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Abstract

by Chen Wang

This dissertation consists of two articles proving two of the famous Borwein conjectures using
analytic methods.

In the first article, I gave the historically first proof of the original Borwein Conjecture, namely
the coefficients of the “Borwein polynomials" p1´qqp1´q2qp1´q4qp1´q5q ¨ ¨ ¨ p1´q3n´2qp1´

q3n´1q have a recurring sign pattern of ` ´ ´ ` ´ ´ . . . , based on specific expansions due to
Andrews.

In the second article, the methods used in the first proof are generalized and refined to a much
broader setting, enabling an improved proof of the original conjecture and the proof of the Second
Borwein conjecture predicting the same patterns for the square of the Borwein polynomials, as
well as a partial proof of my own conjecture predicting the same patterns for the cube of the
Borwein polynomials.
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Throughout the thesis:

pa1, a2, ¨ ¨ ¨ ; qqn Shifted q-factorial defined by
ś

l

śn´1
k“0p1 ´ alq

kq
“

n
m

‰

q
q-binomial coefficient defined by pq;qqn

pq;qqmpq;qqn´m

Pnpqq The “Borwein Polynomial” pq, q2; q3qn

Qnpqq A general family of polynomials for which we want
to estimate their coefficients

r0 Solution to the (approximate) saddle point equation
(2.34) or (3.20)

θ0 Half-width of the “peak" intervals around 0 (Chapter
2) or ˘2πi{3 (Chapter 3)
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defined in (2.9) or (3.5)
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γps, aq Lower incomplete gamma function
Tkpxq Chebyshev polynomial of the first kind
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Bn,jpqq Summand in the expansion (2.3) of Bnpqq

Dn,jpqq, En,jpqq, Fn,jpqq Further dissection of Bn,jpqq as defined in (2.21),
(2.22) and (2.26)

In Chapter 3:

Xjpn, rq The sum
ř3n

k“1,3∤k k
jrk as defined in (3.18)

B̄kpuq Periodic Bernoulli function
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1
Introduction

1.1 Motivation

1.1.1 The Borwein Conjecture

In 1990, Peter Borwein made the curious observation that the coefficients of

Pnpqq :“
n

ź

i“1
p1 ´ q3i´2qp1 ´ q3i´1q “ pq, q2; q3qn

seem to have a repeating sign pattern of ` ´ ´. Here we use the standard notation for q-shifted
factorials, namely

pa1, a2, . . . , ak; qqn :“
k

ź

i“1

n´1
ź

j“0
p1 ´ aiq

jq.

Equivalently, if we write

pq, q2; q3qn “ Anpq3q ´ qBnpq3q ´ q2Cnpq3q (1.1)

then it appears that the polynomials An, Bn and Cn have non-negative coefficients.

This observation is known as the Borwein Conjecture, and it first appeared in print in a 1995
paper by Andrews [And95]. Two closely related conjectures, dubbed the Second and Third
Borwein conjectures, also appeared in [And95]. The Second Borwein conjecture states that
the coefficients of pq, q2; q3q2

n also have a repeating sign pattern of ` ´ ´. The Third Borwein
Conjecture, a “mod 5" analogue of the First Borwein Conjecture, states that the coefficients of
pq, q2, q3, q4; q5qn have a repeating sign pattern of ` ´ ´ ´ ´. The author has observed in 2019
that a cubic version of the conjecture also appears to hold, namely the coefficients of pq, q2; q3q3

n

have the same sign pattern of ` ´ ´.

This cumulative thesis consists of two previously written papers [Wan22; WK22]. The historically
first proof of the original Borwein Conjecture by the author is presented in Chapter 2 . In Chapter
3, the author gave a unified framework for attacking similar sign-pattern problems, resulting in
an “improved" proof of the First Borwein Conjecture as well as proofs of the Second Borwein
Conjecture and (in a precise sense) “two thirds" of the Cubic Borwein Conjecture.

Both chapters are self-contained and can be read independently.

1.1.2 Related conjectures and prior results

These deceivingly simple conjectures intrigued many researchers after Andrews had introduced
them to a larger audience. Various approaches were tried, mainly combinatorial, or using q-series
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2 Chapter 1. Introduction

techniques (cf. e.g. [And95; Ber20; BW05; Bre96; IKS99; SZ21; War01; War03; Zah06]).

Several further variations and generalisations of the conjecture were proposed (see [BS19; Bre96;
IKS99]), with some of them directly inspired by the results in this thesis [SZ21; BD24b]. We
notice in particular Bressoud’s conjecture in [Bre96], which stems from the following expansions
in [And95]:

Anpqq “
ÿ

jPZ

p´1qjqjp9j`1q{2
„

2n
n` 3j

ȷ

q

, (1.2)

Bnpqq “
ÿ

jPZ

p´1qjqjp9j´5q{2
„

2n
n` 3j ´ 1

ȷ

q

, (1.3)

Cnpqq “
ÿ

jPZ

p´1qjqjp9j`7q{2
„

2n
n` 3j ` 1

ȷ

q

. (1.4)

Here the q-binomial coefficients are defined as
„

n

m

ȷ

q

:“ pq; qqn

pq; qqmpq; qqn´m
.

These formulas are interesting because they belong to a larger family of polynomials, for which
several sub-families have bijective and/or q-series related proofs of their non-negativity.

Bressoud has conjectured in [Bre96, Conjecture 6] that
Conjecture 1.1.1 Suppose that m,n,K P Z`, α, β are positive rational numbers such that
αK, βK P Z`. We define

Gpm,n, α, β,Kq :“
ÿ

j

p´1qjqjK
pα`βqj`α´β

2

„

m` n

n´Kj

ȷ

q

. (1.5)

If 1 ď α` β ď 2K ` 1 (with strict inequalities if K “ 2) and β ´K ď n´m ď K ´ α, then
Gpm,n, α, β,Kq has non-negative coefficients.

The polynomials An, Bn and Cn in Borwein’s first conjecture can be written as

Anpqq “ Gpn, n,
5
3 ,

4
3 , 3q,

Bnpqq “ Gpn` 1, n´ 1, 2
3 ,

7
3 , 3q,

Cnpqq “ Gpn´ 1, n` 1, 8
3 ,

1
3 , 3q.

If α, β are non-negative integers, the polynomials Gpm,n, α, β,Kq in Conjecture 1.1.1 turn out
to be the generating function of partitions contained in an mˆ n rectangle and satisfy so-called
hook-difference conditions specified by α, β and K [Bre96]. Several infinite families of these
Bressoud polynomials with non-integer parameters have been proven to be non-negative (see
[Bre81; IKS99; War01; War03; BW05; Ber20], and more recently [BD24a]); unfortunately, the
polynomials in the Borwein conjectures are not included in these results.
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1.2 Contributions

It came as a pleasant surprise to the author that no attempt had been made from an analyti-
cal/asymptotic viewpoint, despite the fact that Andrews already stated in [And95] that such an
approach is likely to be viable. This statement is based on expansions [And95, (4.5)] for the
polynomials An, Bn and Cn in (1.1), where the first terms of the expansions indeed have positive
coefficients and appear to be asymptotically dominant. These expansions were pivotal in the first
proof of the Borwein conjecture by the author (Chapter 2).

However, no such formula is known to exist for the second and third conjectures, nor for other
variants of the conjecture. Instead, it turns out that similar asymptotic techniques can be applied
directly to Pnpqq and related polynomials. This of course introduces some further difficulties in
the analysis — some of which we will elaborate below — but enables a uniform way to attack all
the Borwein conjectures as well as additional variants (Chapter 3).

1.2.1 General strategy and tools

The main strategy used in the thesis in proving the Borwein conjectures is analytical in nature.

Let tQnpqquně1 be a family of palindromic polynomials (which can be the Borwein polynomial
Pnpqq and its powers in Chapter 3, or terms in the expansions of An, Bn and Cn in Section 2.3
of Chapter 2), then the coefficient rqmsQnpqq can be written as

1
2πi

ż

Γ
Qnpqq

dq

qm`1 ,

where Γ is any contour about 0 with winding number 1. We will choose Γ as a circle centred at 0
with radius r for some r P R`, so that the integral becomes

rqmsQnpqq “
r´m

2π

ż π

´π
Qn

´

reiθ
¯

e´imθ dθ. (1.6)

We want to emphasise that, unlike the most common form of saddle point approximation in the
textbooks, this is a two-parameter problem, since we are dealing with a family of polynomials.
This proves to be the main difficulty we face in the estimation of the integral, since any inequality
we use throughout the arguments needs to be good enough for the whole range of m.

1.2.2 Locating the saddle points

The next step is to choose a suitable radius r “ rpm,nq and estimate the integral in (1.6).
Traditionally, we require the integration contour to pass through the saddle point(s) of the
integrand r´mQn

`

reiθ
˘

e´imθ.

In our proof of the First Borwein conjecture in Chapter 2, the dominant saddle point is located
on the positive real axis, and can be found as the minimum point of the real-valued function
r ÞÑ r´mQnprq in p0, 1s.

However, in Chapter 3, the dominant saddle points can no longer be found on the positive real
axis; instead they are located near the third roots of unity. Here we choose r to be the minimum
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point of the real-valued function r ÞÑ r´m |Qnpr expp2πi{3qq| in p0, 1s. These are detailed in
Sections 2.5 and 3.5.

1.2.3 The infinite cases

The radius r can be proved to be very close to 1 except for the first (and last) Opnq coefficients
of Qnpqq. For those exceptional coefficients, we note that the first Opnq coefficients of the
polynomial Qnpqq agree with those of its infinite analogue Q8pqq, and the infinite analogues
have already established sign-pattern results, see Sections 2.4 and 3.3.

1.2.4 Estimation of the integrals

We choose a cut-off length θ0 which depends on m and n (see Sections 2.7 and 3.6), and split the
integral (1.6) into two parts: the parts that are within θ0 of the saddle point locations (which is
either 0 or ˘2π{3) called the peak, and the rest called the tail. The integral of the peak(s) can
be approximated by a Gaußian integral, and the tail integral can be bounded relative to the peak
integral. These estimations comprise the main part of both proofs; see Sections 2.8, 2.9 and 3.8
for the peak estimations, and Sections 2.10, 2.11 and 3.9) for the tail bounds.

1.2.5 Computational verification

Finally, those estimations mentioned above only work for “sufficiently large" n. We did consider-
able work to tighten the relevant inequalities and improve the resulting lower bound of n, so that
a direct verification of the conjectures below this lower bound becomes computationally feasible.
For details of the computations we did, see Sections 2.13 and 3.10.
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2
An analytic proof of the

Borwein Conjecture

Abstract

We provide a proof of the Borwein Conjecture, which states that the coefficients of pq; qq3n{pq3; q3qn

have a repeating sign pattern of ` ´ ´, using analytic methods. The proof is done by utilizing an
expansion by Andrews to extract the “main part" of the coefficients, and then bound the various
“error terms" that arise from this expansion.

2.1 Introduction

In 1990, Peter Borwein observed that for an arbitrary non-negative integer n, the coefficients of
the polynomial

n
ź

i“1
p1 ´ q3i´2qp1 ´ q3i´1q

have a repeating sign pattern of ` ´ ´. A more formalized version appears in a 1995 paper by
Andrews [And95]. Here, and in the sequel, we use the standard notation for q-shifted factorials,

pa; qqn “ p1 ´ aqp1 ´ aqq ¨ ¨ ¨ p1 ´ aqn´1q, for n ě 1,
pa; qq0 “ 1.

