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Abstract

by Chen Wang

This dissertation consists of two articles proving two of the famous Borwein conjectures using
analytic methods.

In the first article, I gave the historically first proof of the original Borwein Conjecture, namely
the coefficients of the “Borwein polynomials" (1 —¢q)(1—¢?)(1—¢*)(1—¢°)--- (1—¢*>"~2)(1 -
¢>" 1) have a recurring sign pattern of + — — + — — ..., based on specific expansions due to
Andrews.

In the second article, the methods used in the first proof are generalized and refined to a much
broader setting, enabling an improved proof of the original conjecture and the proof of the Second
Borwein conjecture predicting the same patterns for the square of the Borwein polynomials, as
well as a partial proof of my own conjecture predicting the same patterns for the cube of the
Borwein polynomials.
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Introduction

1.1 Motivation

1.1.1 The Borwein Conjecture

In 1990, Peter Borwein made the curious observation that the coefficients of

Pa(q) == H(l — 1 - = (¢,6% )

i=1
seem to have a repeating sign pattern of + — —. Here we use the standard notation for g-shifted
factorials, namely
k n—1 ‘
(a1, a2, ap; O o= [ [ [ (1 — asd).
i=1j=0

Equivalently, if we write

(4:4% 6" )n = An(d®) — 4Bu(@®) — *Cu(d®) (1.1)

then it appears that the polynomials A,,, B,, and C,, have non-negative coefficients.

This observation is known as the Borwein Conjecture, and it first appeared in print in a 1995
paper by Andrews [And95]. Two closely related conjectures, dubbed the Second and Third
Borwein conjectures, also appeared in [And95]. The Second Borwein conjecture states that
the coefficients of (g, 7 q3)% also have a repeating sign pattern of + — —. The Third Borwein
Conjecture, a “mod 5" analogue of the First Borwein Conjecture, states that the coefficients of
(q, 2, ¢, q5)n have a repeating sign pattern of + — — — —. The author has observed in 2019
that a cubic version of the conjecture also appears to hold, namely the coefficients of (g, ¢; q3)§1
have the same sign pattern of + — —.

This cumulative thesis consists of two previously written papers [Wan22; WK22]. The historically
first proof of the original Borwein Conjecture by the author is presented in Chapter 2 . In Chapter
3, the author gave a unified framework for attacking similar sign-pattern problems, resulting in
an “improved" proof of the First Borwein Conjecture as well as proofs of the Second Borwein
Conjecture and (in a precise sense) “two thirds" of the Cubic Borwein Conjecture.

Both chapters are self-contained and can be read independently.

1.1.2 Related conjectures and prior results

These deceivingly simple conjectures intrigued many researchers after Andrews had introduced
them to a larger audience. Various approaches were tried, mainly combinatorial, or using g-series
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techniques (cf. e.g. [And95; Ber20; BWO05; Bre96; IKS99; SZ21; War01; War(03; Zah06]).

Several further variations and generalisations of the conjecture were proposed (see [BS19; Bre96;
IKS99]), with some of them directly inspired by the results in this thesis [SZ21; BD24b]. We
notice in particular Bressoud’s conjecture in [Bre96], which stems from the following expansions
in [And95]:

Lo [ 2n
A, (q) = —1)J 993 +1)/2 ] , (1.2)
@ = Zere R L,
Lo [ 2n
Bo(q) = 1 JqJ(9J—5)/2 ‘ ] , (1.3)
(9) jEZZ( ) [n+3j—-1],
Lo [ 2n
Cn(q) = —1)ig793+7)/2 ) 1.4
() jEZ;( Yq 31, (1.4)

Here the g-binomial coefficients are defined as

{n] _ (@)

ml, (G Om(sDn-m

These formulas are interesting because they belong to a larger family of polynomials, for which
several sub-families have bijective and/or g-series related proofs of their non-negativity.

Bressoud has conjectured in [Bre96, Conjecture 6] that
Conjecture 1.1.1 Suppose that m,n, K € Z*, «, 3 are positive rational numbers such that
aK,BK € Z". We define

Gm,n,a, B, K) = Y (~1)ig/K [

J

(1.5)

m+n
n—Kj q'

Ifl <a+ < 2K + 1 (with strict inequalities if X = 2)and § — K <n—m < K — a, then
G(m,n,a, 5, K) has non-negative coefficients.

The polynomials A,,, B,, and C}, in Borwein’s first conjecture can be written as

5 4
Ap =G Ty o5 s 3),s
Bu(g) = Gn+1,n—1,2. 3
nq - ’ 73737 I
81
Cn(q)zG(n—l,n+1,§,§,3).

If «, 3 are non-negative integers, the polynomials G(m, n, «, 5, K) in Conjecture 1.1.1 turn out
to be the generating function of partitions contained in an m x n rectangle and satisfy so-called
hook-difference conditions specified by «,  and K [Bre96]. Several infinite families of these
Bressoud polynomials with non-integer parameters have been proven to be non-negative (see
[Bre81; IKS99; War0O1; War03; BWO0S5; Ber20], and more recently [BD244a]); unfortunately, the
polynomials in the Borwein conjectures are not included in these results.
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1.2 Contributions

It came as a pleasant surprise to the author that no attempt had been made from an analyti-
cal/asymptotic viewpoint, despite the fact that Andrews already stated in [And95] that such an
approach is likely to be viable. This statement is based on expansions [And95, (4.5)] for the
polynomials A,,, B, and C, in (1.1), where the first terms of the expansions indeed have positive
coefficients and appear to be asymptotically dominant. These expansions were pivotal in the first
proof of the Borwein conjecture by the author (Chapter 2).

However, no such formula is known to exist for the second and third conjectures, nor for other
variants of the conjecture. Instead, it turns out that similar asymptotic techniques can be applied
directly to P, (¢) and related polynomials. This of course introduces some further difficulties in
the analysis — some of which we will elaborate below — but enables a uniform way to attack all
the Borwein conjectures as well as additional variants (Chapter 3).

1.2.1 General strategy and tools
The main strategy used in the thesis in proving the Borwein conjectures is analytical in nature.

Let {Q1(q)}n>1 be a family of palindromic polynomials (which can be the Borwein polynomial
P,,(q) and its powers in Chapter 3, or terms in the expansions of A,,, B,, and C), in Section 2.3
of Chapter 2), then the coefficient [¢""]Q,(¢) can be written as

1 dq
QMLQ”(Q)qm“’

where I is any contour about 0 with winding number 1. We will choose I" as a circle centred at 0
with radius 7 for some r € R™, so that the integral becomes

[¢"]Qn(q) = r f Qn (re"‘)) e~ qg. (1.6)

27 J_,

We want to emphasise that, unlike the most common form of saddle point approximation in the
textbooks, this is a two-parameter problem, since we are dealing with a family of polynomials.
This proves to be the main difficulty we face in the estimation of the integral, since any inequality
we use throughout the arguments needs to be good enough for the whole range of m.

1.2.2 Locating the saddle points

The next step is to choose a suitable radius 7 = r(m,n) and estimate the integral in (1.6).
Traditionally, we require the integration contour to pass through the saddle point(s) of the
integrand r~"'Q),, (T’BZG) e im0,

In our proof of the First Borwein conjecture in Chapter 2, the dominant saddle point is located
on the positive real axis, and can be found as the minimum point of the real-valued function
7= 1 "Qu(r) in (0, 1].

However, in Chapter 3, the dominant saddle points can no longer be found on the positive real
axis; instead they are located near the third roots of unity. Here we choose r to be the minimum
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point of the real-valued function r — 7~ |Q,,(r exp(27i/3))| in (0, 1]. These are detailed in
Sections 2.5 and 3.5.

1.2.3 The infinite cases

The radius 7 can be proved to be very close to 1 except for the first (and last) O(n) coefficients
of @, (q). For those exceptional coefficients, we note that the first O(n) coefficients of the
polynomial Q,,(q) agree with those of its infinite analogue ()« (q), and the infinite analogues
have already established sign-pattern results, see Sections 2.4 and 3.3.

1.2.4 Estimation of the integrals

We choose a cut-off length 6y which depends on m and n (see Sections 2.7 and 3.6), and split the
integral (1.6) into two parts: the parts that are within 6y of the saddle point locations (which is
either 0 or +27/3) called the peak, and the rest called the rail. The integral of the peak(s) can
be approximated by a GauBian integral, and the tail integral can be bounded relative to the peak
integral. These estimations comprise the main part of both proofs; see Sections 2.8, 2.9 and 3.8
for the peak estimations, and Sections 2.10, 2.11 and 3.9) for the tail bounds.

1.2.5 Computational verification

Finally, those estimations mentioned above only work for “sufficiently large" n. We did consider-
able work to tighten the relevant inequalities and improve the resulting lower bound of n, so that
a direct verification of the conjectures below this lower bound becomes computationally feasible.
For details of the computations we did, see Sections 2.13 and 3.10.
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An analytic proof of the
Borwein Conjecture

Abstract

We provide a proof of the Borwein Conjecture, which states that the coefficients of (¢; ¢)3./(¢%; ¢*)n
have a repeating sign pattern of + — —, using analytic methods. The proof is done by utilizing an
expansion by Andrews to extract the “main part" of the coefficients, and then bound the various
“error terms" that arise from this expansion.

2.1 Introduction

In 1990, Peter Borwein observed that for an arbitrary non-negative integer n, the coefficients of

the polynomial
n

[Ja-¢a-g%"

i=1
have a repeating sign pattern of + — —. A more formalized version appears in a 1995 paper by
Andrews [And95]. Here, and in the sequel, we use the standard notation for g-shifted factorials,

(@;¢)n = (1 = a)(1 —ag)--- (1 —ag"™"), forn > 1,

Conjecture 2.1.1 (P. BORWEIN) Let the polynomials A,,(q), By (¢) and Cy,(q) be defined by
the relationship
4:9)3
s _ 4 (%)~ 4B.(a") — 2Cula?). @
(@*;¢°)n
Then these polynomials have non-negative coefficients.

This statement is known as the Borwein Conjecture.

There have been many attempts to prove the Borwein Conjecture. Moreover, we find several
variations and generalizations in the literature, see [And95; BW05; BS19; Bre96; War0O1; War(03;
Zah06], sometimes also conjecturally, sometimes with full or partial proofs. However, none of
the proved variations and generalizations cover the original conjecture, Conjecture 2.1.1. It is fair
to say that so far essentially two methods have been tried: bijective methods—such as in [Bre96;
IKS99], and basic hypergeometric methods—such as in [And95; BW05; War0O3]. Surprisingly
though, it seems that nobody has made an asymptotic attack on the conjecture. This may have

This chapter is published as: C. Wang, Analytic proof of the Borwein conjecture, Adv. Math., 394 (2022) 108028.
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to do with the fact that the “canonical" formulas for A4,(q), By, (q) and Cy(q), namely (2.77)—
(2.79), are entirely unsuitable for asymptotic approximation, see the corresponding remarks
in Section 2.14. Nonetheless, it turns out that there are formulas for A,,(q), B,(q) and Cy(q)
that are amenable to asymptotics, which appear already in Andrews’ paper [And95], where the
original conjecture appears for the first time in print.

Theorem 2.1.2 (ANDREWS, [AND95, THEOREM 4.1]) Let A, (q), Bn(q) and Cy(q) be de-
fined as in (2.1). Then we have the expansions

A,(g) = l’fJ ¢ (1= ) (@ ¢*)nj1(a: )3 22)
" (@ Dn—3;(a% ¢®)25 (a3 ¢®); ’

7=0

~1)/3 2 | o . .
[(n—=1)/3] ¢ +3](1 P2 gt qn+3y+2)(q3; q3)n—j—1(q; q)3

Bu(q) = ; (2.3)

o (4 n—3j-1(¢ ¢*)2j+1(a% ¢%);

(n—1)/3] =2:2 a: A )
v DB 37235 (1 — 3341 4 g — g 3+2) (32 43) i1 (0 @) 3

(5 Dn—-3j-1(¢% %) 2541 (¢ ¢3);

Cnlq) = 2.4

=0

As a matter of fact, after discussing these formulas briefly, Andrews says in [And95] that “it
might be possible to prove that A,,(q) has positive coefficients by establishing sufficiently tight
bounds on the coefficients that arise term-by-term in (4.5)", where Andrews’ (4.5) is our (2.2).

In the present paper, we follow Andrews’ advice. Our main discovery is that, in the sums
(2.2)-(2.4), the first term, i.e., the term for j = 0, dominates all other terms. This makes these
expressions superior to all other known expressions for the purpose of asymptotic estimations.
We use analytic methods to bound the coefficients of A, (¢), By (¢) and Cy,(q) away from 0 by
expressing the coefficients as certain contour integrals and estimating these integrals. Section 2.2
contains the basic setting of our proof: it is explained how to break the contour integrals into
a positive-valued main part and four error terms, thus reducing the Borwein Conjecture to the
problem of obtaining sufficiently good upper bounds on the error terms.

After establishing some basic facts and fixing some parameters in Sections 2.3-2.7, we derive
upper bounds for each of the error terms in Sections 2.8-2.11, which leads to a proof of the
Borwein Conjecture for all n > 7000 in Section 2.12. Some auxiliary results of technical nature
are stated and proved separately in an appendix. The cases where 0 < n < 7000 are directly
verified by a computer calculation, see Section 2.13. We conclude our paper with Section 2.14,
in which we recall in more detail the earlier mentioned variations and generalizations, and where
we also comment on possible further implications of our analytic approach.

2.2 An outline of the proof

In this section, we provide a brief outline of our proof of the Borwein Conjecture.

First, we claim that non-negativity of the coefficients of B,,(q) already implies the complete
Borwein Conjecture. Indeed, we have

Cn(q) = "85 B, (1/q), 2.5)
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which proves the non-negativity of the coefficients of C),(¢q) given the non-negativity of the
coefficients of B,,(q). On the other hand, the elementary recursive formula [And95, Eq. (3.3)]

An(q) = 1+ ¢*" N An—1(q) + ¢"(Bn-1(q) + Ca=1(q)) (2.6)

allows us to get the non-negativity of the coefficients of A,,(¢) inductively from the non-negativity
of the coefficients of By, (¢) (and Cy,(q)). Therefore, from now on, we will concentrate on B,,(q).

In Section 2.3, we start by writing (see (2.20))

|(n—1)/3]
Bu(9) = Y. Bnjq),
j=0

where B,, ;(¢) is the j-th summand in the expansion (2.3). We then decompose B,, ;(¢) into the
sum of two simpler polynomials, namely D,, j(¢) and E;, j(q), see (2.21), (2.22), and (2.23), so
that

Bn,j(Q) = Q(l + qn)Dn,j(q) + En,j (‘D

The background of this decomposition is that the polynomials D,, ;(¢) and E,, j(g) are simpler
to handle asymptotically. By summing over all j, we define

|(n=1)/3] |(n—1)/3]
Dn(g):= D>, Dunj(a), Eu(q):= Y, En;la),
j=0 Jj=0

so that
Bu(q) = q(1 + ¢")Dn(q) + En(q).

In particular, this decomposition shows that, to prove the non-negativity of the coefficients of
By,(q), it suffices to prove the non-negativity of the coefficients of D,,(¢) and E,,(q) separately.
Some elementary properties about D,,(q) and E,(q), including their degrees, are collected
in Lemma 2.3.1. In particular, it turns out that D,,(q) is a palindromic polynomial, that is,
Dy(q) = ¢ Pn D, (1/q), while E,(q) is not. The latter is the reason that, in the subsequent
discussion, we also need the reciprocal polynomial of E,,(q), that is, F},(¢) = ¢~ E,,(1/q).

The content of Section 2.4 is a proof of non-negativity of the coefficients of ¢ in D,,(q), E'n(q)
and F),(q) for 0 < m < n. It relies on results of Andrews in [And95] and on a positivity result
of Berkovich and Garvan from [BGO5]. Thus, what remains to show, is non-negativity of the
coefficients of ¢"" in D,,(q) for n < m < (deg D,,)/2, and an analogous result for F,,(¢) and
for F,(q).

For notational simplicity, we will use the notations P,(q) and P, j(¢) throughout this paper to
refer to multiple families of polynomials. For example, a proposition that is true for P, (q) for
P e {D, E, F'} means the proposition is true for all three families of polynomials D,,(q), E,,(q)
and F,,(q). We will also use the standard notation [¢"] P, (q) to represent the coefficient of ¢"
in the polynomial P, (q).

Using Cauchy’s integral formula, the coefficient [¢"™| P, (¢) can be represented as the integral

1 dq

2mi FPH(Q)W’
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10—12

0
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3

T
-t 2= = o0
3

e

FIGURE 2.1: Modulus of D3 o(re®) (solid), of D3g 2(re?) (dashed), and of

D3 5(re') (dot-dashed). Left figure: » = 0.836, which is approximately the

extremal value 7y defined in (2.34). Right figure: » = 0.97. The vertical axes
are in logarithmic scales.

where I' is any contour about 0 with winding number 1. We will choose I' as a circle centred at 0
with radius 7 for some r € R™, so that the integral becomes

r—m T

[¢"]Pn(q) = . P, (T€i0> e~ dg. 2.7

—Tr

The exact choice of r is related to the saddle point of ¢~ P, o(q). We will elaborate on this in
Section 2.5. The appropriate choice for 7 is a value smaller than 1 but close to 1, see Lemma 2.5.1.

We use the expansions P, (q) = },; P, j(q) to write the integral (2.7) as

(0131 o o
("B = Y | Py (rew) e=imf gp. 2.8)

oy 2 J_,

Figure 2.1 illustrates the typical behaviour of |D,, j (re?) | on the circle {z € C| |z| = r}. In
particular, we can observe the following general features in the graph:

* the terms with smaller j have a central peak at § = 0;

* the central peak of |P, ; (rew) | for small j looks like a translated-down version of the
central peak for | P, o (rew) |. Since Figure 2.1 is on a logarithmic scale, this suggests that
the magnitude | P, ; (re®) | could be controlled by a constant factor times | P, o (re®) | in
a neighbourhood of § = 0;

* for these terms, the values outside the small neighbourhood of § = 0 are very small
compared to the peak value;

* when j becomes larger, the central peak disappears. However, it is apparent that the graph
of | P, ; (re®) | for larger j (represented by the dot-dashed curve in the graph) is located in
the lower part of the figure, indicating that | P,, ; (rew) | could be controlled by a relatively
small constant if j is large.

Based on these heuristics, we choose two cut-offs jy and 6 (to be determined in (2.47) and (2.48)),
and distinguish the following parts of the integrands P, j (re?) e="? for 0 < j < (n—1)/3:
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* The term primary peak refers to the part where j = 0 and |0 < 6.

* The term secondary peaks refers to the parts where 1 < j < jo and |6| < 6y.
* The term tails refers to the parts where 0 < j < jp and 6y < |0] < 7.

* Finally, the term remainders refers to the parts where 7 > 7o.

Naturally, the integral (2.8) can be divided into four sub-integrals corresponding to the four parts
above.

Forall P € {D, E, F'}, we make the following observations concerning the four sub-integrals:

* The primary peak can be approximated by a Gaufian integral. More specifically, if we

define )
gp(n,r) = ~ 2 log Pmo(rew) o’ 2.9)
then we should expect that
fo O —im 27
f@o P, o(re®)e ™" df = P, o(r) () (1+o0(1)) (2.10)

as n — 0.

* The secondary peaks will be bounded from above by a constant times the primary peak.
We argue that

Jo Bo . .
P, ;(re®)e=™0 dg| <

j=17-bo =170
20 P, (re? % .
< sup Pn’J( w) f |Pn70(rew)]d0.
= \Jo<to | Pro (re®) | ) g,

(2.11)

* The tails will be estimated relative to its corresponding (primary or secondary) peak. More
specifically, for P € {D, F, F'}, we will construct families of polynomials P,, ;(r) with
non-negative coefficients (see the paragraph before (2.40)), acting as uniform upper bounds
for | P, j(re')| over the circle dB(0,7) = {z € C| |z| = r}, satisfying the relations

Pyj(la)) = |Pu(a)l, (2.12)
forallge Candall r € RT.

With the help of P, ;(r), the tail integrals can be bounded above by

P, ; (rew)

do
P j(r)

Jo B 21 —0g
<X P |

Jo 21 —0o . .
Z f P, (7“619)6_”"9 do
=0+
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Jo ]’5 T‘ (J‘QT(GQ
Z = sup
— Py.0(r) 8o 0<j<jo

* The remainder will be directly controlled by the upper bounds Pn, ;(r). Namely, by (2.12),

P, j(re’ 9)

Py(r)

d@) x Poo(r). (2.13)

we have
[(n=1)/3] [((n=1)/3] 5
f P, j(re?)e=m? d@‘ < | 2n Pni() ) Poo(r).  (2.14)
j=jo+1 T j=gor1 Pror)

Our next step is to estimate the relative error in the approximation (2.10), and to bound the other
2
gp(n,r)”
(2.10) and the inequalities (2.11), (2.13) and (2.14), we give the following definitions in order to

describe the error terms:

parts of the integral relative to the (presumably) dominating part P, o(r) Based on

gp(n,r) feo 0y, —imé
eo.p(n,m,r P, o(re”)e do —1 (2.15)
0,p( ) = VarPoo(r) o(re”)
Jo gp n,r Poo(re”) re'?
er,p(n,r) = sup 19 J do ], (2.16)
j=1101<60 P (re 6o | Pro(r
Jo Pn . 27w —0g P 10
ea.p(n,r) = gr(n.1) Z - 4(r) <J sup w d@) (2.17)
2 \jS Pno(r) ) \ag o<y<io| Pn(r)
(n=1)/3] 7
es.p(n,r) :==~/2ngp(n,r) {Dw (r) (2.18)
j=or1 Pro(r)

It should be noted that only the first of these, ey p(n,m, ), depends on m, namely the parameter
which specifies the monomial ¢ of which we are taking the coefficient in P,(q).

These definitions, along with the integral representation (2.8) and the inequalities (2.11), (2.13)
and (2.14), imply that

rm\/]% (1 —e€o,p(n,m,r) —er,p(n,r) —e p(n,r) — e p(n,r)).

(2.19)
Once we have sufficiently good bounds on all these error terms so that their sum is smaller than
1, we can conclude that [¢"] P, (q) is indeed positive.

[¢"]Pn(q) =

The primary peak error €y p(n, m,r) is estimated in Section 2.8, the secondary peaks € p(n, 1)
are bounded in Section 2.9, Section 2.10 is devoted to bounding the remainders €3 p(n,r), and
finally Section 2.11 treats the tails €2, p(n,r). All these estimations are valid for n > 7000 and
n < m < (deg Dy,)/2 respectively n < m < (deg E,,)/2 = (deg F},)/2, and their combination
shows that the Borwein Conjecture holds for n > 7000, see Theorem 2.12.1 in Section 2.12. The
cases where n < 7000 are disposed of by a (lengthy) computer calculation, the principles of
which are explained in Section 2.13.
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2.3 Decomposing B, (q)

As we already explained in the introduction, the starting point of our proof of the Borwein
Conjecture is Theorem 2.1.2, which provides certain expansions of the polynomials A, (q),
By, (q) and Cy,(q). Based on the expansion (2.3), we define the family of polynomials B,, ;(g) to
be the summands in that expansion, so that

Bu(g) = >, Buj(a). (2.20)

The factor (1 — ¢¥+2 + g"t1 — ¢"*37%2) in B, ;(q) turns out to be inconvenient, since our
strategy is to bound quotients By, ;(q)/Bn_j—1(q) of successive terms. Therefore, we decompose
it as

1— q3]+2 + qn-i-l _ qn+3]+2 _ (1 _ Q) + q<1 + qn)<1 _ q3j+l)_

This decomposition naturally extends to the family of polynomials B, j(¢) via the following
definitions:

(1—q¢¥*)
Dn,](‘]) = 1— q3j+2 + qn+1 o qn+3j+2 B”y](Q)

T ) i1(45 )34
= B s (2.21)
(¢; On—3j-1(a%; ¢>)25+1(a%; ¢3)
1—gq
En,](Q) = 1— q3j+2 + qn+1 _ qn+3j+2 Bnyj(Q)
@A = ) (661 (05 )3
= 3. .3 3. .3). (2.22)
(¢ @)n—-3j-1(0%¢3)2j+1(¢%; ¢°);
so that
Byj(q) = q(1 4+ q")Dnj(q) + Enj(q). (2.23)
By summing over all j, we define
[(n—1)/3] [(n—1)/3]
Dn(q) := Z Dy, (q), En(q) :== Z En,j(q), (2.24)
j=0 j=0
so that
B(q) = q(1 +q")Dn(q) + En(q)- (2.25)

As we already indicated in the previous section, our estimations of the error terms ey p(n, m, )
for P € {D, E} are only valid for m < (deg P,,)/2, that is, only for “half of the coefficients",
see Section 2.5, and in particular Lemma 2.5.1 to which we shall refer repeatedly. While this is
fine for D,,(q) — since D,,(q) is palindromic, proving bounds for the first half of the coefficients
automatically means to also have proved analogous bounds for “the second half" — this is a
problem for E,,(q) which is not palindromic. Here, we need to consider the reciprocal polynomial
of E,(q), thatis, F,,(q) := ¢%&¥nE,(1/q), and also prove estimations for ¢; s as defined in
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(2.15)—(2.18). It is a routine calculation from (2.24) that with

.
(1 — ) (6% ¢%)n—j—1(q: )3y

F,i(q):=q¢"E, (q) = (2.26)
i(9) = a7 Enjlq) (4; O)n—3j—-1(% @) 2j+1(¢ ¢%);
we have
[(n—=1)/3]
R = 3, Pl 2.27)

Remark: 1Tt is not hard to see that the functions D,, ;(q), Ey, j(¢) and F;, ;(q), as defined above,
are actually polynomials for all j with 0 < j < |(n — 2)/3]. (For a proof of this fact, see the
factorizations (2.36)—(2.39) and the related discussions in Section 2.6.) However, in the special
casen =1 (mod 3) and j = (n—1)/3, (2.21), (2.22) and (2.26) fail to give polynomials. Thus,
we restrict the domain of the definitions (2.21), (2.22) and (2.26) to 0 < j < |[(n — 2)/3], and
make alternative definitions in the “boundary case":

Dsj11,5(q) :== 0, (2.28)

352435 ( . .
q q;4)3
E3j11j(q) = Bsj+1,i(0) = —F 537 (3 .) L, (2.29)
(a3 4%);

5
¥ 72(q; q)3;

Fyji1,(q) := ¢ 8"+ Byj 1y 5(1/q) = (@ ¢3); (2.30)
147)5

It is straightforward to see that, with these alternate definitions, and with the sums (2.24) and
(2.27), we still have (2.25).

We collect some basic facts about these polynomials.
Lemma 2.3.1 For P € {D,E,F}, the polynomials P,(q) and P, o(q) have the following
properties:

* Dy, (q) is a palindromic polynomial, while E,,(q) and F,,(q) are reciprocal of each other.
Therefore, it suffices to consider the coefficients [q"|P,(q) for 0 < m < (deg P,)/2.

s deg D,,(q) = deg E,(q) = deg F,,(q) = n®>—n—2. Furthermore, we have deg P,, o(q) =
deg P, (q) forall P € {D,E, F}.

* The j = 0 terms in the expansions have a nice product form:

Dino(q) = Eno(q) = Frolg) = 1+ +¢")(1+¢*+¢°%) - (1+¢" 1 +¢*2). (2.31)

* The expression (2.31) implies the following formula for gp(n,r) as defined in (2.9):

E2rk(1 + 4rk 4 12k)
1+rk+r2k)

gp(n,) = gg(n,r) = gr(n,r) Z (2.32)

2.4 The first n coefficients

In this section, we settle the non-negativity of the first n coefficients of P,(q) for P € {D, E, F'}
by considering the n — oo limiting case.
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To this end, we define
Py(q) := lim Py(q)

forall P € {A, B,C, D, E, F'}. The following lemma is a direct consequence of (2.1), (2.21),
(2.22) and (2.26).
Lemma 24.1 Forall P € {A,B,C,D,E,F} and all n = 0, we have

Po(q) = Po(q) + O(¢").

This lemma says in particular that, for all P € {D, E, F'}, the non-negativity of P, (q) implies
the non-negativity of [¢™]P,,(q) form = 0,1,...,n—1. The series Py(q), with P € {D, E, F'}
have indeed non-negative coefficients as we are going to show now. To this end, we first provide
product formulas for By, (q) and Cy(q).

Lemma 2.4.2 (Also see [And95, (4.3)-(4.4)]) The power series By, (q) and C(q) have the
closed form expressions

B (q) _ (q27q77q97q9)00 C (q) _ (ql’qS’q aqg)oo
o] - 9 [0 0] - 9
(¢ @)oo (4 @)oo
where we use the short notation
(a1,a2,...,0k;¢)0 = (a15¢)o0(a2; @)oo - -~ (ar; Qoo

Proof: By Euler’s pentagonal number theorem and the Jacobi triple product identity, we have

(qsq)oo=2(—1) J(35=1)/ Z Z 1)3i+aq(3i+a)(9j+3a=1)/2

jeZ a=—1jeZ

Z Z 3]+a 27(3)+(124+9a)j+a(3a—1)/2

a=—1jeZ
2 27 +3 27 +12 +21
-t ST ST — g S
JjeZ jezZ jeZ

= —*(*, "N + (62,6, 7o — (@ % 7T P oo

We compare this identity with the n — oo limit of (2.1) to conclude the proof. o

We proceed to deduce non-negativity results for the power series Dy, (q), Es(q) and Fy(q) from
these forms. By taking the limit n — c0 in equations (2.3) and (2.4), and in (2.21), (2.22) and
(2.26), we see that

Dy (q) = Co(q),
Ex(q) = Bo(q) — qCx(q) = (1 — @) B (q) + q(Bwx(q) — Cx(q)),
qFoo(Q) = Boo(‘]) - Coo(‘])-

An immediate conclusion is that D, (q) also has non-negative coefficients. In order to prove
analogous results for E,(q) and Fi,(q), it suffices to show that B,,(q) — Cs () has non-negative
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coefficients. To prove this claim, we invoke Gordon’s Partition Theorem.

Theorem 2.4.3 (GORDON, [GOR61]) Letk € Z1 and 1 < i < k. Then the q-series
i 2k+1—i 2k+1. 2k+1
Grsla) = (¢’ q T )
(2, @)oo

is the generating function for partitions in which 1 appears no more than i — 1 times and any
two consecutive integers appears no more than k — 1 times in total.

As a consequence, each coefficient of Gy, ;(¢) is increasing with respect to 4, and by Lemma 2.4.2
we have By (q) — Co(q) = Gaplq) — Gaa(a)-

Thus we have proved that P,,(q) has non-negative coefficients for P € {D, E, F'}. Combined
with Lemma 2.4.1, we have the following result concerning the first n coefficients of P, (q).
Theorem 2.4.4 Foralln >1,0<m <n—1,andall P € {D, E, F}, we have

[¢"]Pn(q) = 0.

2.5 Locating the saddle point

The results of the last section show that it suffices to consider [¢"]| P, (q) for m € [n, (deg P,,)/2].
The purpose of this section is to describe our choice of the radius r in (2.7), under the above
restriction on m.

