q^{\mathbb{Z}}$. Then, $y_1(x), y_2(x), y_1(qx)$ are algebraically independent over $\mathbb{C}(x)$.

Proof: Roques shows that

• the Galois group is $SL_2(\mathbb{C})$.

Thm. (Roques 2007)

For $q \in \mathbb{C}$ with |q| > 1. Let $y_1(x), y_2(x)$ two linearly independent solutions of

$$y(q^{2}x) - \frac{2ax - 2}{a^{2}x - 1}y(qx) - \frac{x - 1}{a^{2}x - q^{2}x}y(x) = 0$$

with $a \notin q^{\mathbb{Z}}$ and $a^2 \in q^{\mathbb{Z}}$. Then, $y_1(x), y_2(x), y_1(qx)$ are algebraically independent over $\mathbb{C}(x)$.

Proof: Roques shows that

- the Galois group is $SL_2(\mathbb{C})$.
- ▶ the PV-ring is C(x)[y₁(x), y₂(x), y₁(qx), y₂(qx)] and so has transcendence degree 3.

Thm. (Roques 2007)

For $q \in \mathbb{C}$ with |q| > 1. Let $y_1(x), y_2(x)$ two linearly independent solutions of

$$y(q^{2}x) - \frac{2ax - 2}{a^{2}x - 1}y(qx) - \frac{x - 1}{a^{2}x - q^{2}x}y(x) = 0$$

with $a \notin q^{\mathbb{Z}}$ and $a^2 \in q^{\mathbb{Z}}$. Then, $y_1(x), y_2(x), y_1(qx)$ are algebraically independent over $\mathbb{C}(x)$.

Proof: Roques shows that

- ▶ the Galois group is SL₂(C).
- ▶ the PV-ring is C(x)[y₁(x), y₂(x), y₁(qx), y₂(qx)] and so has transcendence degree 3.
- the element $y_1(x)y_2(qx) y_2(x)y_1(qx) \in \mathbb{C}(x)$.

 $\sigma(z)=bz.$

If z is algebraic over K, then for some $n \in \mathbb{N}$

 $\sigma(Y) = b^n Y$

has a solution in K.

<u>Cor.</u> $\Gamma(x)$ is not algebraic over C(x).

 $\sigma(z)=bz.$

If z is algebraic over K, then for some $n \in \mathbb{N}$

 $\sigma(Y) = b^n Y$

has a solution in K.

<u>Cor.</u> $\Gamma(x)$ is not algebraic over C(x). <u>Proof:</u> $K = \mathbb{C}(x), L = \mathcal{M}er(\mathbb{C}), \sigma(x) = x + 1, b = x$. $Y(x + 1) = x^n Y(x)$

has no solution in $\mathbb{C}(x)$.

$$\sigma(z) = bz. \tag{1}$$

If z is algebraic over K, then for some $n \in \mathbb{N}$

 $\sigma(Y) = b^n Y$

has a solution in K.

$$\sigma(z) = bz. \tag{1}$$

If z is algebraic over K, then for some $n \in \mathbb{N}$

 $\sigma(Y) = b^n Y$

has a solution in K.

<u>Proof:</u> Let $R = K[y, \frac{1}{y}], \sigma(y) = by$ be the PV-ring of (1) and G its Galois gp.

▶ *z* algebraic over $K \Rightarrow y$ algebraic over *K* so tr.deg._{*K*}(*R*) = 0

$$\sigma(z) = bz. \tag{1}$$

If z is algebraic over K, then for some $n \in \mathbb{N}$

 $\sigma(Y) = b^n Y$

has a solution in K.

<u>Proof:</u> Let $R = K[y, \frac{1}{y}], \sigma(y) = by$ be the PV-ring of (1) and *G* its Galois gp.

- ▶ z algebraic over $K \Rightarrow y$ algebraic over K so tr.deg._K(R) = 0
- $G \subsetneq \operatorname{GL}_1(C) \Rightarrow G = \{c \mid c^n = 1\}$ for some $n \in \mathbb{N}$.

$$\sigma(z) = bz. \tag{1}$$

If z is algebraic over K, then for some $n \in \mathbb{N}$

 $\sigma(Y) = b^n Y$

has a solution in K.

<u>Proof:</u> Let $R = K[y, \frac{1}{y}], \sigma(y) = by$ be the PV-ring of (1) and G its Galois gp.