Conjecture 2.1.1 (P. BORWEIN) Let the polynomials Anpqq, Bnpqq and Cnpqq be defined by
the relationship

pq; qq3n

pq3; q3qn
“ Anpq3q ´ qBnpq3q ´ q2Cnpq3q. (2.1)

Then these polynomials have non-negative coefficients.

This statement is known as the Borwein Conjecture.

There have been many attempts to prove the Borwein Conjecture. Moreover, we find several
variations and generalizations in the literature, see [And95; BW05; BS19; Bre96; War01; War03;
Zah06], sometimes also conjecturally, sometimes with full or partial proofs. However, none of
the proved variations and generalizations cover the original conjecture, Conjecture 2.1.1. It is fair
to say that so far essentially two methods have been tried: bijective methods—such as in [Bre96;
IKS99], and basic hypergeometric methods—such as in [And95; BW05; War03]. Surprisingly
though, it seems that nobody has made an asymptotic attack on the conjecture. This may have

This chapter is published as: C. Wang, Analytic proof of the Borwein conjecture, Adv. Math., 394 (2022) 108028.

7



8 Chapter 2. An analytic proof of the Borwein Conjecture

to do with the fact that the “canonical" formulas for Anpqq, Bnpqq and Cnpqq, namely (2.77)–
(2.79), are entirely unsuitable for asymptotic approximation, see the corresponding remarks
in Section 2.14. Nonetheless, it turns out that there are formulas for Anpqq, Bnpqq and Cnpqq

that are amenable to asymptotics, which appear already in Andrews’ paper [And95], where the
original conjecture appears for the first time in print.
Theorem 2.1.2 (ANDREWS, [AND95, THEOREM 4.1]) Let Anpqq, Bnpqq and Cnpqq be de-
fined as in (2.1). Then we have the expansions

Anpqq “

tn{3u
ÿ

j“0

q3j2
p1 ´ q2nqpq3; q3qn´j´1pq; qq3j

pq; qqn´3jpq3; q3q2jpq3; q3qj
, (2.2)

Bnpqq “

tpn´1q{3u
ÿ

j“0

q3j2`3jp1 ´ q3j`2 ` qn`1 ´ qn`3j`2qpq3; q3qn´j´1pq; qq3j

pq; qqn´3j´1pq3; q3q2j`1pq3; q3qj
, (2.3)

Cnpqq “

tpn´1q{3u
ÿ

j“0

q3j2`3jp1 ´ q3j`1 ` qn ´ qn`3j`2qpq3; q3qn´j´1pq; qq3j

pq; qqn´3j´1pq3; q3q2j`1pq3; q3qj
. (2.4)

As a matter of fact, after discussing these formulas briefly, Andrews says in [And95] that “it
might be possible to prove that Anpqq has positive coefficients by establishing sufficiently tight
bounds on the coefficients that arise term-by-term in (4.5)", where Andrews’ (4.5) is our (2.2).

In the present paper, we follow Andrews’ advice. Our main discovery is that, in the sums
(2.2)–(2.4), the first term, i.e., the term for j “ 0, dominates all other terms. This makes these
expressions superior to all other known expressions for the purpose of asymptotic estimations.
We use analytic methods to bound the coefficients of Anpqq, Bnpqq and Cnpqq away from 0 by
expressing the coefficients as certain contour integrals and estimating these integrals. Section 2.2
contains the basic setting of our proof: it is explained how to break the contour integrals into
a positive-valued main part and four error terms, thus reducing the Borwein Conjecture to the
problem of obtaining sufficiently good upper bounds on the error terms.

After establishing some basic facts and fixing some parameters in Sections 2.3–2.7, we derive
upper bounds for each of the error terms in Sections 2.8–2.11, which leads to a proof of the
Borwein Conjecture for all n ą 7000 in Section 2.12. Some auxiliary results of technical nature
are stated and proved separately in an appendix. The cases where 0 ď n ď 7000 are directly
verified by a computer calculation, see Section 2.13. We conclude our paper with Section 2.14,
in which we recall in more detail the earlier mentioned variations and generalizations, and where
we also comment on possible further implications of our analytic approach.

2.2 An outline of the proof

In this section, we provide a brief outline of our proof of the Borwein Conjecture.

First, we claim that non-negativity of the coefficients of Bnpqq already implies the complete
Borwein Conjecture. Indeed, we have

Cnpqq “ qdeg BnBnp1{qq, (2.5)
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which proves the non-negativity of the coefficients of Cnpqq given the non-negativity of the
coefficients of Bnpqq. On the other hand, the elementary recursive formula [And95, Eq. (3.3)]

Anpqq “ p1 ` q2n´1qAn´1pqq ` qnpBn´1pqq ` Cn´1pqqq (2.6)

allows us to get the non-negativity of the coefficients ofAnpqq inductively from the non-negativity
of the coefficients of Bnpqq (and Cnpqq). Therefore, from now on, we will concentrate on Bnpqq.

In Section 2.3, we start by writing (see (2.20))

Bnpqq “

tpn´1q{3u
ÿ

j“0
Bn,jpqq,

where Bn,jpqq is the j-th summand in the expansion (2.3). We then decompose Bn,jpqq into the
sum of two simpler polynomials, namely Dn,jpqq and En,jpqq, see (2.21), (2.22), and (2.23), so
that

Bn,jpqq “ qp1 ` qnqDn,jpqq ` En,jpqq.

The background of this decomposition is that the polynomials Dn,jpqq and En,jpqq are simpler
to handle asymptotically. By summing over all j, we define

Dnpqq :“
tpn´1q{3u

ÿ

j“0
Dn,jpqq, Enpqq :“

tpn´1q{3u
ÿ

j“0
En,jpqq,

so that
Bnpqq “ qp1 ` qnqDnpqq ` Enpqq.

In particular, this decomposition shows that, to prove the non-negativity of the coefficients of
Bnpqq, it suffices to prove the non-negativity of the coefficients of Dnpqq and Enpqq separately.
Some elementary properties about Dnpqq and Enpqq, including their degrees, are collected
in Lemma 2.3.1. In particular, it turns out that Dnpqq is a palindromic polynomial, that is,
Dnpqq “ qdeg DnDnp1{qq, while Enpqq is not. The latter is the reason that, in the subsequent
discussion, we also need the reciprocal polynomial of Enpqq, that is, Fnpqq “ qdeg EnEnp1{qq.

The content of Section 2.4 is a proof of non-negativity of the coefficients of qm in Dnpqq, Enpqq

and Fnpqq for 0 ď m ă n. It relies on results of Andrews in [And95] and on a positivity result
of Berkovich and Garvan from [BG05]. Thus, what remains to show, is non-negativity of the
coefficients of qm in Dnpqq for n ď m ď pdegDnq{2, and an analogous result for Enpqq and
for Fnpqq.

For notational simplicity, we will use the notations Pnpqq and Pn,jpqq throughout this paper to
refer to multiple families of polynomials. For example, a proposition that is true for Pnpqq for
P P tD,E, F u means the proposition is true for all three families of polynomials Dnpqq, Enpqq

and Fnpqq. We will also use the standard notation rqmsPnpqq to represent the coefficient of qm

in the polynomial Pnpqq.

Using Cauchy’s integral formula, the coefficient rqmsPnpqq can be represented as the integral

1
2πi

ż

Γ
Pnpqq

dq

qm`1 ,
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FIGURE 2.1: Modulus of D36,0preiθq (solid), of D36,2preiθq (dashed), and of
D36,8preiθq (dot-dashed). Left figure: r “ 0.836, which is approximately the
extremal value r0 defined in (2.34). Right figure: r “ 0.97. The vertical axes

are in logarithmic scales.

where Γ is any contour about 0 with winding number 1. We will choose Γ as a circle centred at 0
with radius r for some r P R`, so that the integral becomes

rqmsPnpqq “
r´m

2π

ż π

´π
Pn

´

reiθ
¯

e´imθ dθ. (2.7)

The exact choice of r is related to the saddle point of q´mPn,0pqq. We will elaborate on this in
Section 2.5. The appropriate choice for r is a value smaller than 1 but close to 1, see Lemma 2.5.1.

We use the expansions Pnpqq “
ř

j Pn,jpqq to write the integral (2.7) as

rqmsPnpqq “

tpn´1q{3u
ÿ

j“0

r´m

2π

ż π

´π
Pn,j

´

reiθ
¯

e´imθ dθ. (2.8)

Figure 2.1 illustrates the typical behaviour of |Dn,j

`

reiθ
˘

| on the circle tz P C | |z| “ ru. In
particular, we can observe the following general features in the graph:

• the terms with smaller j have a central peak at θ “ 0;

• the central peak of |Pn,j

`

reiθ
˘

| for small j looks like a translated-down version of the
central peak for |Pn,0

`

reiθ
˘

|. Since Figure 2.1 is on a logarithmic scale, this suggests that
the magnitude |Pn,j

`

reiθ
˘

| could be controlled by a constant factor times |Pn,0
`

reiθ
˘

| in
a neighbourhood of θ “ 0;

• for these terms, the values outside the small neighbourhood of θ “ 0 are very small
compared to the peak value;

• when j becomes larger, the central peak disappears. However, it is apparent that the graph
of |Pn,j

`

reiθ
˘

| for larger j (represented by the dot-dashed curve in the graph) is located in
the lower part of the figure, indicating that |Pn,j

`

reiθ
˘

| could be controlled by a relatively
small constant if j is large.

Based on these heuristics, we choose two cut-offs j0 and θ0 (to be determined in (2.47) and (2.48)),
and distinguish the following parts of the integrands Pn,j

`

reiθ
˘

e´imθ, for 0 ď j ď pn´ 1q{3:
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• The term primary peak refers to the part where j “ 0 and |θ| ď θ0.

• The term secondary peaks refers to the parts where 1 ď j ď j0 and |θ| ď θ0.

• The term tails refers to the parts where 0 ď j ď j0 and θ0 ă |θ| ď π.

• Finally, the term remainders refers to the parts where j ą j0.

Naturally, the integral (2.8) can be divided into four sub-integrals corresponding to the four parts
above.

For all P P tD,E, F u, we make the following observations concerning the four sub-integrals:

• The primary peak can be approximated by a Gaußian integral. More specifically, if we
define

gP pn, rq “ ´
B2

Bθ2 logPn,0preiθq

ˇ

ˇ

ˇ

ˇ

θ“0
, (2.9)

then we should expect that

ż θ0

´θ0

Pn,0preiθqe´imθ dθ “ Pn,0prq

d

2π
gP pn, rq

p1 ` op1qq (2.10)

as n Ñ 8.

• The secondary peaks will be bounded from above by a constant times the primary peak.
We argue that

ˇ

ˇ

ˇ

ˇ

ˇ

j0
ÿ

j“1

ż θ0

´θ0

Pn,jpreiθqe´imθ dθ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

j0
ÿ

j“1

ż θ0

´θ0

ˇ

ˇ

ˇ
Pn,jpreiθq

ˇ

ˇ

ˇ
dθ

ď

j0
ÿ

j“1

˜

sup
|θ|ďθ0

ˇ

ˇ

ˇ

ˇ

ˇ

Pn,j

`

reiθ
˘

Pn,0 preiθq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

ż θ0

´θ0

|Pn,0preiθq| dθ.