The method that we apply is a saddle point analysis of the function z — 27D, o(2) (cf.
[FS09, Chapter VIII] and [Won89, Section II.4]). Our choice of the radius r will be a saddle
point of the function z — 27" P, o(z). It turns out that there is a unique saddle point on the
positive real axis, and we have very tight bounds on the position of this point under the condition
m € [n, (deg P,,)/2]. These results will be proved in the following lemma. They are vital in our
estimations of the error terms ¢; p in Sections 2.8-2.11.

Lemma 2.5.1 Forall P € {D, E, F}, all integers n > 1, and m € (0, deg P,,), the equation

d
- (r~™Pao(r)) =0 (2.33)

has a unique solution rs € RT. Moreover, if n < m < (deg P,)/2, then we have o < rs < 1

where
=e V© (2.34)

and o = 2/+/3 is the maximum value of the function x li‘;iﬁ > on [0, 1].
Proof: The equation (2.33) can be transformed into

TPA,O(T)
Pmo(r) N

Let us write f,, p(r) for the left-hand side. From the definition of the polynomials P, o in (2.31),
we have

- 22k
fop(r) = foe(r) = far(r :Z )

1+ T‘k + 2k’



Chapter 2. An analytic proof of the Borwein Conjecture 17

These functions attain the special values
fn,P(O) =0, fn,P(l) = (deg Pn)/2a TEI_EOC fn,P(T) = deg P,. (2.35)
Moreover, all f,, p(r) are increasing functions in R* since we have

d 212k 4 rk _ Erk=1(1 4 4ok 4 r2k)

- = > 0.
dr 1+ rk + r2k (14 rk + r2k)2

The existence and uniqueness of solution follows immediately.

It remains to prove the bounds on r. Since f, p(r) is increasing, it suffices to show that
fn,p(ro) <mnand f, p(1) = (deg P,)/2. The latter is true due to the second equation in (2.35).
In order to see the former inequality, we argue as follows:

fn,p(r0) <Zn: 0+T0 <Zakro<a2kr0

Tk 42k
=1 +7“ + 75
TO -9
=a——= < aflogr =n.
(1—7"0)2 ( g 0) =

2.6 The auxiliary polynomials ]5”, ()

As mentioned in Section 2.2, we will construct families of polynomials Pn,j(r) satisfying (2.12).
These polynomials provide upper bounds for | P, j(re')| with respect to . On the way, we also
show that D,, ;(q), Ey ;(q) and F}, j(q) are polynomials in ¢, as claimed in Remark 1.

To this end, we first note that the inequality | f(re?®)| < f(r) trivially holds if f is a polynomial
with non-negative coefficients. Therefore, we proceed to factor out such parts from the polynomi-
als P, j(q), and bound the cofactor from above by the triangle inequality. Due to the relationship
F, i(q) = ¢¥ E,_j(q), we will only explicitly write the factorization results for P € {D, E}.

Using the definitions (2.21) and (2.22), we arrive at the factorizations

352435 (3. o3 (a0 )as ; 3.43) .
Duj(q) (q TG 47 )3 (25 4)3541 [33 + 1] ) <(q 547 n—j—1 ) (2.36)
q3

(¢ ¢%)3j+1(q; @) n—3;j J (% ¢%)n—3j-1

(@356%)3j+1(¢; On—3j(1 — ¢%713) J

o , . .
B, () = (q?’J 39 P )n3i (¢ 03501 (1 — ¢°) [33 - 1} ) <1 + @7+ ¢ (¢ P
7‘7 -
qS

(2.37)

Here, [ ], is the g-binomial coefficient, defined by [ ], = %

which is known to be a polynomial in ¢ with non-negative coefficients.

for integers 0 < b < a,

1+q¢+¢*  (¢%¢3)n—3j-1

)
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We claim that the first factors in (2.36) and (2.37) are polynomials with non-negative coefficients
if j < (n —1)/6. For Dy, j(q), this is because the g-binomials and the polynomials

b

(@) 9)a ko 2k
(% ¢)alt; s k_lll(l T

have non-negative coefficients provided that b > a. In the case of E,, j(q), the factor
1—¢° [33' + 1]
1— q9j+3 ] 7

is the g-analogue of the Ful3—Catalan number (see, for example, Stump [Stul0]), and it is also a
polynomial with non-negative coefficients.

On the other hand, if (n — 1)/3 > j > (n — 1)/6, then the first factors in (2.36) and (2.37) will
no longer be polynomials. In these cases, we make the alternate factorizations

Dnj(q) = <q3j2+3j [l(” —DBl+7+ 1] 3)

2j + 1

3.3y N (3 3 ,
y 3(Q37q Jn—j—1 (@ Q):’;ﬁg(q 5 Q%) (n—1)/3]— , (2.38)
(% q )L(n—l)/3j+j+1 (% q )j(CI; Q)n—3j—1
o [ a2 |l =1)/3l+7+1
« (- (@) i1 (G350 @) n-1)/3—j (2.39)
(@ PN n-1)3)45+1  (@56*)(6 D31

where the first factors in these equalities also has non-negative coefficients.

On the other hand, in each of the equalities (2.36)—(2.39), the second factor is a product of factors
of the form 1 — ¢¥, with the single exception of the factor (1 + ¢**+! 4 ¢%7%2) /(1 + ¢ + ¢?)
(which is a polynomial) in (2.37). In order to certify the claim for (2.38) and (2.39), we note that

(4 Q)a(@® @) py3) ¢ !
= 1—4"%).
(@3 43)1as31(a; D)o kgrl( )

3tk

Therefore, the second factors in (2.36)—(2.39) are polynomials in ¢, possibly with some negative
coefficients. To bound those polynomials from above, we note the trivial fact that |1 — ¢*| <

1 + |q|*, as well as the slightly non-trivial fact that
L+ +¢%72) 11— q¥% + g — ¢¥ 7 + |72 — ¢V
l+g+¢> | 11— ¢
1—[g|%*% gl — g+ |g[¥+ —]g|¥*?
< B
1—lq|3 1—|q? 1—|qf?

_ Ltlal +]af — |g|¥F" — |g|¥*2 — |g|¥*
1= lq?
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_ 1=l

- 1—q

as long as |g| < 1 (where the ¢ = 1 case is understood in a limiting sense).

Based on these facts, we define the polynomials Py, j(r) for P € {D, E} to be the result of
replacing ¢ by r in the first parts of (2.36)—(2.39), replacing every factor 1 — ¢ in the second parts
of (2.36)—(2.39) by a corresponding factor 1+ ¥, and replacing (1 + ¢3! +¢%+2) /(1 + g+ ¢?)
in (2.37) by (1 — r87+1) /(1 — r). We also define F',, j(r) = r3 E, ;(r) in accordance with
(2.26).

The immediate consequence of this definition are expressions for the quotients between successive
Py, ;j(r)’s. We have

Dn,j (T) B r3j_3/2(1 + T3”_9j)(1 + 7M‘3n—9j+3)(1 + T3n—9j+6)
Dyj1
T3j+3/2(1 _ 7"3]'71)(1 _ T3j+1)
(1 — r6it3)(1 — 16))

Dpy(r)  pSl=D/1=8/2(0 4 p3i1y(1 4 p3041)(1 4 pn30)(1 4 pn=31) (1 4 pn—3742)
1

for1<j<|(n—1)/6, (2.40)

Dy ji1(r) (1 + p3l(n=1)/31+35+3) (1 4 p3l(n=1)/3]=35+3) (1 4 p3n—3)
POi=3Ln=1)/31+3/2(1 _ ;3Ln=1)/31+87) (1 _ ;3L(n—1)/3]-37)
(1 — 1653)(1 — %) ’
for [(n—1)/6] +2 < j < [(n—1)/3],
(2.41)

X

_ 3j+k—1 3 3j+1

D j(r)  _ LEn S pys) L+ ™) T Zag s 3 (L)
Dy j—1(r) Hi{:gfi(l + rm 4 p2m)

. . 1—7373) k=0,1,2

(- 3){ ((1 —7~9ﬂ')) k=3,4,5

. (1— 163 +3)(1 — ) ’

forj = [(n—1)/6] + 1, orequivalently n = 6(j — 1) + k+ 1 fork =0,1,...

(2.42)

for f), as well as

(’l") (1 + rn—3j+1 + T2n—6j+2)(1 + yn—3j+2 + T2n—6j+4)(1 + rn—3j+3 + T2n—6j+6)(1 + ,r.3n—3j)

En,j (7“) B T3j—3/2(1 + rSn—Qj)(l + T3n—9j+3)(1 + 7,3n—9j+6)
Enj_1(7“) - (1 4 pr=83+1 4 p2n=6j+2)(1 4 pn—3j+2 4 2n—6j+4)(1 4 pn—3j+3 4 1:2n—6j+6)(] 4 1-3n—37)
T3j+3/2(1 . T3j_1)(1 . T‘3j—2)(1 . T6j+1) ‘
% (1 — 765+3) (1 — 76 )(1 — 163-5) forl <j < [(n—1)/6],
(2.43)
Eny(r) oSl DBIE 4 31 4 p3072) (14 "3 (1L 4 p" 30 (1 4 o342
Enjq(?“) o (1 +r3[(n71)/3j+3]’+3)(1 _|_T3[(n71)/3jf3j+3)(1 _|_T3n73j)

PS3=31(n=1)/3] (1 _ p3L(n=1)/31435) (1 — p3L(n—1)/3]-37)

* (1 — 163 +3)(1 — 163 ’

, 0.
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for [(n—1)/6]+2<j<|(n—1)/3],
(2.44)
(1) (1+r)(1—r)(1—r9j—6)
(r) (1 + 733+ (1 = r3)(1 — r6-3)

S
<
—_ |~

forj =|(n—1)/6] + 1, orequivalently n = 6(j — 1)+ k+ 1fork =0,1,...

(2.45)
for E. Moreover, we trivially have
Fuj(r) _ s Eny(r) (2.46)
Fnjaa(r)  Enja(r)
forall j =1,2,...,|(n —1)/3]. These relations will be used in the estimations of the tails and

the remainders in Sections 2.10 and 2.11.

2.7 The cut-off values

In order to get a good balance among the error terms ¢; p, two cut-offs — ¢ for the argument 6,
and jg for the summation index 7 — will be chosen as

11—7r
fp= - —— 2.47
0= 37 (2.47)
jo = |logy n|, (2.48)

where r is the value of the saddle point given by the unique solution to (2.33).

Remark: One consequence of the choice (2.47) is that, whenever ¢ = re? with 0 < r < 1 and
|0] < 6o, we know that

1E(1—r) - 1 (—log(r*))

3(1—rn) ~ 3 (1—rk)

k0| <

for all k£ with 1 < k& < n. This means that the complex number ¢* belongs to the region

{Reie (_k’gR)} . (2.49)

1

3 (1-R)
Having done all the preparatory work, we now dive into the estimations for the error terms ¢; p
in the next few sections.

8] <

2.8 Bounding the primary peak error

Lemma 2.8.1 Suppose that r is chosen as the saddle point s defined in Lemma 2.5.1. Then, for

all n = 1500, we have
T/ 2 A
eo,p(n,m,r) < \/% + erfcq/8—47

5.
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Proof: Note that the choice of r as the saddle point 7, of P, (rew)e_ime ensures that the
Taylor expansion of log Pn,g(reie)e_ime at # = 0 has a vanishing linear term. Thus we can use
Lemma 2.A.2 to bound the relative error €y p(n, m, 7). We define

3

h3.p(n,r) = sup |==log P, re ,
(n,7) |z (re*”)

Lemma 2.A.2 immediately allows us to conclude

2\/§ h37p(n, 7“)
3V gp(n,r)3/2’

eo,p(n,m,r) <erfc(6pr/gp(n,r)/2) + 1.1 x (2.50)

provided that 8y < (9gp(n,7))/(4hs p(n,r)).

The subsequent arguments in this part exploit some inequalities for the quantities gp(n, ),
hs.p(n,r) and 6y to verify the conditions of Lemma 2.A.2.

We start by establishing simpler bounds on these three quantities. For the sake of simplicity, we
write g and h for gp(n,r) and h3 p(n,r) in the subsequent arguments.

The definition of h implies that

ik*¢" (1 = ¢*)(1 + 7¢" + ¢°¥)
(1 +q* + %) ’

n—1
h = hsp(n,r) < Z sup
k=1 101<0o

where ¢ = re'?. Therefore, an upper bound for h can be directly inferred from (2.94):

h <

(SRR |

Z K3k, (2.51)
k=1

On the other hand, (2.32) and the elementary inequality g > % > % lead to the following
bounds for g:

6 2 k
g<z ) ki, (2.52)

as well as

2_ 1) S 2k, (2.53)
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where we use the inequality Y7 _; k%r% = Y1 k?r", as well as

n

Zk%k}émk:(ljrﬁ(l—l—r"—%” (1+ 2(1—7")))

k=1
a—re (1 + " —=2r" (1 + g(r_l - 1)))

2
> " (1 + "t — QT”T_"/2) =r 1— g2
T (1—1)2 1—r ’

1—r \? 1 —exp(—+/a/n) ?
! (1—rn/2> =" (1 - exp(—m/2)> =

which is a consequence of Lemma 2.5.1. We also need to recall from Lemma 2.5.1 that « = 2/ \/3,
so that the bound n > 1500 > 120(9 + 2+/3) implies that (3 + «)/n < 1/360.

and

Having established the bounds above, we can establish some relationships among g, h, 6y and
n+

n r—rntl
A=Yt = I-r -
The inequalities (2.51), (2.53) and (2.98) imply that

r r(r?+dr +1) 27 k2P
3\ 3 r(r+1) i K3k
Zk K2k <9/(*_%)
Zk L k3rk 5h/7

_ 459/28 _ 99

Bh/T 4

Oy =

We also infer from (2.51), (2.53) and (2.99) that

1.1x2v2 h - 22 Ix11 S Sk
32 32 32
3w g% 3 \/77(%—%)/ (S0, k2rk)Y
_2v2 fx1l (Ltdr+r?? _2v2 IxF [0
VAR R O VT IV DR
1
3\
—3/2 2\ —3/2
where we used the numerical inequality 1.1 (3 — 555) <P ()

Finally, to bound the complementary error function in (2.50), which is equivalent to bound g63
from below, we invoke (2.53) and (2.96) to see that

2o (2 L\r (L) 11or Nt oA
970~ 37 360) 3\ 1-r 31— 12’
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and therefore
erfc(6pn/g/2) > erfc(+/A/84). o
2.9 Bounding the secondary peaks

The error terms €1, p(n, 7) related to the secondary peaks concern the quotients | P, ;(re®) /P, o(re®)].
To bound these quotients from above, we look at the quotients of two consecutive polynomials.

Dpnjlq) ¢ (1—q" )1 —q" 3+ (1 — ¢ 3742)(1 — ¢ 1) (1 — ¢ (2.54)
Dyj-1(q) (1—g*=37)(1 — g%7+3)(1 — ¢%) C

Enjlg)  ¢¥(1—¢" )1 —¢" (A —¢" ) (1= ¢¥ (1 —¢¥?) (2.55)
Enji-1(q) (1 —¢g3=37)(1 - qGﬁS)(l —q%) -

Lemma 2.9.1 Suppose that roy and 0y are as defined as in (2.34) and (2.47), respectively. Then,
forall j € [1,|n/3]), all ¢ = e € C such that r € (ro,1], and |0| < 6o, we have

(3j +1)(3j — 1) ( (j + Dr/n )2
185(2j5 + 1) sin((j + 1)w/n)

‘Dw‘(@‘ < (1.005 + 1.3/n)

Dy, i-1(q)

and

Enj(9) 32 L Bi-1Bi-2) ( (G+Da/n )
‘En,j_1<q>‘<'q' (1005 + 1.8/m) 55 + 1) <sin<<j+1>7r/n>>'

Proof: We write z = %logq so that €2* = g and (¢* — 1) = ¢“?sinhaz. Note that the
conditions on ¢ imply the inequality

1 (1 _ e2Rez)
|Imz| < gm (256)
We claim that the inequality
1 (1—e2v) 1 1
ém < max <U, ?)n) < U2 + W (257)
holds for all » > 1 and all w > 0. This can be proved by observing that
1(1—e*2U)<u 1 _u 1 _
- — — U
6(1—e2n) " 3(1—e2m)  3(1—e1
if u> 5-, and
1 (1—e?2) 1(1—e'm) 1 1 1
— < — < —— < —
6(1l—e2m) "6 (1—e1) 6n(l—e1) 3n
ifu< Therefore (2.56) and (2.57) imply that z satisfies the condition in Lemma 2.A.13
with ¢ = 3—n < &,- Lemma 2.A.13 now says that, for any a,b € R* where 0 < a < b < 6n, we
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have
A )
1—qb

sin(ac)
= sin(be)

(2.58)

We use (2.58) to bound various parts on the right-hand sides of (2.54) and (2.55). We have

s n—3j+2

q3j—3(1 _ q3n—9j+6) sin "= T
3n—37 < . ni1 < 17
1—¢g3n=% sin 5l
q3j73/2(1 _ q3n79j+3) gin ~=3itl o
3n—3; < ——2— <,
1—g3n=3% sin 5t

as well as
q(c+d—afb)/2(1 —q¢)(1— qb) sin 6%7r sin G%W
(1 —q°)(1—q%) = sin §n sin 6%77

ab( en/6n  dr/6n ) ab( (j+ Dr/n ))27

= sin(cm/6n) sin(dm/6n) = sin((j + 1)m/n
for (a,b,c,d) = (3j — 1,35 + 1,65 + 3,64) or (35 — 1,3j — 2,65 + 3,67).

It remains to bound the factor

9

(1—¢" (1 -
1+q*+ g%

where k = n — 3j + 1 or n — 3j + 2. Here we make use of (2.92) and (2.93) (recall that ¢*
belongs to the region (2.49)) to conclude that

(1—-¢"H1—¢"h
1+ g~ + g%

(1—q")? 11— g)?
1+ ¢k + ¢%* 1+ ¢k + g2k
< 1.005 + 1.002|1 — ¢/?
< 1.005 4 1.002((1 — )2 + 62))

<

2 1
< 1.005+1.002 —(1 + =
<\/§n( 9)>

< 1.005 + 1.3/n. o

These bounds allow us to obtain upper bounds for the first factor in the expression (2.16) of the
error term €1 p(n, 7).

Lemma 2.9.2 Suppose n > 7000, and that ro, jo and 0y are defined as in (2.34), (2.48) and
(2.47), respectively. Then, for all r € (19, 1], we have

D, ; (rew)
Dy, o (rei?)

Jjo
sup < 0.187,

j=1101<6o
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Jjo E rei@

sup g ( w) < 0.043,
j=1|9‘<90 En70 (7’6 )
Jo F . Tei@
Z sup n’J( Z.e) < 0.043
j:1 ‘9|<90 Fn,o (Te )

Proof: We first make use of Lemma 2.9.1, and we notice that the condition n > 7000 and the
choice of jo imply that (j + 1)/n < leentloe2 - Therefore, the terms involving n in

nlog?2 500
Lemma 2.9.1 can be bounded above by

500 \?
(1.005 + 1.3/7000) (Sl7r/> < 1.006.

n /500
This implies
D, —1) 1.0067 (35 +1
i(q) <1006]H (3k + 1)(3k ): 006 3‘7—11— ’
Dno(q 18k( 2k+ 1) 277 J
and

Enj(@)| _ 1 gos/ 1—[ g B DEE—2) (1.006]g|~*/)7 (3j +1
Eno(q) 18k (2k + 1) 27i(3j+1) \ j )

for all j with 1 < j < jo. The relationship (2.26) implies a similar inequality for F;, ;, namely

F,.;(q) (3k —1)(3k —2)  (1.006|q|>?)7 (3] + 1
FnO(Q)' 1006JH| [ 18k(2k +1)  27(3j + 1) ( J >

The bounds stated in the lemma can be obtained by noticing that

032 < — exp (W) < exp ( \/§/7ooo> < 1.0003,

and by using the identities (cf. [PBMO90, Section 7.3.2])
o0
1 2
Z <3‘] + > = 76 sin < sin™! ﬁ) ,
20 Vda — a? 3 2

i « 37+ Iisin fsm*l\/»
oy (35 4+ 1)277 J va 3 ’

to give the estimates

0 X
0063 37+ 1

> < I+ > ~ 0.18618 < 0.187,

Jj=1 ]
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o0 .
(1.006 x 1.0003)7 /3j + 1
Z X Y < It > ~ 0.04219 < 0.043,

PoRRPICTESY j
o0 .
1.0067  [3j+1
~ 0.04218 < 0.043.
; 273 (35 + 1) < j > = :

Here and in the subsequent parts of the paper, the ~ symbol signifies that the approximation
value given is accurate to the last significant figure.

It remains to deal with the second factor in (2.16), namely

IQPHT f
0o

The argument below is parallel to the one in Section 2.8.
Lemma 2.9.3 Suppose that n = 1500 > 120(9 + 2+/3), and 0y is defined as in (2.47). Then we
r—pntl

have
/gp n,r J V5
where A = *H——.

3v3\
Proof: Note that the integrand is an even function in €, so we can use Lemma 2.A.4 to bound the
integral. We define

nO ’1”6

de.

nO

"Ore do <1+

4

0t 7 log Pno(re )

hap(n,r) = sup
60]<60

Lemma 2.A.2 immediately allows us to conclude
V2 hyp(n,r)t?

\/gP = Jeo Ivm  gp(n,r)

provided that the condition 62 < (27gp(n,7))/(8h4 p(n, 7)) is satisfied.

no(re?)| g <1+ (2.59)
0

n

The subsequent arguments in this part exploit some inequalities for the quantities gp(n, ),
ha,p(n,r) and 6 to verify the conditions of Lemma 2.A 4.

We start by establishing simpler bounds on them. For the sake of simplicity, we write g and h for
gp(n,r) and hy p(n, ) in the subsequent arguments.

The definition of h implies that

K q" (1 + 12¢" — 12¢%% — 56¢°% — 12¢*F + 12¢°% + ¢5*)
(1+q" +¢*)*

)

h = h4pnr Z s|up
k=1 101<60

where ¢ = re'?.

Therefore, an upper bound for & can be directly inferred from (2.95):

5 n
2N gk 2.60
< 3;1 r (2.60)
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On the other hand, we recall the upper and lower bounds on g from (2.52) and (2.53). We

establish some relationships among g, h, 6 and A = > 7_, ¥ = T—lr&

The inequalities (2.60), (2.53) and (2.100) imply that

—r

02 i < ﬁ1+107‘+r22221k2rk
9)\2 r2 Dhoy kArk
42k L < ég/(%_ﬁ)
SIS W 53 35
27g
S 8h

Moreover, from (2.60), (2.53) and (2.101), we also infer that

VIR VB VB (S k)
CAVE 9ﬁ2 60 ket BT
\f\/; 1+ 10r +r2 B \/3\/6
Sova 23 \ T n (T S ovaVa
V5
:ﬁ.

By combining Lemmas 2.9.2 and 2.9.3, we arrive at our bound for the error term €; p(n, 7).
Lemma 2.9.4 For all n > 7000 and all r with 0 < r < 1, we have

V5
i)
V5
i)
V5
i)

€1,p(n,r) < 0.187 <1 +
e1,5(n,r) < 0.043 (1 +

e1,r(n,r) <0.043 <1 +

2.10 Bounding the remainders

The reason we estimate the remainder parts before the tail is that certain results in this section,
namely upper bounds for the ratios | Py, ;(r)/Pp, j—1(r)|,

from above.

Lemma 2.10.1 Suppose thatn € Z*, and 0 < r < 1. Forall j € [1,|(n — 1)/6]], we have
ws(r) | _ (37 =13+ 1) ‘ Bg(r) | _ 35— 1)(37 - 2)(6) + 1)
j—1(7) 185(25 +1) E,j-1(r) 185(27 + 1)(65 — 5)

Forall j € [|(n—1)/6] + 2,[(n —1)/3]], we have

D) | M= 03l=) | Fust
Dy i-1(r) 3j—|(n—1)/3] +1’ E,j-1(r)

4r=*2(|(n — 1)/3] - j)
Bi—ln=13]+1)
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Finally for j = |(n — 1)/6] + 1 we have

< T2,

| D7) | Bag(r) | _ o,

ij_l(?“) En,j—l(r>

Proof: We claim that the first factors in (2.40) and (2.43) do not exceed 1, and the first factors in
(2.41) and (2.44) do not exceed 4. The claims about (2.40) and (2.43) are proved by using the
inequality 1 + r3% < 1 4+ r**1 4 2542 for k = n — 3j,n — 35 + 1,n — 3§ + 2, and the claims
about (2.41) and (2.44) are proved by observing that

(1 + Tn—3j)(1 + Tn—3j+1)(1 + ,rn—3j+2)

(1 + r3ln=1)/3]-3j+3) <4

Y

as well as the inequality r(b_“)/Q(l +7%) <1+ validfor0 <r <1land0 < a < b.

The second factors in (2.40) and (2.43) can be estimated using the inequality r(b=a)/ 2(1 —
r%)/(1 — ) < a/b, valid for all r € R and b > a > 0. (This can be considered as a limiting
form of Lemma 2.A.13 when ¢ — 0.) In order to deal with the factor (1 — r%+1) /(1 — 767=5),
we use the fact that the function a — (1 — r%)/a is decreasing in a if 0 < r < 1. This concludes
the proof of the first part of the lemma.

We cannot directly use the same method for the second factors in (2.41) and (2.44) because, in
each case, one exponent in the numerator, namely 3 |(n — 1)/3| + 37, would be larger than both
exponents in the denominator. Instead, we argue thatifa > ¢ > d > band c + d = a + b, then
we have

T,(c-i—d—a—b)/z(l . T‘a)(l o Tb) _ b (1 o Ta)(l _ 7ﬁc-i-d—a)

(1 —re)(1—rd) Tcet+d—a (1—r)(1—1rd)
b
< —.
c+d—a

Insertion of specific values of a, b, ¢, d from (2.41) and (2.44) into the above inequality concludes
the proof for the first four cases. For the borderline cases where j = [(n — 1)/6] + 1, we note
the following facts:

* The numerator of the first factor in (2.42) consists of exactly 5 factors of the form 1 + r™,
so the first factor can be bounded above by 2°;

* The second factor in (2.42) can be bounded above by 9/4;
* Finally, the extra factor in (2.45) can be bounded above by 1.

Combining the three ovservations concludes the proof for the borderline cases. o
Lemma 2.10.2 Suppose that n > 7000, and that r, jo and 0y are as defined as in (2.34), (2.48)
and (2.47), respectively. Then, for all r € (1o, 1], we have

e3.p(n,r) < 0.004, e3.p(n,r) < 0.008, ez, r(n,r) < 0.008.



Chapter 2. An analytic proof of the Borwein Conjecture 29

Proof: Lemma 2.10.1 implies the following inequalities for Dn, ; and En, I

D, (r) 37+ 1\, s ;

(2.61)

Duj(r) H e —vp —k+D) o

~

Dn,[(n—l)/ﬁ—‘rlj (T) k=|(n—1)/6]+2 (Bk - [(n - 1)/3J - 1)7

(2.62)
Enj(r) 67 +1 _ajn (35 + 1) 3 .
: 373 for0 <j <|(n—1)/6],
En,o(r) 31 j : or0<j<|(n—1)/6]
(2.63)

Eag) o Moo DB k)

En,[(n—l)/G-‘rlJ (7") k=|(n—1)/6]+2 (3k - |.(n - 1)/3J - ]‘)’
(2.64)

From Lemma 2.10.1, we can also provide bounds for the borderline case:

3 n,|(n—1)/6+1] (r) En,[(n—l)/6+1j (r)

<72, <72
Dy, | (n-1)/6](T) B ((n-1)/6)(T)

We observe that the factor % does not exceed 4 for all k € [(K + 1)/2, K], and it does

not exceed 1 for all k € [5(K + 1)/7, K. Therefore, the right-hand sides of (2.62) and (2.64)
(where K = |(n — 1)/3]) can be bounded above by

4G-3(E+1) < gian/3l+1) — gn/7+1

27

Taking into account the inequality (3j;“1)3*3j <479, /15 3

, we compute

3 f
n,J

r J n/6 on/T+1
2 Duo(r) = Z + \/16 ; + 72n/6)47 /\/167rn/6

Jj=jo+1 Jj=jo+1

< 4o /'+\/52n/7n/3+3/233
T30 T
_p [ 4log?2 | 93/2-4n/2133 n
2mlogn T

67+1
3j+1

[(n=1)/3] %

Z Enj(r) <2 1210g2+25/2—4n/2133 n
Eno(r) mlogn T

j=jo+1 ™0

Applying analogous arguments, and by using the inequality < 2, we get

1)/6] <j < |(n-1)/3],

/6] <j<|(n-1)/3].
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Finally, using the fact that

n—1 3 2
2 2n® —=3n“+n—-6 2
gp(n,r) < gp(n,1) = Z ng = 5 < Zn?
k=2

Ne)

for n > 2, we conclude that

€3 D(n,’r) < 4107g2 + 25/2—4n/2132n2’
’ 3nlogn

€3 E(n,r) < M + 27/2—471/2132”2.
’ 3nlogn

We finish the proof by using the condition n > 7000 in the above bounds, and by recalling (2.46)
to draw a similar conclusion about e3 (1, ). o

and

2.11 Bounding the tails

In order to bound the error term €2, p(n, ), we need bounds on P, ;(re®)/ Py, ;(r) as well as on
Py, ;(1)/Pno(r). The results of previous section, along with (2.46), imply the inequalities

Jo 7 0 .

D i . 1

Dnji(r) _ R <3J,+ > < 1.185, (2.65)
§=0 Dn,O(T> =0 J
OB, & (3541 65 + 1
I () _ 3 3—3J< I+ >1.003J7+ < 1.329, (2.66)
20 Emo(r) 20 i 37 +1
Jjo 1 Jjo i

F B,

Fi(r) _ P 3() 1 390, (2.67)
=0 Fn,O(r) j=0 En,(](r)

We now turn our attention to the quotient P, ;(re'®)/ P, ; ().
Proposition 2.11.1 Foralln > 32, r € (0,1], 0 € [—m, 7] and 0 < j < jo, we have

P (reif
’w(m) < exp (—o(n, 3jo + 2,n — 6jo — 2,7, p))
ij(T)

rn

where p = 0 llir , and

1-7)2(14rb)?
b¥oore (147r)21 12 ) 1+ 7&1”;2%1:;&2 P

b = —
ol abrp) = sy e g 1oy 1+ p?
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Proof: The condition n > 32 ensures that n > 659 + 2. Therefore, Lemma 2.A.5 implies that

Pn j(reie) n—3j—1 1+ TmeimH + T2m62im9
“log [T >N log -
Py j(r) 1+ rm 4 pem

Z ™% sin(mh/2)?,

where we write a = 3jp + 2 and b = n — 659 — 2 for simplicity of notation.

