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Labelled planar graphs

# planar graphs on [n] = {1,...,n}

@ arbitrary # edges [Giménez, Noy 09]
@ m = an edges, a € (1,3) [Giménez, Noy 09]
e m<(l+o(1l))n [Kang, tuczak 12]
@ 2-conn.,, m=an, ac (1,3) [Bender, Gao, Wormald 02]
@ cubic [Bodirsky, Kang, Loffler, McDiarmid 07]
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Labelled planar graphs

# planar graphs on [n] = {1,...,n}

@ arbitrary # edges [Giménez, Noy 09]
@ m = an edges, a € (1,3) (‘dense’) [Giménez, Noy 09]
e m<(1l+o(1))n (‘sparse’) [Kang, tuczak 12]
@ 2-conn.,, m=an, ac (1,3) [Bender, Gao, Wormald 02]
@ cubic [Bodirsky, Kang, Loffler, McDiarmid 07]

Cubic planar graphs — sparse random planar graphs
—> phase transitions for rand. pl. gr.
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Unlabelled planar graphs
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Unlabelled planar graphs

Asymptotic number of unlabelled cubic planar simple graphs?
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Constructive decomposition

Labelled graphs:

components
planar — pl. connected
blocks
— pl. 2-connected

Tutte-decomposition
— pl. 3-connected
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Constructive decomposition

Labelled graphs:

components
planar — pl. connected
blocks
— pl. 2-connected
Tutte-decomposition
— pl. 3-connected

— Equations for generating functions
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Generating functions vs. cycle index sums

Example: F = G with edges replaced by H

Generating functions (GF):
F(x,y) = G(x,H(x,y))
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Generating functions vs. cycle index sums

Example: F = G with edges replaced by H

Generating functions (GF):

F(x,y) = G(x,H(x,y))
Overcounting in unlabelled case!
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Generating functions vs. cycle index sums

Example: F = G with edges replaced by H

Generating functions (GF):

F(x,y) = G(x,H(x,y))
Overcounting in unlabelled case!

Solution:  Cycle index sums (CIS)
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Generating functions vs. cycle index sums

Example: F = G with edges replaced by H

Generating functions (GF):

F(x,y) = G(x,H(x,y))
Overcounting in unlabelled case!

Solution:  Cycle index sums (CIS)
Information about sizes of orbits Vf € Aut(G)
Replacements similar to GF
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Cycle index sums

in vx's,
Jn ¢ orbits of length n of < edges (orientation preserving),
kn edges (orientation reversing),

for a given automorphism f.
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Cycle index sums

in vx's,
Jn ¢ orbits of length n of < edges (orientation preserving),
kn edges (orientation reversing),

for a given automorphism f.
z(f) = altaZ - b“b’2 k...

Zg:(;gv\ut(c) Z “(f)

feAut(G)
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Cycle index sums

in vx's,
Jn ¢ orbits of length n of < edges (orientation preserving),
kn edges (orientation reversing),

for a given automorphism f.
z(f) = altaZ - b“b’2 k...

Zg:(;gv\ut(c) Z “(f)

feAut(G)

Typical replacement: b; — Zy[a; — ajj, bj — bjj, ¢; — ¢jj]
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Constructive decomposition for unlabelled graphs

Construction (Chapuy, Fusy, Kang, Shoilekova 08)

Functional equations for GF (labelled) or CIS (unlabelled) reducing
a graph class G to the class of 3-connected graphs in G.
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Constructive decomposition for unlabelled graphs

Construction (Chapuy, Fusy, Kang, Shoilekova 08)

Functional equations for GF (labelled) or CIS (unlabelled) reducing
a graph class G to the class of 3-connected graphs in G.

@ Applicable to unlabelled cubic planar graphs
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Constructive decomposition for unlabelled graphs

Construction (Chapuy, Fusy, Kang, Shoilekova 08)

Functional equations for GF (labelled) or CIS (unlabelled) reducing
a graph class G to the class of 3-connected graphs in G.

@ Applicable to unlabelled cubic planar graphs
@ Base cases (amongst others):

e vx-rooted 3-conn. unl. cub. pl.
e edge-rooted 3-conn. unl. cub. pl.
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From cubic graphs to triangulations

Theorem (Whitney 1932)

Every 3-conn. planar graph has a unique embedding up to
orientation of the sphere.
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From cubic graphs to triangulations

Theorem (Whitney 1932)

Every 3-conn. planar graph has a unique embedding up to
orientation of the sphere.