(2.11)

• The tails will be estimated relative to its corresponding (primary or secondary) peak. More
specifically, for P P tD,E, F u, we will construct families of polynomials P̃n,jprq with
non-negative coefficients (see the paragraph before (2.40)), acting as uniform upper bounds
for |Pn,jpreiθq| over the circle BBp0, rq “ tz P C | |z| “ ru, satisfying the relations

P̃n,0prq “ Pn,0prq,

P̃n,jp|q|q ě |Pn,jpqq| , (2.12)

for all q P C and all r P R`.

With the help of P̃n,jprq, the tail integrals can be bounded above by

ˇ

ˇ

ˇ

ˇ

ˇ

j0
ÿ

j“0

ż 2π´θ0

θ0

Pn,jpreiθqe´imθ dθ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

j0
ÿ

j“0
P̃n,jprq

ż 2π´θ0

θ0

ˇ

ˇ

ˇ

ˇ

Pn,jpreiθq

P̃n,jprq

ˇ

ˇ

ˇ

ˇ

dθ
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ď

˜

j0
ÿ

j“0

P̃n,jprq

P̃n,0prq

¸

ˆ
ż 2π´θ0

θ0

sup
0ďjďj0

ˇ

ˇ

ˇ

ˇ

Pn,jpreiθq

P̃n,jprq

ˇ

ˇ

ˇ

ˇ

dθ

̇

ˆ Pn,0prq. (2.13)

• The remainder will be directly controlled by the upper bounds P̃n,jprq. Namely, by (2.12),
we have

tpn´1q{3u
ÿ

j“j0`1

ˇ

ˇ

ˇ

ˇ

ż ´π

π
Pn,jpreiθqe´imθ dθ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝2π
tpn´1q{3u

ÿ

j“j0`1

P̃n,jprq

P̃n,0prq

˛

‚ˆ Pn,0prq. (2.14)

Our next step is to estimate the relative error in the approximation (2.10), and to bound the other
parts of the integral relative to the (presumably) dominating part Pn,0prq

b

2π
gP pn,rq

. Based on
(2.10) and the inequalities (2.11), (2.13) and (2.14), we give the following definitions in order to
describe the error terms:

ϵ0,P pn,m, rq :“

ˇ

ˇ

ˇ

ˇ

ˇ

a

gP pn, rq
?

2πPn,0prq

ż θ0

´θ0

Pn,0preiθqe´imθ dθ ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

, (2.15)

ϵ1,P pn, rq :“
˜

j0
ÿ

j“1
sup

|θ|ăθ0

ˇ

ˇ

ˇ

ˇ

ˇ

Pn,j

`

reiθ
˘

Pn,0 preiθq

ˇ

ˇ

ˇ

ˇ

ˇ

¸ ˜

c

gP pn, rq

2π

ż θ0

´θ0

ˇ

ˇ

ˇ

ˇ

Pn,0preiθq

Pn,0prq

ˇ

ˇ

ˇ

ˇ

dθ

¸

, (2.16)

ϵ2,P pn, rq :“
c

gP pn, rq

2π

˜

j0
ÿ

j“0

P̃n,jprq

P̃n,0prq

¸

ˆ
ż 2π´θ0

θ0

sup
0ďjďj0

ˇ

ˇ

ˇ

ˇ

Pn,jpreiθq

P̃n,jprq

ˇ

ˇ

ˇ

ˇ

dθ

̇

, (2.17)

ϵ3,P pn, rq :“
a

2πgP pn, rq

tpn´1q{3u
ÿ

j“j0`1

P̃n,jprq

P̃n,0prq
. (2.18)

It should be noted that only the first of these, ϵ0,P pn,m, rq, depends on m, namely the parameter
which specifies the monomial qm of which we are taking the coefficient in Pnpqq.

These definitions, along with the integral representation (2.8) and the inequalities (2.11), (2.13)
and (2.14), imply that

rqmsPnpqq ě
Pn,0prq

rm
a

2πgP pn, rq
p1 ´ ϵ0,P pn,m, rq ´ ϵ1,P pn, rq ´ ϵ2,P pn, rq ´ ϵ3,P pn, rqq .

(2.19)
Once we have sufficiently good bounds on all these error terms so that their sum is smaller than
1, we can conclude that rqmsPnpqq is indeed positive.

The primary peak error ϵ0,P pn,m, rq is estimated in Section 2.8, the secondary peaks ϵ1,P pn, rq

are bounded in Section 2.9, Section 2.10 is devoted to bounding the remainders ϵ3,P pn, rq, and
finally Section 2.11 treats the tails ϵ2,P pn, rq. All these estimations are valid for n ą 7000 and
n ď m ď pdegDnq{2 respectively n ď m ď pdegEnq{2 “ pdegFnq{2, and their combination
shows that the Borwein Conjecture holds for n ą 7000, see Theorem 2.12.1 in Section 2.12. The
cases where n ď 7000 are disposed of by a (lengthy) computer calculation, the principles of
which are explained in Section 2.13.
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2.3 Decomposing Bnpqq

As we already explained in the introduction, the starting point of our proof of the Borwein
Conjecture is Theorem 2.1.2, which provides certain expansions of the polynomials Anpqq,
Bnpqq and Cnpqq. Based on the expansion (2.3), we define the family of polynomials Bn,jpqq to
be the summands in that expansion, so that

Bnpqq “

tpn´1q{3u
ÿ

j“0
Bn,jpqq. (2.20)

The factor p1 ´ q3j`2 ` qn`1 ´ qn`3j`2q in Bn,jpqq turns out to be inconvenient, since our
strategy is to bound quotients Bn,jpqq{Bn,j´1pqq of successive terms. Therefore, we decompose
it as

1 ´ q3j`2 ` qn`1 ´ qn`3j`2 “ p1 ´ qq ` qp1 ` qnqp1 ´ q3j`1q.

This decomposition naturally extends to the family of polynomials Bn,jpqq via the following
definitions:

Dn,jpqq :“ p1 ´ q3j`1q

1 ´ q3j`2 ` qn`1 ´ qn`3j`2Bn,jpqq

“
q3j2`3jpq3; q3qn´j´1pq; qq3j`1

pq; qqn´3j´1pq3; q3q2j`1pq3; q3qj
, (2.21)

En,jpqq :“ 1 ´ q

1 ´ q3j`2 ` qn`1 ´ qn`3j`2Bn,jpqq

“
q3j2`3jp1 ´ qqpq3; q3qn´j´1pq; qq3j

pq; qqn´3j´1pq3; q3q2j`1pq3; q3qj
, (2.22)

so that
Bn,jpqq “ qp1 ` qnqDn,jpqq ` En,jpqq. (2.23)

By summing over all j, we define

Dnpqq :“
tpn´1q{3u

ÿ

j“0
Dn,jpqq, Enpqq :“

tpn´1q{3u
ÿ

j“0
En,jpqq, (2.24)

so that
Bnpqq “ qp1 ` qnqDnpqq ` Enpqq. (2.25)

As we already indicated in the previous section, our estimations of the error terms ϵ0,P pn,m, rq

for P P tD,Eu are only valid for m ď pdegPnq{2, that is, only for “half of the coefficients",
see Section 2.5, and in particular Lemma 2.5.1 to which we shall refer repeatedly. While this is
fine for Dnpqq — since Dnpqq is palindromic, proving bounds for the first half of the coefficients
automatically means to also have proved analogous bounds for “the second half" — this is a
problem forEnpqq which is not palindromic. Here, we need to consider the reciprocal polynomial
of Enpqq, that is, Fnpqq :“ qdeg EnEnp1{qq, and also prove estimations for ϵi,F as defined in
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(2.15)–(2.18). It is a routine calculation from (2.24) that with

Fn,jpqq :“ q3jEn,jpqq “
q3j2`6jp1 ´ qqpq3; q3qn´j´1pq; qq3j

pq; qqn´3j´1pq3; q3q2j`1pq3; q3qj
(2.26)

we have

Fnpqq “

tpn´1q{3u
ÿ

j“0
Fn,jpqq. (2.27)

Remark: It is not hard to see that the functions Dn,jpqq, En,jpqq and Fn,jpqq, as defined above,
are actually polynomials for all j with 0 ď j ď tpn´ 2q{3u. (For a proof of this fact, see the
factorizations (2.36)–(2.39) and the related discussions in Section 2.6.) However, in the special
case n ” 1 pmod 3q and j “ pn´ 1q{3, (2.21), (2.22) and (2.26) fail to give polynomials. Thus,
we restrict the domain of the definitions (2.21), (2.22) and (2.26) to 0 ď j ď tpn´ 2q{3u, and
make alternative definitions in the “boundary case":

D3j`1,jpqq :“ 0, (2.28)

E3j`1,jpqq :“ B3j`1,jpqq “
q3j2`3jpq; qq3j

pq3; q3qj
, (2.29)

F3j`1,jpqq :“ qdeg E3j`1B3j`1,jp1{qq “
q3j2´2pq; qq3j

pq3; q3qj
. (2.30)

It is straightforward to see that, with these alternate definitions, and with the sums (2.24) and
(2.27), we still have (2.25).

We collect some basic facts about these polynomials.
Lemma 2.3.1 For P P tD,E, F u, the polynomials Pnpqq and Pn,0pqq have the following
properties:

• Dnpqq is a palindromic polynomial, while Enpqq and Fnpqq are reciprocal of each other.
Therefore, it suffices to consider the coefficients rqmsPnpqq for 0 ď m ď pdegPnq{2.

• degDnpqq “ degEnpqq “ degFnpqq “ n2´n´2. Furthermore, we have degPn,0pqq “

degPnpqq for all P P tD,E, F u.

• The j “ 0 terms in the expansions have a nice product form:

Dn,0pqq “ En,0pqq “ Fn,0pqq “ p1`q2`q4qp1`q3`q6q ¨ ¨ ¨ p1`qn´1`q2n´2q. (2.31)

• The expression (2.31) implies the following formula for gP pn, rq as defined in (2.9):

gDpn, rq “ gEpn, rq “ gF pn, rq “

n´1
ÿ

k“2

k2rkp1 ` 4rk ` r2kq

p1 ` rk ` r2kq2 . (2.32)

2.4 The first n coefficients

In this section, we settle the non-negativity of the first n coefficients of Pnpqq for P P tD,E, F u

by considering the n Ñ 8 limiting case.
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To this end, we define
P8pqq :“ lim

nÑ8
Pnpqq

for all P P tA,B,C,D,E, F u. The following lemma is a direct consequence of (2.1), (2.21),
(2.22) and (2.26).
Lemma 2.4.1 For all P P tA,B,C,D,E, F u and all n ě 0, we have

Pnpqq “ P8pqq `Opqnq.

This lemma says in particular that, for all P P tD,E, F u, the non-negativity of P8pqq implies
the non-negativity of rqmsPnpqq form “ 0, 1, . . . , n´1. The series P8pqq, with P P tD,E, F u

have indeed non-negative coefficients as we are going to show now. To this end, we first provide
product formulas for B8pqq and C8pqq.
Lemma 2.4.2 (Also see [And95, (4.3)–(4.4)]) The power series B8pqq and C8pqq have the
closed form expressions

B8pqq “
pq2, q7, q9; q9q8

pq; qq8

, C8pqq “
pq1, q8, q9; q9q8

pq; qq8

,

where we use the short notation

pa1, a2, . . . , ak; qq8 “ pa1; qq8pa2; qq8 ¨ ¨ ¨ pak; qq8.