Now Lemma 2.A.8 allows us to do further estimation:

rb)2
g ’ Pn,j (T,eze) M ) B 1+ I‘igin;Q tan2(9/2)
Poi(r) |~ 1472 1—r L+ kG tan?(0/2)

where
(1—7r"(1— rb/3)

(1 +7r0)(1 + 7b/3)

we first note

1—r
1—rm>

After substituting 8 = p

valid for |#| < 7. Then we use the fact that %frffy” is decreasing with respect to cif y > = > 0 to
estimate the factor in terms of p:

1+ U tan(6/2) L+ R G o2
1 ’ >1- gt
1+ /183%2 tan?(6/2) 1+ /@4&:2)2 P>

By exploiting the inequality

1+ cx 1+
1-— =>cl|ll-—
1+cy 1+y

forall0 < c< landy > z > 0, and by taking

(1+7)2 (1+T)21—rb/3<1—rb 1

2
= = o < 1,
4(1 —rn)? 4 1—rb \1-— 7“”> (14 7b)(1 4 7b/3)
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we arrive at the expected result:

) 1—7)2(147rb)2
log Pﬁ,j(rew) . I U R T (1+7)? | 1+ %M
P (r) 1472 1—pr \1—7") 4(1+rb)(1+rb/3) 1+ p?
o 1012 /1 pb\? (1+7r)2(1 + r¥/6) (1 + rb/12)
142 1 \1—pn 4(1 + ) (1 + rb/3)
(1—7r)2(1+7b)2 o
L G
x|1-—
1+ p?
. (1=r)2(1+r?)2
W e (0 T e
T3l 17 4 1+ p? ’
where the last step uses the inequality %::z > %, validforO<r<landy > z. o

In order to convert the above lemma into an upper bound for ez p(n,r), we first note that
d(n,a,b,r, p) is increasing with respect to p. We estimate the integral in the definition of
€2,p(n, ) by making the substitution § = 11_7,’; p as in Proposition 2.11.1 and by splitting the
integral at p = %, as shown below:

21w —6g
J sup
6o OgjgjO
,,,'Vl

1—r 3/2 il
LT ) e o3+ 2 050~ 20m ) dp
1—r 13 J3ne

Pn,j (rew)
Pn’j (’I”)

1—r (Frr
o <27 [ exp(—on. 3o + 2~ 6o~ 27,0 dp

<2

1—r (32
<200 [ exp (—o(n. 3o + 1m0, p)) dp
L=r"Jis
+ 2mexp (—¢(n, 350 + 2,n — 659 — 2,7,3/2)) .

Suppose for now that n > 7000 and r € (r¢, 1]. By looking at the various factors in the definition
of ¢(n,a,b,r, p), we observe that

n—6jo—2>1_6log2n~l—2
n

> 0.9887,
n

P2 > exp (—(3logyn + 2)y/ajn) > 0.5958,
(L (tr)? T
4 4 75’
(L=r)(+r") (A—ro)(L+r5) _ 1
L+7)(L—=rb) = (L+ro)(1—rf) ~ 150
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These observations enable us to conclude

¢(n,3jo + 2,m — 6o — 2,7, p) > 0.9887°

_ 0598 T L+ (p/150)2 | 1 —r"/12
1+ (0.5958)2 75 1+ p2 1—r

5 1+10-4) 1 — /12
>— 11— ,
12 1+ p? 1—r

for all n > 7000 and p € [1/3, 3/2]. We define

5 1+10-4) 1 — /12
* == | 1=/ 2.68
¢ (TL?T?p) 12( 1+p2 > 1_r Y ( )

and obtain that

2m—6o P i (ret
f sup M do
0o 0<j<jo| Pnj(r)
1—r 3/2
<20 [ exp (<0(n. 300 + 10— 6r.p)) dp
1 —Tr 1/3
+ 2 €xp (_¢(n7 3.70 + 27 n— 6j0 - 27 T, 3/2))
1—r (32
D g f exp (=¢*(n, 7, p)) dp + 27 exp (=™ (n, 7, 3/2)) . (2.69)
=" Jiys

At this point, we incorporate the factor 4/gp(n, r) in the definition of €3 p(n, ). We note that,
using (2.52) and (2.97), we have

12 (1—7\°
gp(n,r)<5(1_r> : (2.70)

In view of this upper bound, we prove some related monotonicity results.
Lemma 2.11.2 Let ¢* be defined as in (2.68). For all n > 7000 and all r € (r¢, 1], we have:

* The function

1—r" 3/2
< 1—r ) exp (—¢*(n,r,3/2)) (2.71)

is decreasing with respect to r.

» If p e [1/3,3/2], then the function

1—pn\V2
(F=5) e coro )

is also decreasing with respect to 7.
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Proof: By taking logarithmic derivatives with respect to r, these claims are equivalent to the

inequalities

01— rn/12

30 1—r" ) 1+104
° % og <2 (1- < :
20r 1—r ~ 12 1+(3/2)2 ) or 1—r

and

1o, 1= _5 [ [1+10
2or 817 S 12 1+p2 |or 1

01— /12

- T

In order to prove (2.73) and (2.74), we perform the following calculations:

* Lemmas 2.A.11 and 2.A.12 imply that

01— 7“"/12 (1 _ 7471/12)(1 _ r(n—lz)/24)
= = =
or 1l—r (1—1r)2
* Again, Lemma 2.A.11 imply that
0 1—r™ 1—=9"
— log <

or 1—r  1—17r"

» We have 2

5 1+ 104 1
2o ) 018553 > -
12 ( 1+ (3/2)2> 76

therefore the right-hand side of (2.73) is at least 41=""

1—

* Since p = 1/3, we have

5 1+10-4) _ 5 1+ 104 1
— 1/ ——— | > =[1—4/————— ] ~0.021362 > —,
12( 1+p2> 12( \/1+1/9> 0021362 > 7

r

and thus the right-hand side of (2.74) is at least % 1__”":.

1

We are now ready to provide explicit upper bounds for €3 p(n, 7).
Lemma 2.11.3 Suppose that n > ng = 7000, and that ro, jo and 0y are defined as in (2.34),
(2.48) and (2.47), respectively. Then, for all r € (rg, 1], we have

e2.p(n,r) < 0.237, e2.5(n,r) < 0.266,

2.7 (n,r) < 0.266.

(2.73)

(2.74)

Proof: Making use of Lemmas 2.11.1 and 2.11.2 as well as of (2.69) and (2.70), and also noticing

that ¢*(n, r, p) is increasing with respect to n, we infer

e2,p(n,7) = gp(n,r) i Pr(r) JQW@O sup
T 2 Pro(r) ) \Joy  0<j<io

j=0

P, j(re®)

P j(r)

‘)

*The reader is referred to the remark after Lemma 2.9.2 for the meaning of the symbol ~.
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24 (1 —rn\%2 [ Pnyl(r)
57r<1—r) (;Pn;(r))

32
x<1 j exp<—¢*<n,r,p>>dp+wexp<—¢*<n,r,3/2>>>

L=r"Jiys
24 (& Pnu’(?"))
“\'5x (J;) Ppo(r)
1 1/2 3/2 1 3/2
X << ) f exp (—¢*(no,r0,p)) dp + 7 (1—7’0> exp(—¢*(no,r0,3/2))>.

L—ro 1/3

Now we substitute ng = 7000 and® ry = exp(—+/a/ng) ~ 0.987239, and observe that
1 = A~ 78.3612 and ¢* (ng, r0,3/2) ~ 14.5302. Moreover, we use numerical integration to

Calculate

3/2 4
J exp (—¢*(no, 7o, p)) dp ~ 0.0177756 < ——
s 225°

Therefore, we infer that

1/2 132 32
24( 1 > f exp(—¢*(n,ro,0))dp+7r<1_1m> exp (—¢*(n, 10, 3/2))

5% 1 —T0 1/3

/24 12, 4 3/2 —14.5302
< = <78.3612 X 595 + 78.3612°“1m x e

1
~ 0.195842 < 5

If this inequality is combined with (2.65) and (2.66), the proof is complete. o

2.12 Concluding the Proof

Having finally obtained upper bounds for all the error terms, we combine them to derive the main

result of this paper.

Theorem 2.12.1 The Borwein Conjecture is true for all n > ng = 7000.

Proof: Forall P € {D, E, F} and all m € [n, (deg P,,)/2], we let r; be the saddle point defined
in Lemma 2.5.1. When n > ng, we can see that

n+1 e /a/noie(noi»l)«/a/no

rs —Tg

A= >
1—7’5 1_6\/a/n0

Thus, from Lemma 2.8.1 we infer

> 77.

/\
eo,p(n,m,rs) < \/i + erfc m + erfc 4/ ~ 0.54321 < 0.544.

3See again the remark after Lemma 2.9.2 for the meaning of the symbol ~
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Also, A > 77 allows us to conclude that

<1 + 3{%) < 1.05,

which results in explicit bounds for €; p(n,rs) in Lemma 2.9.4,

€1,p(n,rs) < 0.187 x 1.05 < 0.197,
e1,6(n,rs) < 0.043 x 1.05 < 0.046,
e1,r(n,rs) < 0.043 x 1.05 < 0.046.

Remembering the estimations in Lemmas 2.10.2 and 2.11.3, we make a table of the upper bounds
we have obtained so far:

€op< |€,p<|€p<|ep<| Sum
0.544 | 0.197 | 0.237 | 0.004 | 0.982
0.544 | 0.046 | 0.266 | 0.008 | 0.864
0.544 | 0.046 | 0.266 | 0.008 | 0.864

Bl GRwl i

TABLE 2.1: List of upper bounds for the quantities ¢; p(n, 7).

From this table we can finally conclude that
€0.p(n, m,1s) + €1, p(n,7s) + €2, p(n,75) + €3 p(n,75) < 1

holds for all P € {D, E, F'} and n > ny, confirming the truth of the Borwein Conjecture in this
range. o

2.13 Computer verification for n < 7000

We have explicitly verified [¢"]P,(¢) > 0 for all P € {A, B,C}, and all n and m with
1 <n < 7000 and 0 < m < n? by using a computer. The program itself is written in C, and it
consists of the calculation of the coefficients of (g; q)3,/(q%; ¢°)n by iterative multiplication; in
each step, we multiply the current polynomial by an additional factor of (1 — ¢%~2)(1 — ¢¥~1).
Each polynomial multiplication is further optimized into a series of additions and subtractions
owing to the fact that the additional factor only has coefficients of 1 and —1.

The GMP library [Gt02] was used for exact large-integer arithmetic. The computation was run
at Johannes Kepler University in Linz, on a computer with 32 Intel Xeon processors at 2GHz
(of which only 10 are used). The running time was 53 hours, and used up to 150 gigabytes of
memory for storing all the coefficients.

2.14 Discussion

There are two more Borwein Conjectures mentioned in [And95]: a “Second Borwein Conjecture”
that also relates to modulus 3, and a “Third Borwein Conjecture” that relates to modulus 5.
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Conjecture 2.14.1 (P. BORWEIN) Let the polynomials oy, (q), 5r(¢) and 7, (q) be defined by
the relationship

. 2\2
m = an(¢®) — aBn(d®) — *1u(d®). (2.75)

Then these polynomials have non-negative coefficients.
Conjecture 2.14.2 (P. BORWEIN) Let the polynomials vy, (q), ¢n(q), Xn(q), ¥n(q) and wy(q)
be defined by the relationship

(¢; @)sn
(@®¢°)n

Then these polynomials have non-negative coefficients.

= n(0°) — q0n(@®) — @xn(d”) — *¥n(d®) — ¢*wn(d®), (2.76)

Both these conjectures are still wide open. In particular, no reasonable formulas for the poly-
nomials have been found so far. We remark that the comparison of (2.1) and (2.75) yields the
relationship ., (¢) = A2(q) + 2¢B.(q)Cr(q), so non-negativity for the coefficients of a,(q)
follows trivially from this paper.

Recall that for our proof we used the formulas for A, (q), B,(q) and C,(q) given in Theo-
rem 2.1.2. As we mentioned, these formulas had apparently not caught much attention so far.
It is rather a different type of formula that was found to be much more inspiring, namely (see
[And95, Theorem 3.1])

S [ 9
A, (q) = — 1) 993 +1)/2 ] , (2.77)
0 = S ]
o [ 2n
By(q) = 1 JqJ(9J—5)/2 ‘ ] , (2.78)
(2) j;( ) [n+3j—-1],
e [ 2n
Ch(q) = —1)ig3(93+7)/2 2.79
(q) j;( Yq sl (2.79)

where we used again the standard notation for ¢-binomial coefficients. These are so much more
imaginative because of their resemblance with a family of formulas appearing as generating
functions for partitions with restricted hook differences in [And+87]. Andrews et al. had shown

that

- _] jKj(a+/B)+a*ﬁ m+n

2 (=1 I (2.80)
jeZ q

is the generating function for certain partitions with restricted hook differences, with «, 8, K, m, n
being non-negative integers satisfying o + § < 2K and § — K < n —m < K — «a. Indeed,
the generating function in (2.77) is the “special case" of (2.80) in which m = n, o = 5/3,
B =4/3 and K = 3. Similar observations hold for B,,(¢) and C,(q). In other words, the result
of Andrews et al. seems to produce a proof of the Borwein Conjecture, except for the small flaw
that the choices of o and 3 are not integral, and thus not legitimate.

Bressoud [Bre96] extended the mystery by making the following much more general conjecture.
Conjecture 2.14.3 (BRESSOUD [BRE96, CONJECTURE 6]) Suppose that m,n € Z*, o and 3
are positive rational numbers, and K is a positive integer such that oK and K are integers. If
1< a+ 6 < 2K + 1 (with strict inequalities if K = 2)and § — K < n —m < K — q, then
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the polynomial

EEQ_lyqﬂK@%5n+Kmmvz["’*”}
= m+ Kj
has non-negative coefficients.

To this day, Bressoud’s conjecture has only been proved when «, 3 € Z (corresponding to the
result of Andrews et al. [And+87] mentioned above), and several infinite families of fractional
parameters (see [Ber20; BWO05; Bre81; IKS99; War(O1; War03]). The connection to partitions
with hook difference conditions lets one hope that a similar combinatorial interpretation may
exist for the polynomials in the Borwein Conjecture, but to this day no such connection has been
found.

Our approach for proving Theorem 2.12.1 has been analytic. The formulas that we just discussed,
in particular the formulas (2.77)—(2.79) for A, (q), Bn(q) and Cy(q), are unsuitable for asymp-
totic approximation. The reason is that each dominating term in the sums (2.77)—-(2.79) has
order O(4"/n), whereas the actual order of magnitude of A, (q), B, (q) and Cy,(q) is trivially
bounded above by O(3™). In other words, in the sums (2.77)—(2.79), there is a huge amount of
cancellations going on, which are seemingly impossible to control in order to find reasonable
asymptotic estimates. In contrast, only the first term in the formulas in Theorem 2.1.2 contributes
to the sum, as the other terms are asymptotically negligible, as we have shown.

We also mention the result of Li [Li20], which proves the positivity of the sum

> (4™ A

m=k (mod n+1)

for all k£ with 0 < k < n, and furthermore establishes the asymptotics of this sum as 2 -
3"n~1(1 + o(1)). This result is in line with our estimation: the central coefficient of P, (g) can
be approximated by
Poo(1)
2mgp (n, 1)
For further work on the estimation of sums of coefficients of “Borwein-type polynomials" along
arithmetic progressions, we refer the reader to Li and Yu [LY20].

= C3"n %21+ 0(1)).

We are in fact very optimistic that our analytic approach will have further implications. It
seems that it is possible to adapt our approach for a proof of Conjectures 2.14.1 and 2.14.2. It
remains to see whether these ideas may also finally lead to a full proof of Bressoud’s Conjecture.
Furthermore, we believe that they may also provide a basis for establishing open unimodality
and log-concavity questions concerning polynomials given by products/quotients of factors of
the form 1 — qk , as found for example in [CWWO0S].
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2.A Appendix: Auxiliary inequalities

This appendix contains several auxiliary inequalities used in the course of the proof. As their
proofs are tedious, we put them here so as not to disturb the flow of the argument in the main text.

2.A.1 Approximation error by a GauBlian

This part of the appendix is dedicated to bounding the error in the approximation of a function by
a GauBian function.
Lemma 2.A.1 Suppose that w € R*. Then we have

% 2 3
f we T (ewm — 1) dr < 1.1. (2.81)
0

Proof: Using a Taylor expansion of ew®”’ we write the integral as a sum involving the lower
incomplete gamma function (s, a) = §j e s lda:

3 ST S |
4 a2 3 4w a2

f we W (ewx — 1) dr = ZJ —e w® 3k o
0 ) 0 k!

RS 1 3k+1 9
_;IQk!w(kl)/27 2 16" )"

We denote the summand by

py 1 3k+1 9
uh )= ez " 016"

and attempt to bound the summand from above.

* For k = 1, u(k,w) = u(1,w) can be bounded above by 1I'(2) =

1
5
* For k > 2, we first note that lim,,_,o u(k, w) = limy_ 4o u(k, w) = 0. This implies that

the maximum value of u(k,w) on w € RT occurs at a point where Ougk w) — (.

By taking the derivative, we see that any such point wq satisfies

., (3k+ 19 > _ 20700 (Bya)™

2 160 k—1

By substituting this back into the expression for u(k, w), we infer that

1 26,911)/16 (%\/@)3k+1

sup u(k, w) < sup

w=0 w=0 2k w (k=1)/2 k—1
o—9w/16,, k+1 (;)%H
= sup 4
w=0 k! ( 1)
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Another derivative with respect to w shows that this supremum occurs when w = % (k+1),
giving our final bound for u(w, k):

k—1
(%) (k + 1)k+1
<
sup u(k, w) KleF+1(k — 1)
TR
(k—1)v21

n

(2.82)

nle
2mn’

where the last step used Stirling’s approximation n"™ <
Directly using the upper bound (2.82), we get
L1 i 3 VET1
Vor = (k—1)

which is worse than what we claimed. Instead, we use (2.82) for the terms with £ > 10, and
conclude that

& 1
> ulk,w) < 5 ~ 1.60608,
k=1 2

~ 0.027469 < 0.03.

: L& @
k;1 mkgll (k—1)

As for the leftover terms where 2 < k < 10, we first give a crude bound for large w by noticing

that
L1 3k+1 9 1Bk
ulk,w) = e\ T 16Y) S ameE Al \ T2 )

This inequality implies that if w > 25, then we have

10 10
1 3k+1
kz_]?u(k,w) < ’;2 L ( 5 > ~ 0.4446.

The interval [0, 25] is treated using the same method as in Lemma 2.A.9, and the resulting upper
bound is approximately 0.5677 < 0.57.

Combining all the above arguments, we obtain

3 o0
1
f4 we ™ <ewx3 - 1) dzx = Z u(k,w) < = +0.03 +0.57 = 1.1.
0 k=1 2

(]

Lemma 2.A.2 Suppose that vy > 0 and f € C3([—wo,x0];C) satisfy f(x) = —gx?/2 +
O(|z|?) for some g € RT. Let h = sup|, <y, | " (2)|. Suppose further that o < Z—i. Then we

have "
9 " s o5 I
’\/;f_xoe da — 1| < erfc(zgn/g/2) + 1.1 x N

Proof: Let Ry(x) = f(x) + gx?/2. Taylor’s theorem implies that

h
|Ro(z)] < g\a:|3
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We split the integral as follows:

f i ef @ dy = f ' e 972 +f i e 972 <6R2(“”) - 1) dx
—x0 —x0 —x0

- \/\/2?(1 — erfe(zon/9/2)) + fxo e 97"/ (eRQ(‘”) - 1) dx.

g —z0

Therefore we have

ly) X0
‘4 /% j_mo ef @) dg — 1' < erfe(zov/9/2) + \/g‘f_mo e—97°/2 (eRQ(m) — 1) dx
9
< erfe(xon/g/2) + \/@fﬁ e 9712 (eh“”‘g/6 - 1) dx. o
T Jo

The last integral is then bounded using Lemma 2.A.1 by taking w = 9¢%/(2h?), and making the
substitution z — (hx)/(3g).
Lemma 2.A.3 Suppose that u,v € R*. Then we have

3
42 w2 4 1
e —1) doe < ——. 2.83
Jo we <e ) T 33 ( )

Proof: Using the Taylor expansion of e””4, we write the integral as a sum involving the lower
incomplete gamma function y(s, a) = §j e "z 'da,

3 0 A3 i
42 2 4 42 W )
f we T (e“’w — 1) dr = ZJ —7€ w4k g
0 k=170 Kl
0

1 Ak+1 9
oklw@DR T\ T2 32"

k

We denote the summand by

L ) 1 k+1 9
U( 7w) T Qk!w(2k—1)/27 2 7372w )

and attempt to bound the summand from above. We first note that

&)1210 u(k,w) = wl_l)r}rloou(k,w) =0.

This means that the maximum value of u(k,w) on w € R™ occurs at a point where augzu’w) = 0.

By taking a derivative, we can see any such point wy satisfies

2 320

4k+1 9 B 90— 9wo/32 (%wo)(4k+1)/2
2k — 1 :
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substituting it back into the expression of u(k,w), we are able to infer that

1 9p—9w/32 (%w)(‘lkﬂ)ﬂ

sup ulk,w) < SUp o7 5h 1

—ow (4k+1)/2
o—9w/32, k+1 (3%)

ol k(2% — 1)

Another derivative with respect to w shows that this supremum occurs when w = %(k + 1),
giving our final bound for u(w, k):

()72 (k4 1)k

sup u(k, w) <

w>0 T Kleb (2 — 1)
9\k—1/2 57—
< &) bl (2.84)
(2k —1)v/2r '
where the last step used Stirling’s approximation n'* < \/"%

Similar to the proof of Lemma 2.A.1, we use (2.84) on the terms with k£ > 2, and conclude that

S ulkow i ()" ”W;m

~ (0.04303 < 0.0431.

As for the term u(1,w), we first note that

7(5/2,90/32) _T(5/2) _ 3vr
2w 2w 8w’

therefore u(1,w) < § if w > 9. The interval [0, 97] is treated using the same method as in
Lemma 2.A.9, and the resulting upper bound is approximately 0.14875 < 0.1488.

u(l,w) =

Combining all the above arguments, we conclude that

0

ECH— ( wat ) _ 1
we e’ —1)de= > u(k,w)<0.1488 + 0.0431 = 0.1919 < —~.
Jo ,; 3W3 g

Lemma 2.A.4 Suppose that xo > 0 and that f € C*([—xq, o)) is an even function that satisfies
f( ) = —gx?/2 + O(|z|*) for some g € R*. Let h = supj,|<y, |fD(z)|. Suppose further that

13 < 279 Then we have
/gr(’ I gy <14 VIR
21 J g I g

Proof: Let R(z) = f(x) + gx?/2. Taylor’s theorem implies that

h
R@) < 5ol
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Similar to the proof of Lemma 2.A.2, we argue that

”27r JIO dr =1 — erfc(xon/g/ 4/ JIO *g‘”2/2 ef@) _ ) dx
2
<1+4/J e g‘”/Q eh|z|/24—1> dx
960

/29 J gx2/2 Ghlel/24 _ 1) d. 5

The last integral is then bounded using Lemma 2.A.3 by taking w = 6¢%/h and making the
substitution = — +/12¢g/h z.

2.A.2 Trigonometric sums and tail estimates

The second part of the appendix is dedicated to several inequalities that contribute to the proof of
Lemma 2.11.1.
Lemma 2.A.5 Forallr € Rt and 6 € R, we have

1 4 re®? + r2e20
L+r+72

2r 5
< exp <_1+7’2 sin (0/2)) . (2.85)
Proof: 1t is straightforward to calculate

. 12
‘1 + re? 4 220

=1+ (2—48)r + (3 — 165 + 165%)r% 4 (2 — 4s)r3 + 14,

where s = (1 — cos6) = sin(6/2)? € [0,1].

2< 1—rs+r? 2< 4rs
<|l— ] <exp|———5].
1+ rs+r2 P 1472

The first inequality is proved by the algebraic manipulation

We claim that

1 4 re®? + r2e20
1+7r+r2

(1+r+1r2)2(1=rs+r2) = (14+rs+r?)? (1+(2—4s)r + (3 —16s + 165%)r? + (2 — 4s)r + 7’4)

= 4r2s(1 —5) ((1 + 7’2)(2 —r+7r?+ rs) + 4’!“282) =0,
while the second inequality can be obtained by taking z = 1%:5 in the inequality } :Cg <e ’,
which holds for all z € [0, 1]. o
Lemma 2.A.6 Letr € R and b > 2. Then we have

(1 —rbh (1 — b1 - (1+ rb/3)(1 +7?)
rb_l(b2 _ 1)(1 _ 7,)2 = 2(@/3 + rb)

Proof: Let z = %log r. The lemma is equivalent to

sinh(z 4+ z/b) sinh(z — z/b) - cosh(z/3) cosh z
(b2 — 1) sinh?(z/b) ~ cosh(2z/3)

(2.86)
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When b = 2, the difference between the two sides of (2.86) is
sinh(3z/2)  cosh(z/3) coshz
3sinh(z/2) cosh(2z/3)
_ (cosh(z/3) —1)*(2cosh(z/3) + 1)(8 cosh?(z/3) + 6 cosh(z/3) — 1) >0
3 cosh(2z/3) -

We now proceed to prove that the left-hand side of (2.86), viewed as a function with respect to b
and fixed z, is increasing. To this end, we compute its derivative as

(b — 1)z cosh(z/b) sinh? z — b? sinh(z/b) sinh(z — z/b) sinh(z + z/b)

2 ;
b2(b2 — 1)2sinh3(z/b)

so it suffices to prove that
(b — 1)z cosh(z/b) sinh? z cosh(z/b) sinh?(z) = b> sinh(z/b) sinh(z — z/b) sinh(z + z/b),

or equivalently,

sinh(2z/b) sinh?(z) - sinh(z/b)? sinh(z — z/b) sinh(z + z/b)
(22/b)22 - (2/b)%(z — 2/b)(z + z/b) '

Taking the logarithm on both sides, and defining f(z) := log % and f(0) := 0, we arrive at
another equivalent form,

f(z 4 2/b) + f(z = 2/b) = 2f(2) + 2f(2/b) — f(22/b) — f(0) < 0.
The left-hand side can be written as a triple integral,
fa by f )20 a2f ) -fem -5 = [|[ fora-paasan,
[0,2/b]2 x [2/b,z]
and we conclude the proof by noting that

f"(z) = 2(coshz(sinhz) ™% — 273) < 0. o

The following inequality gives a simple rational lower bound for the Chebyshev polynomials of
the first kind 7,,(x), defined by 7T}, (cos §) = cosnf.
Lemma 2.A.7 Forall x € [—1,1] and all n € Z*, we have

—n?(1—z)(2z +3) + 3(1 + )
n?(1—x) +3(1+z)

To(x) =
Proof: If n = 1, then both sides are equal to . From now on we assume n > 2.
fF-1<z<1- %,then we have

—n2(1 —2)(2x + 3) + 3(1 + )
n?(1—x) +3(1 + x)

< —-1<T,(x).
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If1— % < x < 1, then we write 8 = %arccos x, so that

3

0 < 0 < narcsin L
2n

The two sides of the inequalities can be rewritten as
T (x) = cos20 = 1 — 2sin? 0
and

—n2(1—z)(2x +3) + 3(1 + ) n?(2z + 4)
= 1 _—
n?(1—z) +3(1 +z) n? + 31L
~ 2cos(20/n) +4
1+ 3n~2cot?(0/n)
. 6- 4sin?(0/n)
1+3n"2cot?(/n)’

Thus it suffices to prove that
02 -2 42 in2
sin”“ (1 + 3n~“cot*(0/n)) < 3 — 2sin“(6/n)

forall n > 2 and 6 € [0, narcsin 4/ 525 ].

For the last inequality, we make use of the inequalities, valid at least for = € (0, 7/2) (The first
one is a consequence of the elementary inequality cosz > 1 — x2/2 + x4 /4! — 25/6!, the second

one is a consequence of the fact that the Taylor expansion of cot x — % only has negative terms).

Sin2:1:<:1c2—$—4+27336

3 45"’
cotx<l—§—x—3
S 3 45

to conclude that

3 — 2sin%(A/n) — sin? O(1 + 3n~2 cot?(A/n))

>3-2 02_074_1_2766 _ 92_%4_@ 1+i ﬁ_i_
- n2  3nt  45nb 3 45 n2\ 0 3n 45n2

15n4 45n6 675n8

_4n2—106_ 2 s
2025n8 30375n8

g (<n2—1><7n2—3> -t =3), 6t - 100241,
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The last factor is clearly decreasing with respect to  when n >

2, so we proceed to find an upper
bound for . We note that

d 3 3 1
3

and after substituting ¢) = arcsin 4/ 5>

5oz we see that the derivative is equal to ¢ — tan ¢ < 0. So

narcsin 4 / % is decreasing with respect to n. This implies that we always have

/3 3 /15
0 < 60 < narcsin 2n2<2arcsin\/;< 3

Using this bound, we conclude that
3 —2sin?(0/n) — sin?0(1 + 3n"2cot?(0/n))
294<m?—1xwﬂ—3) (n? —2)(2n* = 3) ,

6n* —10n? +1 ,
15n4 45nS 675n8
4n? —1 6

2 o8
2025n8 30375n8
_ gt ((n2 —1)(2=3) (n2-2)(2n'—3)15

15 6nt—10n%+1 (15 2
15n4 45n8 8

67518 8
4n?-1 (15 3__ 2 15 4
2025n8 \ 8 3037518 \ 8

150
= 75 (5120 (n® — 4)(Tn® —2) + 6480(n* — 1)(2n® + 1) + 160n" + 6395)
> 0. o
Lemma 2.A.8 Leta,be Z" suchthatb > 2, and r € |0, 1]. Then we have
atdl 11— 1+ ”83232 tan?(6/2)
2 M sin%(mf/2) = ST 1

1+ Iiﬁt:;; tan2(6/2) |’
where

(1 ro) (1 — rb/3)

IERDNETE

Proof: This sum has a closed form
a+b—1

2 ™% sin(mf)/2)>

m=a

_ 1 <1 —rb _ (cosaf) —rcos((a —1)0)) — r®(cos(a + b)0 — rcos((a + b —1)0))
2\1-r

1—2rcosf +r2 >
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RS rb _ (cosaf — r° cos(a + b)0)(1 — rcos ) — (sinah — r’sin(a + b)d) sin 0
2\ 1-7r 1—2rcosf +r? '

We use the Cauchy—Schwarz inequality, observe that

(1—rcosf)? + (rsinf)? =1 — 2rcos 6 + 2

and
(cosaf — P cos(a + b)6)? + (sinab — r’sin(a + b)9)2 = 1 — 2’ cos b + 12,
to arrive at
b—1 b b 2b
1({1—7r 1—2r°cosbl +r
m—a : 9 2 > - _ 2.87
27‘ sin(m/2) 21 1—7r \/ 1—2rcosf + r2 ) (2.87)

m=a

Comparing (2.87) with the claims of this lemma, we see that it suffices to prove that

1—2rPcosbd + 720 (1 —1°2% + k(1 +r?)%tan?(6/2)
1—2rcosf +r? (1=7)2+ k(1 +7)2tan?(0/2)

By routine manipulation, the above inequality is equivalent to
1— 1 — b= (1 — b+ gin2 0
cos — cos bl < ( ) N ro7)sin i (2.88)
ro=1((1 —7)2(1 4 cos ) + k(1 +7r)2(1 — cos9))

Here, Lemma 2.A.7 implies the inequality
(b* —1)sin% 0
0 — cosbh < . 2.89
cosyTeos (14 cosf) + b%(1 —cosb)/3 (2.89)

Comparing (2.88) and (2.89), we see that it remains to show that
P71 (1= 7)%(1 + cos ) + k(1 +7)%(1 — cosh)) B (14 cos®) + b*(1 — cosh)/3 (2.90)
(1 —r)(1 —rb=1)(1 — rb+1) = b2 —1 T

This is an immediate consequence of Lemma 2.A.6 and the inequality

21 N2
C(L-r) (2.91)

Equation (2.91) can be directly verified for b = 2. If b > 3, we write r = e~%/2, so that the

inequality is equivalent to
tanh(bz) tanh(bz/3) _ g

(tanh x)2 =3

This follows finally from the fact that tanh x/x is decreasing on R™.
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2.A.3 Miscellaneous Inequalities

Lemma 2.A.9 Forall z = re? € Csuchthat 0 < r < 1 and |6] < %(leff)r), we have

1
z z
1— 2
‘M < 1.005, (2.93)
z z
1-22)1+T72+2Y)] 7
r=+2F |5 2:94)
14122 — 1222 — 5623 — 1224 + 1225 + 26 _5 (2.95)
(1+2z+22)4 3 '
Proof: Let S be the region
. 1(-1
frrefec|o<r <1, o < 22181y
3 (1-r)
Im z
0.4t
0.2
‘ Re z
—0.2 02 04 06 038
—0.2 |
—04 |

FIGURE 2.2: Illustration of the region .S (shaded).
All the rational functions on the left-hand sides of the inequalities are holomorphic on S, so the
maximum modulus principle means it suffices to prove the inequalities on the boundary
; 1(-1 ; 1
0S={z=re?eClo<r<1, —1<0<m, lﬁlsz ule g <=},
3 (1-=r) 3

The proof is done in a uniform way for all four rational functions (denoted by f in the subsequent
arguments): let g1, g2, g3 : [0, 1] — C be a three-part parametrization of 05 given by

g1(x) = exp (—37r:c + (1:73”)1)

g2(x) = exp <—3m - (_mz>

1— e37ra7>
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We choose N = 10° points in [0, 1], namely 0,1/N, ..., (N — 1)/N, and argue that

F(2)] < i (maxﬂgku/mn 7 1) |g,z<:c>|>

k=1 z€[0,1
holds for all z € 0S. Then we evaluate max; | f(gx(j/N))| using a computer, and prove trivial
upper bounds for f/, and g).(k = 1, 2, 3):

* The derivative f’(z) is a rational function with denominator equal to a power of 1 + z + 22.
We note that S = (—1/3,1] + (—1/3,1/3)i implies that |1 + z + 22| > v/37/9 > 2/3 for
all z € S, and use this to bound the denominators; on the other hand we use trivial triangle
inequalities to control the numerators, and combine them to obtain upper bounds for f’.