▶ z algebraic over $K \Rightarrow y$ algebraic over K so tr.deg._K(R) = 0

▶
$$G \subsetneq \operatorname{GL}_1(C) \Rightarrow G = \{c \mid c^n = 1\}$$
 for some $n \in \mathbb{N}$.

For $\tau \in G$, $\tau(y) = cy$ for some $c \in C^*$

so $\tau(y^n) = c^n y^n = y^n$ so $y^n \in K$ and $\tau(y^n) = \tau(y)^n = (by)^n = b^n y^n$.

 $\sigma(z_0)-z_0=b_0,\ldots,\sigma(z_n)-z_n=b_n.$

If $z_0 \dots, z_n$ are algebraically dependent over K, then there exist $c_i \in C$ and $g \in K$ s.t.

 $c_0b_0+\ldots+c_nb_n=\sigma(g)-g.$

 $\sigma(z_0)-z_0=b_0,\ldots,\sigma(z_n)-z_n=b_n.$

If $z_0 \dots, z_n$ are algebraically dependent over K, then there exist $c_i \in C$ and $g \in K$ s.t.

$$c_0b_0+\ldots+c_nb_n=\sigma(g)-g.$$

<u>Cor.</u> For $p \in \mathbb{N}$, $p \ge 2$, $M(x) = \sum_{n=1}^{\infty} x^{p^n}$ is not algebraic over C(x).

 $\sigma(z_0)-z_0=b_0,\ldots,\sigma(z_n)-z_n=b_n.$

If $z_0 \dots, z_n$ are algebraically dependent over K, then there exist $c_i \in C$ and $g \in K$ s.t.

$$c_0b_0+\ldots+c_nb_n=\sigma(g)-g.$$

<u>Cor.</u> For $p \in \mathbb{N}$, $p \ge 2$, $M(x) = \sum_{n=1}^{\infty} x^{p^n}$ is not algebraic over C(x). <u>Proof:</u> Use the Thm. with n = 1. Let $K = \bigcup_{n=1}^{\infty} \mathbb{C}(x^{1/p^n}), L = \bigcup_{n=1}^{\infty} \mathbb{C}((x^{1/p^n}))\sigma(x) = x^p, b = -x$. $z(x^p) - z(x) = -x$

has no solution in $\cup_{n=1}^{\infty} \mathbb{C}(x^{1/p^n})$.

$$\sigma(z_0) - z_0 = b_0, \ldots, \sigma(z_n) - z_n = b_n.$$
⁽²⁾

If $z_0 \dots, z_n$ are algebraically dependent over K, then there exist $c_i \in C$ and $g \in K$ s.t.

 $c_0b_0+\ldots+c_nb_n=\sigma(g)-g.$

$$\sigma(z_0)-z_0=b_0,\ldots,\sigma(z_n)-z_n=b_n.$$
(2)

If $z_0 \dots, z_n$ are algebraically dependent over K, then there exist $c_i \in C$ and $g \in K$ s.t.

$$c_0b_0+\ldots+c_nb_n=\sigma(g)-g.$$

<u>Proof:</u> Let $R = K[y_0, ..., y_n], \sigma(y_i) = b_i y$ be the PV-ring of (2) and *G* its Galois gp.

*z*₀,..., *z_n* algebraically dependent over *K* ⇒ *y*₀,..., *y_n* algebraically dependent over *K* so tr.deg._{*K*}(*R*) < *n* + 1

$$\sigma(z_0)-z_0=b_0,\ldots,\sigma(z_n)-z_n=b_n.$$
(2)

If $z_0 \dots, z_n$ are algebraically dependent over K, then there exist $c_i \in C$ and $g \in K$ s.t.

$$c_0b_0+\ldots+c_nb_n=\sigma(g)-g.$$

<u>Proof:</u> Let $R = K[y_0, ..., y_n], \sigma(y_i) = b_i y$ be the PV-ring of (2) and *G* its Galois gp.

- *z*₀,..., *z_n* algebraically dependent over K ⇒ y₀,..., y_n algebraically dependent over K so tr.deg._K(R) < n + 1</p>
- ▶ $G \subsetneq (C^{n+1}, +) \Rightarrow G \subset \{(d_0, \ldots, d_n) \mid \sum_{i=0}^n c_i d_i = 0\}$ for some $c_i \in C$.

$$\sigma(z_0) - z_0 = b_0, \ldots, \sigma(z_n) - z_n = b_n.$$
⁽²⁾

If $z_0 \dots, z_n$ are algebraically dependent over K, then there exist $c_i \in C$ and $g \in K$ s.t.

$$c_0b_0+\ldots+c_nb_n=\sigma(g)-g.$$

<u>Proof:</u> Let $R = K[y_0, ..., y_n], \sigma(y_i) = b_i y$ be the PV-ring of (2) and *G* its Galois gp.