Proof: By Euler’s pentagonal number theorem and the Jacobi triple product identity, we have

pq; qq8 “
ÿ

jPZ

p´1qjqjp3j´1q{2 “

1
ÿ

a“´1

ÿ

jPZ

p´1q3j`aqp3j`aqp9j`3a´1q{2

“

1
ÿ

a“´1

ÿ

jPZ

p´1q3j`aq27pj
2q`p12`9aqj`ap3a´1q{2

“ ´q2
ÿ

jPZ

p´1qjq27pj
2q`3j

`
ÿ

jPZ

p´1qjq27pj
2q`12j

´ q
ÿ

jPZ

p´1qjq27pj
2q`21j

“ ´q2pq3, q24, q27; q27q8 ` pq12, q15, q27; q27q8 ´ q2pq21, q6, q27; q27q8.

We compare this identity with the n Ñ 8 limit of (2.1) to conclude the proof. ˝

We proceed to deduce non-negativity results for the power series D8pqq, E8pqq and F8pqq from
these forms. By taking the limit n Ñ 8 in equations (2.3) and (2.4), and in (2.21), (2.22) and
(2.26), we see that

D8pqq “ C8pqq,

E8pqq “ B8pqq ´ qC8pqq “ p1 ´ qqB8pqq ` qpB8pqq ´ C8pqqq,

qF8pqq “ B8pqq ´ C8pqq.

An immediate conclusion is that D8pqq also has non-negative coefficients. In order to prove
analogous results forE8pqq and F8pqq, it suffices to show thatB8pqq´C8pqq has non-negative
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coefficients. To prove this claim, we invoke Gordon’s Partition Theorem.
Theorem 2.4.3 (GORDON, [GOR61]) Let k P Z` and 1 ď i ď k. Then the q-series

Gk,ipqq :“ pqi, q2k`1´i, q2k`1; q2k`1q8

pq, qq8

is the generating function for partitions in which 1 appears no more than i ´ 1 times and any
two consecutive integers appears no more than k ´ 1 times in total.

As a consequence, each coefficient of Gk,ipqq is increasing with respect to i, and by Lemma 2.4.2
we have B8pqq ´ C8pqq “ G4,2pqq ´G4,1pqq.

Thus we have proved that P8pqq has non-negative coefficients for P P tD,E, F u. Combined
with Lemma 2.4.1, we have the following result concerning the first n coefficients of Pnpqq.
Theorem 2.4.4 For all n ě 1, 0 ď m ď n´ 1, and all P P tD,E, F u, we have

rqmsPnpqq ě 0.

2.5 Locating the saddle point

The results of the last section show that it suffices to consider rqmsPnpqq form P rn, pdegPnq{2s.
The purpose of this section is to describe our choice of the radius r in (2.7), under the above
restriction on m.

The method that we apply is a saddle point analysis of the function z ÞÑ z´mPn,0pzq (cf.
[FS09, Chapter VIII] and [Won89, Section II.4]). Our choice of the radius r will be a saddle
point of the function z ÞÑ z´mPn,0pzq. It turns out that there is a unique saddle point on the
positive real axis, and we have very tight bounds on the position of this point under the condition
m P rn, pdegPnq{2s. These results will be proved in the following lemma. They are vital in our
estimations of the error terms ϵi,P in Sections 2.8–2.11.
Lemma 2.5.1 For all P P tD,E, F u, all integers n ě 1, and m P p0, degPnq, the equation

d

dr

`

r´mPn,0prq
˘

“ 0 (2.33)

has a unique solution rs P R`. Moreover, if n ď m ď pdegPnq{2, then we have r0 ă rs ď 1
where

r0 “ e´
?

α{n, (2.34)

and α “ 2{
?

3 is the maximum value of the function x ÞÑ 1`2x
1`x`x2 on r0, 1s.

Proof: The equation (2.33) can be transformed into

rP 1
n,0prq

Pn,0prq
“ m.

Let us write fn,P prq for the left-hand side. From the definition of the polynomials Pn,0 in (2.31),
we have

fn,Dprq “ fn,Eprq “ fn,F prq “

n´1
ÿ

k“2

kp2r2k ` rkq

1 ` rk ` r2k
.
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These functions attain the special values

fn,P p0q “ 0, fn,P p1q “ pdegPnq{2, lim
rÑ`8

fn,P prq “ degPn. (2.35)

Moreover, all fn,P prq are increasing functions in R` since we have

d

dr

2r2k ` rk

1 ` rk ` r2k
“
krk´1p1 ` 4rk ` r2kq

p1 ` rk ` r2kq2 ą 0.

The existence and uniqueness of solution follows immediately.

It remains to prove the bounds on r. Since fn,P prq is increasing, it suffices to show that
fn,P pr0q ă n and fn,P p1q ě pdegPnq{2. The latter is true due to the second equation in (2.35).
In order to see the former inequality, we argue as follows:

fn,P pr0q ă

n
ÿ

k“1

kp2r2k
0 ` rk

0q

1 ` rk
0 ` r2k

0
ă

n
ÿ

k“1
αkrk

0 ă α
8
ÿ

k“1
krk

0

“ α
r0

p1 ´ r0q2 ă αplog r0q´2 “ n. ˝

2.6 The auxiliary polynomials P̃ n,jprq

As mentioned in Section 2.2, we will construct families of polynomials P̃n,jprq satisfying (2.12).
These polynomials provide upper bounds for |Pn,jpreiθq| with respect to θ. On the way, we also
show that Dn,jpqq, En,jpqq and Fn,jpqq are polynomials in q, as claimed in Remark 1.

To this end, we first note that the inequality |fpreiθq| ď fprq trivially holds if f is a polynomial
with non-negative coefficients. Therefore, we proceed to factor out such parts from the polynomi-
als Pn,jpqq, and bound the cofactor from above by the triangle inequality. Due to the relationship
Fn,jpqq “ q3jEn,jpqq, we will only explicitly write the factorization results for P P tD,Eu.

Using the definitions (2.21) and (2.22), we arrive at the factorizations

Dn,jpqq “

˜

q3j2`3jpq3; q3qn´3jpq; qq3j`1
pq3; q3q3j`1pq; qqn´3j

„

3j ` 1
j

ȷ

q3

¸

ˆ

pq3; q3qn´j´1
pq3; q3qn´3j´1

̇

, (2.36)

En,jpqq “

˜

q3j2`3jpq3; q3qn´3jpq; qq3j`1p1 ´ q3q

pq3; q3q3j`1pq; qqn´3jp1 ´ q9j`3q

„

3j ` 1
j

ȷ

q3

¸

ˆ

1 ` q3j`1 ` q6j`2

1 ` q ` q2
pq3; q3qn´j´1
pq3; q3qn´3j´1

̇

.

(2.37)

Here, r
a
b sq is the q-binomial coefficient, defined by r

a
b sq “

pq;qqa

pq;qqa´bpq;qqb
for integers 0 ď b ď a,

which is known to be a polynomial in q with non-negative coefficients.
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We claim that the first factors in (2.36) and (2.37) are polynomials with non-negative coefficients
if j ď pn´ 1q{6. For Dn,jpqq, this is because the q-binomials and the polynomials

pq3; q3qbpq; qqa

pq3; q3qapq; qqb
“

b
ź

k“a`1
p1 ` qk ` q2kq

have non-negative coefficients provided that b ě a. In the case of En,jpqq, the factor

1 ´ q3

1 ´ q9j`3

„

3j ` 1
j

ȷ

q3

is the q-analogue of the Fuß–Catalan number (see, for example, Stump [Stu10]), and it is also a
polynomial with non-negative coefficients.

On the other hand, if pn´ 1q{3 ą j ą pn´ 1q{6, then the first factors in (2.36) and (2.37) will
no longer be polynomials. In these cases, we make the alternate factorizations

Dn,jpqq “

˜

q3j2`3j

„

tpn´ 1q{3u ` j ` 1
2j ` 1

ȷ

q3

¸

ˆ

˜

pq3; q3qn´j´1
pq3; q3qtpn´1q{3u`j`1

pq; qq3j`1pq3; q3qtpn´1q{3u´j

pq3; q3qjpq; qqn´3j´1

¸

, (2.38)

En,jpqq “

˜

q3j2`3j

„

tpn´ 1q{3u ` j ` 1
2j ` 1

ȷ

q3

¸

ˆ

˜

p1 ´ qq
pq3; q3qn´j´1

pq3; q3qtpn´1q{3u`j`1

pq; qq3jpq3; q3qtpn´1q{3u´j

pq3; q3qjpq; qqn´3j´1

¸

, (2.39)

where the first factors in these equalities also has non-negative coefficients.

On the other hand, in each of the equalities (2.36)–(2.39), the second factor is a product of factors
of the form 1 ´ qk, with the single exception of the factor p1 ` q3j`1 ` q6j`2q{p1 ` q ` q2q

(which is a polynomial) in (2.37). In order to certify the claim for (2.38) and (2.39), we note that

pq; qqapq3; q3qtb{3u

pq3; q3qta{3upq; qqb
“

a
ź

k“b`1
3∤k

p1 ´ qkq.

Therefore, the second factors in (2.36)–(2.39) are polynomials in q, possibly with some negative
coefficients. To bound those polynomials from above, we note the trivial fact that |1 ´ qk| ď

1 ` |q|k, as well as the slightly non-trivial fact that
ˇ

ˇ

ˇ

ˇ

1 ` q3j`1 ` q6j`2

1 ` q ` q2

ˇ

ˇ

ˇ

ˇ

ď
|1 ´ q6j`3| ` |q ´ q3j`1| ` |q3j`2 ´ q6j`2|

|1 ´ q3|

ď
1 ´ |q|6j`3

1 ´ |q|3
`

|q| ´ |q|3j`1

1 ´ |q|3
`

|q|3j`2 ´ |q|6j`2

1 ´ |q|3

ď
1 ` |q| ` |q|2 ´ |q|6j`1 ´ |q|6j`2 ´ |q|6j`3

1 ´ |q|3
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“
1 ´ |q|6j`1

1 ´ |q|
,

as long as |q| ď 1 (where the q “ 1 case is understood in a limiting sense).

Based on these facts, we define the polynomials P̃n,jprq for P P tD,Eu to be the result of
replacing q by r in the first parts of (2.36)–(2.39), replacing every factor 1´qk in the second parts
of (2.36)–(2.39) by a corresponding factor 1`rk, and replacing p1`q3j`1 `q6j`2q{p1`q`q2q

in (2.37) by p1 ´ r6j`1q{p1 ´ rq. We also define F̃n,jprq “ r3jẼn,jprq in accordance with
(2.26).