* The derivatives of g1 () and go () can be bounded by e =37 |37 +7i| = m4/10e~3™ < 10.
« We obviously have |g5(z)| = 2 for all z. o
By combining these bounds we conclude the proof.

The next lemma deals with inequalities between sums of the form Y _, k%rF.
Lemma 2.A.10 Foralln € Z* and all r € (0,1], we have

n n 3
r? (Z k*r ’f) > (Z rk> , (2.96)
k k=1
<i k%’“) , (2.97)
(r? +4r + 1) (ir ) (ik r ) r(r+1) (i k?’rk), (2.98)
k=1

k=1

n n 2 n
(r?+4r+1 ( k*r ) (r+1)° (Z k3rk> (Z rk> . (2.99)
k=1 k=1 k=1
(r2 +10r + 1) (Z Tk> > kzrk> 7 (Z k4rk> , (2.100)
k=1

k=1

(r% + 107 + 1) <i k%k) > (r+1) (i k4rk> (i rk> . (2.101)

k=1 k=1

Proof: For simplicity of notation, we use X, to denote the sum »;'_, k™rk. The reader should
observe that, for fixed m, the sum X,,, can be evaluated into a rational function in 7 and " by
applying the binomial theorem.

The first inequality is proved by noticing that the coefficient [r¥](3r2 Xy — X3) is equal to
3(k —2)? — (") > 0for 3 < k < n + 2, and is negative for n + 3 < k < 3n. Moreover, the
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sum of the coefficients is equal to

3Zkﬁqﬁ=”@g+”>0
k=1

So we have

3r? i K2k | — i r 3 > [Pt S n(3n +1) 1>r"+3 >0
k=1 k=1 - 2 ’

where [ is the sum of all positive coefficients in 3r2 Xy — X3.

In order to prove the other inequalities, we give explicit formulas for the coefficients of the
differences between both sides in those inequalities. More explicitly, after some tedious but
routine calculations, we arrive at the following results:

* For (2.97), we have
2n—1

(r+1)X3 —r2Xy = p+3 Z apr®,
k=0
where a, = (n + k+1)2 = 3(k + 1)2for0 < k < n,and a, = (2n — k — 1)? for
n< k< 2n.

e For (2.98), we have

n
(r? +4r + DX Xy —r(r + 1) X3 = r"2 Z br”,
k=0

where by = n(n +1)2 = 1,b, = n%, by =n(n+ 1)(2n + 1) — (2k + 1)(k? + k + 1) for
0<k<n.

nm < k

CkT,
210 ~

(r? +4r + 1)2X5 — (r + 1)*Xo X5 =
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where

—12k7 — 42k5n — 84k5 + 168k5n2 + 126k°n — 294k° + 420k*n?

+315k*n — 630k* + 1400k3n? + 1680k3n — 798k3 + 1680k2n>

+2247k%n — 546k% + 1372kn? + 1974kn — 156k + 420n% + 630n, 0<k <n,
114n7 + 462n5 + 1211n° + 1470n* + 301n3 — 252n2 — 156n, k=n,
127 4 42k5n + 84Kk5 — 168k°n? — 126k°n + 294k5 — 420k*n>
cp = —315k*n + 630k* — 840k3n* — 1680k3n> — 2240k3n? — 1680k3n

+798K3 + 3276k%n° + 7560k*n* + 5250k%n3 — 420k%n> — 1953k>n

+546k2 — 3024kn® — 6468kn® — 3360kn* + 840kn> — 28kn?

—1386kn + 156k + 816n" + 1512n8 + 1372n° + 2100n* + 2114n°

+588n2 — 312n, n<k<2n,
21015, k=2n+1.

e For (2.100), we have

2n—1
(r® +10r + DX5 Xy — Xy = ™ > dpr®,
k=0

where dj, = n* + 4(k + 1)n3 — 2(k + 1)* + (6k + 5)n? + 2(k + 1)n for 0 < k < n, and
dy=02n—1—-k)?2n2 + (k+1)?) +2n(Bn +1)(2n — 1 — k) + n? forn < k < 2n.

e For (2.101), we have
(r? +10r + 1)X3 — (r + 1) X0 X4 = nr" ™2 Z eprk,
k=0
where e, = n? + 2(n — k)(kn? + (3k* + 4k + 2)n + (k + 1)3(k + 2)).

It is easy to see that ag, b, cn, Can+1, di, and e, are non-negative. For the remaining c’s, we
distinguish two cases:

¢ 0 < k < n. Here we substitute k¥ = An with 0 < A < 1 to see that

ek = (1207 — 42X° + 168)\°) n™ + (—84A% + 126A° + 420A%) nf
+ (—294X° + 315X" + 1400A%) n® + (—630A" + 1680A° + 1680A%) n*
+ (—7T98N% + 2247\ + 1372X) n® + (—546A% + 1974\ + 420) n”
+ (630 — 156A\)n,

and note that 0 < A < 1 implies that every coefficient above is non-negative.

* n < k < 2n. Similarly, we substitute & = (2 — \)n to write

ek = (—12A7 4+ 210A% — 1344X° + 4200A* — 5880A% + 2940\%) n”
+ (84X — 882)% + 3360\* — 3360\ — 2520\% + 3780\) n®
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+ (—294X° + 2625A" — 7000A® + 7770\ — 4200\ + 2100) n°
+ (630" — 3360\ + 4620\% + 840\ — 1260) n*
+ (—798A% + 2835)% — 1736\ + 630) n° + (5461 — 798)) n* — 156 An.

In this case some of the coefficients (namely, the coefficients of n, n? and of n*) are
negative. However, by exploiting the fact that » > 1 and that
[n°]cr + [n]er = —294X5 + 325501 — 1036073 + 1239072 — 3360\ + 840
= 840(1 — 2\ + 2X22)% 4+ 7TA%(810 — 520\ — 150% — 42)%) > 0,
[n3)ex + [n%]er + [n']ex = —T98A% 4 338107 — 2690\ + 630
= 523(1 — 20)2 + (1 — A\)(798\% — 491\ + 107) > 0,

we can still directly conclude that c;, > 0. o

The following two inequalities are used in the proof of Lemma 2.11.2.
Lemma 2.A.11 Suppose that 0 < r < 1, and n = 1. Then we have

(1 —7rm)? - ﬁl — " - (1—7””)(1—7’(”_1)/2)
(1—7r2 " orl1—vr ~ (1—r)2 '

Proof: Direct calculation reveals that

ol—r" (1-r")(1- 7"("71)/2) _ /2 —n/2 n/2 —1/2 1/2
or1—r (1—r)? _(1—7“)2(r —r ol - >)’
(1 —rm)2 01l—r" pn—l

= & 1or ~ = M =),

Therefore, the lemma follows from the elementary inequality

r(l—r") P2 /2
1—r \n\r_l/Q—rl/Q' ]

Lemma 2.A.12 Suppose that n > 6924, and r € (exp(—+/a/n), 1] with o = 2/+/3. Then we
have
(1 _ rn/12)(1 _ T(n_12)/24)

A-na—m "

Proof: First of all, the condition n > 6924 implies that 1 — r("~12)/24 > 1 _ 1288 45 well as

r > exp(—/a/6924) > e~ /72,

1—pn/12
1—rm

Noting that the function

is increasing with respect to n, we conclude that

_n/12Y(1 _ n(n—12)/24 _n/12\(1 _ .28 _ A8y (1 _ 288 _ 48
(1= —r )2(1 (1 —r )2(1 r*) (1 —r ):1 re
1—rn 1—rm 1 — rd76 1+ r288
Thus it suffices to prove that 1 — %8 > 24(1 — r)(1 4 r2%8) for r € (e~ /72, 1]. To this end, we
prove that 1 — 748 —24(1 —7)(1 4 72%8) is decreasing on (e~'/72 1] by calculating the derivative.
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‘We have

d% (1= %) = 24(1 — r)(1 +128)) = 24(1 — 248 4 1288) — 48(1 — 1) (r*7 + 1447757

< 24748 (748 4 1240 _ 9) < 94748 max (62/3 ye 108 91 41— 2) —0,

where we exploit the convexity of the function r s 7 =48 4 7240 _ 2,

The following inequality is used in the proof of Lemma 2.9.1.
Lemma 2.A.13 Suppose 0 < a < b, and 0 < ¢ < 7/b. Then for all z € C such that
(Im 2)2 < (Re2)? + 2, we have

sinh(az)
sinh(bz)

sin(ac)
< .
sin(bc)

Proof: We make use of the infinite products
ee} 22
sinh z = ZH <1 + ]{271'2>
k=1

and

SinZ:ZH<1—W>.

k=1
We claim that under the assumptions of this lemma, we have
k2712 + a?2?
k2m? + b222

k272 — 22

= k202 — p2¢27

from which the lemma follows after taking the product over all £ > 1

In order to prove this inequality, we write 2> = x + iy and u = k7, so that x > —c? and
ac < bc < u. Now the absolute value can be written as

(u? + a?x)? + ay?
O\ (w2 4 b22)2 4 by

and the inequality can be proved by the manipulation

u? + a222

u? + b2z2

((u2 +v%z)% + b4y2) (u? — a%c?)? — ((u2 +a’z)? + a4y2) u? — b2c?)
= uz(b2 — 2) [(u2 —a? 2)((37 +c )(u + b2x) + b2y2)
+(u? = b2 ((z + ) (u® + a’z) + a®y?)]
= 0. o
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3

An asymptotic approach to
Borwein-type sign pattern
theorems

Abstract

The celebrated (First) Borwein Conjecture predicts that for all positive integers n the sign pattern
of the coefficients of the “Borwein polynomial”

1-q)1 -1 -g")A—=¢") - (1=¢" (1 -

is + — — + — — ---. It was proved by the first author in [Wan22]. In the present paper, we
extract the essentials from the former paper and enhance them to a conceptual approach for the
proof of “Borwein-like” sign pattern statements. In particular, we provide a new proof of the
original (First) Borwein Conjecture, a proof of the Second Borwein Conjecture (predicting that
the sign pattern of the square of the “Borwein polynomial” is also + — — + — — ---), and a
partial proof of a “cubic” Borwein Conjecture due to the first author (predicting the same sign
pattern for the cube of the “Borwein polynomial”). Many further applications are discussed.

3.1 Introduction

It was in 1993 at a workshop at Cornell University, when what became known as the Borwein
Conjecture was born. (One of the authors was an intrigued witness of this event.) George
Andrews delivered a two-part lecture on “AXIOM and the Borwein Conjecture”, in which he
— first of all — stated three conjectures that had been communicated to him by Peter Borwein
(the first of which became known as “the Borwein Conjecture”), and then reported the lines of
attack that he had tried, all of which had failed to give a proof, stressing (quoting from [And95],
which contains Andrews’ findings in printed form) that “this is the sort of intriguing simply
stated problem that devotees of the theory of partitions love.” Indeed, the statement of the first
conjecture, dubbed the “First Borwein Conjecture” in [And95], is the following.

Conjecture 3.1.1 (P. BORWEIN) For all positive integers n, the sign pattern of the coefficients
in the expansion of the polynomial P, (q) defined by

Pu(q):=(1-q1 =) 1—¢V1=¢")-- Q- )1 —¢>") 3.1)

is+——+4+ — —+ — —---, with a coefficient 0 being considered as both + and —.

This chapter is also available as arXiv preprint 2201.12415.
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The Second Borwein Conjecture from [And95] predicts the same sign behaviour of the coefficients
for the square of the “Borwein polynomial”.

Conjecture 3.1.2 (P. BORWEIN) For all positive integers 7, the sign pattern of the coefficients in
the expansion of the polynomial P2(q), where P, (q) is defined by (3.1),is +——+——+——---,
with the same convention concerning zero coefficients.

The Third Borwein Conjecture from [And95] is an assertion on the sign behaviour of the
coefficients of a polynomial similar to P, (q), where however the involved modulus is 5 instead
of 3. We shall return to it at the end of this paper, see Conjecture 3.11.1 in Section 3.11.

Interestingly, the first author observed recently that a cubic version of the conjecture also appears
to hold, which both Borwein and Andrews missed.

Conjecture 3.1.3 (C. WANG) For all positive integers n, the sign pattern of the coefficients in
the expansion of the polynomial P3(q), where P, (q) is defined by (3.1),is +——+——+——-- -,
with the same convention concerning zero coefficients as before.

These deceivingly simple conjectures intrigued many researchers after Andrews had introduced
them to a larger audience — in particular the first one, Conjecture 3.1.1. Various approaches
were tried — combinatorial, or using g-series techniques (cf. e.g. [And95; Ber20; BWO05; Bre96;
[KS99; SZ21; War0O1; War03; Zah06]) —, variations and generalisations were proposed (see
[BS19; Bre96; IKS99; SZ21]) — most notably Bressoud’s conjecture in [Bre96] — sometimes
leading to proofs of related results. However, none of these attempts came anything close to
progress concerning the original First Borwein Conjecture, Conjecture 3.1.1. It took almost 30
years until the first author succeeded in proving this conjecture in [Wan22], using analytic means.

Starting point of the proof in [Wan22] was explicit sum representations of the polynomials
A (q), Bn(q), Crn(q) in the decomposition of P,(q) given by

Po(q) = An(¢®) — 4Bn(®) — ¢°Cu(d®), (3.2)

due to Andrews [And95]. It should be noted that the First Borwein Conjecture, Conjecture 3.1.1,
is equivalent to the statement that all coefficients of the polynomials A,,(q), By (q), Cp(q) are
non-negative. These coefficients were written in [Wan22] in terms of the obvious Cauchy
integrals. Subsequent saddle point approximations showed that for n > 7000 the coefficient of
q™ in A, (q), Bn(q), Cn(q) is positive in the range n < m < n? — n. The proof could then be
completed by appealing to another result of Andrews [And95] which gives non-negativity of
the coefficients of ¢™ in A, (q), Bn(q), Cn(q) for m < n and m > n? — n “for free”, and by
performing a computer check of the conjecture for n < 7000.

At this point, it must be mentioned that formulae analogous to Andrews’ formulae for the decom-
position polynomials A, (q), Byn(q), Cy(q) are not available for the analogous decompositions
of P2(q) or P3(q), or for the corresponding decomposition of the polynomial S,,(q) in the Third
Borwein Conjecture (Conjecture 3.11.1), and that it is unlikely that such formulae exist.

Thus, the article [Wan22] left open the question whether it was just an isolated instance that
this approach succeeded to prove the First Borwein Conjecture, or whether similar ideas could
also lead to proofs of the Second and Third Borwein Conjecture, or of the new Conjecture 3.1.3.
Admittedly, since the proof in [Wan22] relied on Andrews’ sum representations for the decom-
position polynomials A, (q), Bn(q), Cr(q) in an essential way, at the time it did not seem very
realistic to expect that, with these ideas, one could go beyond the First Borwein Conjecture.
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In the meantime, however, we realised that, instead of relying on Andrews’ sum representations
for the decomposition polynomials, the saddle point approximation idea could be directly applied
to P,(q) and its powers, and, when doing this, surprisingly the quantities that have to be
approximated are very similar to those that were at stake in [Wan22] (compare, for instance, the
sum over m at the beginning of the proof of Proposition 11.1 in [Wan22] with (3.50) below, or
[Wan22, Lemma B.3] and Lemma 3.A.10). There is a price to pay though: while in [Wan22]
the (dominant) saddle points were located on the real axis, with this new approach we have to
deal with (dominant) saddle points located at complex points. This makes the estimations that
have to be performed more delicate.> On the positive side, it allows one to proceed in a more
streamlined fashion — for example, here we do not have to deal with several different kinds
of peaks along the integration contour, as opposed to [Wan22] where an unbounded number of
peaks of two different kinds had to be considered; here we encounter only two peaks that are
(complex) conjugate to each other. Most importantly, it allows us to provide a uniform proof of
the First and Second Borwein Conjecture, as well as a partial proof of the cubic conjecture, and
altogether this is not longer than the proof of “just” the First Borwein Conjecture in [Wan22].

In the next section, we provide an outline of our proof of Conjectures 3.1.1 and 3.1.2, and of
“two thirds” of Conjecture 3.1.3. Very roughly, the approach that we put forward consists of the
following steps:

1. show that the conjectures hold for the “first few” and the “last few” coefficients (see Part A
in Section 3.2);

2. represent the coefficients by a contour integral (see Part B in Section 3.2);

3. divide the contour into two parts, the “peak part” (the part close to the dominant saddle
points of the integrand) and the remaining part, the “tail part” (see Part C in Section 3.2);

4. for “large” n (where “large” is made precise), bound the error made by approximating the
“peak part” by a GauBian integral (the “peak error”) (see Part D in Section 3.2);

5. for “large” n, bound the error contributed by the “tail part” (the “tail error”) (see Part D in
Section 3.2);

6. verify the conjectures for “small” n (see Part E in Section 3.2);
7. put everything together to complete the proofs (see Part E in Section 3.2).

The details are then filled in in the subsequent sections. More precisely, in Section 3.3 we
explain how prior results of Andrews, of Kane, and of Borwein, Borwein and Garvan confirm
the conjectures for the “first few” and the “last few” coefficients. Section 3.4 prepares some
notation and preliminary material on log-derivatives of the “Borwein polynomial” P,,(q) that
is used ubiquitously in the subsequent sections. In Section 3.5, we make our choice of contour
for the integral representation precise: it is a circle whose radius satisfies an equation, namely
(3.19), that approximates the actual saddle point equation. Lemma 3.5.1 presents fundamental
properties that this choice satisfies. In Section 3.6, we make precise how we divide the contour
into the “peak part” and the “tail part”. Lemma 3.6.1 in that section presents first properties of
this cutoff, to be used in the later parts of the paper. The fundamental inequality that is derived
from this subdivision of the integral contour is the subject of Section 3.7. Namely, Lemma 3.7.1

There is in fact a further subtlety not present in [Wan22] that makes the task of carrying through this new approach
more difficult, see Footnotes 3 and 7.
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provides a qualitative upper bound for the resulting approximation of the coefficients of Pg (q),
with 0 € {1,2,3}, in terms of a peak error term and a tail error term. How to bound the
peak error efficiently from above is shown in Section 3.8. This section contains in particular a
fundamental result on the approximation of a (complex) function by a GauBian integral that may
be of independent interest for other applications; see Lemma 3.8.1. Subsequently, Section 3.9 is
devoted to bound the tail error from above. Finally, in Section 3.10 we put everything together
and complete the proofs of Conjectures 3.1.1 and 3.1.2, and of “two thirds” of Conjecture 3.1.3.

Without any doubt, several of the arguments that we need are quite technical. In the interest of
not losing pace (too much) while guiding the reader through our proofs, we have “outsourced”
some of the auxiliary results and have collected them in an appendix.

It must be emphasised though that a certain “level of technicality” is unavoidable since the
approximations that we are carrying out here go with an intrinsic subtlety (already present
in [Wan22]) that is absent in most applications of the saddle point approximation technique: our
goal is to show that the coefficients of ¢ in the “Borwein polynomial” P, (q) (respectively in its
powers) obey a certain sign pattern, with m running through a range that includes the asymptotic
orders O(n®), where 1 < w < 2. Consequently, our estimations must hold for that entire range,
which makes it necessary to manage expressions that contain the radius r of our contour that
is solution of the approximate saddle point equation (3.19) without further specification of its
asymptotic order, as for example in the definition of the cutoff in (3.25). The “best” that we can
say about r is its range as given in Lemma 3.5.1 (which again — necessarily — covers several
different asymptotic orders in terms of n at logarithmic scale).

The last section, Section 3.11, is devoted to a discussion of our approach and further applications.
We start by explaining what is missing for the completion of the proof of Conjecture 3.1.3.
We discuss the applicability of our methods for proving the Third Borwein Conjecture (see
Conjecture 3.11.1), a conjecture of Ismail, Kim and Stanton vastly generalising the First Borwein
Conjecture (see Conjecture 3.11.2), or related or similar conjectures, including some new ones
that we present in this last section (in particular Conjectures 3.11.3 and 3.11.4). We also point
out that the Bressoud Conjecture might as well be amenable to the ideas developed in this paper.
Finally, we contemplate on the question whether the Borwein Conjecture(s) should be considered
as combinatorial or analytic, a question which is evidently raised by our proof(s) (and other
observations).

3.2 An outline of the proof

Here, we provide a brief outline of our proof of Conjectures 3.1.1 and 3.1.2, and of a part of
Conjecture 3.1.3. From here on, we use the standard notation for ¢-shifted factorials,

(@) =(1-a)1l—aq) (1 —ag""), forn > 1,
a;q)o = 1.

If |¢| < 1, or in the sense of formal power series in ¢, this definition also makes sense for n = co.
Using this notation, the “Borwein polynomial” can be written as

(¢ 9)3n

Po(q) = (@)
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Furthermore, in the following we shall write [¢"] P(q) for the coefficient of ¢™ in the polyno-
mial P(q).

Our goal is to show that the sign pattern of the coefficients
[¢™P(q), m=0,1,2,...,

is+——+——+——---,wheredis 1,2, or 3.

Our proof is composed of several parts.

A. THE CONJECTURES HOLD FOR THE “FIRST” 3n + 1 COEFFICIENTS AND THE “LAST” 3n+1
COEFFICIENTS. We observe that the first few coefficients of P (q) and P2 (q), with § € {1,2,3},
are identical. More precisely, we have

[q"1P)(q) = [¢™]P(q) (3.3)

for 0 < m < 3nand ¢ € {1,2,3} (actually for all integers ¢). By a result of Andrews [And95]
this implies the sign pattern of the first 3n + 1 coefficients of P,(q) as predicted by Conjec-
ture 3.1.1. Similarly, by a result of Kane [Kan04], this implies the sign pattern of the first 3n + 1
coefficients of P2(q) as predicted by Conjecture 3.1.2. By using a result of Borwein, Borwein
and Garvan [BBG94], this also implies the sign pattern of the first 3n + 1 coefficients of P3(q)
as predicted by Conjecture 3.1.3. See Section 3.3 for the details.

Combining the above observation with the fact that P,,(q), and hence P2 (q) for all 4, is palin-
dromic, it remains to show that the coefficients of ¢™ in P2(q) for 3n < m < (ddeg P,,)/2
follow the sign pattern predicted by Conjectures 3.1.1-3.1.3.

B. CONTOUR INTEGRAL REPRESENTATION OF THE COEFFICIENTS OF P?(q). From now on,
for convenience, we shall often use Q,,(q) to denote P?(q), where ¢ is 1, 2, or 3.

Using Cauchy’s integral formula, the coefficient [¢"]@,,(¢) can be represented as the integral

1 dq
i L Qn(q) S

where I' is any contour about 0 with winding number 1. We will choose I as a circle centred at 0
with radius 7 for some r € R™, so that the integral becomes

Tfm m

[¢"]Qn(q) = P Qn (rew) e qp. (3.4)

—T

C. THE SADDLE POINT APPROXIMATION. The exact choice of r is related to the saddle points
of ¢ — |¢7™Qn(g)|, and we will elaborate on this in Section 3.5. The appropriate choice for r is
a value smaller than 1 but close to 1, see Lemma 3.5.1.

Figure 3.1 illustrates the typical behaviour of § — |P, (rew) | on the circle {z € C: |z| = r}. In
particular, we can observe the following general features in the graph:
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10*

10°

10?

10°

0 — T

T 27
3 3

FIGURE 3.1: Modulus of Pg;(0.95¢'?). The vertical axis has logarithmic scale.

+ the function has two peaks close to § = 27/3 and § = —27/3;

* the function values outside small neighbourhoods of # = 27/3 and § = —27/3 are very
small compared to the peak value.

Based on these heuristics, we choose a cutoff 6 (to be determined in (3.25) in Section 3.6), and
distinguish the following parts of the interval [—m, 7]:

* The peak part Inea := [—271/3 — 0o, —27/3 + Op] U [27/3 — Oy, 27/3 + 6p].
* The tail part Iy := [—7, 7]\ Ipeak-

Naturally, the integral (3.4) can be divided into two subintegrals corresponding to the two parts
above.

We make the following observations concerning the subintegrals:

e The subintegral § Loeat Qn (reie) e~ 4 can be approximated by a GauBian integral. More
specifically, if we define

2

0 A
90, (r) = —Re — log @ (re™)

5 : (35)

0=2m/3

then we have

271'/3-‘1-00 ) . ) 00 . )
J On (rezH)e—sz do = 6—27rmz/3 Qn(rez(9+27r/3) )e—zmé do
27/3—60 —bo

3The actual locations of the peaks have arguments slightly off @ = +2 /3. This is one of the delicate points of the
estimations to be performed.
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0,
~ 6_2Wmi/3Qn(T€2ﬂ—i/3)J 0 e 9Qn (r)02/2 do

—0p
—27mi/3 2mi/3 Var 00~/ 9Q.. (1)
e Qn(re®™/3) R0 erf ( 7 . (3.6

“ LR

Here, means “approximated by”. Since @,,(¢) is a polynomial with real coefficients, we
have Q,(2) = @, (z). Therefore, an analogous approximation holds for the other interval of
Ineak, that is, for the integral over § in [—27/3 — 6y, —27/3 + 6p]. The error made by these
approximations is captured by the term €g ¢, (m, ) defined below.

o The subintegral over I, can be bounded above by

Qn rez@)

Qure)em a0 < [Qutr )| |
I

tail

1 tail

The error of this approximation is captured by the term €; ¢, () defined below.

D. BOUNDING THE ERRORS. Our next step is to estimate the error in the approximation (3.6) of
the peak part, and to bound the tail part (3.7) of the integral. Accordingly, we define the error
terms €g g, (m, ) and €; g, (). Both are relative errors, namely relative to the modulus of the
(presumably, at this point) dominating part

- V2r 0o/ 9Q,, (1)
re2mi/3 er
1@ ) 9Q.. () ! ( V2 )

(cf. (3.6)). Namely, we define

€0,Qn (M, 1)
\/m JG() M —iml _ —go, (r)02%/2
\/ﬂerf an(r)/Q) Qn(re2mif3) € € df| (3.8)
and
€1,0.(r) i= 99, (7) f Qnlre”) | o (3.9)
Lo o et (Bon/9,. (7)/2) J1 | Qu(re2mirz) | .

In Lemma 3.7.1 in Section 3.7, we show that, with these error terms, the coefficient of ¢
Qn(q) can be approximated by

rm\/m 1 m — 9c0s (ar L N -
T Oo/ro 71/ [t 1Qnla) = 2005 (arg @u (™) — 2m3)

< €,0,(m,7) +€1,0,(r). (3.10)

Therefore, there are two things to accomplish, the second required by the first:



64 Chapter 3. An asymptotic approach to Borwein-type sign pattern theorems

1. Show that the error terms € ¢, (m, ) and €; ¢, () are small enough to satisfy the inequal-

ity
€0,0,(m,r) + €10, (r) < ‘2 cos (arg Qn(re?™3) — 2m7r/3)‘ . (3.11)
2. Get a control on arg (), (re%i/ 3) and show that it is less than %’T — 5 = § in absolute
value.

Both together allow us to conclude that [¢"]@, (¢) has the same sign as the cosine term on the
right-hand side of (3.11), that is, it is positive if m = 0 (mod 3) and negative otherwise, exactly
as predicted by Conjectures 3.1.1-3.1.3.

The peak error € ,, (m, ) is estimated in Section 3.8 (see Lemma 3.8.3), and Section 3.9 treats
the tail error €; ¢, (1) (see Lemma 3.9.4).

E. CONCLUDING THE PROOF. As explained in the preceding Part D, the tasks formulated in
Items (1) and (2) above must be accomplished. Task (2) is taken care of in Lemma 3.10.1. By
combining this with the obtained bounds on € ¢, (m, ) and €; g, (r), Task (1) is carried out in
the remaining parts of Section 3.10 for “large” n. In combination with suitable direct calculations
for “small” n, this leads to full proofs of the First and Second Borwein Conjecture, and to a
partial proof of the Cubic Borwein Conjecture, see Theorems 3.10.2, 3.10.3 and 3.10.4.