*z*₀,..., *z_n* algebraically dependent over *K* ⇒ *y*₀,..., *y_n* algebraically dependent over *K* so tr.deg._{*K*}(*R*) < *n* + 1

▶
$$G \subsetneq (C^{n+1}, +) \Rightarrow G \subset \{(d_0, \ldots, d_n) \mid \sum_{i=0}^n c_i d_i = 0\}$$
 for some $c_i \in C$.

For
$$\tau \in G$$
, $\tau(\sum_{i=0}^{n} c_i y_i) = \sum_{i=0}^{n} c_i(y_i + d_i) = \sum_{i=0}^{n} c_i y_i + \sum_{i=0}^{n} c_i d_i$
= $\sum_{i=0}^{n} c_i y_i$, so $\sum_{i=0}^{n} c_i y_i = g \in K$

$$\sigma(z_0)-z_0=b_0,\ldots,\sigma(z_n)-z_n=b_n.$$
(2)

If $z_0 \dots, z_n$ are algebraically dependent over K, then there exist $c_i \in C$ and $g \in K$ s.t.

$$c_0b_0+\ldots+c_nb_n=\sigma(g)-g.$$

<u>Proof:</u> Let $R = K[y_0, ..., y_n], \sigma(y_i) = b_i y$ be the PV-ring of (2) and *G* its Galois gp.

*z*₀,..., *z_n* algebraically dependent over *K* ⇒ *y*₀,..., *y_n* algebraically dependent over *K* so tr.deg._{*K*}(*R*) < *n* + 1

•
$$G \subsetneq (C^{n+1}, +) \Rightarrow G \subset \{(d_0, \ldots, d_n) \mid \sum_{i=0}^n c_i d_i = 0\}$$
 for some $c_i \in C$.

For
$$\tau \in G$$
, $\tau(\sum_{i=0}^{n} c_i y_i) = \sum_{i=0}^{n} c_i(y_i + d_i) = \sum_{i=0}^{n} c_i y_i + \sum_{i=0}^{n} c_i d_i$
= $\sum_{i=0}^{n} c_i y_i$, so $\sum_{i=0}^{n} c_i y_i = g \in K$

Apply σ and subtract:

$$\sigma(g) - g = \sigma(\sum_{i=0}^{n} c_i y_i) - \sum_{i=0}^{n} c_i y_i = \sum_{i=0}^{n} c_i (y_i + b_i) - \sum_{i=0}^{n} c_i y_i = \sum_{i=0}^{n} c_i b_i$$

Differential transcendence

<u>Thm.</u> (Hölder 1887) The Gamma function is differentially transcendental over $\mathbb{C}(x)$.

Many other proofs: Bank, Bierberbach, Hilbert, Ostrowski, Rosenlicht, ...

Differential transcendence

<u>Thm.</u> (Hölder 1887) The Gamma function is differentially transcendental over $\mathbb{C}(x)$.

Many other proofs: Bank, Bierberbach, Hilbert, Ostrowski, Rosenlicht, ...

Idea of Galoisian proof:

► $\Gamma(x)$ is differentially algebraic over $\mathbb{C}(x) \Leftrightarrow \Phi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ is.

•
$$\Phi(x+1) - \Phi(x) = \frac{1}{x} \Rightarrow \Phi'(x+1) - \Phi'(x) = \frac{-1}{x^2} \Rightarrow \dots$$

 $\Rightarrow \Phi^{(n)}(x+1) - \Phi^{(n)}(x) = \frac{(-1)^n}{x^{n+1}}$

Can characterize algebraic dependence among solutions of equations of the form σ(z_i) – z_i = b_i.

 $\delta(a+b) = \delta(a) + \delta(b), \ \delta(ab) = \delta(a)b + a\delta(b) \text{ and } \delta(\sigma(a)) = \sigma(\delta(a))$

 $\delta(a + b) = \delta(a) + \delta(b), \ \delta(ab) = \delta(a)b + a\delta(b) \text{ and } \delta(\sigma(a)) = \sigma(\delta(a))$ Exs.