The immediate consequence of this definition are expressions for the quotients between successive
P̃n,jprq’s. We have

D̃n,jprq

D̃n,j´1prq
“

r3j´3{2p1 ` r3n´9jqp1 ` r3n´9j`3qp1 ` r3n´9j`6q

p1 ` rn´3j`1 ` r2n´6j`2qp1 ` rn´3j`2 ` r2n´6j`4qp1 ` rn´3j`3 ` r2n´6j`6qp1 ` r3n´3jq

ˆ
r3j`3{2p1 ´ r3j´1qp1 ´ r3j`1q

p1 ´ r6j`3qp1 ´ r6jq
for 1 ď j ď tpn´ 1q{6u , (2.40)

D̃n,jprq

D̃n,j´1prq
“
r3tpn´1q{3u´3{2p1 ` r3j´1qp1 ` r3j`1qp1 ` rn´3jqp1 ` rn´3j`1qp1 ` rn´3j`2q

p1 ` r3tpn´1q{3u`3j`3qp1 ` r3tpn´1q{3u´3j`3qp1 ` r3n´3jq

ˆ
r6j´3tpn´1q{3u`3{2p1 ´ r3tpn´1q{3u`3jqp1 ´ r3tpn´1q{3u´3jq

p1 ´ r6j`3qp1 ´ r6jq
,

for tpn´ 1q{6u ` 2 ď j ď tpn´ 1q{3u ,
(2.41)

D̃n,jprq

D̃n,j´1prq
“

ś3j`k´1
m“3j`tk{3u

p1 ` r3mq
ś3j`1

m“3j`k´5,3∤mp1 ` rmq
ś3j`k´2

m“3j´2p1 ` rm ` r2mq

ˆ

r6jp1 ´ r9j´3q

"

p1 ´ r3j´3q k “ 0, 1, 2
p1 ´ r9jq k “ 3, 4, 5

p1 ´ r6j`3qp1 ´ r6jq
,

for j “ tpn´ 1q{6u ` 1, or equivalently n “ 6pj ´ 1q ` k ` 1 for k “ 0, 1, . . . , 5.
(2.42)

for D̃, as well as

Ẽn,jprq

Ẽn,j´1prq
“

r3j´3{2p1 ` r3n´9jqp1 ` r3n´9j`3qp1 ` r3n´9j`6q

p1 ` rn´3j`1 ` r2n´6j`2qp1 ` rn´3j`2 ` r2n´6j`4qp1 ` rn´3j`3 ` r2n´6j`6qp1 ` r3n´3jq

ˆ
r3j`3{2p1 ´ r3j´1qp1 ´ r3j´2qp1 ´ r6j`1q

p1 ´ r6j`3qp1 ´ r6jqp1 ´ r6j´5q
for 1 ď j ď tpn´ 1q{6u ,

(2.43)

Ẽn,jprq

Ẽn,j´1prq
“
r3tpn´1q{3up1 ` r3j´1qp1 ` r3j´2qp1 ` rn´3jqp1 ` rn´3j`1qp1 ` rn´3j`2q

p1 ` r3tpn´1q{3u`3j`3qp1 ` r3tpn´1q{3u´3j`3qp1 ` r3n´3jq

ˆ
r6j´3tpn´1q{3up1 ´ r3tpn´1q{3u`3jqp1 ´ r3tpn´1q{3u´3jq

p1 ´ r6j`3qp1 ´ r6jq
,
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for tpn´ 1q{6u ` 2 ď j ď tpn´ 1q{3u ,
(2.44)

Ẽn,jprq

Ẽn,j´1prq
“

D̃n,jprq

D̃n,j´1prq

p1 ` rqp1 ´ rqp1 ´ r9j´6q

p1 ` r3j`1qp1 ´ r3qp1 ´ r6j´3q

for j “ tpn´ 1q{6u ` 1, or equivalently n “ 6pj ´ 1q ` k ` 1 for k “ 0, 1, . . . , 5.
(2.45)

for Ẽ. Moreover, we trivially have

F̃n,jprq

F̃n,j´1prq
“ r3 Ẽn,jprq

Ẽn,j´1prq
(2.46)

for all j “ 1, 2, . . . , tpn´ 1q{3u. These relations will be used in the estimations of the tails and
the remainders in Sections 2.10 and 2.11.

2.7 The cut-off values

In order to get a good balance among the error terms ϵi,P , two cut-offs — θ0 for the argument θ,
and j0 for the summation index j — will be chosen as

θ0 “
1
3

1 ´ r

1 ´ rn
, (2.47)

j0 “ tlog2 nu, (2.48)

where r is the value of the saddle point given by the unique solution to (2.33).
Remark: One consequence of the choice (2.47) is that, whenever q “ reiθ with 0 ă r ď 1 and
|θ| ă θ0, we know that

k|θ| ă
1
3
kp1 ´ rq

p1 ´ rnq
ď

1
3

p´ logprkqq

p1 ´ rkq

for all k with 1 ď k ď n. This means that the complex number qk belongs to the region
"

ReiΘ
ˇ

ˇ

ˇ

ˇ

|Θ| ă
1
3

p´ logRq

p1 ´Rq

*

. (2.49)

Having done all the preparatory work, we now dive into the estimations for the error terms ϵi,P
in the next few sections.

2.8 Bounding the primary peak error

Lemma 2.8.1 Suppose that r is chosen as the saddle point rs defined in Lemma 2.5.1. Then, for
all n ě 1500, we have

ϵ0,P pn,m, rq ă
7
?

2
?

3πλ
` erfc

c

λ

84 ,

where λ “ pr ´ rn`1q{p1 ´ rq. Here erfc is the complementary Gaußian error function defined
by erfcx “ 2?

π

ş8

x e´x2
dx.



Chapter 2. An analytic proof of the Borwein Conjecture 21

Proof: Note that the choice of r as the saddle point rs of Pn,0preiθqe´imθ ensures that the
Taylor expansion of logPn,0preiθqe´imθ at θ “ 0 has a vanishing linear term. Thus we can use
Lemma 2.A.2 to bound the relative error ϵ0,P pn,m, rsq. We define

h3,P pn, rq “ sup
|θ|ďθ0

ˇ

ˇ

ˇ

ˇ

B3

Bθ3 logPn,0preiθq

ˇ

ˇ

ˇ

ˇ

,

Lemma 2.A.2 immediately allows us to conclude

ϵ0,P pn,m, rq ď erfcpθ0
a

gP pn, rq{2q ` 1.1 ˆ
2
?

2
3
?
π

h3,P pn, rq

gP pn, rq3{2 , (2.50)

provided that θ0 ă p9gP pn, rqq{p4h3,P pn, rqq.

The subsequent arguments in this part exploit some inequalities for the quantities gP pn, rq,
h3,P pn, rq and θ0 to verify the conditions of Lemma 2.A.2.

We start by establishing simpler bounds on these three quantities. For the sake of simplicity, we
write g and h for gP pn, rq and h3,P pn, rq in the subsequent arguments.

The definition of h implies that

h “ h3,P pn, rq ď

n´1
ÿ

k“1
sup

|θ|ďθ0

ˇ

ˇ

ˇ

ˇ

ik3qkp1 ´ q2kqp1 ` 7qk ` q2kq

p1 ` qk ` q2kq3

ˇ

ˇ

ˇ

ˇ

,

where q “ reiθ. Therefore, an upper bound for h can be directly inferred from (2.94):

h ď
7
5

n
ÿ

k“1
k3rk. (2.51)

On the other hand, (2.32) and the elementary inequality 6
5 ą 1`4r`r2

p1`r`r2q2 ě 2
3 lead to the following

bounds for g:

g ă
6
5

n
ÿ

k“1
k2rk, (2.52)

as well as

g ě
2
3

n
ÿ

k“1
k2rk ´ r ´ n2rn

ě

˜

2
3 ´

n2
řn

k“1 k
2 ´

ˆ

1 ´ r

1 ´ rn{2

̇2
¸

n
ÿ

k“1
k2rk

ą

ˆ

2
3 ´

3
n

´
α

n

̇ n
ÿ

k“1
k2rk

ą

ˆ

2
3 ´

1
360

̇ n
ÿ

k“1
k2rk, (2.53)
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where we use the inequality
řn

k“1 k
2rk ě

řn
k“1 k

2rn, as well as

n
ÿ

k“1
k2rk ě

n
ÿ

k“1
krk “

r

p1 ´ rq2

´

1 ` rn ´ 2rn
´

1 `
n

2 p1 ´ rq

¯¯

ě
r

p1 ´ rq2

´

1 ` rn ´ 2rn
´

1 `
n

2 pr´1 ´ 1q

¯¯

ě
r

p1 ´ rq2

´

1 ` rn ´ 2rnr´n{2
¯

“ r

˜

1 ´ rn{2

1 ´ r

¸2

,

and

n

ˆ

1 ´ r

1 ´ rn{2

̇2
ă n

˜

1 ´ expp´
a

α{nq

1 ´ expp´
?
αn{2q

¸2

ă α,

which is a consequence of Lemma 2.5.1. We also need to recall from Lemma 2.5.1 that α “ 2{
?

3,
so that the bound n ě 1500 ą 120p9 ` 2

?
3q implies that p3 ` αq{n ă 1{360.

Having established the bounds above, we can establish some relationships among g, h, θ0 and
λ “

řn
k“1 r

k “ r´rn`1

1´r .

The inequalities (2.51), (2.53) and (2.98) imply that

θ0 “
r

3λ ď
r

3
pr2 ` 4r ` 1q

rpr ` 1q

řn
k“1 k

2rk

řn
k“1 k

3rk

ď

řn
k“1 k

2rk

řn
k“1 k

3rk
ă
g{

`2
3 ´ 1

360
˘

5h{7

ď
45g{28
5h{7 “

9g
4h.

We also infer from (2.51), (2.53) and (2.99) that

1.1 ˆ 2
?

2
3
?
π

h

g3{2 ă
2

?
2

3

7
5 ˆ 1.1

?
π

`2
3 ´ 4

5n

˘3{2

řn
k“1 k

3rk

p
řn

k“1 k
2rkq

3{2

ď
2

?
2

3

7
5 ˆ 1.1

?
π

`2
3 ´ 1

360
˘3{2

d

p1 ` 4r ` r2q2

p1 ` rq3 řn
k“1 r

k
ă

2
?

2
3

7
5 ˆ 10

9?
πp2

3q3{2

c

9
2λ

“
7
?

2
?

3πλ
,

where we used the numerical inequality 1.1
`2

3 ´ 1
360

˘´3{2
ă 10

9
`2

3
˘´3{2.

Finally, to bound the complementary error function in (2.50), which is equivalent to bound gθ2
0

from below, we invoke (2.53) and (2.96) to see that

gθ2
0 ą

ˆ

2
3 ´

1
360

̇

r

3

ˆ

1 ´ rn

1 ´ r

̇3 ˆ

1
3

1 ´ r

1 ´ rn

̇2
ą

λ

42 ,
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and therefore
erfcpθ0

a

g{2q ą erfcp
a

λ{84q. ˝

2.9 Bounding the secondary peaks

The error terms ϵ1,P pn, rq related to the secondary peaks concern the quotients
ˇ

ˇPn,jpreiθq{Pn,0preiθq
ˇ

ˇ.
To bound these quotients from above, we look at the quotients of two consecutive polynomials.