3.3 The infinite cases

In this section, we show that the first 3n + 1 coefficients of PJ(q), where 4 is 1, 2, or 3, follow
the sign pattern + — — + — — + — — - - -, by using the simple fact, observed before in (3.3), that
they agree with the corresponding coefficients of P2 (q), and by exploiting known properties of
the expansions of P2 (q).

Andrews [And95, Egs. (4.2)—(4.4)] showed that

27)

(@ De (@240, — 4 P P ) — AP TP w
Poo( ) - 3. 3 - 3. 43 '
(@ ¢%) (4% ¢%)0

Clearly, this implies that the sign pattern of the coefficients of P (q) is +— — + — — 4+ ——---.*
Using the circle method, Kane [Kan04] established the sign pattern + — — + — — + — — - - -
for the power series (¢; ¢)% /(q%; ¢®) o0, except for the coefficient of ¢° which is equal to 1. A
multiplication with the series (¢%; ¢%);! (which has positive coefficients) transforms this power
series into P2 (q), and in the process removes the mentioned outlier.

Finally, it follows from results of Borwein, Borwein and Garvan [BBG94] that

q7; 47 )oo

m,neZ m,neZ

*We point out that this sign pattern of the coefficients of P (q) also follows from a general result of An-
drews [And95, Theorem 2.1] that, according to [And95], has also been independently obtained by Garvan and
P. Borwein.
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where, as usual, Z denotes the set of integers. To be precise, from Items (ii) and (iii) of Lemma 2.1
in [BBG94], one can derive the equation b(q) = a(q®) — c(¢*). Proposition 2.2 in [BBG94]
shows that b(q) equals the left-hand side in (3.12), while the definitions of a(q®) and b(g%)
from [BBG94] are as stated on the right-hand side of (3.12). As before, multiplication of both
sides of (3.12) by (¢%; ¢®);2, which is a power series with non-negative coefficients, shows that
the coefficients of P3(q) follow the sign pattern + — — + — — 4+ — —-.°

It should be noted however that (3.12) also implies that the coefficients of ¢>"*2 in P3 (q) are
zero for all m. This observation, and its implications, will be discussed in more detail in Item (1)
of Section 3.11.

3.4 The log-derivatives of the “Borwein polynomial” P,(q)
In this section, we present some basic facts on derivatives of log P, (re?’) with respect to 6.
These will be used ubiquitously in the subsequent sections.

By routine calculation, we see that the j-th derivative of log P, (r¢'), “centred” at § = 27/3,
can be expressed as

(;;)J log Py (re') = %Z’jUj(n, rei(e_zw/g)) + \23 'j_l‘/j(n,rei(e_%/?’)), (3.13)
where
Uj(n,z) i= i ((Sk — 2 (z3%2) + (3% — 1)J‘uj(z3k—1)) : (3.14)
k=1
Vi(n, z) i= i ((3k; — 2)Tu; (34 2) — (3k — 1)J‘vj(z3’f—1)) : (3.15)
k=1
and the rational functions u; and v; are given by
uj(z) == <zjz>j_1 12(4-1:—322')2’ (3.16)
v;(z) = <ij>]~1 ﬁ (3.17)

In particular, the first few of these functions are given by

z(1+2z)
=TT
z
wle) =
2(1 + 4z + 2?)
W) = e

>We point out that this sign pattern of the coefficients of P2 (g) also follows from a general result of Schlosser and
Zhou [SZ21, Theorem 6].
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2(1 — 22)
v?) = T
2(1—22)(1+ 7z + 22
U3(Z) = ( )( 23 )7
(14 2+ 22)
2(1—2—622—23 4+ 24
’1)3(2) = ( 2\3 )7
(1+2z+22)
2(1 4 122 — 1222 — 5623 — 1224 4+ 1225 + 26)
ua(z) = 24 ’
(14 2+ 22)
2(1 — 22)(1 — 4z — 2122 — 423 + 24
n(z) = 2= 2 )
(1+ 2+ 22)
We also define the sums
3n 3n. n )
Xj(n,r) = Y Kk = Y Bk =37 N kI (r)F, (3.18)
k=1 k=1 k=1
3tk
and denote the corresponding infinite sum by X;(oo,r). It is easy to see that

(1 — 73)7*1X(n,r) is a polynomial in n, r and 7". Furthermore, X;(n,r) is increasing
with respect to both n and 7. A collection of inequalities between various products of these sums
is given in Lemma 3.A.7. These inequalities are used in the estimations in Section 3.8.

3.5 Locating the dominant (approximate) saddle points

The results of Section 3.3, and the fact that the polynomial P,,(q) is palindromic for all n, together
show that it suffices to consider [¢"™]Qx(q) for m € [3n, (deg @Q,)/2], where Q,, is chosen as
PJ(q) for § € {1,2,3}, as before. The purpose of this section is to describe our choice of the
radius r in (3.4).

Ideally, in line with standard practice in analytic combinatorics, the radius r in the integral in (3.4)
should be chosen such that the circle 6 — re'?, —7 < < m, passes through the dominant saddle
point(s)® of the function q — |¢~™Qx,(q)|. If Q,(q) has non-negative coefficients, according
to Pringsheim’s theorem, the dominant saddle point is located on the positive real axis, and the
problem is equivalent to the minimisation of the quantity Q) ().

In our case however, the dominant saddle points are located near the complex third roots of unity
instead of on the positive real axis. In analogy to the process above, we choose the radius 7 so
that the quantity r—™ ‘Qn(re%”/ 3)] is minimised. By taking a log-derivative, and substituting

SHere, “dominant saddle point(s)”” means “the saddle point(s) with largest modulus of the integrand”. We shall
sometimes also abuse terminology and speak of “‘dominant peaks”.
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Qn = P’(q), we obtain an equation in terms of r:’

d omi/3y\ _ M
r Re (drloan(re )) =5 (3.19)

It must be emphasised that the solution r of this equation (it will indeed be shown in Lemma 3.5.1
below that there is a unique solution) depends on n and m (and § of course). We will however
most of the time suppress this dependency in the interest of better readability. Only occasionally,
when we think that this is necessary, we will add an index that indicates the dependency (as for
example in Lemmas 3.5.1 and 3.8.3, or in the proofs of Theorems 3.10.2, 3.10.3 and 3.10.4).

It turns out that, under the above restriction on m, the minimiser radius r approaches 1 as n — 0.
These observations are proved in the following lemma. They are crucial in our estimations of the
error terms €; ,,, ¢ = 0, 1.

Lemma 3.5.1 For all integers n = 1 and m € (0,0 deg P,,), with 0 € {1, 2, 3}, the approximate
saddle point equation (3.19) has a unique solution v = ry, , € R*. Moreover, if 3n < m <
(0 deg P,,)/2, then we have ry < r < 1, where

ro = e~ V/40/2Tn. (3.20)

Furthermore, as a function in m, the solution r = ry, , to (3.19) is increasing.
Proof: We infer from (3.13) that the left-hand side of (3.19) can be written as

d » 1 3n
——log Pa(re®™?) ) = = g 21
r Re (dr og P, (re )) Qk_lktul(r ), (3.21)

3tk

where u; (7) = z(1 + 22)/(1 + = + 22) is defined as in Section 3.4.

Therefore, Equation (3.19) is equivalent to

3n om
D kua(rt) = = (3.22)
k=1
3tk
Note that )
1+4r+r
/

so uj is increasing. Moreover, we have the special values

u1(0) =0, (1) =1, lim wu(r) = 2. (3.24)

r—+00

"The reader must be warned: this is not the saddle point equation! The saddle point equation is qd%Pn (q) =m/o,
as an equation for complex ¢. It will have two solutions with arguments close to +2/3, but not exactly +27/3.
Equation (3.19) is a “saddle point-like equation”, in which the argument of the solution is “frozen” to 27/3. In our
analysis, it mimics the role of a saddle point equation, but is in fact “just” an “approximate” saddle point equation. We
made this deliberate choice since we deemed it unfeasible to carry through the programme of approximations without
having a firm control on the arguments of the (approximate or not) saddle points. As it turns out, this is nevertheless
good enough for performing our estimations.
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Along with the fact that

3n
deg Py = >k,
k=1
34k
these special values imply that the sum

3n

D ku (r¥) /2

k=1

3tk

tends to 0, (deg P,,)/2, and deg P, when r — 0,1, 400, respectively. The existence and
uniqueness of solution, as well as the upper bound r < 1, follow from the intermediate value
theorem.

It remains to prove the lower bound on r. Since u; is increasing, it suffices to show that
3n
6n
Z kuy (r8) < 5
k=1
3tk

Equation (3.88) in Lemma 3.A.1 implies that

kul(rg) < — krlg < — k:rlg
V3 V3
k=1 k=1 k=1
3tk 3tk 3tk
2 ro(1+2r0 + 2r8 +1g)

V3 (1 —r)?

where the last inequality used the fact that the maximum of the function

8 6
< 5(—10g7"0)_2 = Fn’

2r(1 + 2r + 2r® + rt)(—logr)?

V3(1 —1r3)2
on [0, 1] is approximately 0.881906 < 8/9.

r—

For the additional assertion at the end of the lemma, we recall from (3.23) that u; (r) is increasing
in 7. Therefore, by (3.22), if m is increasing, so must be r. o

3.6 The choice of cutoff

Our choice of the cutoff 6y announced in Part C of Section 3.2 is

1—73
90 = 00m7 (325)

where the constant 'y is chosen as %.
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We give some immediate consequences of (3.20) and (3.25), to be used in the following two
sections.

Lemma 3.6.1 With Z" denoting the set of positive integers, suppose thatn € Z*+, § € {1,2, 3},
t = 0, and ry and 0y are defined as in (3.20) and (3.25), respectively. Then the following results
hold for r € (ro, 1] and 0 € [—t0y, tOo]:

1. For n = 4, we have

1-— 7“8
T 7“8’” < —3logry, (3.26)

and consequently

2(1 + 3t00)

< (14 3tCp)(—logrp) < N

’10g rel (3.27)

2. For k € [0,3n)], the complex number r*e*® belongs to the region Ss3ic,, where S, is

defined by
4 —1

S, = {ReZG:OéRé 1and 6] < p 1fg]f} (3.28)

for p > 0.
3. Suppose |0| < tby for some t = 0. Forr € (o, 1] and £ € Z*, we have
1l
sup |logre| krF < (et + 3tCp)". (3.29)
ke[0,3n]

4. For j =0, let X;(n,r) be defined as in (3.18). Then, for n = 400 and r € (1o, 1], we have

Xo(n,r) > 0.95¢/n, (3.30)
Xi(n,r) > 1.35n, (3.3D)
Xs3(n,r) > 1612, (3.32)
Xy(n,r) > 94n°/2. (3.33)

Proof: (1) We have —logrg = 1/46/27Tn < 4/12/108 = 1/3. Next we substitute z :=
—3log g in the inequality (1 — e™%)/z < 1 — e~ /* (valid for 0 < 2 < 1) to obtain

1—1"8’ _1 31 3
———— < 1—e3Pg0 <1 -0 =1 —rg",

where the last inequality holds because 9n(log rg)? = 45/3 > 1. The inequality (3.27) follows
from

1— 3
< —logr 4ty < —logry + tC’olicgl < (1 + 3tCop)(—logry).
-7

‘log re?
0
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(2) The definition (3.25) implies that

3 1 1
ko] < ktC’o < ktCo——"7 Ogr — 3tCy Og’,; .
—rk 1—-7r

(3) We first note that

1t £ ; —2/(3n)
sup kfrk _ )eciegnyy frse ,
ke[0,3n] e/l ifr > e=t/(n),

On the other hand, we have |log Tew‘ < —logr + 0] < —logr + thy, and therefore

1/6 . . s
i l —. ifr<e /(3n)
log re? sup kir¥ < = 4 thy { e(—logr)’ )
’ g (kE[O,g’I’L] ) € 0 3”7’3”/(, lfT > 6—6/(371)’
(1—7”3) . *Z/(3n)
¢ ey, Hr<e ,
= - +3tCo n((lir%’):gfl}e ™) . —2/(3n)
¢ =y if r > e t/(3n)
l %, if r < 675/(371’),
<= +30tCo { ) L
ot 0 {W7 if > et/3n),
14 —L_ifr < et/
< - +36tCy { =)’ ’
.t 0 {1’ ifr > e /B0
14
< g + 34tCy.

(4) We first note that, for all j,n and r € [0, 1], we have

0

3 @Bn 4+ k) < R (Bnk 4+ k) = v (30 + 1)7 X (o0, 7).
k=1
3tk

8

Xj(00,7) = Xj(n,r) =

o
=
I,

Thus, A
Xj(n,r) > X;(00,7) (1 — (3n + 1)77%") .

The only place where § figures in the inequalities (3.30)—(3.33) is in ry, which, in its turn,
determines the range for 7, namely the interval (¢, 1]. This interval is largest for § = 3. Clearly,

it suffices to consider that case. Hence, from here on we assume that § = 3 and correspondingly
rg = 6_2/(3\/’5).

By the above considerations, we have
Xj(n,r) > X;(n,r0) > X;(o0,10) (1 — (3n+ 1)jT8”)
— X; (00, 70) (1 — (3n+ 1)je*2ﬁ)

> (=3logro) 7 (X;(o0,m0) (1 = 1)*Y) (1= (3n + 1))
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> n(j+1)/22—j—1 (Xj(OO,?“())(l _ r%)j-ﬁ-l) <1 o (3n + 1)je—2\/ﬁ> )

Since X (00, 70)(1 — r3)7 "1 is a polynomial in 7 with non-negative coefficients (and therefore
increasing With respect to n) and (3n + 1)/ e 2V s evidently decreasing with respect to n
whenever n > 52, the inequalities (3.30)—(3.33) follow from evaluating the factor

297 (06 )1 = ) (1= 3+ 1))

atn =400and 5 = 0,1, 3,4. o

3.7 The fundamental error inequality

In this section we prove the fundamental inequality, claimed in (3.10), that provides an upper
bound for the approximation of the coefficient of ¢ in Q,,(q) = P°(q), where 6 € {1,2,3}, in
terms of the error terms € ,, (m, r) and €1 ,, () defined in (3.8) and (3.9).

Lemma 3.7.1 With the notations from Section 3.2, we have

/2790, () 1

erf (90 9O (7“)/2) |Qn(7“627ri/3)|

[¢"]Qn(q) — 2 cos (arg Qn(re®™3) — 2m7r/3>

< €,Q,(m,7) +e1,(r). (3.34)

Proof: Denoting the argument of Q,, (re?™" 3) temporarily by -, from the integral representa-
tion (3.4) of the coefficient of ¢ in ,,(¢) and the division of the integration interval [—, 7]
into Ipeax and Iyj (see Part C in Section 3.2), we obtain

—im@ do

—-m 27 /346 0 27 /346 0
:ei’Yr2 (J /3+60 Q”(Te ))eim9d9+f /3+00 Q”(Te ) fimeda
Y5
Tiail Q"(Te%n/g

1
W[ "1@n(a) f Qnl ezm/g
21 /3—0y Qn(re2mi/3 om/3-6, Qn(re2mif3)
i0
+ Me—iﬂw do
)
r_m<em—2mm/3 Qn (re 9+2”/3))6_im0d9
0o

2 Qn(re2mi/3)
i(0—27/3 0
+€i'y+2m7ri/3—2i7 ° Qn ( : / )) e—imG do + et n (7“6 i )7e—im9 do |,
—0o Qn(re” 7rz/3) Tait @n (TGQM/S)

where we used the earlier observed fact that Q,,(z) = Q,(2) twice to obtain the last line. Using
this relation and the definitions (3.8) and (3.9) of the error terms, we are led to the following
estimation:

r"\/27g0, (T) 1 [

erf (Bo~/9q., (1)/2) |Qn(re*™?)|

q"1Qn(q)
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9
V90, (r) (ei('nymﬂ/?y) +ei(72mﬂ/3))fo o= 90n (1022 g

V2rerf (0\/9q, (r)/2) 0,
6 i(0+27/3
V9. (r) f O [ Qn (re" - / ))e*ime ~ o9, (M82 ) 49
S |\ Van erf (0or/90, (1)/2) J-g, \  Qn(re?™/3)
\V/ an( ) J‘OO QTL (rei(072ﬂ—/3)) 677:7?’7/9 _ engn (T)92/2 da
\/27r erf (QQW) 9o Qn(re?™i/3)
V9. (r) Qn (re ) g 4

\% 27T erf 90 an( )/2) Itail Qn(reQﬂ'i/?))
< €0, (m,7) + €1,Q, ().

By the definition of the Gaul error function, this turns out to be equivalent to (3.34). o

3.8 Bounding the peak error

The goal of the section is to provide a bound for the peak error term € ,, (M, 1) = €q ps (M, 7)
(cf. (3.8)). We will derive it from a general bound on relative errors for the approximation of a
(complex) function by a GauBian, given in Lemma 3.8.1 below. To serve our purpose, we must
apply this lemma to the function in (3.49). In order to be able to do this, we have to first provide
bounds for the various constants, defined by the derivatives of the function, that appear in the
lemma. This is done in Lemma 3.8.2. After these preparations, our bound for € ,, (m, ) is
presented, and proved, in Lemma 3.8.3.

Here is the announced general result about bounding relative errors of the approximation of a
(complex) function by a GauBlian from above.

Lemma 3.8.1 Suppose that vg > 0 and f € C*([—z0,20];C) with f(0) = 0. We define
fe := f5)(0) for k = 1,2 as well as

1
fyi=3 fo (1= 1) sup |f® ()| dt

|z|<tzo
and .
frima| =0 swp /9] at
0 |z|<tzo
and we write g = — Re fa for simplicity.
Suppose further that f1 € R, g > 0, that puz := mgg?’ e (0,1), and that

J
Ly 1= \/@4 € (0,1). Then we have

o
‘4 /;TJ (ef(w) - e_gx2/2> dx| < erf ( \/g> cosh(fizo)
—zo

" <\Imf2’ + fi n 4f351(us) N JaB3(p14) N 4 f1f3B2(u3) N V2 f1 faBa(pa)
29 Iy/mg? 3Vmg? 3y/mg? 3,/mg/2

> . (3.35)
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where the functions 3;, © = 1,2, 3,4, are as defined in Lemma 3.A.3.
Proof: Let Ro(z) = f(x) — fix — fox?/2 be the second order Taylor remainder term of f(z) at
x =0, and let R.(z) = (Ra2(z) + Ra(—x))/2. Taylor’s theorem (with the remainder in integral

form) implies that
|Ra(2)] < %]m\d and |Re(x)| < %]w\‘l. (3.36)

We split the function e/(*) — e=97°/2 a5 follows:
S @) _ g—er?/2 _ e—gx2/2(ef1x+i1mf2x2/2 1)
+ cosh(flx)emz/2 (eRQ(m) - 1)
+ Sinh(j‘"lcz:)efwz/2 (eRQ(I) — 1) :
Subsequently, we consider the integral of each term over [—xq, x¢].

The integral of the first term is controlled by
)
’J e—gl‘2/2 (€f1x+ilmf2x2/2 _ 1)‘ dﬂj
—20

fﬂﬂo efgx2/2(eflx+ilmf2x2/2 + eff1x+i1mf2x2/2 o 2)‘ dr
0

< Jﬂ?o e 97%/2 <‘ (ef”” + e_flx) (e”meQ/Q - 1)’ + ’eflx 4+ e hiz _ 2D dx
0
T0 ) ZE2

< J eI/ <2 cosh(fizo)| Im f2|? + cosh(flxo)ffx2> dx
0

zo
= cosh(f1zo) (| Im fo| + f12) f 2267972 g
0

_ cosh(fizo)(|Im fo| + flz)\/?erf (1:0\/5) '
g 29 2

For the second term, we utilise (3.107), (3.36), (3.102) (with u = g/2 and v = f3/6), and (3.104)
(with u = g/2 and v = f,/24) to conclude that

o
U cosh(flsc)ef”z/2 <6R2("”) - ) dx

—x0

o
J Cosh(flac)efwz/2 (eRz(m) + ef2(=2) _ 2) dx
0

< cosh(fizo) on

0

0 3 4
< QCOSh(flafo)f e 977/ (cosh (fg]a:|) — 1+ sinh (f4|$| )) dx
0 6 24
)

< 2 cosh(frao) erf (ch\/@ <8\/§£))J;g%’g€/1§u3) . 4@225535”4 >

e—97°/2 ‘eRQ(w) 4 efa(=2) _ 2‘ dx
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For the third term, we utilise (3.106), (3.103) (with u = ¢g/2 and v = f3/6), and (3.105) (with
u = g/2and v = f;/24) to conclude that

e
f sinh(flx)€f2x2/2 (eRz(z) - 1) dx

—T0

o
| sin et (o) — ey g
0

dx

z0
< j Sinh(flx)e_ng/z ‘GRQ(CE) _ eRz(—I)
0

T0 3 4
<2f1 cosh(fla:o)f ze=9%°/2 (sinh <fg|633|) + sinh (f422| >> dx
0

< 2fy cosh(fizo) erf <9;0\/g) (4\@5;522(%) N 8f2i2(£4)> _

Combining the above bounds, we get

[ 9" (f@ _ om0m22) gal < 9
‘ o J_mo (e e )dm < cosh(fizg) erf | o 5

" (|Im fol + f1 N 4f351(us) N f1B3(p4) N 4 f1f3B2(p3) N \/§f1f4ﬁ4(u4)>
29 9y/mg? 3y/mg? 3y/mg? 3ymg®2 )’

which is exactly the assertion of the lemma. o

As announced at the beginning of this section., our plan is to apply Lemma 3.8.1 to the function

e—imz Qn (rei(a:+27r/3) )
Qn(re2mi/3)

in order to get bounds on € ¢, (m, 7). (The reader is reminded from Part B of the proof outline
in Section 3.2 that Q,,(q) = P?(q) with P,(q) the “Borwein polynomial” from (3.1).) This
application however requires upper and lower bounds for the various constants in Lemma 3.8.1,
which we give next.

Lemma 3.8.2 Suppose that n = 400, m € [3n, (d deg P,,)/2], and r is the unique solution of
the approximate saddle point equation (3.19) determined by n and m. Let

x +— log

f0):=4 <log P, (re'"t27/3)) _og P, (re?™/?) — imﬂ) ,

and let the constants f;, j = 1,2, 3,4, be defined as in Lemma 3.8.1 with the bound 0y chosen as
in (3.25). Then we have the following inequalities for the constants f;:

7
fi < 359 Xo(n, 7). (3.37)

1 3
géXg(n, r) < —Refa < 55X2(n, ), (3.38)

1
|Imf2| < g(SXl(TL, 7"), (339)
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f3 < §(5X3(n, 7“), (3.40)
f4 < %(5)(4(71,7’), (3.41)

with the quantities X ;(n,r) defined in (3.18).
Proof: Since all four constants are linear in f and therefore proportional to J, we assume § = 1
in subsequent arguments without loss of generality.

We first give expressions respectively preliminary upper bounds on these constants. For f;, we
have

fl _ <d log Pn(rei(‘%%/g)))

—m
do 00
= Re i log Pn(rei(9+2”/3)) +iRe Ti log Pn(rei@”/?’)) —im
do 0—0 dr
= \fVl(n, r), (3.42)

where we used (3.13) with 5 = 1 and the approximate saddle point equation (3.19) to get the last
line. Still using (3.13), we have

1 V/3i
f2 = —§U2(7”L,’l“) + T‘/Z(na T)v (343)
! 1 . 3 .
fs < 3f (1—)% sup ( Us(n, re™)| + V3 \%.(n,re”)\) , (3.44)
0 0] <t0o \2 2
! 1 : 3 :
fa < 4f (1—1t)* sup ( ‘U4(n, rele)’ + £ ‘W(n,r@ZG)D . (3.45)
0 16|<tbo \ 2 2

Therefore the problem is reduced to proving upper and lower bounds for U; and V.

UPPER AND LOWER BOUNDS FOR Us(n,r). The quantities U; are comparable to the corre-
sponding X ;; indeed, by comparing (3.14) and (3.18) and using (3.88), we immediately obtain

2 6

§X2(nvr) < UQ(TL,?") < 5X2(7’L, 7"),
which translates into 1 3

§X2(n>r) < - Re f2 < gXQ(TL,?"),
establishing (3.38).

UPPER BOUNDS FOR U3(n, ) AND Uy(n, ). Upper bounds for Us and Uy can also be obtained
by the same comparison. In fact, for arbitrary j we have

uj (Tk eik@)
Sup 1k giko

|0]<tbo

Uj(n,rew)‘ < Xj(n,r) sup sup
16| <t00 0<k<3n

u;(z)

< Xj(n,r) sup
2

zeS;gtcO

)
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where S, is defined in (3.28).
Remembering from (3.25) that Cy = 10/81, we use Lemma 3.A.1(2) to conclude that

! 2 if ! 2 us(2)
3| (1—1t)° sup |Us(n,re”)| <3Xsz(n,r) | (1—1t)° sup
0 |6]<tbo 0 z€S3tc Z
1
< | = sup U3(z)‘ + T sup U37(Z) Xs(n,r)
8 2€83¢, < 8 2€8530, /2 <

1 7
< <8 x 1.44 + 3 x 1.3> Xs(n,r) = 1.3175X3(n, 1),

and similarly

! 3 i0 ! 3 uy(2)
41 (1—1¢)° sup |Us(n,re”)| <4X4(n,r) | (1—1¢)° sup
0 |6]<tbo 0 z€S31c z
1 15
< | = sup ua(2) + — sup ua() Xy(n,r)
16 ZESSCO z 16 ZESBCQ/Q z

1 15
< <16 x 1.721 + 6 1.409> Xy(n,r) = 1.4285X4(n,r).

A PRELIMINARY UPPER BOUND FOR Vj(n,r). As opposed to the U;’s, the quantities V,
as alternating sums, are expected to be much smaller than X;(n,r). Indeed, let w;(k, z) :=
kiv;j(z*). Using Lemma 3.A.5 for the function w;, we see that

1 2 11n 2

v; < = Jw;(3n, 2) — w;(0 W (3n, 2) — w (0 - 4 (& ’

\Vi(n, z)| 3 lw;(3n,z) —w;(0,2)] + 3|w]( n,z) — wj(0,z)] + 96 kes[l()l,gn] w; (k, 2)
1 2 11n 4

since direct calculations reveal that w; (0, z) = wj (0, 2) = 0 forj = 1,2,3,4.

In order to treat the derivatives of the functions w;, we note that (3.13) implies that

l
<8ak:) vj(2%) = (log 2) v;1¢(2%), forl = 0. (3.47)

With this representation in mind, we proceed to give upper bounds for the right-hand side of
(3.46) for j = 1,2, 3,4, by making frequent use of inequalities from Lemma 3.A.1.

UPPER BOUND FOR Vi (n,r). By using (3.89) and subsequently (3.90), we have

_ .3 3n—1(_ n (3—1/400)n ( __ n
wi(3n,7)/3 _ 1—r r (—logr™) < 3r (—logr™) < 0.201
Xo(n,r) (—logr)(1+1) 1—r9m

2 1—r9n
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for the main term. Using (3.47) and (3.93), we get

" _ i 3n 3n 312 3n i
|w] (3n,r)| = ™ ‘2(logr Yoo (r°™) + (log 7°")“vs(r )| < o

for the second derivative. On the other hand, using (3.47) and (3.94), we have
9
|w§4)(k,r)| = |logr|? ’41}4(7”“) + (logrk)v5(7'k)’ < gl log |3

for the fourth derivative. Substitution of these bounds in (3.46) with j = 1, if combined
with (3.30) and the fact from Lemma 3.5.1 that |logr| < |logro| < 2, then yields

2 33n 3

< 0. — + —
[Vi(n,r)| <0.201X¢(n,r) + 5 T 256|logr|
11

2
27 x 0.95n3/2 - 288 x 0.95n

< <0.201 + ) Xo(n,r) < 0.202Xo(n, 7).

UPPER BOUND FOR Vj(n, ). Similarly to above, using (3.108) in Lemma 3.A.7, and subse-
quently (3.91) and (3.92), we obtain

wa(3n,71)/3 - 3(1 —r3)2 P31 (1 — r67) (— log r™)?
Xi(n,r) (14 2r +2r3 +1r4)(=logr)? (1 — r97)(1 — r31/2)(1 4 7-3n 4 y6n)
9 7,(371/400)71(1 _ 7,.611)(_ log 7’”)2

<= < 0.378
2 (1 — r9n)(1 — r31/2)(1 4 30 + r6n)

for the main term. Using (3.47) and (3.95), we get
|wh (3n,r)| = |21)2(7‘3”) + 2(log T3”)03(T3”) + (log r3”)22}4(r3")| < 0.21
for the second derivative. By (3.47) and (3.96), we infer
s, )] = Nog r[? [120(%) + 8(10g r)us (r*) + (log ) 2ui(r*) | < 3.61]log r[?

for the fourth derivative. Substitution of these bounds in (3.46) with j = 2, if combined
with (3.31) and the earlier mentioned fact that | log r| < %, then yields

Va(n,r) < 0.378X1(n,r) + 0.14 + 0.42n| log r|?
< 0.378X1(n,7) + 0.14 + 0.19 < 0.38 X1 (n, ).

UPPER BOUNDS FOR V3(n, re'?) AND Vi (n,re?). For these two quantities, instead of proving
V; = O(X;_1) as above, we prove V; = o(X;) as n — 0o. Observe that Lemma 3.6.1(2) and
(3.47) imply that for a = 0,2,4 we have

vj40(2)
L.

. a | i . .
|w§-a)(k, rew)| <rk Z al< J )kj_a+é| log 7,610|£ sup
izt \a—t 2€S3ec,
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Therefore, by (3.29) and (3.46), we get

. 1 . .
sup |Vj(n,re7’9)|< (3n)3r3" sup L(z)

0] <106 g 2€83t0cy ?
2 . 10 |4
9 ' 2 j | log re™| vj10(2)
+ Z(3n)iprin ( > -

3( ) ;} 0\2—-1) (3n)27" sesye, | 2

4 .
n o 24 ] ' atl —1 i atl U~+£(Z)

+7logrewaj ( >]—a+€3“+€ + 3tCo)? ot sup |

9 | Z;) mla=o)! F R

Here we put ¢ = 1 (thus raising the bound on the right-hand side since here 0 < t < 1).
Substitution of the upper bounds from (3.27) (with ¢ = 1) and from Lemma 3.A.1(2) leads to

sup [Va(n, rei®)| < (3n)3r% (0.34 1170t 4 1250732 ¢ 0.45n_2) +45.1/n
|9‘<90
< 0.344(3n)%r3" 4 45.14/n,

sup [Va(n, re®)] < (3n)4 (0.34 +3.04n71 +3.40n73/2 + 0.91n*2) + 11350
|9‘<90

< 0.349(3n)3r3™ + 1135n.