. Whitne .
3-conn. cubic pl. graphs ig 3-conn. cubic maps
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From cubic graphs to triangulations

Theorem (Whitney 1932)

Every 3-conn. planar graph has a unique embedding up to
orientation of the sphere.

. Whitne .
3-conn. cubic pl. graphs ig 3-conn. cubic maps

Jdual

3-conn. triangulations
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From cubic graphs to triangulations

Theorem (Whitney 1932)

Every 3-conn. planar graph has a unique embedding up to
orientation of the sphere.

. Whitne .
3-conn. cubic pl. graphs ig 3-conn. cubic maps

vx-rooted /edge-rooted Jdual
3-conn. triangulations
face-rooted /edge-rooted
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A problem

Transition ‘graphs <— maps’ is not unique.

two embeddings one embedding
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Tutte rooting

Orient an edge & fix one side as ‘left’ (Tutte rooting)
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Tutte rooting

Orient an edge & fix one side as ‘left’ (Tutte rooting)

Graph Embedding 1  Embedding 2
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Tutte rooting

Orient an edge & fix one side as ‘left’ (Tutte rooting)
Graph Embedding 1  Embedding 2
Graph Embedding
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Tutte rooting

Edge-rooted graph <— 1 or 2 Tutte-rooted maps
+— 1 or 2 Tutte-rooted triangulations
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Tutte rooting

Edge-rooted graph <— 1 or 2 Tutte-rooted maps
+— 1 or 2 Tutte-rooted triangulations

Vx-rooted graph <— up to 6 Tutte-rooted maps/triangulations
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Tutte rooting

Edge-rooted graph <— 1 or 2 Tutte-rooted maps
+— 1 or 2 Tutte-rooted triangulations

Vx-rooted graph <— up to 6 Tutte-rooted maps/triangulations

Problem

Describe the triangulations with a given set of symmetries.
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Tutte rooting

Edge-rooted graph <— 1 or 2 Tutte-rooted maps
+— 1 or 2 Tutte-rooted triangulations

Vx-rooted graph <— up to 6 Tutte-rooted maps/triangulations

Describe the triangulations with a given set of symmetries.

This talk: Face-rooted triangulations.
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Unlabelled triangulations

o Cells of dim 0,1,2: vertices, edges, and faces

e Aut(r, T): automorphisms of T that fix the root face r
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Unlabelled triangulations

o Cells of dim 0,1,2: vertices, edges, and faces

e Aut(r, T): automorphisms of T that fix the root face r

Properties of automorphisms

@ ¢ € Aut(r, T): uniquely determined by its action on the cells
incident with r

@ Aut(r, T): subgroup of the dihedral group Ds
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Unlabelled triangulations

Two types of non-trivial automorphisms:

Rotations Reflections
(no invariant cells adj. to r) (two invariant cells opp. at r)
—

P. Spriissel Unlabelled planar graphs & symmetries of triangulations



Triangulations with reflective symmetries

Theorem (Tutte 62)

Invariant cells of a reflection: cyclic seq. C = (c1,...,¢) s.t. Vi
ci_1 & cj11 lie opposite at c;.
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Triangulations with reflective symmetries

Theorem (Tutte 62)

Invariant cells of a reflection: cyclic seq. C = (c1,...,¢) s.t. Vi
ci_1 & cj11 lie opposite at c;.

Definition
Girdle G: vx's & edges in C and on bds of faces in C
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Triangulations with reflective symmetries

Theorem (Tutte 62)

Invariant cells of a reflection: cyclic seq. C = (c1,...,¢) s.t. Vi
ci_1 & cj11 lie opposite at c;.

Definition
Girdle G: vx's & edges in C and on bds of faces in C

— induces two near-triangulations p
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Triangulations with reflective symmetries

Theorem (K-S 17+)

Triangulations with reflective symmetry <> obtained by choosing
@ agirdle G and
@ a near-triangulation p with forbidden chords

and pasting p into both sides of G. This is a 1-to-2 correspondence.
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Triangulations with reflective symmetries

Theorem (K-S 17+)

Triangulations with reflective symmetry <> obtained by choosing
@ agirdle G and
@ a near-triangulation p with forbidden chords

and pasting p into both sides of G. This is a 1-to-2 correspondence.
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Triangulations with rotative symmetries

Lemma (Tutte 62)

Rotative automorphism : unique invariant cell ¢ # r.
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Triangulations with rotative symmetries

Lemma (Tutte 62)

Rotative automorphism : unique invariant cell ¢ # r.