Dn,jpqq

Dn,j´1pqq
“
q6jp1 ´ qn´3jqp1 ´ qn´3j`1qp1 ´ qn´3j`2qp1 ´ q3j´1qp1 ´ q3j`1q

p1 ´ q3n´3jqp1 ´ q6j`3qp1 ´ q6jq
, (2.54)

En,jpqq

En,j´1pqq
“
q6jp1 ´ qn´3jqp1 ´ qn´3j`1qp1 ´ qn´3j`2qp1 ´ q3j´1qp1 ´ q3j´2q

p1 ´ q3n´3jqp1 ´ q6j`3qp1 ´ q6jq
. (2.55)

Lemma 2.9.1 Suppose that r0 and θ0 are as defined as in (2.34) and (2.47), respectively. Then,
for all j P r1, tn{3uq, all q “ reiθ P C such that r P pr0, 1s, and |θ| ă θ0, we have

ˇ

ˇ

ˇ

ˇ

Dn,jpqq

Dn,j´1pqq

ˇ

ˇ

ˇ

ˇ

ă p1.005 ` 1.3{nq
p3j ` 1qp3j ´ 1q

18jp2j ` 1q

ˆ

pj ` 1qπ{n

sinppj ` 1qπ{nq

̇2
,

and
ˇ

ˇ

ˇ

ˇ

En,jpqq

En,j´1pqq

ˇ

ˇ

ˇ

ˇ

ă |q|´3{2p1.005 ` 1.3{nq
p3j ´ 1qp3j ´ 2q

18jp2j ` 1q

ˆ

pj ` 1qπ{n

sinppj ` 1qπ{nq

̇2
.

Proof: We write z “ 1
2 log q so that e2z “ q and pqa ´ 1q “ qa{2 sinh az. Note that the

conditions on q imply the inequality

| Im z| ď
1
6

p1 ´ e2 Re zq

p1 ´ e2n Re zq
. (2.56)

We claim that the inequality

1
6

p1 ´ e´2uq

p1 ´ e´2nuq
ă max

ˆ

u,
1

3n

̇

ă

c

u2 `
1

9n2 (2.57)

holds for all n ě 1 and all u ě 0. This can be proved by observing that

1
6

p1 ´ e´2uq

p1 ´ e´2nuq
ă
u

3
1

p1 ´ e´2nuq
ă
u

3
1

p1 ´ e´1q
ă u

if u ą 1
2n , and

1
6

p1 ´ e´2uq

p1 ´ e´2nuq
ď

1
6

p1 ´ e´1{nq

p1 ´ e´1q
ă

1
6n

1
p1 ´ e´1q

ă
1

3n

if u ď 1
2n . Therefore, (2.56) and (2.57) imply that z satisfies the condition in Lemma 2.A.13

with c “ 1
3n ă π

6n . Lemma 2.A.13 now says that, for any a, b P R` where 0 ă a ď b ď 6n, we
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have
ˇ

ˇ

ˇ

ˇ

ˇ

qpb´aq{2p1 ´ qaq

1 ´ qb

ˇ

ˇ

ˇ

ˇ

ˇ

ď
sinpacq

sinpbcq
. (2.58)

We use (2.58) to bound various parts on the right-hand sides of (2.54) and (2.55). We have

ˇ

ˇ

ˇ

ˇ

q3j´3p1 ´ q3n´9j`6q

1 ´ q3n´3j

ˇ

ˇ

ˇ

ˇ

ď
sin n´3j`2

2n π

sin n´j
2n π

ď 1,
ˇ

ˇ

ˇ

ˇ

ˇ

q3j´3{2p1 ´ q3n´9j`3q

1 ´ q3n´3j

ˇ

ˇ

ˇ

ˇ

ˇ

ď
sin n´3j`1

2n π

sin n´j
2n π

ď 1,

as well as
ˇ

ˇ

ˇ

ˇ

ˇ

qpc`d´a´bq{2p1 ´ qaqp1 ´ qbq

p1 ´ qcqp1 ´ qdq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
sin a

6nπ sin b
6nπ

sin c
6nπ sin d

6nπ

ă
ab

cd

ˆ

cπ{6n
sinpcπ{6nq

dπ{6n
sinpdπ{6nq

̇

ă
ab

cd

ˆ

pj ` 1qπ{n

sinppj ` 1qπ{nq

̇2
,

for pa, b, c, dq “ p3j ´ 1, 3j ` 1, 6j ` 3, 6jq or p3j ´ 1, 3j ´ 2, 6j ` 3, 6jq.

It remains to bound the factor
ˇ

ˇ

ˇ

ˇ

p1 ´ qk´1qp1 ´ qk`1q

1 ` qk ` q2k

ˇ

ˇ

ˇ

ˇ

,

where k “ n ´ 3j ` 1 or n ´ 3j ` 2. Here we make use of (2.92) and (2.93) (recall that qk

belongs to the region (2.49)) to conclude that
ˇ

ˇ

ˇ

ˇ

p1 ´ qk´1qp1 ´ qk`1q

1 ` qk ` q2k

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

p1 ´ qkq2

1 ` qk ` q2k

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

qk´1p1 ´ qq2

1 ` qk ` q2k

ˇ

ˇ

ˇ

ˇ

ă 1.005 ` 1.002|1 ´ q|2

ă 1.005 ` 1.002pp1 ´ rq2 ` θ2
0qq

ď 1.005 ` 1.002
ˆ

2
?

3n
p1 `

1
9q

̇

ă 1.005 ` 1.3{n. ˝

These bounds allow us to obtain upper bounds for the first factor in the expression (2.16) of the
error term ϵ1,P pn, rq.
Lemma 2.9.2 Suppose n ą 7000, and that r0, j0 and θ0 are defined as in (2.34), (2.48) and
(2.47), respectively. Then, for all r P pr0, 1s, we have

j0
ÿ

j“1
sup

|θ|ăθ0

ˇ

ˇ

ˇ

ˇ

ˇ

Dn,j

`

reiθ
˘

Dn,0 preiθq

ˇ

ˇ

ˇ

ˇ

ˇ

ă 0.187,
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j0
ÿ

j“1
sup

|θ|ăθ0

ˇ

ˇ

ˇ

ˇ

ˇ

En,j

`

reiθ
˘

En,0 preiθq

ˇ

ˇ

ˇ

ˇ

ˇ

ă 0.043,

j0
ÿ

j“1
sup

|θ|ăθ0

ˇ

ˇ

ˇ

ˇ

ˇ

Fn,j

`

reiθ
˘

Fn,0 preiθq

ˇ

ˇ

ˇ

ˇ

ˇ

ă 0.043.

Proof: We first make use of Lemma 2.9.1, and we notice that the condition n ą 7000 and the
choice of j0 imply that pj ` 1q{n ă

log n`log 2
n log 2 ă 1

500 . Therefore, the terms involving n in
Lemma 2.9.1 can be bounded above by

p1.005 ` 1.3{7000q

ˆ

π{500
sin π{500

̇2
ă 1.006.

This implies

ˇ

ˇ

ˇ

ˇ

Dn,jpqq

Dn,0pqq

ˇ

ˇ

ˇ

ˇ

ă 1.006j
j

ź

k“1

p3k ` 1qp3k ´ 1q

18kp2k ` 1q
“

1.006j

27j

ˆ

3j ` 1
j

̇

,

and
ˇ

ˇ

ˇ

ˇ

En,jpqq

En,0pqq

ˇ

ˇ

ˇ

ˇ

ă 1.006j
j

ź

k“1
|q|´3k{2 p3k ´ 1qp3k ´ 2q

18kp2k ` 1q
“

p1.006|q|´3{2qj

27jp3j ` 1q

ˆ

3j ` 1
j

̇

,

for all j with 1 ď j ď j0. The relationship (2.26) implies a similar inequality for Fn,j , namely

ˇ

ˇ

ˇ

ˇ

Fn,jpqq

Fn,0pqq

ˇ

ˇ

ˇ

ˇ

ă 1.006j
j

ź

k“1
|q|3k{2 p3k ´ 1qp3k ´ 2q

18kp2k ` 1q
“

p1.006|q|3{2qj

27jp3j ` 1q

ˆ

3j ` 1
j

̇

.

The bounds stated in the lemma can be obtained by noticing that

|q|´3{2 ď r
´3{2
0 “ exp

ˆ

b

?
3{n

̇

ă exp
ˆ

b

?
3{7000

̇

ă 1.0003,

and by using the identities (cf. [PBM90, Section 7.3.2])

8
ÿ

j“0

aj

27j

ˆ

3j ` 1
j

̇

“
6

?
4a´ a2 sin

ˆ

2
3 sin´1

?
a

2

̇

,

8
ÿ

j“0

aj

p3j ` 1q27j

ˆ

3j ` 1
j

̇

“
6

?
a

sin
ˆ

1
3 sin´1

?
a

2

̇

,

to give the estimates

8
ÿ

j“1

1.006j

27j

ˆ

3j ` 1
j

̇

« 0.18618 ă 0.187,
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8
ÿ

j“1

p1.006 ˆ 1.0003qj

27jp3j ` 1q

ˆ

3j ` 1
j

̇

« 0.04219 ă 0.043,

8
ÿ

j“1

1.006j

27jp3j ` 1q

ˆ

3j ` 1
j

̇

« 0.04218 ă 0.043. ˝

Here and in the subsequent parts of the paper, the « symbol signifies that the approximation
value given is accurate to the last significant figure.

It remains to deal with the second factor in (2.16), namely
c

gP pn, rq

2π

ż θ0

´θ0

ˇ

ˇ

ˇ

ˇ

Pn,0preiθq

Pn,0prq

ˇ

ˇ

ˇ

ˇ

dθ.

The argument below is parallel to the one in Section 2.8.
Lemma 2.9.3 Suppose that n ě 1500 ą 120p9 ` 2

?
3q, and θ0 is defined as in (2.47). Then we

have
c

gP pn, rq

2π

ż θ0

´θ0

ˇ

ˇ

ˇ

ˇ

Pn,0preiθq

Pn,0prq

ˇ

ˇ

ˇ

ˇ

dθ ď 1 `

?
5

3
?

3λ
,

where λ “ r´rn`1

1´r .
Proof: Note that the integrand is an even function in θ, so we can use Lemma 2.A.4 to bound the
integral. We define

h4,P pn, rq “ sup
|θ|ďθ0

ˇ

ˇ

ˇ

ˇ

B4

Bθ4 logPn,0preiθq

ˇ

ˇ

ˇ

ˇ

,

Lemma 2.A.2 immediately allows us to conclude
c

gP pn, rq

2π

ż θ0

´θ0

ˇ

ˇ

ˇ

ˇ

Pn,0preiθq

Pn,0prq

ˇ

ˇ

ˇ

ˇ

dθ ď 1 `

?
2

9
?
π

h4,P pn, rq1{2

gP pn, rq
, (2.59)

provided that the condition θ2
0 ă p27gP pn, rqq{p8h4,P pn, rqq is satisfied.

The subsequent arguments in this part exploit some inequalities for the quantities gP pn, rq,
h4,P pn, rq and θ0 to verify the conditions of Lemma 2.A.4.

We start by establishing simpler bounds on them. For the sake of simplicity, we write g and h for
gP pn, rq and h4,P pn, rq in the subsequent arguments.

The definition of h implies that

h “ h4,P pn, rq ď

n´1
ÿ

k“1
sup

|θ|ďθ0

ˇ

ˇ

ˇ

ˇ

k4qkp1 ` 12qk ´ 12q2k ´ 56q3k ´ 12q4k ` 12q5k ` q6kq

p1 ` qk ` q2kq4

ˇ

ˇ

ˇ

ˇ

,

where q “ reiθ.