We now note that for j € Z* we have

X(n,r) - Xj(n,1) - 2
(3n)ir3n = (3n)i j+1

(n—1).
Hence, by also using (3.32) and (3.33), we have

supjg<g, [V3(n,re?)] 2% 0344  45.1 5

Xs(n,r) STa—1 Tl S
supjg|<g, [Va(n,re?)| _ 5x0.349 N 135 _ 3
X4('I”L,7”) 2(TL - 1) 94n3/2 n’

By combining all the bounds above and using them in (3.42)—(3.45), we obtain

V3

7
fi< 70.202X0(n,'r) < EXQ(TL,’I”),
V3

3 1
|Im fo| < 70.38X1(n, r) < gXl(n,r),

1 \/g 5 2
f - x 13175+ — x — | X - X
3 < (2 x 1.3175 5 X 6n> 3(n,r) < 3 3(n, ),

1 V3 3 18
— x 1.42 —x — | X —X
fa< <2 X 85 + 5 2n> a(n,r) < 55 a(n,r),
thereby establishing the remaining inequalities. o

We are now ready for presenting, and proving, our upper bound for the peak error term €, ps (m,7)
as defined in (3.8).
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Lemma 3.8.3 Ler n > 400 and § € {1,2,3}. Furthermore, for m € [3n,d(deg P,)/2], let
T = Tpmes be the solution of the approximate saddle point equation (3.19), and let 0y be the
cutoff as defined in (3.25). Then we have the following upper bound for the peak error term

€o,ps (M, 1):
Xi(n,r) N 7.222
X2(na74) 5X2(n,r) ’

€o,ps (m, ) < (146.25" + 6.46 + 0.1240) (3.48)

where the Xj(n,r) are as defined in (3.18) and gq, (1) is defined in (3.5). Moreover, the
right-hand side of (3.48) is decreasing with respect to r.
Proof: We apply Lemma 3.8.1 with zg = 6 to the function

fzm:vQ( zx+27r/3)>
Qn( 627rz/3)

This produces a bound for € ps (m,r) in terms of the quantities f1, fa, f3, f1,9 and 51 (u3),
Ba(us), B3(pa), Pa(pa). We now need to estimate the individual terms in (3.35) using the
inequalities in Lemma 3.8.2 and Corollary 3.A.8, and the estimates for the particular values in
Lemma 3.A.3. In order to justify the use of Lemma 3.A.3, we have to verify that u3 < 20/27
and 114 < 2/3. Indeed, using (3.38), (3.40), and the observation that, by definition, g = — Re f
and Xo(n,r) = r(1 +r)(1 —r3?)/(1 — r3), we have

x — log (3.49)

90f3 < 27’(7"-!— 1)C0X3(n, 7’) < 20

- < 6Co = —,
Hs 39 3Xo(n,r)Xa(n,r) 07 o7

where we used (3.114). Similarly, using in addition (3.41), we get

Ja — 90f4 27CgX4 7’2(7“ + 1)2 < ﬁco _ g’
100X2(n,7)Xa(n,7) 5 3

where we used (3.115). Knowing these bounds, the application of Lemma 3.8.2 and Corol-
lary 3.A.8 in order to bound the individual terms in (3.35) with our choices of function f and
xo = 0y is now straightforwardly done in the same way as the above estimations for p3 and 4.

The monotonicity with respect to 7 is proved by noticing that both X5 and X»/X are increasing
with respect to r; this is obvious for Xs, and we have

0 Xo(n,r)  Xsz(n,r)Xi(n,r) — X%(n, T)

- - =0,
or Xi(n,r) 7“X12(n, r)

where the last inequality is a consequence of the Cauchy—Schwarz inequality. o

3.9 Bounding the tails

The goal of this section is to provide a bound for the tail error term ¢; Qn( ) = €1,ps(r). By the

P, (re )

By (re2e i3y |- Phrased differently,

definition (3.9) of €; Ps( ), what we need is upper bounds for ‘
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the objective is to get good lower bounds for the quantity

Zlog _( 19)]‘3

rk€2m/3
SJ(k

Pn(reie)

Clog | nC) |
0g ‘ P, (7.627rz/3)

3n k 2k
1-2 k6
I e ¥ cos(kf) + r (3.50)
Z 147k 2k
SJ(k

in terms of 6, r, and n. Depending on the ranges of these parameters, we shall in fact establish
two different lower bounds, presented in Lemmas 3.9.2 and 3.9.3 below. Lemma 3.9.1 provides
a preliminary estimate that is used in the proof of Lemma 3.9.2. After these preparations, our
bound for €; ps(r) is stated, and proved, in Lemma 3.9.4.

In the following, we shall use two possible lower bounds for the summand in (3.50):
1. For z € [—1/3,1], we have —log(1 — ) > x. In this inequality, we replace = by
rt (1 + 2cos(k#)) to obtain

1+rk +72k

1—2rk cos(k6) + r2k - rk
1+ 7k 42k T 14k 2k

—log (1 + 2cos(k0)). (3.51)

2. For z € C with |z| < 1, we have |1 — 2*| < k|1 — z|. Use of this inequality for z = re?
implies that

1 — 2r% cos(k@) + r2*

1+ rk 4+ 2k > log(1+r*+r?*)—log(1—2r cos 0+1%)—2log k. (3.52)

—log
Lemma 3.9.1 Forr € (0,1] and 0 € R, we have

1 4 0.8
> 3 D (1 — cos 3k6) — T e (3.53)

Pn(rew)

08 P, (1”627”/3)

Proof: We use (3.51) to perform the following estimations:

Pn(rew) 3n rk 1
—log | ————=—| = — | =+ kO
o8 P, (re2mi/3) ]{; 1+ 7k 2k \2 7
3tk
3n k n 3k
T 1 r 1
= Z 1ok % (2 + cos ]<;<9> — ;1 T 3k 1 7ok (2 + 0033k9>

n 3k k
T % cos k6
:Z +r3k+r6k( ~ cos3k6) +Zl+rk+r2k’

k=1
1 & 3k—2 F3k—1 93k
22<1+T3k 2 4 p6k—14 1+T3k—1+r6k—2_1+r3k+r6k>
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k 2k
kzll—l—r +r

W

1 & 3n k k0
> Z 3% (1 — cos 3k6) + Z I oo8
k=1

where we used 1/(1 + 3% 4+ r%%) > 1/3 and the fact that the function 7*/(1 + r* 4 r2¥) is
decreasing as a function in k. We apply Lemma 3.A.9 with ¢ = 0 to the last cosine sum to
conclude that

i r* cos k6

147k 42k

1 3n rk 7,3n+1
k=1 1 —re] (=n) 2, 147k 72k 7 71 43y g0

k=1
1 o kg r3n
<‘1_m,»9’<(1—7")f0 1+rk+r2k+21+r3"+r6”>
1 1l—r 2 (= 1+ 273" r3n
T 1= re®| (—logr\/g (S—arctan V3 > +21+r3”+r6”)
< 1t . <2 <7T — arctan Ly 2r? 2r3"> + 2—r3n > .
T—re?] \V3 \3 NG T

In order to complete the proof, we determine the maximum value of the function

27 2 1+ 2s 2s

§) := —= — —= arctan + 3.54
fls) =3 B3 V3 145+ s G539
on [0, 1]. Since f'(s) = % is decreasing with respect to s, we see that the unique maxi-

mum point of f is located at the unique zero of f’(s) in [0,1], namely
so = (v/13 — 1)/6, giving a value of

f(S(]) ~ 0.7937 < 0.8. o

In order to find a closed-form lower bound for the quantity — log ’%ﬁ:%) ’ we apply Lemma 3.A.10

to the sum on the right-hand side of (3.53). In this manner, we obtain the following estimate.
3 3
Lemma 3.9.2 If0 = 2hw/3+ p="5 for some h € Z and some p € R such that | p| =5 < /3,

1—r3n

o 0.8 +r3(1+r3)(1—r”/2) 1_F
1= ret?| 6 (1—r3) 1+18p2 )"

Remark: The slightly unusual looking scaling of the deviation of # from 2hw/3 above has its
motivation in the desire of having the same scaling as in the definition of the cutoft 6; cf. (3.25)
(remember that r depends on n and m!).

Proof (Proof of Lemma 3.9.2): Lemmas 3.9.1 and 3.A.10 (with the substitutions 7 — 73, § —
360) imply the inequality

then we have

Pn(rew)
P, (re2mi/3)

—log‘

0.8
|1 — retf|

A S ) 1 0.8
~ 3113 1 + 4k tan?(360/2) |1 — reif|’

Pn(rew)

“og | ™M E )
o8 l Pn(r627rz/3>

1 n
> 3 kz_:l 3% (1 — cos 3k6) —
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where
(1 +73)(1 —r3) (1 — r™/2?)
K = .
(1—r3)2
We note that
. 30 ‘ 3p1—13 >3]p| 1—73
an —| = |[tan — > —
2 2 1—p3n 2 1—prdn

if [p] lljrgi < /3. We use this inequality to get rid of the tangent function:

1 1
1- >1-— .
\/1 + 4+ tan?(30/2) \/1 + H?l(:;’igz 2

By making use of the inequality

for0 < ¢ < 1andz > 0, and by choosing

K (1 —73)2 (1+7%) (1 — r”/Z)

_ <1,
2 (1 —p3n)2 2 (1 —r3n)

we arrive at the claimed result:
. __08 +r3(1+r3)(1—rn/2) - 1 .
11— reif| 6 (1—r3) 1+ 18p?

Note that the lower bound in Lemma 3.9.2 ceases to be effective when |1 — re| is small. For
this case, we present an alternative bound.

Lemma 3.9.3 If |1 — re®®| < L, then we have

Pn(reia)
P, (7’62“/3)

—log

P, (Tew)
P, (re2mif3)

2 _.3n
S L) =) oy
6 1—73

—log

Proof: Making reference to the sum representation (3.50), we define a cutoff

ko = min # n
0= m 31 —re? |7 )"

Note that the condition on |1 — re?| implies that ko > 1.

The part of the sum on the right-hand side of (3.50) where k < 3kj is treated by (3.52):

_1% log 1— 27k co:(k&)m:— r2k
24 1+rf+r
3k
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3ko
1
> 72 <10g(1 + % + %) —log(1 — 2rcos 6 + %) — 2log k:)
20
31k

3k)! 1
(319]314_ Zlogl—i—r + 2k,

= —kglog(1 — 2rcosf + r?) — log

3+k

Now we use the 1nequahty 3k k, < v/3(3k/e)?*, and the convexity of k +— log(1 + r* 4 r2¥),
and obtain

_?’Zko log 1 — 27k cos(k6) + r2*
1+ 7k 2k
3J(k

3ko
1
> —kolog(1 — 2rcosf + r?) — flog3 — 2ko(log(3ko) — 1) Z log(1 + 7% + %)

ka

> —kolog(1 — 2rcosf + r?) — %10g3 — 2ko(log(3ko) — 1) + ko log(1 + r3k0/2 4 p3ko)

— —2kg log(3ko|1 — 7€) + 2ko — %log?) + ko log(1 + r3ko/2 4 3koy

> 2ko — %logB + ko log(1 + r3ko/2 4 p3koy, (3.55)
where we used the definition of kg to get the last line.

For the part where k& > 3kg, we use (3.51), split the sum according to the residue classes of &k
modulo 3, and apply Lemma 3.A.9 to each subsum, to get

1 i o L= 2 cos(kt) + 72 1 rH(1+ 2 cos(k0))

o k 2k = k 2k
2k:3k0+1 14+rf+7r 2k:3k0+1 14+r*+r
3tk 3tk
1 1—73 3n rk 4 rin
> (2_ |1—7‘3e3i9|> Z L+7k + 2k |1 —p3e30) 1 4 30 4 60 (3.56)
k=3ko+1
3tk

We first observe that in the case where ky = n the estimate (3.55) provides the lower bound

(r+72)(1 —r3) B llog?, - 1(r+7r?)(1—r3")

1
on — ~log3 > -
T 1— 3 2 6  1-—19

— 5.44,

as desired.

Therefore, we assume 0 < kg < n from now on. By combining (3.55) and (3.56), we obtain
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1 Pn(rew) - 1 1—173 % rk

—log|—+4 2= — ——aas -

& P, (re2mi/3) 2 |1 — r3ed3i?) LS 1+ rk 4 2k
=3ko

3tk

4 3n 1
r Zlog3. (3.57)

3ko/2 | .3k . _
+ (2 4 log(1 4 ro"0/= 4+ r270)) kg T 3690] 13 7o 00 3

We split the right-hand side of (3.57) into several parts:

Pn(rew)

—————| =11 + I + I3 + Iy,
P (re2il3) 1t 2+ I3+ 14

—log‘

where

3n k
1 r 1
I == -+ -k
! 2211—#7“’“+7"2’“+307

k=3ko
3tk
1— 3 3n rk
Iz = 1 — r3e39] Z 1+rk 4 r2k’
k=3ko+1
3tk
Is = ko(log(1 + p3ko/2 4 r3k0) —log(1 + P2 4 1)),

4 r3n
|1 —r3e3| 1 4 37 + ron

5
I = <3 +log(1 +r3"/2 4 7“3”)> ko — —log V3.

For I; we have

& rk 13k (r +72)(1 —73")
RPN vk b DI el S e B

k=1 k=1

3k 3k

It should be noted that the right-hand side in this inequality is exactly the main term in the desired
lower bound. Consequently, what we need to prove is I + I3 + I, > —5.44.

From here on, we write z = re'? for simplicity of notation.

We first deal with /4. By utilising the inequality

3s
14+ s+ 52

1
< — 0

log(1 4+ /s +s) — S 10

A
V2)

A
\:ﬂ

37 we infer that

47 RIS 12(ko + 1) 3
Loz (et Y ko - g3
* <30+1+r3”+7«6n> 0 11+ 2+ 22| 1+ 30 4 160 0g V3

fors=r

Now we note that for 0 < ky < n we have

1 1
ko = > -1
’ Hl—zd 3|1 — 2|
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We use this in the above estimate for I, to get

4 =

47( 1 1)+3r3n(3|11z‘1)

30 \ 31—z 1+ r3n 4 ybn

12 g3
- —lo
31—z |1+ 2+ 22| 1+ r3n 4 pbn &

47 12 ron 1 47 330
Tl — Cog3_ 2t o
><0 <|1+z+z2| 3>1+r3”+r6n>3|1—z| 0g V3 30 14 ¢9n 1 0n
47 12 1 1 77
> (2 3) o) jogy3— L
<3o <|1+z+z21 >3>3|1—z| 08 V3 -
77 4 1 o
=(—=- —log /3 — <L,
(30 I +z+z2|) 31— 2| 0g /3 30

In order to bound I», we argue that

3n k 3n 2\(..3ko _ ,.3n 3ko __ ,.3n
Z 1+r7’;+r2k < Z = — i(ir?’ - < 2(r1—r§ )’
k=3ko+1 k=3ko+1
3tk 3tk
and consequently
Iy > — 2 (TSkO _ T,Sn)
R '
Writing h(z) = ﬁx —log(1 + v/ + z), we combine the above estimate for I into one
for Io + I3:
I+ 13> — 2 (T3k0 — Tgn)
11— 2%
1
+ <3|1 i 1) (log(1 + 730/ 4 p3k0) _og(1 + 132 4 p37))
—Z

- (h(r3ko) _ h(T3n)> 3|11 o (log(l + T3k0/2 + 7,3k0) _ log(l + 7,371/2 + ,r?m))

n 1
— (h(r3k°) — h(v"3 )) 31—z —log3

\%

1
> - — i A log 3.
(&%W 021;21“@) B 87

Note that the function h is convex with respect to z. Hence, the maximum of h(x) is either h(0)
or h(1). Since |1 + z + 22| < 3, we have h(1) > 2 — log3 > 0 = h(0). Therefore,

0<ral hz) = h(1) = 1+2+22]
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On the other hand, again using that |1 + 2z + 22| < 3, we have

3
min A(z) > min (22 —log(1l + vz + 7)) ~ —0.1496 > ——,

0<z<l 0<z<l1 20

which in turn implies

6 3 1
bl log3+— ) - —log3.
2113 <\1+z+z2y °8 +20> 3L—2  ®

Combining all the inequalities above, we obtain

— —log3 —

29
I+ I3+ 1> | — +1log3— —.
2T < °8 31—z 2 30

10 1 3 7

12 |1+ 2z + 22|

We write u = |1 — z|. By the assumptions of the lemma, we have u € [0, 1/3]. We claim that
|1+ 2z + 22| = 3 — 3u + u? for u € [0,1/3]. This can be proved by writing 1 — 2z = ue® for
some ¢, expressing z in terms of u and ¢, and minimising |1 + z + 22| with respect to ¢. In

addition, we point out that the function u — % + log3 — % % is decreasing with
respect to u, and therefore
29 10 1 3 77
L+I3+1y> | —-+logd— ————— | -— — slog3 — —
2T <12 °8 3—3u+u2>3u 2 %273
29 90 3 77
> —+log3—— —-log3d — —
12 %7 T g 2% T 5
1857 1
=—————log3>—-5.44
380 20 ’
as desired. o

We are now ready to provide, and prove, an explicit upper bound for the tail error term €; p(n, )
as defined in (3.9).

Lemma 3.9.4 Suppose that n € Z, and that ry is defined as in (3.20). Then, for 6 € {1,2,3}
and r € (rg, 1], we have

)< YOI [ 405(1 — r3n)
Ler) = Tsr ) 2431 = 1)
1 7“3”)1/2 g ( 0.85
x | 4 exp — 00 n,r,p) dp
( < 1—?”3 10/81 \/g— (1+3p)(— IOgTO) ( )

1— 7,371 3/2
+ 27 ( ) exp(5.440 — dp(n,r,4)) |, (3.58)

1—73

o r3(1 +r3) 1 (1 —rm/2)
ol p)i= g (1 Vs 18p2> 1=

Moreover, for n > 546, the right-hand side of (3.58) is decreasing with respect to 7.

where
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Proof: Lemmas 3.9.2 and 3.9.3 imply that

Py (re'?) 0.8
—log|l—0——| > -
Og Pn(’f'€27m/3) |1 _ TCZG‘ + ¢(n’7‘7 |p‘)7
omi  1—13 o1
for § = i?‘Fpm 211'1(31|1*’I“6Z | > g,
(3.59)
Py (re?) " 1
— log ‘Pn(rem/:g) > —5.44 + ¢(n, r, —|—OO), for ‘1 —re' ’ < § (360)
For 0 := i% + pll__rgi, we have
11— rei| = ‘(1 _ ei27ri/3) n (6i27ri/3 — ) 4 (e — rei?)
> |1 _ ei?ﬂ'i/3| _ |6i27ri/3 _ ei0| _ |6i0 _ T€i6|
1—73 1—73
2\/§—|P|m—(1—7“) 2\/§—|P|1_T30n —(L—ro)
0
> V/3 — (3|p| + 1)(—log o), (3.61)

where we used that € (19, 1] to get the next-to-last line, and (3.26) to obtain the last line.

Here, in order to estimate the integral in (3.9), we divide the tail part Iy, into two disjoint subsets.

Namely, we define

73

1—
Itaill = {i27’(/3 + pm : C[) < |p| < 4}
and the complementary subset T = i1\ Jait1 - The set Iy consists of four distinct intervals.
By (3.59) and (3.61), the integral over these intervals can be estimated by

10
J 7@47«2@ A)S do
Tiaint Qn(re i/ )
1—73 f < 0.89
<4——0 exp —do(n,r, p)> dp. (3.62)
1—7r3" Je, V3 — (1 +3|p|)(—log 7o)
For the remaining part of Iy, Jraii2 1= Iiail\Jwail1, We note that the quantity
—log 7]3”(7"61'?)
P, (?“627”/3)

can be bounded below by either —2.4 + ¢(n,r,4) (if |1 — re’®| > %, using (3.59)) or —5.44 +
d(n,r, +0) Gf |1 — re?| < %, using (3.60)), and a common lower bound for the two cases can
be chosen as —5.44 + ¢(n, r,4). This implies that

f Qn(re)
i

W df < 2mexp(5.446 — dp(n,r,4)). (3.63)
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By combining the two bounds (3.62) and (3.63), we obtain the following upper bound for the
integral in (3.9):

‘Ltail

Qn(reie)
Qn(T€2m/3)

-3 f‘* < 0.85
<4 exp —dop(n,r, >d
L—73" )io/81 V3 — (14 3|p|)(—log o) (n:720) ) o
+ 2mexp(5.449 — 0¢(n,r,4)).

do

We recall that the definition (3.9) of €1 ¢, () contains the factor

V92,0 [ert (60/90.()/2)

in addition to the left-hand side of the above inequality. We note that, using the upper bound for
— Re f5 in (3.38) and the inequality (3.113), we have

() < 1089 1—rdn\?

IR = T \1=3 )

Therefore, using the fact that zz/ erf x is increasing with respect to = and recalling the definition
of 6y in (3.25), we obtain

€1 P6

\/57 ( 405(1 — r3”)>

243(1 — r3)

/
% (4 <1—r3>1 2 Lo/& =P <\/§— (1 +0£”8/36)(—10g7"0) ~ dglm, ,0)) i

1— 3\ 32
+or (1_r3> exp(5.440 — dp(n,r,4)) |,

as desired.

It remains to show that the right-hand side of (3.58) is decreasing with respect to 7. To this end,

we first note that the factor 1/ erf ( 405(1-r?)

SA3(1—r7) ) is decreasing with respect to r.

We claim that the other factor on the right-hand side of (3.58) is also decreasing with respect to 7.
To see this, let 1,7 € [ro, 1] such that r; < r. We then use Lemma 3.A.12 with r replaced by

r3 and ( )
1+73 [ 1
— =1 -y | — .64
A= 05 5 < 1+18p2>’ (3.64)

1—r3n r3(1 473 1—rdn
o (- 000 ) ) < 1=l exp (~Cooln ).

to get
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provided

36
546 > 6 + b (3.65)

(Recall that n > 546 by assumption.)

Let us for the moment assume that the condition (3.65) is satisfied. Then, since r3(1 + 73) >
r3(1 + r$), we obtain

1— 3n 1— 3n

2 exp (—C09(n, 2, p) < T exp (~Co(n, 71, p) (3.66)

again provided (3.65) holds. It can be checked that, for C' = 2, the inequality (3.65) holds for

%) < p < 4. Therefore, setting C' = 2 in (3.66) and taking square roots of both sides, we obtain

1 g\ V2 1\ V2
( 1 3 ) exp (*6¢('I’L,T2,p)> < < 3 ) €Xp (ié‘qb(na’rl?p)) 9
10

for — <p<4. (3.67
oreySP (3.67)

For C' = 2/3, the inequality (3.65) only holds for p = 4. By doing these substitutions in (3.66)
and raising both sides to the power 3/2, we arrive at

1—’/“3” 3/2 1_T3n 3/2
( 2 ) exp (—dp(n,re,4)) < < L > exp (—dp(n,ry,4)) . (3.68)

1—r3 1—r3
The inequalities (3.67) and (3.68) together show that the second factor on the right-hand side of
(3.58) is indeed also decreasing in 7.
It remains to justify the use of Lemma 3.A.12, that is, of the validity of the condition (3.65).

* We note that n > 546 implies that

e =e 3 10 > e 3 12 > 11
= X —_ R — X — S — R
0= =P o, P\ arxs46 ) 7 12
and consequently

A+ ) | )

> .292.
5 5 > 0.29

* Therefore, with the choice C' = 2 and 10/81 < p < 4, the constant A in (3.64) is at least
2 x 0.2920(1 — (1 + 18(10/81)%)72) > §/15.

Hence, the condition (3.65) holds, which confirms (3.67). On the other hand, with the
choice C' = 2/3 and p = 4, the constant \ in (3.64) is at least

2/3 x 0.2926(1 — (1 + 18 x 42)7Y2) > §/6.

Hence, again, the condition (3.65) is satisfied, confirming (3.68).
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* The condition in Lemma 3.A.12 on the range of r is verified by noting that

5 VO Wb 68
—logr’< —<-—<—=<=-A
95 20 20 9 o

3.10 Completion of the proofs

In this section, we combine the results of the two previous sections to prove the First and
Second Borwein Conjecture and “two thirds” of the cubic Borwein conjecture. We begin by
giving a result that allows us to control the argument of Pn(re%i/ 3). As mentioned in Part D of
Section 3.2, this is needed for accomplishing Task (2) below (3.11).

Lemma 3.10.1 Forn € Z*, arg P, (7"627”/ 3) is increasing with respect to r. Moreover, for
re (0,1] and n € Z*, we have arg P, (re*™/3) € (=7 /18,0].

Proof: For x € R, define

Vare

rt 42

f(r,z) := arg(l — r®e*™/3) = —arctan

By elementary manipulations, we have

arg Pn(re%i/?’) =

M=

(arg(l - r3k_262”i/3) +arg(l — 7“31‘“_16_27”/3)) (mod 27)

T

1

[l
NgE

(arg(l _ T3k—2627ri/3) —arg(1 — r3k—162”/3))

x>
Il

I
|
[=

(f(r,3k —1) — f(r,3k — 2)).

el
Il
—_

We claim that f(r,3k — 1) — f(r, 3k — 2) is decreasing with respect to r, and that
n
D1 (f(r,3k — 1) = f(r,3k — 2)) € [0,7/18).
k=1
In order to see this, we note that

n n 3k—1
> (k= 1) = 3k -2) = 3 [ ) da,
k=1 k=1v3k—2

3

where as usual f,(r,z) = a% f(r,z). Both the lower bound of 0 and the monotonicity with
respect to r follow from the expression

B V3r®(—logr)

Jolr8) = 5 2oy
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In order to prove the upper bound of 7/18, we define g(r, z) := >, fz(r, 3k + ) and claim
that
2 1 3
J g(r,x)dx < J g(r,x) dz. (3.69)
1 3 Jo
If we assume the truth of this inequality for a moment, then, since f, is even with respect to x,
we see that

n

(F(r, 3k — 1) — f(r,3k —2)) < % ST (36— 1) — £(r, 3% — 2))

k=1 kezZ

1 (? 13 1 (™
=J g(r,m)dxéf g(r,x)dxzf fz(r,x)dx
2 6 6 J_ o

1 0

1

+0
= fna)| = w8

as required.

Hence, it remains to verify (3.69). As a matter of fact, this inequality can be proved by a Fourier
expansion of g(r, z). To be precise, we define

3
g (1) = f g(r,z) cos(2mkx/3) dx = JR fu(r,x) cos(2mkax/3) dx,

so that "
Z gr(r) cos(2kmx/3).
k=1

W N

g(r,z) = %go(r) +

To get an explicit expression for gx(r), we note that, since f(r, z) is even, we may express the
Fourier coefficients as

gr(r) = JR fa(r,x) exp(2mkix/3) dx.

We integrate the function f,(r, z) exp(27kiz/3) (clockwise) along a rectangular contour with
corners located at +M and + M — 27i/(— logr). In the limit as M — oo, the integral along the
two vertical parts of the contour converges to zero, while the two parts of the integral along the
horizontal parts of the contour are proportional to each other. More precisely, we may conclude
that the integral along this rectangular contour, in the limit as M — o0, is equal to

(exp (4k:7r2/(—310g r)) —1) - g(r).

The integrand has exactly two poles inside this rectangle, namely at z = —27i/(—3 log ) and at
r = —4mi/(—3logr), with residues equal to i exp(4k7n2/(—91ogr)) and to —i exp(8km?/(—9log 1)),
respectively. Therefore we obtain that

™

gr(r) =

1+ 2cosh (g(fkl’;;r)) '
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We are now in the position to accomplish a proof of (3.69) by employing the above facts:

(; f:’_f> o(r,2) do — g;lgk(r) (; f-f) cos(2kma/3) da

_ i 8(—1) gy (r) sin3 (k7 /3)

= 3km
V3 g92(r) | ga(r)  gs(r)
-\t - T T )20
where the last inequality is due to the fact that g (r) is decreasing with respect to k. o

With concrete bounds on arg Pn(re%i/ 3) proven, all three pieces of the Borwein puzzle are
now in place, and we can now present the announced proofs of the First and Second Borwein

Conjecture, and of “two thirds” of the Cubic Borwein Conjecture.

We begin with the (in view of [Wan22]: alternative) proof of the First Borwein Conjecture. In
the arguments below, we always use r, to denote the solution of the approximate saddle point
equation (3.22) (that depends on n, m, and 4).

Theorem 3.10.2 The First Borwein Conjecture, Conjecture 3.1.1, is true.

Proof: We prove this claim by verifying (3.11) for “large” n, with the help of the various bounds
and inequalities we have derived, and by a direct computation for “small” n, using the computer.

By Lemma 3.10.1, we have arg P, (r,,e>™/?) € [—m/18, 0]. Hence, by Lemma 3.A.13, we infer
’2 cos <arg P (rme?™/3) — 2m7r/3>‘ > 2min{1/2, cos(77/18)} > 0.684. (3.70)

Furthermore, for n > 5300 and m € [3n, deg P, ] (so that ,, € (79, 1] by Lemma 3.5.1), we use
Lemma 3.8.3 and Lemma 3.9.4 to see that

€0,p, (M, ) < 0.407, €1,p, (rm) < 0.275. (3.71)
Comparing the bounds in (3.70) and (3.71), we see that (3.11) holds. Hence, by (3.10), the First
Borwein Conjecture is true for n > 5300.

A full computer verification for n < 7000 of the First Borwein Conjecture has already been done,
cf. [Wan22, Sec. 13]. (But see also Remark 4 below.) This finishes the proof. o

Next we finish the proof of the Second Borwein Conjecture.

Theorem 3.10.3 The Second Borwein Conjecture, Conjecture 3.1.2, is true.

Proof: Again, we prove this claim by verifying (3.11) for “large” n and a direct computation for
“small” n.

By Lemma 3.10.1, we have arg P2(r,,,e?™/3) € [—7/9,0]. Then, by Lemma 3.A.13, we may
conclude that

’2 oS (arg P2 (rp,e®™/3) — 2m7r/3>‘ > ‘2 oS (7r/3 — arg Pg(rme%i/?’))‘ . (3.72)
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In particular, we have
‘2 cos (arg P2 (1 e2Ti/3) — 2m7r/3) ’ > 2 cos(47/9) > 0.347. (3.73)

Furthermore, for n > 7000 and m € [3n, (deg P2)/2] (so that r,,, € (79, 1] by Lemma 3.5.1),
we use Lemma 3.8.3 and Lemma 3.9.4 to see that

€0.p2(m,Tm) < 0.262, € pa(ry) < 0.079, (3.74)

Comparing the bounds in (3.73) and (3.74), we see that (3.11) holds. Hence, by (3.10), the
Second Borwein Conjecture is true for n = 7000.

We now discuss the range 546 < n < 7000. Again referring to Lemma 3.10.1, the argument
arg Pn(rme%i/ 3) is increasing as a function in r,,,. Consequently, the right-hand side of (3.72)
is also increasing in r,,. On the other hand, we note that, according to Lemma 3.8.3 and
Lemma 3.9.4, for n > 546 the left-hand side of (3.11) with § = 2 has an upper bound that
is decreasing with respect to 7,,,. Therefore, for n > 546, there exists r* = r*(n) such that
(3.11) with § = 2 holds for r € [r*,1]. For each specific n, 7*(n) can be calculated by any
method for the numerical approximation of zeroes of a function with sufficient accuracy. If we
substitute 7*(n) in (3.22) then we can compute a corresponding m*(n). Now (3.10) implies that,
for m € [m*(n), (deg P2)/2], the coefficient [¢™]P2(q) has the predicted sign.