•
$$K = \mathbb{C}(x), \ \sigma(x) = x + 1, \ \delta = \frac{d}{dx}$$

• $K = \mathbb{C}(x), \ \sigma(x) = qx, \ \delta = x \frac{d}{dx}$

 $\delta(a + b) = \delta(a) + \delta(b), \ \delta(ab) = \delta(a)b + a\delta(b) \text{ and } \delta(\sigma(a)) = \sigma(\delta(a))$ <u>Exs.</u>

•
$$K = \mathbb{C}(x), \ \sigma(x) = x + 1, \ \delta = \frac{d}{dx}$$

• $K = \mathbb{C}(x), \ \sigma(x) = qx, \ \delta = x \frac{d}{dx}$
• $K = \bigcup_{n=1}^{\infty} \mathbb{C}(x^{1/p^n})(\log x), \ \sigma(x^{1/p^n}) = x^{1/p^{n-1}}, \delta = x \log x \frac{d}{dx}$

$$z = \sum_{n=0}^{\infty} x^{p^n}$$
 satisfies $z(x^p) - z = -x$

 $\delta(a + b) = \delta(a) + \delta(b), \ \delta(ab) = \delta(a)b + a\delta(b) \text{ and } \delta(\sigma(a)) = \sigma(\delta(a))$ <u>Exs.</u>

•
$$K = \mathbb{C}(x), \ \sigma(x) = x + 1, \ \delta = \frac{d}{dx}$$

• $K = \mathbb{C}(x), \ \sigma(x) = qx, \ \delta = x \frac{d}{dx}$
• $K = \bigcup_{n=1}^{\infty} \mathbb{C}(x^{1/p^n})(\log x), \ \sigma(x^{1/p^n}) = x^{1/p^{n-1}}, \delta = x \log x \frac{d}{dx}$

$$z = \sum_{n=0}^{\infty} x^{p^n}$$
 satisfies $z(x^p) - z = -x$

$$\mathcal{K} = \mathbb{C}((x)), \sigma(x) = \frac{x}{x+1}, \delta = x^2 \frac{d}{dx}$$

$$z = \sum_{n=0}^{\infty} B_n x^n \text{ satisfies } z(\frac{x}{x+1}) - xz(x) = 1$$

 B_n = number of partitions of $\{1, ..., n\}$ (Bell numbers)

<u>Thm.</u> Let $K \subset L$ be $\sigma\delta$ -fields with $C = K^{\sigma}$ algebraically closed. Let $b \in K$ and $z \in L$ s.t.

 $\sigma(z)-z=b.$

If *z* is differentially algebraic over *K*, then there exist $c_0, \ldots, c_n \in C$ and $g \in K$ such that

 $c_n\delta^n(b)+\ldots+c_1\delta(b)+c_0b=\sigma(g)-g.$

<u>Thm.</u> Let $K \subset L$ be $\sigma\delta$ -fields with $C = K^{\sigma}$ algebraically closed. Let $b \in K$ and $z \in L$ s.t.

 $\sigma(z)-z=b.$

If *z* is differentially algebraic over *K*, then there exist $c_0, \ldots, c_n \in C$ and $g \in K$ such that

```
c_n\delta^n(b)+\ldots+c_1\delta(b)+c_0b=\sigma(g)-g.
```

<u>Cor.</u> (Hölder 1887) The Gamma function is differentially transcendental over $\mathbb{C}(x)$.

<u>Thm.</u> Let $K \subset L$ be $\sigma\delta$ -fields with $C = K^{\sigma}$ algebraically closed. Let $b \in K$ and $z \in L$ s.t.

 $\sigma(z)-z=b.$

If *z* is differentially algebraic over *K*, then there exist $c_0, \ldots, c_n \in C$ and $g \in K$ such that

$$c_n\delta^n(b)+\ldots+c_1\delta(b)+c_0b=\sigma(g)-g.$$

<u>Cor.</u> (Hölder 1887) The Gamma function is differentially transcendental over $\mathbb{C}(x)$.

<u>Proof.</u> $K = \mathbb{C}(x) \subset L = \mathcal{M}er(\mathbb{C}), \ \sigma(x) = x + 1, \delta = \frac{d}{dx}, \ b = \frac{1}{x}.$

$$c_n \frac{(-1)''}{x^{n+1}} + \ldots + c_0 \frac{1}{x} \neq g(x+1) - g(x).$$
$\sigma(z)-z=b.$

If *z* is differentially algebraic over *K*, then there exist $c_0, \ldots, c_n \in C$ and $g \in K$ such that

$$c_n\delta^n(b)+\ldots+c_1\delta(b)+c_0b=\sigma(g)-g.$$

<u>Cor.</u> (Hölder 1887) The Gamma function is differentially transcendental over $\mathbb{C}(x)$.