Therefore, an upper bound for h can be directly inferred from (2.95):

h ă
5
3

n
ÿ

k“1
k4rk. (2.60)
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On the other hand, we recall the upper and lower bounds on g from (2.52) and (2.53). We
establish some relationships among g, h, θ0 and λ “

řn
k“1 r

k “ r´rn`1

1´r .

The inequalities (2.60), (2.53) and (2.100) imply that

θ2
0 “

r2

9λ2 ď
r2

9
1 ` 10r ` r2

r2

řn
k“1 k

2rk

řn
k“1 k

4rk

ď
4
3

řn
k“1 k

2rk

řn
k“1 k

3rk
ă

4
3
g{

`2
3 ´ 1

360
˘

3h{5

ď
27g
8h .

Moreover, from (2.60), (2.53) and (2.101), we also infer that

?
2

9
?
π

h1{2

g
ă

?
2

9
?
π

a

5{3
2
3 ´ 1

360

`
řn

k“1 k
4rk

˘1{2
řn

k“1 k
2rk

ď

?
2

9
?

3

a

5{3
2{3

d

1 ` 10r ` r2

p1 ` rq p
řn

k“1 r
kq

ď

?
5

9
?

2

c

6
λ

“

?
5

3
?

3λ
. ˝

By combining Lemmas 2.9.2 and 2.9.3, we arrive at our bound for the error term ϵ1,P pn, rq.
Lemma 2.9.4 For all n ą 7000 and all r with 0 ă r ď 1, we have

ϵ1,Dpn, rq ă 0.187
ˆ

1 `

?
5

3
?

3λ

̇

,

ϵ1,Epn, rq ă 0.043
ˆ

1 `

?
5

3
?

3λ

̇

,

ϵ1,F pn, rq ă 0.043
ˆ

1 `

?
5

3
?

3λ

̇

.

2.10 Bounding the remainders

The reason we estimate the remainder parts before the tail is that certain results in this section,
namely upper bounds for the ratios

ˇ

ˇP̃n,jprq{P̃n,j´1prq
ˇ

ˇ, will also be used in bounding the tails
from above.
Lemma 2.10.1 Suppose that n P Z`, and 0 ă r ď 1. For all j P r1, tpn´ 1q{6us, we have

ˇ

ˇ

ˇ

ˇ

D̃n,jprq

D̃n,j´1prq

ˇ

ˇ

ˇ

ˇ

ă
p3j ´ 1qp3j ` 1q

18jp2j ` 1q
,

ˇ

ˇ

ˇ

ˇ

Ẽn,jprq

Ẽn,j´1prq

ˇ

ˇ

ˇ

ˇ

ă
r´3{2p3j ´ 1qp3j ´ 2qp6j ` 1q

18jp2j ` 1qp6j ´ 5q
.

For all j P rtpn´ 1q{6u ` 2, tpn´ 1q{3us, we have
ˇ

ˇ

ˇ

ˇ

D̃n,jprq

D̃n,j´1prq

ˇ

ˇ

ˇ

ˇ

ă
4ptpn´ 1q{3u ´ jq

3j ´ tpn´ 1q{3u ` 1 ,
ˇ

ˇ

ˇ

ˇ

Ẽn,jprq

Ẽn,j´1prq

ˇ

ˇ

ˇ

ˇ

ă
4r´3{2ptpn´ 1q{3u ´ jq

p3j ´ tpn´ 1q{3u ` 1q
.
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Finally for j “ tpn´ 1q{6u ` 1 we have
ˇ

ˇ

ˇ

ˇ

D̃n,jprq

D̃n,j´1prq

ˇ

ˇ

ˇ

ˇ

ă 72,
ˇ

ˇ

ˇ

ˇ

Ẽn,jprq

Ẽn,j´1prq

ˇ

ˇ

ˇ

ˇ

ă 72.

Proof: We claim that the first factors in (2.40) and (2.43) do not exceed 1, and the first factors in
(2.41) and (2.44) do not exceed 4. The claims about (2.40) and (2.43) are proved by using the
inequality 1 ` r3k ă 1 ` rk`1 ` r2k`2 for k “ n´ 3j, n´ 3j ` 1, n´ 3j ` 2, and the claims
about (2.41) and (2.44) are proved by observing that

p1 ` rn´3jqp1 ` rn´3j`1qp1 ` rn´3j`2q

p1 ` r3tpn´1q{3u´3j`3q
ď 4,

as well as the inequality rpb´aq{2p1 ` raq ď 1 ` rb, valid for 0 ă r ă 1 and 0 ă a ă b.

The second factors in (2.40) and (2.43) can be estimated using the inequality rpb´aq{2p1 ´

raq{p1 ´ rbq ď a{b, valid for all r P R and b ě a ą 0. (This can be considered as a limiting
form of Lemma 2.A.13 when c Ñ 0.) In order to deal with the factor p1 ´ r6j`1q{p1 ´ r6j´5q,
we use the fact that the function a ÞÑ p1 ´ raq{a is decreasing in a if 0 ă r ď 1. This concludes
the proof of the first part of the lemma.

We cannot directly use the same method for the second factors in (2.41) and (2.44) because, in
each case, one exponent in the numerator, namely 3 tpn´ 1q{3u ` 3j, would be larger than both
exponents in the denominator. Instead, we argue that if a ě c ě d ě b and c` d ě a` b, then
we have

rpc`d´a´bq{2p1 ´ raqp1 ´ rbq

p1 ´ rcqp1 ´ rdq
ď

b

c` d´ a

p1 ´ raqp1 ´ rc`d´aq

p1 ´ rcqp1 ´ rdq

ď
b

c` d´ a
.

Insertion of specific values of a, b, c, d from (2.41) and (2.44) into the above inequality concludes
the proof for the first four cases. For the borderline cases where j “ tpn´ 1q{6u ` 1, we note
the following facts:

• The numerator of the first factor in (2.42) consists of exactly 5 factors of the form 1 ` rm,
so the first factor can be bounded above by 25;

• The second factor in (2.42) can be bounded above by 9{4;

• Finally, the extra factor in (2.45) can be bounded above by 1.

Combining the three ovservations concludes the proof for the borderline cases. ˝

Lemma 2.10.2 Suppose that n ą 7000, and that r0, j0 and θ0 are as defined as in (2.34), (2.48)
and (2.47), respectively. Then, for all r P pr0, 1s, we have

ϵ3,Dpn, rq ă 0.004, ϵ3,Epn, rq ă 0.008, ϵ3,F pn, rq ă 0.008.
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Proof: Lemma 2.10.1 implies the following inequalities for D̃n,j and Ẽn,j :

D̃n,jprq

Dn,0prq
ď

ˆ

3j ` 1
j

̇

3´3j , for 0 ď j ď tpn´ 1q{6u ,

(2.61)

D̃n,jprq

Dn,tpn´1q{6`1uprq
ď

j
ź

k“tpn´1q{6u`2

4ptpn´ 1q{3u ´ k ` 1q

p3k ´ tpn´ 1q{3u ´ 1q
, for tpn´ 1q{6u ă j ď tpn´ 1q{3u ,

(2.62)

Ẽn,jprq

En,0prq
ď

6j ` 1
3j ` 1r

´3j{2
ˆ

3j ` 1
j

̇

3´3j , for 0 ď j ď tpn´ 1q{6u ,

(2.63)

Ẽn,jprq

En,tpn´1q{6`1uprq
ď

j
ź

k“tpn´1q{6u`2

4ptpn´ 1q{3u ´ k ` 1q

p3k ´ tpn´ 1q{3u ´ 1q
, for tpn´ 1q{6u ă j ď tpn´ 1q{3u .

(2.64)

From Lemma 2.10.1, we can also provide bounds for the borderline case:

D̃n,tpn´1q{6`1uprq

Dn,tpn´1q{6uprq
ď 72,

Ẽn,tpn´1q{6`1uprq

En,tpn´1q{6uprq
ď 72.

We observe that the factor 4pK´k`1q

p3k´K´1q
does not exceed 4 for all k P rpK ` 1q{2,Ks, and it does

not exceed 1 for all k P r5pK ` 1q{7,Ks. Therefore, the right-hand sides of (2.62) and (2.64)
(where K “ tpn´ 1q{3u) can be bounded above by

4p 5
7 ´ 1

2 qpK`1q ď 4
3

14 ptn{3u`1q ă 2n{7`1.

Taking into account the inequality
`3j`1

j

˘

3´3j ă 4´j
b

27
16πj , we compute

tpn´1q{3u
ÿ

j“j0`1

D̃n,jprq

Dn,0prq
ă

8
ÿ

j“j0`1
4´j

c

27
16πj ` 72pn{6q4´n{6

d

27
16πn{62n{7`1

ď 4´j0

c

3
πj0

`

c

n

π
2n{7´n{3`3{233

ď n´2

d

4 log 2
2π logn ` 23{2´4n{2133

c

n

π
.

Applying analogous arguments, and by using the inequality 6j`1
3j`1 ă 2, we get

tpn´1q{3u
ÿ

j“j0`1

Ẽn,jprq

En,0prq
ă n´2

d

12 log 2
π logn ` 25{2´4n{2133

c

n

π
.
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Finally, using the fact that

gP pn, rq ď gP pn, 1q “

n´1
ÿ

k“2

2
3k

2 “
2n3 ´ 3n2 ` n´ 6

9 ă
2
9n

3

for n ě 2, we conclude that

ε3,Dpn, rq ď

d

4 log 2
3n logn ` 25{2´4n{2132n2,

and

ε3,Epn, rq ď

d

16 log 2
3n logn ` 27{2´4n{2132n2.

We finish the proof by using the condition n ą 7000 in the above bounds, and by recalling (2.46)
to draw a similar conclusion about ε3,F pn, rq. ˝

2.11 Bounding the tails

In order to bound the error term ϵ2,P pn, rq, we need bounds on Pn,jpreiθq{P̃n,jprq as well as on
P̃n,jprq{P̃n,0prq. The results of previous section, along with (2.46), imply the inequalities

j0
ÿ

j“0

D̃n,jprq

D̃n,0prq
ă

8
ÿ

j“0
3´3j

ˆ

3j ` 1
j

̇

ă 1.185, (2.65)

j0
ÿ

j“0

Ẽn,jprq

Ẽn,0prq
ă

8
ÿ

j“0
3´3j

ˆ

3j ` 1
j

̇

1.003j 6j ` 1
3j ` 1 ă 1.329, (2.66)

j0
ÿ

j“0

F̃n,jprq

F̃n,0prq
ă

j0
ÿ

j“0

Ẽn,jprq

Ẽn,0prq
ă 1.329. (2.67)

We now turn our attention to the quotient Pn,jpreiθq{P̃n,jprq.
Proposition 2.11.1 For all n ą 32, r P p0, 1s, θ P r´π, πs and 0 ď j ď j0, we have

ˇ

ˇ

ˇ

ˇ

Pn,jpreiθq

P̃n,jprq

ˇ

ˇ

ˇ

ˇ

ă exp p´ϕpn, 3j0 ` 2, n´ 6j0 ´ 2, r, ρqq ,

where ρ “ θ 1´rn

1´r , and

ϕpn, a, b, r, ρq :“ b3

n3
ra

1 ` r2a

p1 ` rq2

4
1 ´ rn{12

1 ´ r

¨

˚

˝

1 ´

g

f

f

e

1 `
p1´rq2p1`rbq2

p1`rq2p1´rbq2 ρ2

1 ` ρ2

˛

‹

‚

.
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Proof: The condition n ą 32 ensures that n ą 6j0 ` 2. Therefore, Lemma 2.A.5 implies that

´ log
ˇ

ˇ

ˇ

ˇ

Pn,jpreiθq

P̃n,jprq

ˇ

ˇ

ˇ

ˇ

ě

n´3j´1
ÿ

m“3j`2
´ log

ˇ

ˇ

ˇ

ˇ

1 ` rmeimθ ` r2me2imθ

1 ` rm ` r2m

ˇ

ˇ

ˇ

ˇ

ě

n´3j0´1
ÿ

m“3j0`2

2rm

1 ` r2m
sinpmθ{2q2

ě
2ra

1 ` r2a

a`b´1
ÿ

m“a

rm´a sinpmθ{2q2,

where we write a “ 3j0 ` 2 and b “ n´ 6j0 ´ 2 for simplicity of notation.