It turns out that m*(n) < 25281 in the region 546 < n < 7000. Hence, it remains to calculate
the first 25281 coefficients of P2(q) for 546 < n < 7000, and all coefficients of P2(q) for
n < 546. We programmed the corresponding calculations using C with the GMP library [Gt02].
They took less than one day on a personal laptop computer. o
Remark: A line of argument similar to the one in the preceding proof makes it possible to reduce
the amount of calculation reported in the proof of Theorem 3.10.2 significantly. Namely, this line
of argument shows that only a full calculation of the coefficients of P,(q) for 1 < n < 546, and
a calculation of the coefficients [¢"| P, (q) for m € [0,34168] and 546 < n < 5300 is needed.
The corresponding calculations took about 4 hours on a personal laptop computer, as opposed to
the computations reported in [Wan22, Sec. 13] which took 2 days using a multiple-core cluster.

Finally, the theorem below says that “two thirds” of the Cubic Borwein Conjecture, Conjec-
ture 3.1.3, are true.

Theorem 3.10.4 The coefficient [¢™ | P3(q) is positive if 3|m, and is negative if m < 3(deg P,,)/2
andm =1 (mod 3).

Remark: While it may seem at first sight that the statement in Theorem 3.10.4 is just “one half”
of Conjecture 3.1.3, it is indeed “two thirds” of that conjecture. To understand this, we should
recall that P, (q) is palindromic, and therefore also P2(q). Consequently, Theorem 3.10.4 also
implies that the coefficient [¢"] P3(q) is negative if m > 3(deg P,)/2 and m = 2 (mod 3).
Proof (Proof of Theorem 3.10.4): The proof and calculations are completely analogous to the
ones of Theorems 3.10.2 and 3.10.3, with the key difference being that the constraint
m = 0,1 (mod 3) implies that, again using Lemma 3.A.13, a lower bound for
|2 cos (arg P (1, €2™/3) — 2mm/ 3)| is actually 1. We calculate for n > 3150 that

€o,p3 (M, Tm) < 0.335, €1,p3(rm) < 0.614,
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and perform a full calculation of the coefficients of P3(q) for 1 < n < 546, as well as a
calculation of the coefficients [¢"]P3(q) for m € [0, 8864] for 546 < n < 3150. Since we have
SUPs46<n<3150 M (1) < 8864, this suffices for the proof. o
Remark: The reason why we cannot prove Conjecture 3.1.3 for m = 2 (mod 3) with m <

3(deg P,,)/2 is that the right-hand side of (3.11) can get arbitrarily close to 0 since, by Lemma 3.10.

we can only conclude that arg P3(r,,e2™/3) € [ /6, 0]. We will elaborate on this in Item (1)
of the next, and final, section.

3.11 Discussion and outlook

In this paper, we proved the First and Second Borwein Conjecture, and — partially — a Cubic
Borwein Conjecture, by developing an asymptotic framework that allowed us to verify these
conjectures for “large” n, meaning that in each case a specific ng of very modest size was given,
and it was proved that the corresponding conjecture held for n > ng. Together with a direct
calculation for the remaining “small” n using a computer, the proofs could be completed. We
are convinced that this framework can be further enhanced and extended to a machinery that is
capable of establishing the positivity/negativity of coefficients in more general products/quotients
of ¢-shifted factorials. We discuss this perspective in this section.

We start our discussion by going back to the Cubic Borwein Conjecture, Conjecture 3.1.3, and
work out what prevented us at this stage to come up with a full proof (see Item (1)). Indeed, that
“failure” strongly points out one direction where our method needs refinement. Subsequently,
we turn our attention to the Third Borwein Conjecture and other “Borwein-like” sign pattern
conjectures that one finds in the literature, in particular a conjecture of Ismail, Kim and Stanton
(see Item (2)). As we argue there, we have no doubt that our ideas that we presented here will lead
to substantial progress, if not full proof, of these. Then we report on computer experiments that
we performed that led us to discover new Borwein-type conjectures for the moduli 4 and 7 and
make other intriguing observations concerning sign patterns in such polynomials (see Item (3)).
Bressoud’s conjecture that was mentioned in the introduction is a vast generalisation of the
First Borwein Conjecture. Although, from the outset, it does not seem that our method has
anything to say about that conjecture, we show that Bressoud’s alternating sum expression can be
converted into a double contour integral of a product of g-shifted factorials. Therefore our ideas
do apply. Whether progress can be made in this way remains to be seen. We close this section by
a discussion of the “nature” of the Borwein Conjectures, whether they should be considered as
“combinatorial” or as “analytic”.

(1) WHICH ARE THE OBSTACLES TO COMPLETE THE PROOF OF THE CUBIC BORWEIN
CONJECTURE, CONJECTURE 3.1.37 It may have come somewhat unexpected that, with the
machinery developed here, we proved “only” “two thirds” of Conjecture 3.1.3 and left non-
positivity of the coefficients of ¢>™2 in P3(q), 0 < m < (deg P,)/2, (and consequently also
the non-positivity of the coefficients of ¢*™ ! in P3(q), (deg P,,)/2 < m < deg P,), open.

The main reason for this “failure”, as mentioned in Remark 6, is that the right-hand side of (3.11)
can get arbitrarily close to 0. Indeed, by applying Lemma 3.A.5 to the function z — f(r, x)
defined in the proof of Lemma 3.10.1, we are able to obtain a much more accurate estimate for

[u—
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the argument of P, (re>™"/3), namely

arg P, (re?™/3) = ~ Iy 1arctan ﬁ +O(n~ 13" (3.75)
" 18 3 2 4 rdn ' '

This implies that, for 6 = 3 and m = 2 (mod 3), the right-hand side of (3.11) is equal to

. 3 3n
2 005 (3 arg P (re*™"%) + 2”/3> = 2cos <72T + arctan 2\C7;«3n> +0(n~'r™)
V373 13
= ——————+0(n "),
g T onTr)
which, for values of r = exp(—O(n~"/?)) near the cutoff rg, is of the order

exp(—O(n'/?)). In comparison, the bound for the peak error term €o,ps (M, T,) that results from

Lemma 3.8.3 is of the order O(n~1/2) for r = exp(—©(n~'/?)). Therefore, in this regime for r,
the inequality (3.11) does not hold in the n — oo limit. Roughly speaking, this issue is caused by
the addition of the two peak contributions in (3.4), which are complex conjugates of each other
(cf. Part C in Section 3.2), but in this case happen to have real part very close to zero (approaching
zero as n — o0), and therefore largely cancel each other. What this observation implies is that the
peak contribution — and thus the coefficient of P3(q) itself — is “unusually” small in this case.
This is also mirrored by the earlier observed fact (cf. the end of Section 3.3) that the coefficient
[¢™] P32 (q) is always zero if m = 2 (mod 3). So, again roughly speaking, what is at stake here
is to determine the “next” term(s) in the asymptotic expansion of the peak part of the integral in
order to allow for a more precise estimate of the error made by approximating the peak part by a
GauBian integral.

(2) WHAT ABOUT OTHER “BORWEIN-LIKE” CONJECTURES? As we said in the introduction,
three Borwein Conjectures were reported in [And95]: Conjectures 3.1.1 and 3.1.2, and the Third
Borwein Conjecture, an analogue of the First Borwein Conjecture (Conjecture 3.1.1) in which
the modulus 3 is replaced by 5.

Conjecture 3.11.1 (P. BORWEIN) For all positive integers n, the sign pattern of the coefficients
in the expansion of the polynomial .S,,(¢) defined by

(¢; @)5n
Sn(q) =
" (4% ¢%)n
is+—-—-——+————+4————---, with the same convention concerning zero coefficients
as in Conjectures 3.1.1 and 3.1.2.

It should be clear that the approach that we presented in this paper can also be applied to this
conjecture, in adapted form. In order to show that the “first few” and the “last few” coefficients
of S,,(q) obey the predicted sign pattern (necessary for completing the analogue of Part A in
Section 3.2), we would quote [And95, Eq. (2.5)] with p = 5,

. 2 75. .75 40+15k. 75 35—15k. 75
(@) . 2 (_1)k k(3k+1)/2(q 14" (@774 0 (g 4q )OO, (3.76)

= q
(6% 0%) &, (4% ¢°) oo

which Andrews derived by using Euler’s pentagonal number theorem and Jacobi’s triple product
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identity. For the contour integral representation of [¢™]S,(¢) (the analogue of Part B in Sec-
tion 3.2), we would again choose a circle of radius 7, 0 < r < 1. Here, we would have to deal
with four approximate saddle points (analogue of Part C in Section 3.2): ret2m/5 and retAmi/5,
with r being a solution of the obvious approximate saddle point equation analogous to (3.19). All
these four approximate dominant saddle points would contribute peaks of the same asymptotic
order to the contour integral. Clearly, the estimations in Sections 3.8 and 3.9 would have to
be adapted accordingly. We expect however that this approach can prove that the coefficients
[¢°™15n(q), [¢®™ 1150 (q), [¢°™2] S0 (q) have the predicted signs for n < m < <5 deg(Sn(q)).
On the other hand, in the case of the coefficients [¢°™*3]S,,(¢) and [¢°"+*]S,,(¢) we would face
the same difficulty as we do for the coefficients [¢>"*2]P3(q) as discussed above: from (3.76)
we see that the coefficients [¢°™ 3] S (q) and [¢°™ 4] S (q) are all zero, and this indicates that
the corresponding coefficients in S, (¢) are relatively small, and therefore it will require much
more accurate estimations in order to show that these coefficients are negative.

Ismail, Kim and Stanton [IKS99, Conj. 1 in Sec. 7] generalised the First Borwein Conjecture,
Conjecture 3.1.1, in a direction different from the earlier mentioned Bressoud Conjecture.
Conjecture 3.11.2 (ISMAIL, KIM AND STANTON) Let a and K be relatively prime positive
integers, 1 < a < K /2, with K being odd. Put

n—1
H(l - qa+iK)(1 _ quaJriK) _ Z bmqm'
=0 mz=0
The sign of b, is determined by m modulo K. More precisely, if m =

+(21 + 1)a (mod K ) for some [ with 0 < [ < K /2, then b,,, < 0, otherwise b,,, = 0.

Our approach is certainly tailored for an attack on this conjecture. As already pointed out in
[IKS99], the “infinite” case (the analogue of Part A) follows easily from the Jacobi triple product
identity. For the contour integral representation of the coefficients we would again choose a
circle, with approximate saddle points of the modulus of the integrand at re=27*/K  where
2ab = 1 mod K. The fact that this conjecture contains additional parameters — namely K
and a — may be an obstacle for a full proof, in particular in the checking part (for small n) of
our approach. A proof of Conjecture 3.11.2 for sufficiently large n should however definitely be
feasible.

It is reasonable to believe that, with the approach in this paper, the sign-pattern problem for a
general polynomial of the form

Qn(q) == ] [(¢%9; 4" )n (" 954" ) (3.77)
J

can be reduced to an "infinite case" analogous to what is proved in Section 3.3, and an inequality
analogous to (3.11), where the error terms tend to zero uniformly as n — co. Naturally, the
sign pattern of the polynomial coefficients would be determined by analogues of the right-hand
side of (3.11), which would turn out to be essentially a sum of the cosines of “arguments”
over all dominant peaks. Analogous to (3.75), the arguments of these peak values can be well
approximated as functions of the quantity ™. Here, the r is the solution of an approximate
saddle point equation, which at the same time connects it to an index m, and thus to the coefficient
of ¢ in the polynomial (3.77). Below we list a rough correspondence of the orders of magnitude
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of the quantities r and m, which can in principle be obtained by arguments similar to those in
Section 3.5:

Coefficients r rin m
near the cutoff | exp(—O(n=2)) exp(—0(n'/?)) O(n)
somewhere in the “interior” | exp(—O(n~1)) e(1) O(n?
the central coefficient 1 1 3(deg Q,) = O(n?)

From the table above we can see that, as the index m ranges from ©(n) — where the coefficients
of Qy,(q) start to differ from Qu(q) — to ©(n?) — where we find the central coefficient of
Qn(q) —, the quantity %™ is expected to take any values from 0 to 1. This allows us to predict
the sign patterns for polynomials or power series of the form (3.77) by the following process:

Step 1. Identify the pair(s) of dominant peaks among ¢ (K)/2 candidates located near primitive
K-th roots of unity, where ¢( . ) denotes Euler’s totient function.

Step 2. For each pair of dominant peaks (say, located at arguments +6 where 0 < 6 < ),
calculate the arguments of the function values at these places and approximate them by functions
of &, Using Maclaurin summation techniques similar to Lemma 3.A.5, we claim that each
factor (q%, ¢% =% ¢®),, in (3.77) contributes an amount of

— . 1 — pKn )
K —2q arctan( ") cot(a6/2)

= o R + O(rEmn1) (3.78)

to the argument of Q,, (re').

Step 3. Therefore, the analogue of the right-hand side of (3.11) would (approximately) be

K —2a; 1—rkn 00/2
; 2 cos (—im&e — ; Ta] arctan ( ! 1 3_(3:;51%9(/ )> , (3.79)

where the outer sum is over all pairs of arguments +6, of dominant peaks, and the inner sum
is over all factors in (3.77). By substituting different values for " (remember that 7 depends
on m) and different residue classes of m modulo K, we can read off the general behaviour of

[¢™]Qn(q) from (3.79).

(3) MORE CONJECTURES. We have performed extensive computer calculations in order to see
whether, apart from the new Cubic Borwein Conjecture, Conjecture 3.1.3, there are more sign
pattern phenomena in Borwein-type polynomials that have not been discovered yet. Our most
striking findings are the following two conjectures. In the first of the two, we use the truth
notation y(A) = 1if A is true and x(A) = 0 otherwise.

Conjecture 3.11.3 (A MODULUS 4 “BORWEIN CONJECTURE”) Let n be a positive integer
and ¢ € {1, 2, 3}. Furthermore, consider the expansion of the polynomial

(G903 D )\ m
ey~ 2,

m=0
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which has degree D = 65n2. Then

cﬁj%(n) >0 and cfﬁ,)lﬁ(n) <0, forall mandn, (3.80)
while
0<m < i(60n®—38), if n i ,
e () <0, for " f( " ) Crmeven (3.81)
0<m < g(66n° —8+26), ifnisodd,
and
0<m < i(66n%—38), if n i ,
e 5(n) >0, for " f( " ) BREEEl 382
0 <m < g(6dn” — 65 +8x(6 = 3)), ifnisodd,
with the exception of two coefficients: for 6 = 1 and n = 5, we have cgll)(f)) = —1 and
1
g (5) = 1.
Remark: Roughly speaking, what the above conjecture says is that all coefficients cz(li)l(n) are

non-negative, all coefficients cf@t 4o(n) are non-positive, the “first half” of the coefficients

CSSBL +1(n) is non-positive, and the “first half” of the coefficients 0512 +3(n) is non-negative (with
the mentioned exceptions in the case where n = 5). Since the polynomial (¢; ¢)4n/(¢*; ¢*)n is
palindromic for even n and skew-palindromic for odd n, we have

e (m) = (1), ().

m 66n2—m
Consequently, the statements (3.81) and (3.82) imply that the coefficients cgzl +1(n) are non-
negative for m outside the ranges given in (3.81) (with two exceptions for n = 5), and similarly
the coefficients cfﬁi +3(n) are non-positive for m outside the ranges given in (3.82).
Conjecture 3.11.4 (A MODULUS 7 “BORWEIN CONJECTURE”) For positive integers n, con-

sider the expansion of the polynomial

TL2
(5 9)7n :212 Do ()™
(59 2

Then

drm (n) >0 and d7pmat (n), d7m+3(n), d7m+a (n), d7m+6(n) < 0, forall m and n,
(3.83)
while
, form < 3a(n)n?,

=0
(3.84)
<0, form > 3a(n)n?

d7m+5 (n) {
where «(n) seems to stabilise around 0.302.
Remark: (1) Since the polynomial (¢; ¢)7./(¢"; ¢7)n is palindromic, the above conjecture makes
also a prediction for the signs of the coefficients dry,+2(n).

(2) The existence and approximate position of the sign change for the coefficients of ¢"* with
m = 2,5 (mod 7) predicted in (3.84) can in fact be explained by the general procedure for
approaching proofs of sign patterns in the polynomial (3.77), here specialised to K = 7 and
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= jfor j = 1,2,3. As a matter of fact, the function (¢; ¢)7,/(q";q"), has three pairs
of dominant peaks (of the same order of magnitude) located at re—z’”é/ "forl =1,2,3. We
setaj = j,forj = 1,2,3,and 0, = 2mil/7, for £ = 1,2,3, in (3.79) to conclude that, for
m =5 (mod 7), the sum (3.79) evaluates to 2+/7 cos(37/7) for r™™ = 0, and to —1 for ™" = 1.
This indicates a sign change somewhere in the middle. More precisely, in this case we can
pinpoint the zero of (3.79) as r™™ ~ 0.6089. For convenience, let us write s := 0.6089. The
analogue of the approximate saddle point equation (3.19) for our situation here can be calculated
as

= 2m.

1% rk — 7Tk 4 68k
q _ k(1 _ .7k
3 (L=rF)(1—r™)
Ttk

Therefore, for '™ = s, making the substitution k£ — 7nu, we get
7 m —7rTk 4 68k n rA9% 4 6,56k
lim — = lim —— Zk’" T Z?k o
n—w 21n?  n—w 18(7n)? = (1 —rk)(1 —r7k) r7k — r49k)
7 Gf s — Tsl® + 6554
=1 u
0 (1—50)(1—3 ")

— X
18 7
which explains the occurrence of the constant 0.302 in Conjecture 3.11.4.

du ~ 0.30214,

Many similar conjectures could be proposed. For example, it seems that the coefficient of ¢%™
(¢:9)6n/(¢%; ¢%),, is non-negative for all m, the coefficient of ¢°™*3 in (¢; ¢)6n/(¢%; ¢°)n is non-
positive for all m, while, for large enough n, the other sequences of coefficients in congruence
classes modulo 6 of the exponents of ¢ seem to satisfy sign patterns similar to the one in (3.84).
Similarly, for § € {2, 3}, it seems that the coefficient of ¢°™ in (¢; ¢)2,,/(¢°; ¢°)? is non-negative
for all m, while, for large enough n, the other sequences of coefficients in congruence classes
modulo 5 of the exponents of ¢ seem to also satisfy sign patterns similar to the one in (3.84).

(4) THE BRESSOUD CONJECTURE. Inspired by sum representations of the decomposition
polynomials A, (q), Bn(q), Cy(q) defined in (3.2) which Andrews found by the use of the g-
binomial theorem (cf. [And95, Egs. (3.4)—(3.6)]), Bressoud [Bre96, Conj. 6] came up with the
following far-reaching generalisation of the First Borwein Conjecture. For the statement of
Bressoud’s conjecture we need to introduce the usual g-binomial coefficients, defined by

(:9)4
[gL =1 (9B (¢:9)A-B’

0, otherwise.

for0 < B < A,

Conjecture 3.11.5 (BRESSOUD) Suppose that M, N € Z*, o and 3 are positive rational num-
bers, and K is a positive integer such that a K and SK are integers. If 1l < o+ 8 < 2K + 1

(with strict inequalities if K’ = 2)and § — K <n — M < K — a, then the polynomial
- M+ N
—1)i (K (a+B)j+K(a=p))/2 3.85
j_ZOO( Yq MK, (3.85)

has non-negative coefficients.
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Conjecture 3.1.1 turns out to be a special case of this conjecture for the choices « = 5/3, 5 = 4/3
and K = 3.

To this day, Bressoud’s conjecture has only been proved when «, 3 € Z (corresponding to a result
of Andrews et al. [And+87] on partitions with restricted hook differences), and some sporadic
parametric infinite families (see [Ber20; BWO05; WarO1; War03]).

If one tries a direct attack on proving non-negativity of the coefficients of the polynomial (3.85)
using contour integral methods (in the style of [Wan22], where however different sum representa-
tions of A,,(q), Bn(q), Cr(q) were used as starting point), then one would discover that a large
amount of cancellation is going on in (3.85) which is impossible to control.

Instead, we could apply the g-binomial theorem [GR04, Ex. 1.2(vi)] to express the g-binomial
coefficient as

[g} = ¢ G B (=21 q)a-
This leads to q

ee}
3 O_Dj¢ﬂﬂa+mfﬂqa—mv2[A1+]V]
q

| M + Kj
j=—00
” |
= ) [MHEI) (1 g KRR (") (L g)pr
j=—00
a0
= Mg ) (2 e N (~1)iqp PRt R) iR (a-pr1-0) ,=Ki (3 86)

j=—00

If we assume that |¢] < 1 and @ + 8 > K, then we may now apply the Jacobi triple product
identity (cf. [GR04, Eq. (1.6.1)]),

M (-~ B = (¢,u,q/u; )co, (3.87)
j=—0
where (a1, a2, ..., ;@)oo is short for the product | [7_; (cv; ¢)oo. As a consequence, we obtain

V(s
M+K] ( zaQ)M-‘:—N

K(a—K+1=M)/2 K KQ26-K-1+M)/2. .

o0
S (—1)ig KletBi+K(a=p)2 {A4‘*]V} — M5
j=—w g

K(O[JF/BfK)?ZfK K(a+ﬂ7K))

“(q q

o0 -

The coefficient of g™ of the right-hand side can be represented as a double contour integral
over z and q of a product of (finite and infinite) shifted g-factorials and is therefore — at least in
principle — amenable to the ideas that we developed in this paper.

If « + f < K, then we would assume |¢| > 1 and try an analogous approach. On the other
hand, if & + 3 = K, then the sum in (3.86) can be evaluated by summing a geometric series.
Hence, again, we obtain an expression that can be converted into a double contour integral that is
amenable to the ideas developed in this paper.

8The reader should keep in mind that, for fixed M and N, the sum over j is a finite sum.
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(5) ARE THE BORWEIN CONJECTURES COMBINATORIAL OR ANALYTIC IN NATURE? This
question is somewhat on the provocative side. It seems that it has been commonly believed
that the Borwein Conjecture(s) is (are) combinatorial in nature, in the sense that the most
promising approaches for a proof are combinatorial, may it be by an injective argument, or
by g-series manipulations, or by a combination of the two. However, we believe that by now
considerable evidence has accumulated for the feeling that this might have been a misconception.
On the superficial level, one must simply admit that, despite considerable effort, until now
“combinatorial” attacks have not led to any progress on the Borwein Conjectures (but undeniably
to further intriguing discoveries). By contrast, the first proof of the First Borwein Conjecture in
[Wan22] has been accomplished using analytic methods, as well as the proof in this paper. More
substantially, several of the more recently discovered related or similar results and conjectures,
such as Conjecture 3.11.4 (cf. in particular Remark 8(2)), the many conjectures by Bhatnagar and
Schlosser in [BS19], or Kane’s result [Kan04] that we used in Section 3.3 seem to indicate that
“typically” such sign pattern results hold for “large” n, and in some cases — such as in the case
of the Borwein Conjectures — they “accidentally” also hold for “small” n. This is not to say
that we do not think that it is desirable to find a combinatorial proof of, say, the First Borwein
Conjecture. On the contrary! However, one should be aware that such a proof would most likely
not have anything to say about the Second Borwein Conjecture or the Cubic Borwein Conjecture,
while, by our analytic approach, we could do the First and Second Borwein Conjecture (and large
parts of the Cubic Borwein Conjecture) — so-to-speak — in one stroke. Obviously, the last word
in this matter has not yet been spoken.

3.A Appendix: auxiliary inequalities
Here we collect several auxiliary inequalities of very technical nature that we need in the main
text. We put them here so as to not disturb the flow of arguments in the main text.

3.A.1 Bounds for certain rational functions in s and log s

In the lemma below, we collect various bounds for the auxiliary functions u;(z) and v;(z) from
Section 3.4. They are used ubiquitously in Sections 3.5, 3.8, and 3.9.

Lemma 3.A.1 Suppose that u;(z) and vj(z), j € Z*, are as defined in (3.16) and (3.17).
Furthermore, for p € RT, let the region S, be defined as in (3.28).

(1) For s € (0, 1], we have the following inequalities:

(75} (8) 2 2 UQ(S) 6
<X 2- o 3.88
s V33 s 5 (3.88)
1—s° 3
< -, 3.89
(—logs)(1+s) 2 (3.:89)
3-1/400(_
i (Z1985) _ 134, (3.90)
1—s?
(1—s3)? 3
< -, 3.91
(—logs)?(1 +2s+2s3 +s%) ~ 2 391
3-1/400(1 _ ¢6)(_] 2
i (1—s)(=logs)” ey (3.92)

(1 —89)(1 — s3/2)(1 + 83 + )
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|2(log s)va(s) + (log s)?v3(s)| < %, (3.93)

[4v4(s) + (log s)vs(s)| < g, (3.94)

|202(s) + 2(log s)vs(s) + (log s)?v4(s)| < 0.21, (3.95)
|1204(s) + 8(log s)vs(s) + (log 8)21]6(8)‘ < 3.7. (3.96)

(2) We have upper bounds for u;(z)/z and v;(z)/z as given in the following table:

j= 3 4 5 6 7 8
z€ Sy | |uj(2)/2| < | 1.3 1.409

luj(2)/z] < | 1.44 1.721

lvj(z)/2] < | 1.01 1.02 2.09 5.46 19.1 73
Proof: The inequalities (3.88) are inequalities for rational functions and therefore are straight-
forward to prove using standard methods from classical analysis (or by the use of CAD; see
Footnote 9). For the inequalities (3.89)—(3.96), we apply a numerical approach (analogous to
the one in the proof of Lemma 3.A.3 below). Let LHS(s) denote the left-hand side of one such
inequality. We choose M = 10° equally spaced points in the interval [0, 1]. Then we have

z € So/27

dLHS
T (s)].

1
sup LHS(s) < sup LHS (E) + — sup
s€[0,1] 0<m<M M7 M o1

The supremum of the derivative can easily be bounded since it is a rational function in s and
log s that has a finite value at s = 0.

For the inequalities in Part (2) of the lemma, we also apply this numerical approach. This is
indeed feasible since, by the maximum modulus principle, the maximum modulus of an analytic
function on a compact domain (which, in our case, are the sets S5 /57 respectively Syg/o7) is
attained at the boundary of the domain. o

3.A.2 Bounds for certain truncated perturbed Gauflian integrals

The central result of this subsection is Lemma 3.A.3 which provides estimates for the constants
that appear in Lemma 3.8.1, and which are used in Lemma 3.8.3. A simple corollary of the
lemma that is used in the proof of Lemma 3.8.1 is stated separately as Corollary 3.A.4. The
lemma below gives an estimate involving the lower incomplete gamma function that is needed in
the proof of Lemma 3.A.3.

Below, we will occasionally make use of the effective form of Stirling’s formula

Imx)::($)“0”ﬂLQedx)

) im . x>0, (3.97)

where

Here, the left inequality follows from [AAR99, Theoorem 1.6.3(i)], while the right inequality
follows from [AAR99, Theorem 1.4.2 with m = 1].
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Lemma 3.A.2 Let (s, a) := Sg e~ x5~ Ldx be the lower incomplete gamma function. Suppose
that ¢, d, ;i € RY with d > c. Then we have

T(d—c+1
sup w™y(d, pw) < © d_ctl)

weRT Cw/2ﬂ'(d — C) '

Proof: We note that the limit of w™—%y(d, pw) is 0 for both w — 0T (here we use that d > ¢) and
w — +00. This implies that the maximum value of w ™ y(d, uw) with w € R™ occurs at a point
where - (w¢y(d, pw)) = 0. It is straightforward to see that this latter equation is equivalent to

e M (pw)

7(d7 :U’w) =

Therefore, we have
e—,uwwd—c d
sup wy(d, pw) < sup ot

weRt weRt c

Another differentiation shows that the supremum of the latter expression occurs at w = (d—c)/p,
which gives a final bound of

_ ple@=A(d — ¢)4=¢  pr(d —c+1)
sup w~vy(d, pw) < < )

wERI?*' f}/( a ) c C\/27T(d — C)
where, to get the last bound, we used the lower bound in (3.97). This is exactly what we wanted
to prove. =
Lemma 3.A.3 There exist functions (3; : (0,1) — R* fori = 1,2, 3,4, defined by

w3/2 n Cwon? 5
Bi(p) = sg%(wjo e ¥ (cosh(wy’) — 1) dy, (3.98)
w3/2 m C? 5
Ba(p) = Sli%el“f(/i\/@)fo ye ¥ sinh(wy”) dy, (3.99)
w3/2 m g A
w>
U)2 K —wy? - 4
Bap) == su%WL ye Y sinh(wy®) dy. (3.101)
w>

Moreover, we have the following estimates for particular values:
£1(20/27) < 1.39, B=2(20/27) < 1.14, B3(2/3) < 0.73, B4(2/3) < 1.15.

Proof: We provide here only the proof concerning (31. The proofs for the other three suprema
are completely analogous.

We must first show that the supremum in (3.98) is always finite. Let

3/2
by (p, w) = L JH ey’ (cosh(wy®) — 1) dy
N k)
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abbreviate the function of which we want to take the supremum. We first note that the integrand
in the above integral is bounded above by exp(—wy?(1 — )) and therefore also by 1. Hence,

paw/?

L) < gy

On the other hand, we perform a Taylor expansion of cosh(wz?) — 1, and define

2w k+1/2, 42
w Le_wyZM%kady: Y3k +1/2, prw)

k =
ur(hs s w) = o 2(2k) wh-1

so that

1 ©¢]
b = Yk
W) = )

Now, Lemma 3.A.2 implies that

(22T (2K + 5/2) - (k+1)  9p o
22k) (k- )/(k £ 3)r  (k—1)v2r

where we used (3.97) to obtain the last inequality. On the other hand, we trivially have

ul(ka Ky ’U)) <

'3k +1/2)
ur (k, p, w) < 22k k1
Both bounds combined, we find
1 , (7/2)  T(13/2) 1 k+1
b < — 3/2 p2k=2)
s w) < S 7y min (’“” 1 48w «ﬁ27r Z k1"

This confirms the finiteness of the supremum in (3.98) and therefore the existence of the function

B1.

In order to determine the particular value /31 (20/27) (at least approximately), we first dispose of
large w by providing an upper bound for b, (20/27, w) for w > wq := 80. Indeed, in this regime
we have p14/w > 6, and therefore

1 (T(7/2) T(13/2) 1 k41 I
b1(20/2 (20/2 1.37.
120/ 7’w)<erf6< 1 48w, «/2#274:—1 0/27) < 1.37

We then determine the supremum of b;(20/27, w) over the interval [0, wp] by a routine calcula-
tion. Namely, to begin with, we provide a crude upper bound for the derivative abl "L (1, w) in this
interval. To this end, we argue that the inequality erf(x) > z/(1 4+ z) implies that

w?/? _ w(l + p/w)
erf (p/w) 1
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and
7 w3/? _ 3Ww piwe =
owerf(puyw) | [2erf(uy/w) /7 erf?(puy/w)
3w prweH*w

S Zeri(pyw) | rert(uy)
_ 30t pyw) (A4 pyw)? AQ - py)?