<u>Proof.</u> $K = \mathbb{C}(x) \subset L = \mathcal{M}er(\mathbb{C}), \ \sigma(x) = x + 1, \delta = \frac{d}{dx}, \ b = \frac{1}{x}.$ $c_n \frac{(-1)^n}{x^{n+1}} + \ldots + c_0 \frac{1}{x} \neq g(x+1) - g(x).$

<u>Cor.</u> (Klazar 2003) $\sum_{n=0}^{\infty} B_n x^n$ is differentially transcendental over $\mathbb{C}(x)$.

 $\sigma(z)-z=b.$

If *z* is differentially algebraic over *K*, then there exist $c_0, \ldots, c_n \in C$ and $g \in K$ such that

 $c_n\delta^n(b)+\ldots+c_1\delta(b)+c_0b=\sigma(g)-g.$

 $\sigma(z)-z=b.$

If *z* is differentially algebraic over *K*, then there exist $c_0, \ldots, c_n \in C$ and $g \in K$ such that

$$c_n\delta^n(b)+\ldots+c_1\delta(b)+c_0b=\sigma(g)-g.$$

Proof.

▶ *z* DA over $K \Rightarrow z, \delta(z), \ldots, \delta^n(z)$ alg. dep. over *K*.

 $\sigma(z)-z=b.$

If *z* is differentially algebraic over *K*, then there exist $c_0, \ldots, c_n \in C$ and $g \in K$ such that

$$c_n\delta^n(b)+\ldots+c_1\delta(b)+c_0b=\sigma(g)-g.$$

Proof.

- ▶ *z* DA over $K \Rightarrow z, \delta(z), \ldots, \delta^n(z)$ alg. dep. over *K*.
- For i = 0, ..., n, $\sigma(\delta^i(z)) \delta^i(z) = \delta^i(b)$.

 $\sigma(z)-z=b.$

If *z* is differentially algebraic over *K*, then there exist $c_0, \ldots, c_n \in C$ and $g \in K$ such that

$$c_n\delta^n(b)+\ldots+c_1\delta(b)+c_0b=\sigma(g)-g.$$

Proof.

- ▶ *z* DA over $K \Rightarrow z, \delta(z), \ldots, \delta^n(z)$ alg. dep. over *K*.
- For i = 0, ..., n, $\sigma(\delta^i(z)) \delta^i(z) = \delta^i(b)$.
- Galois theory \Rightarrow conclusion.

 $z_0, \ldots z_n \in L$ satisfy

 $\sigma(z_0)-z_0=b_0,\ldots,\sigma(z_n)-z_n=b_n.$

If $z_0 \dots, z_n$ are algebraically dependent over *K*, then there exist $c_i \in C$ and $g \in K$ s.t.

 $c_0b_0+\ldots+c_nb_n=\sigma(g)-g.$

$$\sigma(z)-z=b.$$

If *z* is differentially algebraic over *K*, then there exist $c_0, \ldots, c_n \in C$ and $g \in K$ such that

$$c_n\delta^n(b)+\ldots+c_1\delta(b)+c_0b=\sigma(g)-g.$$

C - field

SEQ = { $(a_0, a_1, ...) | a_i \in C$ } addition, multiplication termwise $\sigma((a_0, a_1, a_2, ...)) = (a_1, a_2, ...)$ is a homomorphism, NOT injective

C - field

SEQ = { $(a_0, a_1, ...) | a_i \in C$ } addition, multiplication termwise $\sigma((a_0, a_1, a_2, ...)) = (a_1, a_2, ...)$ is a homomorphism, NOT injective

 $\mathcal{S} := \mathtt{SEQ}/\sim \quad (a_0,a_1,\ldots) \sim (b_0,b_1,\ldots) \text{ if } a_i = b_i \ orall i \gg 0$

 (\mathcal{S}, σ) is a difference ring

C - field

SEQ = { $(a_0, a_1, ...) | a_i \in C$ } addition, multiplication termwise $\sigma((a_0, a_1, a_2, ...)) = (a_1, a_2, ...)$ is a homomorphism, NOT injective

 $\mathcal{S} := \mathtt{SEQ}/\sim \quad (a_0,a_1,\ldots)\sim (b_0,b_1,\ldots) ext{ if } a_i = b_i \ orall i \gg 0$