Definition

Spindle S: union of paths P, p(P), p?(P) from r to ¢
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Triangulations with rotative symmetries

Lemma (Tutte 62)

Rotative automorphism : unique invariant cell ¢ # r.

Definition

Spindle S: union of paths P, p(P), p?(P) from r to ¢

= induces m isomorphic near-triangulations p
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Triangulations with rotative symmetries

Theorem (K-S 17+)

Triangulations with rotative symmetry <= obtained by choosing
@ a spindle S and
@ a near-triangulation p

and pasting p into each segment of S.
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Triangulations with rotative symmetries

Theorem (K-S 17+)

Triangulations with rotative symmetry <= obtained by choosing
@ a spindle S and
@ a near-triangulation p

and pasting p into each segment of S.

But: How many possibilities for a given triangulation?
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Triangulations with rotative symmetries

Different spindles & near-triangulations for the same triangulation:
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Triangulations with rotative symmetries

Idea: @ Construct paths simultaneously, recursively from r to ¢
@ Always choose leftmost possible edges
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Triangulations with rotative symmetries

Idea: @ Construct paths simultaneously, recursively from r to ¢
@ Always choose leftmost possible edges
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Triangulations with rotative symmetries

Idea: @ Construct paths simultaneously, recursively from r to ¢
@ Always choose leftmost possible edges

Leftmost spindle
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Triangulations with rotative symmetries

Divides triangulation into 3 isomorphic near-triangulations.
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Triangulations with rotative symmetries

Divides triangulation into 3 isomorphic near-triangulations.

Near-triangulations have no ‘forwards chords’

P. Spriissel Unlabelled planar graphs & symmetries of triangulations



Triangulations with rotative symmetries

Theorem (K-S 17+)

Triangulations with rotative symmetry <> obtained by choosing
@ a (leftmost) spindle S and
@ a near-triangulation p without forward chords

and pasting p into each face of S. This is a 1-to-1 correspondence.
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Reflective and rotative symmetries

Reminder

@ If both reflections and rotations, then Aut(r, T) = Ds.
@ 3 reflections and 2 rotations.

@ Reflection — girdle.

@ Rotation — unique invariant cell ¢ # r.
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Reflective and rotative symmetries

Reminder
If both reflections and rotations, then Aut(r, T) = Ds.

3 reflections and 2 rotations.

Reflection — girdle.

Rotation — unique invariant cell ¢ # r.

c is the same for all rotations.

Girdles intersect only in r and c.

All girdles are isomorphic.
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Reflective and rotative symmetries

Definition (K-S 17+)
Skeleton S: union of the 3 girdles
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Reflective and rotative symmetries

Definition (K-S 17+)
Skeleton S: union of the 3 girdles
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Reflective and rotative symmetries

Definition (K-S 17+)
Skeleton S: union of the 3 girdles

= induces 6 isomorphic near-triangulations p
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Reflective and rotative symmetries

Definition (K-S 17+)
Skeleton S: union of the 3 girdles

= induces 6 isomorphic rear-triangutations—p
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Reflective and rotative symmetries

Girdles can touch:
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Reflective and rotative symmetries

Girdles can touch:

near-triangulations p1, ..., p¢, each appearing 6 times
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Reflective and rotative symmetries

Theorem (K-S 17+)
Triangulations with both symmetries <> obtained by choosing

@ a skeleton S and
@ near-triangulations p1, ..., py with forbidden chords

and pasting pi,. .., pe into the faces of S. This is a 1-to-2
correspondence.
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Symmetries of triangulations rooted at a face

o Reflective:

Girdle

@ Rotative:
(Leftmost) spindle

o Reflective & rotative:
Skeleton
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Summary and Outlook

Roadmap:
@ Decomposition scheme for near-triangulations;
@ Cycle index sums for near-triangulations;
© CIS for triangulations;
@ CIS for cubic 3-conn. maps;
@ CIS for cubic 3-conn. planar graphs;
@ CIS for cubic planar graphs;
@ Asymptotic numbers.
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