24 /T s/

On the other hand, for all y € [0, ;1] we have

ey’ (cosh(wy®) —1) < emwyt eyt

and

0
ow

—e™ " (cosh(wy®) — 1)’ B ‘926_%2 (ysinh(wy®) — cosh(wy®) + 1)‘
< Pemrrert <2,

Combining these inequalities, we obtain

eer(U::jE) JON ai} <e*wy2 (cosh(wy®) — 1)) dy

0 ’UJ3/2 H —wy? 3y _
+\<awf<m>>f o ookl —1) &y

2
< (2wl + pv) + ‘“*j;@ < Jmun(1 + i)

)| <

With this upper bound proven, we choose M = 10° uniformly distributed points in the interval
[0, wp], and argue that

oby

sup b1(20/27,w) < sup b (20/27,E >+@ o

wo
we[0,wo] 0<m<M M M we[0,w0)

(20/27, w)‘ .

The result of this calculation turns out to be 1.3860 < 1.39 (accurate to the last significant digit
given), which finishes the proof. o
Corollary 3.A.4 Foru,v € R and zo € [0, u/v], we have

" e (cosh(va®) — 1) di < A B 2

. e (cosh(va?®) — 1) do < By (woa> ik (To/u), (3.102)
o —uz? . 3 v v

Jo xe sinh(vz?) dx < P9 <x06> e erf(zov/u), (3.103)

0
J o ur’ Sinh(vx4) dr < (3 <$0\/?> SL erf(zov/u), (3.104)
w) ub/?

0



106 Chapter 3. An asymptotic approach to Borwein-type sign pattern theorems

Z0
f re—ur’ Sinh(va;4) dx < [y (xo\/?) % erf(zov/u). (3.105)
0 u u
Proof: This follows immediately from Lemma 3.A.3 by, on the one hand, performing the
substitutions y — (v/u)z and w — u3/v? in (3.98) and (3.99), and performing the substitutions
y — (v/v/u)z and w — u?/v in (3.100) and (3.101). o

3.A.3 A Maclaurin summation estimate

The following upper bound for an alternating sum is crucial in the proof of Lemma 3.8.2,
see (3.46).
Lemma 3.A.5 Forn e Z" and f € C*[0,3n], we have

n

(fBk —2) = f(Bk — 1))

k=1

11
= sup |f(a)].

<
96 z€[0,3n]

£@n) = )]+ 5 |"(3n) — 1(0)] +

W

Proof: We use the offset Maclaurin summation formula (see, for example, [Sid03, Theo-
rem D.2.4]) to see that

n 4 f— _

k=1 k=1

AL s (i (25) - (52
(f(3n) = £(0)) — % (f"(3n) — £"(0))
AL (o (257) - (5))

where the Bernoulli polynomials By (u) are defined by

tk teut
> Bi(u) oy =

| t_ 1’
= k! e 1

and By (u) = By ({u}), with {u} denoting the fractional part of  as usual, is the k-th periodic
Bernoulli function. The lemma follows from the fact that

3n
— 2—x — 1—=x 11n
B — B dr = —.
L 4( 3 ) 4( 3 >‘ © 7 108 :

3.A.4 Estimates for sums and differences of exponentials

Here we record two elementary estimates for the difference respectively the sum of two exponen-
tials that are used in the proof of Lemma 3.8.1.
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Lemma 3.A.6 For z,w € C, we have the following inequalities:

le* — €| < 2sinhmax(|z|, |w|) + 2sinh |2 —; w|7 (3.106)

|z + w|

le* + e — 2| < 2 coshmax(|z],|w|) — 2 + 2sinh (3.107)

Proof: Without loss of generality, we assume that Re(w — z) < 0. By the triangle inequality,
we have

e —e’| < e —e?| + e % — e

< 2sinh|z] + 2 ’e(“’_z)/Q‘ sinh ]

g?sMhnmxﬂﬂ,Mﬁ)+23mh|Z;1U,

and

le* + e —2

<l b e 4o -
< 2cosh[z] =242 ‘e(“"z)/Q‘ it 20

|z + wl

< 2coshmax(|z]|, |w|) — 2 + 2sinh

3.A.5 Inequalities for the sums X (n,r)

The lemma below provides inequalities for various expressions involving the sums X(n,r)
defined in (3.18). These are used in the proof of Lemma 3.8.2 and for the proof of several
particular bounds presented in Corollary 3.A.8 below. In their turn, the bounds of the corollary
are used in Lemmas 3.8.3 and 3.9.4.

Lemma 3.A.7 Forn € Z* and r € (0, 1], we have the following inequalities concerning the
quantities X ;(n,r):

1
r(1+2r +2r3 + 7)) (1 —r3") (1 — 7"3”/2)
Xi(n,r) = e (3.108)
2. For 3 =0,1,2,3, we have
Xpnilmr) o Xjrlor) (3.109)
Xo(n,r)Xj(n,r) ~ Xo(oo,r)X;(0,7)
3. For 5 =0,1,2, we have
Xj(n,r)Xj+2(n, T‘) < X]’(OO,T')X]'JFQ(OO,T)' (3110)
Xz (n,7) X7, 1(0,7)
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Proof: (1) Inequality (3.108) can be proved by observing that

Xi(n, 7)1 — )2 = (1 + 2r + 273 + rH)(1 —3") = 3" (1 4 1) (1 — 13)
> r(1 4 2r 4 203 + ) (1 — %) — p3/2H1 (3032 4 3p5/2) (1 — 1)
> r(1+2r + 275 + 1) (1 =757 — 324 (1 4 20 4 207 e (1 — 37
= (1 +2r +2r° + rh) (1 — 37 (1 — r3/2),

(2) To prove (3.109) and (3.110), we claim that the expressions

(1 _ 7,3)j+2

W (Xj41(00,7)Xo(n,7)Xj(n,r) — Xj1(n,r)Xo(0,r)X;(00,7))

and
(1 _ ?”3)2j+4

T 3ppantd (Xj(oo, T)Xj+2(OO7T)X2+1(”aT) - Xj(”aT)XjH(n,T)X2+1(Ooa7"))

J J

are actually polynomials in 7 with non-negative coefficients. This claim can be routinely verified
by explicitly calculating each coefficient of these expressions as piecewise polynomial function.
As an illustrative example, we have

1 — r3)4 3n+2
(?)nr3”+)4 (Xo(0,7)X2(00,7) X7 (n,7) — Xo(n,7)Xo(n,7) X1 (00,7)) = (1L +7) Z ™,
m=0

where the coefficients are given by ag = 3n, a1 = 15n — 2, as = 24n — 4, a3 = 30n — 18,
asn = 2"n — 18, aznyr1 = 3n — 4, agpto = 3n — 2, and

32m—=3)3n—m)+9(m—2), ifm=0 (mod3),
am =133Bm—-4)3n—m)+9(m—2), ifm=1 (mod3),
3(3n—5)(3n—m)+18(m —2), ifm=2 (mod 3).

fora <m < 3n—1. o
Corollary 3.A.8 Forn > 1andr € (0,1], we have

X2 4
% S3 3.111)
X
Xo(:L, :)(;?127)1, S 3.112)
g 5
X 9
Xo(:l,j)(;(;;,r) 2’ (3.114)
2X
ngn, rél)(Xnga H S (3.115)
ﬁ?EZ :;EEZ :; <3 (3.116)
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Xo(n,r)Xg(n,r) 9
< -, 3.117
Xg’(n, T) 2 ( )
X()(Tl, T)X4(7’L, 7’)
< 6, 3.118
X3(n,7) G119

where the X ;(n,r) are defined in (3.18).
Proof: To prove (3.111), we argue that

4rXi(n,r) —3XE(n,r) =r*(1 —r)(1 4+ 3r) = 0
for n = 1, and make use of (3.108) to see that

Xg(n,r) _ (L4r)?(+r?) (14?14 4
rXi(n,r) T (420 + 208 4rd) T (1420 4 208 4 0d) T

w

forn = 2.

For the other seven inequalities, we invoke (3.109) for (3.112)—(3.115) and (3.110) for (3.116)—
(3.118) to see that the left-hand side of all six inequalities does not exceed the corresponding
n — oo limit. The six limits in question are simple rational functions in r and can be routinely
shown to be bounded above by the right-hand side; as an example, for (3.113) we have

r2Xo(n,r) B 72 Xo(00, 1) 1 +3r— 3r2 + 1613 — 3rt + 31 — 6
X3(n,r) h X3(o0,7) N (1+7)2 ’

and

9(1+7)% —2(1 + 3r — 3r® + 167> — 3r* + 3r° —r0)
= (1= 7)(7+19r + 34r* + 2r® + 8r* + 27°) > 0. o

3.A.6 Upper bounds for certain trigonometric sums

This subsection contains two auxiliary results, of different flavour, which provide upper bounds
for the absolute value of certain trigonometric sums, the second more special than the first.
Lemma 3.A.9 is used in the proofs of Lemmas 3.9.1 and 3.9.3, while Lemma 3.A.10 is used in
the proof of Lemma 3.9.2. An auxiliary result that is needed in the proof of Lemma 3.A.10 is
stated separately in Lemma 3.A.11.

Lemma 3.A.9 Suppose that 0 < r < 1 and 0, ¢ € R. For all positive monotonically increasing
sequences {uy }n>0, and for all non-negative integers a,b such that a < b, we have

b

1
< = e ((1 —r) Z upr® + 27"b+1ub> .

k=a

b
Z upr® cos(kO + )
k=a
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Proof: We write z = re’, and note that the sum S, j, := Zzza ¥ cos(kf + ) can be bounded
above by

a __ Zb-‘rl

1—=2

Ta+7"b+1
1—2

z

b b
Z r* cos(kf + ¢)| < Z 2k =
k=a k=a

Therefore, we can use Abel’s lemma (summation by parts) to get

b
D wpr® cos(kO + )| < ualSapl + (war1 — ua)|Saripl + -+ (up — tp—1)|Shyl
k=a

1
S 11—z (ua(r“ + )+ (ot — wa) (P ) e (up — ) (0 rb+1)>
1 b
- (I—=m7) Z wpr® + 2r 1y | .
1— 2] =

The following inequality improves Lemma B.4 from [Wan22].
Lemma 3.A.10 Forr € (0,1),n€ Z*, and 0 € [—7, 7], we have

" 1—r" 1
k-1
ko < , 3.119
k:lr o8 1—r \/1 + 4 tan?(6/2) ( )

where

(1+7)(1 —7r") (1 —r/5)
(1—r)? '
Proof: Writing cos(kf) = % (e““g + e‘iw), we see that the sum on the left-hand side can be

evaluated as it is just the sum of two geometric series. After substitution of the result, it turns out
that the claimed inequality is equivalent to

(3.120)

—r + cos 6 + r" L cos(nh) — " cos(nf + 6) e r’ 1
1 —2rcos +r? T 1—r\/ 1+4ktan?(0/2)

Without loss of generality we assume that § > 0. We prove (3.120) for all real n > 1 and
¢ € [0, 7]. We divide the proof into two parts according to whether ¢ is larger than ;%5 or not.

PART I. 6 < ;7. We construct Padé approximants as bounds for the various non-rational
functions involved, with the goal of reducing the proof of the inequality to the proof of an
inequality for a rational function. The reason is that inequalities for rational functions are
easier to handle. In particular, they can be automatically proved by using Cylindrical Algebraic

Decomposition (CAD),” and this is what we are going to do in the end for the most intricate ones.

°Cylindrical Algebraic Decomposition (CAD) is an algorithm that, among others, is able to prove that a given
polynomial in several variables is positive (non-negative), respectively provides a description of the subset of the
parameter space for which the polynomial is positive (non-negative). It also allows one to verity the positivity
(non-negativity) of polynomials in several variables under (polynomial) constraints on the variables. The reader is
referred to the “user guide” [Kaul0O] and the references therein. Implementations of CAD are available within any
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We lett = tan?(6/2) so that cos ) = %—;i Using Lemma 3.A.11 below, Lemma B.3 from [Wan22],
and elementary manipulations, we obtain

34 (3 —5n?)t —n?t? L 3= (5n% — 2)t
(1+t)(3+n2t) = 3+ (n2+2)t’
6(2n + 1)t

3+ (2n% + 2n + 3)t’

for all # € R,

cos(nb) =

forall 6 € [0, 7/n],

cos(nf) — cos(nb + 0) <
1

1
= )
Vi+dx = 1+ 22

With these inequalities in mind, it is sufficient to prove that

forall x = 0.

.3 — (5n? —2)t 1—t ., 6(2n+1)t
Q1-r(l-r"——a—) — r
3+ (n?+2)t 1+t 3+ (2n2 4+ 2n + 3)t

1—rn 1—t 1
< 1-2 2 . (3.121
1—7"( r1+t+r>1+2/¢t ©-120)

The difference between the two sides of (3.121) can be written as

2t(9ag + 3ayt + aot? + k(1 — 7)aszt?) (3.122)
(1—7)2(1+t)(3+ (n2+2)t)(3 + (2n2 + 2n + 3)t)(1 + 2xt)’ ’

where
ap=1+r—1r" ((1 +n(l—1))? +r> —r(1—7)%(1 —7r"),
ar = 2(n® + n + 3)ag + 3x(1 — 7)1 + r — 3r™ + ")
+ (= DA+r—2"" + (n+1)%(2n + )" (1 —7)
— k(1 —7)((n* = 1)1 —7)(1+5") + 12nr")
4

ag = Z az;n’, with
j=0

ago =3(1—r")(2+2r + k(1 —7)(3+ 7Tr)),
ag1 = 4(1+ 7 —3r™ + 7" ) + 25(1 — r)(1 + 5r — 257" — 5r"H1h)),
agy = T+ Tr — 127" 4+ 7r™ T — 9r™+2 £ 2k (1 — r)(1 + 8 — 13¢™ 4 1077 T,
agz = 2(1 + 7 — 6™ + 7r" Tt — 3r"F2) — 2k (1 — 7)(1 — 7 4 117" — 5r"TL),
agy = 2(1 + 7 — 3™ + 4r" Tt — 67" F2) — 2k(1 — )% (1 + 5r),
a3 = (1+7)(1 —r")(n® +2)(2n* + 2n + 3)
— 6n%r™(1 —7)(2n* + 2n + 3) + 4nr"(n — 2)(n® + 2).

In the following, we are going to prove non-negativity results for these coefficients.

standard computer algebra programme. The one that we used is the command CylindricalDecomposition
within Mathematica.
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(1) ap = 0. We substitute the definition of « in (3.122). After some simplification, the inequality
can be shown to be equivalent to

(Lrnd—r)?+r _1-(1—r)>1 -
1+7r = rn '

(3.123)

In order to prove this, we first use the classical inequalities 1 — r < (—logr) and i—;: <
(—logr)/2 to conclude that

(1+n(1—7r)+r on?
<1+ (- + (= —.
1o, 1+ (—logr)n + (—logr) >

Note that the right-hand side is exactly the Taylor polynomial of
r (L= (1= )2 =)

of order 2 at n = 0. So, in order to prove (3.123), it suffices to show that its third derivative is
non-negative. Indeed, this third derivative can be calculated as

< d ) (L= (1= r)2(1 = r/%))

J—— o

dn
(—log 7“)37“”/6

_ 08T (o5n 49 4 9165/6 _ 34 ”)>.
o (1 5 4 2 + 216r 343 0

(2) a1 = 0. We claim that

(n? —D)(A +7r—2r"" + (n+ 1220 + 1)r"(1 — 1)
> k(1 —7)%(n? = 1)(1 +5r") + 12nkr™(1 — 7). (3.124)

By substituting the definition of x and using the inequality 1 + 57" < (1 — r™)/(1 — /%), we
see that (3.124) is implied by

1 — pm 1 — yn/6
2n(n+1)(n+2) > 1 - (1+7) (12n17“—n2+1>.
—r —r

This can be proved by noting that n > (1 — »™)/(1 — r), and that

(140 <1zn1‘7“"/6_n2+1) <{(1+r)(2n2_”2+1), if 5> 6,
1 ~

7 12n11__’"\7;/; 241, ifn <6,
- 2n? + 2, if n = 6,
| 12nmax(1,n/3) —n®+1, ifn <6,

<2(n+1)(n+2).

(3) a2 > 0. We prove that asy, az, azs, (1 — r'/%ag + (1 — r"/%)az and
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Z?:o(l — p1/6)4=i(1 — p1/6)] az; are non-negative. All these expressions are rational func-

tions in /6 and /6. In order to get these expressions ready for application of CAD, we replace
each occurrence of /6 by X, and each occurrence of /% by Y, say. In this manner, we obtain
rational functions in X and Y. (In order to illustrate this: a term 7"*2/3 would be replaced by
X%Y4) Now CAD can be applied under the constraints 0 < X < Y < 1, and it yields the
claimed result.

4) (1 —r"%)ay 4+ k(1 —7)(1 — r'/%)az = 0. The proof is completely analogous to the proof of
as = 0 above: we write

4
(1-— r”/6)a2 +r(1—7r)(1— r1/6)a3 = Z njbj,
j=0
and verify by CAD that by, bo, by, (1 — 7/%)b; + (1 — 7/%)by and
4
2 1/6 4—j (1— rn/ﬁ)jbj
7=0

are non-negative.

With these non-negativity results proven, the inequality (3.121) follows from the fact that
et (T _1_ 1=
~ an x T X T i
2n + 2 n 1—rn/6

PART II. 6 > -2=.  We apply the Cauchy-Schwarz inequality to the vectors
(r — cosf,sin#) and (cosnb, sin nh). This yields

(r — cos @) cosnf + sinfsinnb < \/(7“ —cos )2 +sin%0 -1,

which is equivalent to

rcos(nf) — cos(nf + 0) < /1 — 2rcosf + r2. (3.125)

Equality in (3.125) holds if and only if the two vectors are proportional to each other, that is, if

and only if

r—cosf  cosnd
= = cotnb.

sinf  sinnd
We define the quantity

1 (7w r —cosf T—60 m—40
no(H,r)zg §—arctan g €= |

From the above observation, it follows readily that we have equality in (3.125) for n = ng(60, r).
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We now claim that the strengthened inequality

(3.126)

—r +cosf + sv1—2rcos + r2 _ 1—s 1
1—2rcosf +r? T 1—7r\/ 1+ 4k*tan?(0/2)’

holds in the region
{(r, $,0):7,5€[0,1),0<0<m, s< rnﬂaX(lmo(@J‘))}7

where £* is defined by
s (1+7)(1—s)(1—s6)
(1—r)?
If we assume the validity of this inequality, then the desired result follows by choosing s = "
in (3.126), and applying (3.125); we point out that, since ng(¢,r) < 7/0 — 1 < n, our desired
value of s = 7™ indeed belongs to the region.

In order to prove (3.126), first note that the left-hand side of (3.126) is linear with respect to s.
Furthermore, computation of the second derivative of the right-hand side shows that it is concave
with respect to s. Therefore it suffices to prove (3.126) for the values of s on the boundary —
that is, for s = 0 and s = r™@x(Ln0(0:1)) 'We write ¢ := cos @ for simplicity of notation.

(1) s = 0. In this case, the inequality (3.126) reduces to

c—r - 1
1—2rc+7r2 (=72 +4(1+ 7)==
This inequality clearly holds if ¢ < r. If » < ¢ < 1, then we have

1 (c—1)?
L—r)2+41+r)=e (1 —20r +1r2)?
(1—¢)2(1+7)%(1 + 3¢ —2r)

(1=2cr+r2)2((1—c)(1+r)b—r)+2(c—7r)(1—1))

=

(2) s = r AND ng(6,r) < 1. Elementary manipulations reveal that the inequality for ng is
equivalent to » > 2c. Moreover, the equality s = r implies that

(1+7)(1 —r'/6) 1+r
< < L.
1—r 14+ 4/r

So it suffices to prove that

_ _ 2
c—r+nrv1l—2rc+r < 117 _ 1+c (3.127)
1—2rc+r? 14 432¢ 5—3c
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holds for r € [0,1] and ¢ € [—1, r/2]. We argue that the left-hand side of (3.127) is increasing
with respect to 7 for € [max(0, 2¢), 1] because of

L?c—r+r\/1—27’c+r2 _ (1—cr)V1—2cr +72—(1—c2— (r—c)?)

or 1—2rc+ 12 N (1 —2cr +1r?)? ’

and that
(1— cr)2(1 — 2cr + r2) - (1- 2 — (r— 0)2)2 =(1- 62)(T —2¢)(3r — 2¢ — T3) = 0.

Therefore we have

c—r+1rv1—2rc+r? 1 1 1+4c¢ 1+¢
< < <

1—2rc+r2 T V2—-2¢ 2 3 T \5-3¢

as desired.

(3) s = 007 AND ng(6, ) > 1. We recall that (3.125) holds for n = ng(6, 7). This means
that (3.126) is equivalent to the special case of (3.120) where n is replaced by ng(r, #). Since
we have ng < m/0 — 1 and therefore 6 < 7/(ng + 1), we invoke the result of the first part to
conclude the proof. o

The following inequality proves that a Padé approximant of cos(nf) — cos(nf + ) is a lower
bound in a small interval around 0.
Lemma 3.A.11 Forn > 1 and 0 € [—7/n, 7 /n], we have

6(2n +1)
cos(nd) — cos(nd + 0) 3cot?(6/2) +2n2 + 2n + 3

(3.128)

Proof: Without loss of generality assume that 6 € [0, 7/n]. If @ > 27/(2n+1) then the left-hand
side of (3.128) is negative and there is nothing to prove. Otherwise let ¢ := (2n + 1)8/2 € [0, 7]
and m := 2n + 1. By elementary manipulations, we see that the inequality (3.128) is equivalent
to

2
-1
msin ﬂ = <1 + UC—— sin? ¢> sin ¢.
m 6 m
We use the fact that sin?(¢/m) < (¢/m)? to observe that it suffices to prove

m2

. O —
— =1+
msin "

1q§2> sin ¢.

This is evidently an equality if m = 1. We claim that the difference between the two sides is
increasing with respect to m. Indeed, we have

2_1 2
i msiné— 1+m $? | sin ¢ =sinﬂ—£cos£—¢—sin¢
om m 6m?2 m m m m3
I S R
> sin — — -~ cos — — sin
m m m  3m?2 m
1 d/m
= 3f t(sint —tcost)dt = 0. o
0
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3.A.7 A decreasing function

The following technical lemma is of crucial importance in the proof of the monotonicity property
in Lemma 3.9.4.
Lemma 3.A.12 For A > 0 and n = 6 + 36/, the function

1—rm )\1—7"”/6
1—r P 1—r

is decreasing with respect to r in the interval (exp(—8\/9), 1).
Proof: By taking logarithmic derivatives with respect to r, we see that it suffices to prove that

81 1—7""< 01— rn/6
—lo < A— .
or gl—r or 1—r

For the left-hand side, we have

0 L—r"  (1—=1r"+7"log(r™))

BT S AT )= m)

(which, after simplification, turns out to be equivalent to the obvious —logr~! > 1 — r~1), and
for the right-hand side (without A and with n replaced by 6n)

il — " - (I—7r")(1 —r(”_l)/Q)
or1l—r ~ (1—r)2

(which, after simplification, turns out to be equivalent to the easily derived inequality n <
pm (=02 p=(=3)/2 Lo 4 (0=1)/2) Therefore, it suffices to prove that

(I —7"+r"log(r™)) - )\(1 - 7“"/6)(1 — r(”_ﬁ)/lz)
(1—7r)(1—-rm) = (1—1r)2 ’

or, equivalently,
(1 —7/0) (1 —r(=02) (1 —pn) 1

= —.
(1 —=rm+rrlog(rm))(1 —7) A

(l—x)(l—zl/ﬁ)

. . n76 . . .
We write s := r"7 . It is not difficult to show that the function x — 53— oTogz

is decreasing
for x € (0,1). Since s = 775 > r™, this observation implies that

(1— 7“”/6)(1 — r("_ﬁ)/lz)(l —r") - (1-— 31/6)(1 — 51/12)(1 —5)
(1 —7rn4rrlog(r))(1—7r) = (1 —s+ slogs)(—logr)

1= =521 - )
= (n—06) (1 — s+ slogs)(—1logs)

Therefore it remains to prove that

(1 —sY6)(1 —s¥12)(1 - s) 1
(1—s5+slogs)(—logs) =~ A(n—6)

(3.129)

for s € (e7®9,1). Let h(s) denote the left-hand side of (3.129). The function s — h(s),
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for s € (0,1), equals 0 for s — 0% (due to the term — log s in the denominator), it equals
1/36 for s — 17, it is increasing at the beginning, has a unique maximum at (numerically)
s = 0.00003158 . .. = e 103629 (with value h(0.00003158...) = 0.0459021...), and from
there on is decreasing. Since, by assumption, we have A(n — 6) > 36, the inequality (3.129) will
be satisfied on an interval of the form [y, 1], with y depending on A and n.

We have h(10712) = 0.0322464 ... > 5= = 0.02777.... Since 10~'2 is smaller than the place
of the unique maximum of A(s), this implies

1 1
h(s) > — >

S — fi 10712, 1). 1
36> A\ —6)’ orse (107°°,1) (3.130)

In order to get an estimate for y, we observe that the function s — h(s)(— log s), that is,

(1—sY6)(1 — s¥/12)(1 — s)
(1—s+slogs)

S —> y

is decreasing for s € (0,1). Its value at s = 10712 is 0.891 - - - > %. Therefore, we have

1

8
hs) 2 9(—logs)’

for s € (0,10712).

8 A(n—6)

If we now choose y = e~ 9 , then we have

8 1 1
>

h(s) > — > f 1071%).
(s) 9(—logs) ~ An—6)’ ors € (v, )

Together with (3.130) and the fact that n > 7 by assumption, we have proven (3.129) and thus
the lemma. =

3.A.8 A cosine inequality

The elementary cosine estimate below is needed in the proofs of Theorems 3.10.2, 3.10.3,
and 3.10.4.
Lemma 3.A.13 For x € [—7/6,0] and all integers m, we have

lcos (z — 2mm/3)| > 2 form =0,1 (mod3), (3.131)
|cos (7/3 — )|, form =2 (mod 3).

Proof: We distinguish the congruence classes of m modulo 3. If m = 0 (mod 3), then we have
|cos (x — 2mm/3)| = |cos ()] . (3.132)

The claim on the right-hand side of (3.132) is then straightforward to verify. The case where
m = 1 (mod 3) can be treated similarly. On the other hand, for m = 2 (mod 3) we actually have

|cos (x — 2mn/3)| = |cos (7/3 — z)]|. o



118

References

References

[AAR99]

[And+87]

[And95]

[BBGY4]

[Ber20]

[Bre9o]

[BS19]

[BWO5]

[GRO4]

[Gt02]

[IKS99]

[Kan04]

[Kaul0]

[Sid03]

[SZ21]

[Wan22]

George E. Andrews, Richard Askey, and Ranjan Roy. “Special functions”. Vol. 71.
Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1999, pp. xvi+664.

George E. Andrews, R. J. Baxter, D. M. Bressoud, W. H. Burge, P. J. Forrester, and
G. Viennot. “Partitions with prescribed hook differences”. European J. Combin. 8.4
(1987), pp. 341-350.

George E. Andrews. “On a conjecture of Peter Borwein”. J. Symbolic Comput.
20.5-6 (1995), pp. 487-501.

J. M. Borwein, P. B. Borwein, and F. G. Garvan. “Some cubic modular identities of
Ramanujan”. Trans. Amer. Math. Soc. 343.1 (1994), pp. 35-47.

Alexander Berkovich. “Some new positive observations”. Discrete Math. 343.11
(2020), pp. 112040, 8.

David M. Bressoud. “The Borwein conjecture and partitions with prescribed hook
differences”. Electron. J. Combin. 3.2 (1996), Research Paper 4, approx. 14.

Gaurav Bhatnagar and Michael J. Schlosser. “A partial theta function Borwein
conjecture”. Ann. Comb. 23.3-4 (2019), pp. 561-572.

Alexander Berkovich and S. Ole Warnaar. “Positivity preserving transformations
for g-binomial coefficients”. Trans. Amer. Math. Soc. 357.6 (2005), pp. 2291-2351.

George Gasper and Mizan Rahman. “Basic hypergeometric series”. Second. Vol. 96.
Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 2004, pp. xxvi+428.

Torbjorn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library. 2002-2016.

M. E. H. Ismail, D. Kim, and D. Stanton. “Lattice paths and positive trigonometric
sums”. Constr. Approx. 15.1 (1999), pp. 69-81.

Daniel M. Kane. “Resolution of a conjecture of Andrews and Lewis involving
cranks of partitions”. Proc. Amer. Math. Soc. 132.8 (2004), pp. 2247-2256.

Manuel Kauers. “How to use cylindrical algebraic decomposition”. Sém. Lothar.
Combin. 65 (2010/12), Art. B65a, 16.

Avram Sidi. “Practical extrapolation methods”. Vol. 10. Cambridge Monographs on
Applied and Computational Mathematics. Cambridge University Press, Cambridge,
2003, pp. xxii+519.

Michael J. Schlosser and Nian Hong Zhou. On the infinite Borwein product raised
to a positive real power. 2021. arXiv: 2011 .10552 [math.NT].

Chen Wang. “An analytic proof of the Borwein Conjecture”. Advances in Mathe-
matics 394 (2022), p. 108028.


https://arxiv.org/abs/2011.10552

References 119

[WarO1] S. Ole Warnaar. “The generalized Borwein conjecture. I. The Burge transform”. In:
q-series with applications to combinatorics, number theory, and physics (Urbana,
IL, 2000). Vol. 291. Contemp. Math. Amer. Math. Soc., Providence, RI, 2001,
pp- 243-267.

[War03] S. Ole Warnaar. “The generalized Borwein conjecture. II. Refined g-trinomial
coefficients”. Discrete Math. 272.2-3 (2003), pp. 215-258.

[Zah06] Alexandru Zaharescu. “Borwein’s conjecture on average over arithmetic progres-
sions”. Ramanujan J. 11.1 (2006), pp. 95-102.






A

Deutsche Zusammenfassung

Diese Dissertation besteht aus zwei Artikeln, die zwei der berithmten Borwein-Vermutungen mit
analytischen Methoden beweisen.

Im ersten Artikel gebe ich den historisch ersten Beweis der urspriinglichen Borwein-Vermutung,
nimlich dass die Koeffizienten der ,,Borwein-Polynome* (1 —¢q)(1—¢?)(1—¢*)(1—¢®)--- (1 —
" 2)(1 — ¢®>*1) ein wiederkehrendes Vorzeichenmuster von + — — + — — ... aufweisen,
basierend auf spezifischen Summenformeln von Andrews.

Im zweiten Artikel werden die im ersten Beweis verwendeten Methoden auf einen viel weit-
eren Rahmen verallgemeineert und verfeinert. Dies fiihrt zu einem verbesserten Beweis der
urspriinglichen Vermutung, und zum Beweis der zweiten Borwein-Vermutung, die das selbe
Vorzeichen-Muster fiir das Quadrat der Borwein-Polynome vorhersagt, sowie zu einem partiellen
Beweis meiner eigenen Vermutung, die das selbe Muster fiir die dritte Potenz der Borwein-
Polynome vorhersagt.
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