 (\mathcal{S}, σ) is a difference ring

 $C \hookrightarrow S \ c \mapsto (c, c, \ldots)$ $(C(x), x \mapsto x + 1) \hookrightarrow (S, \sigma) \ f(x) \mapsto (f(0), f(1), \ldots)$

C - field

SEQ = { $(a_0, a_1, ...) | a_i \in C$ } addition, multiplication termwise $\sigma((a_0, a_1, a_2, ...)) = (a_1, a_2, ...)$ is a homomorphism, NOT injective

 $\mathcal{S} := \mathtt{SEQ}/\sim \quad (a_0,a_1,\ldots)\sim (b_0,b_1,\ldots) \text{ if } a_i = b_i \ orall i \gg 0$

 (\mathcal{S},σ) is a difference ring

 $C \hookrightarrow S \ c \mapsto (c, c, \ldots)$ $(C(x), x \mapsto x + 1) \hookrightarrow (S, \sigma) \ f(x) \mapsto (f(0), f(1), \ldots)$

S is universal for C(x):

For $\mathbb{C}(x) \subset S$ and $A \in GL_n(\mathbb{C}(x))$, there exists a PV-ring *R* for $\sigma(Y) = AY$ with $R \subset S$.

<u>Thm.</u> Let $u, v \in S$ each satisfy a linear difference equation over $\mathbb{C}(x) \subset S$.

(Larson-Taft) If uv = 0 there exist u₁,..., u_t, v₀,..., v_t ∈ S such that u (resp. v) is the interlacing of the u_i (resp. v_i) and for all i either u_i = 0 or v_i = 0

<u>Thm.</u> Let $u, v, \in S$ each satisfy a linear difference equation over $\mathbb{C}(x) \subset S$.

- (Larson-Taft) If uv = 0 there exist u₁,..., u_t, v₀,..., v_t ∈ S such that u (resp. v) is the interlacing of the u_i (resp. v_i) and for all i either u_i = 0 or v_i = 0
- (Benzagou-Bézivin) u satisfies a polynomial equation over C(x), then u is the interlacing of elements of C(x).

<u>Thm.</u> Let $u, v \in S$ each satisfy a linear difference equation over $\mathbb{C}(x) \subset S$.

- (Larson-Taft) If uv = 0 there exist u₁,..., u_t, v₀,..., v_t ∈ S such that u (resp. v) is the interlacing of the u_i (resp. v_i) and for all i either u_i = 0 or v_i = 0
- (Benzagou-Bézivin) u satisfies a polynomial equation over C(x), then u is the interlacing of elements of C(x).
- (Conj. of Larson-Taft) If *u* is invertible in S and 1/*u* also satisfies a linear difference equation over C(*x*) then *u* is the interlacing of hypergeometric sequences *u_i*, i.e. σ(*u_i*)/*u_i* ∈ C(*x*).

General differential Galois theory of linear difference equations

The above Galois theory is good enough to determine differential properties of solutions of equations of the form

 $\sigma(y) - y = b$ or $\sigma(y) = by$.

For higher order equations, a Galois theory whose groups are differential algebraic groups has been developed (Hardouin - S. 2008).

General differential Galois theory of linear difference equations

The above Galois theory is good enough to determine differential properties of solutions of equations of the form

 $\sigma(y) - y = b$ or $\sigma(y) = by$.

For higher order equations, a Galois theory whose groups are differential algebraic groups has been developed (Hardouin - S. 2008).

Ex. Let

 $a_n = \begin{cases} 1 \text{ if the binary rep. of } n \text{ contains no block of 0's of odd length} \\ 0 \text{ otherwise} \end{cases}$

be the Baum-Sweet sequence. The generating function $f_{BS} = \sum_{n \ge 0} a_n x^n$ satisfies

$$f_{BS}(x^4) + x f_{BS}(x^2) - f_{BS}(x) = 0$$

<u>Thm.</u> (Dreyfus-Hardouin-Roques 2015) The series $f_{BS}(x^2)$ and $f_{BS}(x)$ and all their derivatives are algebraically independent over $\mathbb{C}(x)$, i.e., these series ore differentially independent.

For general in information on the Galois Theory of Difference equations:

Galois Theories of Linear Difference Equations: An Introduction

Mathematical Surveys and Monographs, Vol. 211, AMS, 2016, 171 pages

- Algebraic and Algorithmic Aspects of Linear Difference Equations S.
 - Galoisian Approach to Differential Transcendence- Hardouin
 - Analytic Study of *q*-Difference Equations Sauloy