Now Lemma 2.A.8 allows us to do further estimation:

´ log
ˇ

ˇ

ˇ

ˇ

Pn,jpreiθq

P̃n,jprq

ˇ

ˇ

ˇ

ˇ

ě
ra

1 ` r2a

1 ´ rb

1 ´ r

¨

˚

˝

1 ´

g

f

f

f

e

1 ` κ p1`rbq2

p1´rbq2 tan2pθ{2q

1 ` κ p1`rq2

p1´rq2 tan2pθ{2q

˛

‹

‚

,

where

κ “
p1 ´ rbqp1 ´ rb{3q

p1 ` rbqp1 ` rb{3q
.

After substituting θ “ ρ 1´r
1´rn , we first note

tan θ2 ě
θ

2 “
ρ

2
1 ´ r

1 ´ rn
,

valid for |θ| ď π. Then we use the fact that 1`cx
1`cy is decreasing with respect to c if y ą x ą 0 to

estimate the factor in terms of ρ:

1 ´

g

f

f

f

e

1 ` κ p1`rbq2

p1´rbq2 tan2pθ{2q

1 ` κ p1`rq2

p1´rq2 tan2pθ{2q
ě 1 ´

g

f

f

f

e

1 ` κ p1`rbq2p1´rq2

4p1´rbq2p1´rnq2 ρ2

1 ` κ p1`rq2

4p1´rnq2 ρ2
.

By exploiting the inequality

1 ´

c

1 ` cx

1 ` cy
ě c

ˆ

1 ´

c

1 ` x

1 ` y

̇

for all 0 ă c ď 1 and y ą x ą 0, and by taking

c “ κ
p1 ` rq2

4p1 ´ rnq2 “
p1 ` rq2

4
1 ´ rb{3

1 ´ rb

ˆ

1 ´ rb

1 ´ rn

̇2 1
p1 ` rbqp1 ` rb{3q

ď 1,
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we arrive at the expected result:

´ log
ˇ

ˇ

ˇ

ˇ

Pn,jpreiθq

P̃n,jprq

ˇ

ˇ

ˇ

ˇ

ě
ra

1 ` r2a

1 ´ rb{3

1 ´ r

ˆ

1 ´ rb

1 ´ rn

̇2
p1 ` rq2

4p1 ` rbqp1 ` rb{3q

¨

˚

˝

1 ´

g

f

f

e

1 `
p1´rq2p1`rbq2

p1`rq2p1´rbq2 ρ2

1 ` ρ2

˛

‹

‚

“
ra

1 ` r2a

1 ´ rb{12

1 ´ r

ˆ

1 ´ rb

1 ´ rn

̇2
p1 ` rq2p1 ` rb{6qp1 ` rb{12q

4p1 ` rbqp1 ` rb{3q

ˆ

¨

˚

˝

1 ´

g

f

f

e

1 `
p1´rq2p1`rbq2

p1`rq2p1´rbq2 ρ2

1 ` ρ2

˛

‹

‚

ě
b3

n3
ra

1 ` r2a

1 ´ rn{12

1 ´ r

p1 ` rq2

4

¨

˚

˝

1 ´

g

f

f

e

1 `
p1´rq2p1`rbq2

p1`rq2p1´rbq2 ρ2

1 ` ρ2

˛

‹

‚

,

where the last step uses the inequality 1´rx

1´ry ą x
y , valid for 0 ď r ď 1 and y ě x. ˝

In order to convert the above lemma into an upper bound for ϵ2,P pn, rq, we first note that
ϕpn, a, b, r, ρq is increasing with respect to ρ. We estimate the integral in the definition of
ϵ2,P pn, rq by making the substitution θ “ 1´r

1´rn ρ as in Proposition 2.11.1 and by splitting the
integral at ρ “ 3

2 , as shown below:

ż 2π´θ0

θ0

sup
0ďjďj0

ˇ

ˇ

ˇ

ˇ

Pn,jpreiθq

P̃n,jprq

ˇ

ˇ

ˇ

ˇ

dθ ď 2 1 ´ r

1 ´ rn

ż π 1´rn

1´r

1{3
exp p´ϕpn, 3j0 ` 2, n´ 6j0 ´ 2, r, ρqq dρ

ď 2 1 ´ r

1 ´ rn

˜

ż 3{2

1{3
`

ż π 1´rn

1´r

3{2

¸

exp p´ϕpn, 3j0 ` 2, n´ 6j0 ´ 2, r, ρqq dρ

ă 2 1 ´ r

1 ´ rn

ż 3{2

1{3
exp p´ϕpn, 3j0 ` 1, n´ 6j0, r, ρqq dρ

` 2π exp p´ϕpn, 3j0 ` 2, n´ 6j0 ´ 2, r, 3{2qq .

Suppose for now that n ą 7000 and r P pr0, 1s. By looking at the various factors in the definition
of ϕpn, a, b, r, ρq, we observe that

n´ 6j0 ´ 2
n

ě 1 ´
6 log2 n` 2

n
ą 0.9887,

r3j0`2 ě exp
´

´p3 log2 n` 2q
a

α{n
¯

ą 0.5958,

p1 ` rq2

4 ě
p1 ` r0q2

4 ą
74
75 ,

p1 ´ rqp1 ` rbq

p1 ` rqp1 ´ rbq
ď

p1 ´ r0qp1 ` rn
0 q

p1 ` r0qp1 ´ rn
0 q

ă
1

150 .
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These observations enable us to conclude

ϕpn, 3j0 ` 2, n´ 6j0 ´ 2, r, ρq ą 0.98873 0.5958
1 ` p0.5958q2

74
75

˜

1 ´

d

1 ` pρ{150q2

1 ` ρ2

¸

1 ´ rn{12

1 ´ r

ą
5
12

˜

1 ´

d

1 ` 10´4

1 ` ρ2

¸

1 ´ rn{12

1 ´ r
,

for all n ą 7000 and ρ P r1{3, 3{2s. We define

ϕ˚pn, r, ρq :“ 5
12

˜

1 ´

d

1 ` 10´4

1 ` ρ2

¸

1 ´ rn{12

1 ´ r
, (2.68)

and obtain that
ż 2π´θ0

θ0

sup
0ďjďj0

ˇ

ˇ

ˇ

ˇ

Pn,jpreiθq

P̃n,jprq

ˇ

ˇ

ˇ

ˇ

dθ

ă 2 1 ´ r

1 ´ rn

ż 3{2

1{3
exp p´ϕpn, 3j0 ` 1, n´ 6j0, r, ρqq dρ

` 2π exp p´ϕpn, 3j0 ` 2, n´ 6j0 ´ 2, r, 3{2qq

ă 2 1 ´ r

1 ´ rn

ż 3{2

1{3
exp p´ϕ˚pn, r, ρqq dρ` 2π exp p´ϕ˚pn, r, 3{2qq . (2.69)

At this point, we incorporate the factor
a

gP pn, rq in the definition of ϵ2,P pn, rq. We note that,
using (2.52) and (2.97), we have

gP pn, rq ă
12
5

ˆ

1 ´ rn

1 ´ r

̇3
. (2.70)

In view of this upper bound, we prove some related monotonicity results.
Lemma 2.11.2 Let ϕ˚ be defined as in (2.68). For all n ą 7000 and all r P pr0, 1s, we have:

• The function
ˆ

1 ´ rn

1 ´ r

̇3{2
exp p´ϕ˚pn, r, 3{2qq (2.71)

is decreasing with respect to r.

• If ρ P r1{3, 3{2s, then the function

ˆ

1 ´ rn

1 ´ r

̇1{2
exp p´ϕ˚pn, r, ρqq (2.72)

is also decreasing with respect to r.
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Proof: By taking logarithmic derivatives with respect to r, these claims are equivalent to the
inequalities

3
2

B

Br
log 1 ´ rn

1 ´ r
ď

5
12

˜

1 ´

d

1 ` 10´4

1 ` p3{2q2

¸

B

Br

1 ´ rn{12

1 ´ r
, (2.73)

and
1
2

B

Br
log 1 ´ rn

1 ´ r
ď

5
12

˜

1 ´

d

1 ` 10´4

1 ` ρ2

¸

B

Br

1 ´ rn{12

1 ´ r
. (2.74)

In order to prove (2.73) and (2.74), we perform the following calculations:

• Lemmas 2.A.11 and 2.A.12 imply that

B

Br

1 ´ rn{12

1 ´ r
ě

p1 ´ rn{12qp1 ´ rpn´12q{24q

p1 ´ rq2 ě 241 ´ rn

1 ´ r
.

• Again, Lemma 2.A.11 imply that

B

Br
log 1 ´ rn

1 ´ r
ď

1 ´ rn

1 ´ r
.

• We have 2

5
12

˜

1 ´

d

1 ` 10´4

1 ` p3{2q2

¸

« 0.18553 ą
1
6 ,

therefore the right-hand side of (2.73) is at least 41´rn

1´r .

• Since ρ ě 1{3, we have

5
12

˜

1 ´

d

1 ` 10´4

1 ` ρ2

¸

ě
5
12

˜

1 ´

d

1 ` 10´4

1 ` 1{9

¸

« 0.021362 ą
1
48 , ˝

and thus the right-hand side of (2.74) is at least 1
2

1´rn

1´r . ˝

We are now ready to provide explicit upper bounds for ϵ2,P pn, rq.
Lemma 2.11.3 Suppose that n ą n0 “ 7000, and that r0, j0 and θ0 are defined as in (2.34),
(2.48) and (2.47), respectively. Then, for all r P pr0, 1s, we have

ϵ2,Dpn, rq ă 0.237, ϵ2,Epn, rq ă 0.266, ϵ2,F pn, rq ă 0.266.

Proof: Making use of Lemmas 2.11.1 and 2.11.2 as well as of (2.69) and (2.70), and also noticing
that ϕ˚pn, r, ρq is increasing with respect to n, we infer

ϵ2,P pn, rq “

c

gP pn, rq

2π

˜

j0
ÿ

j“0

P̃n,jprq

P̃n,0prq

¸

ˆ
ż 2π´θ0

θ0

sup
0ďjďj0

ˇ

ˇ

ˇ

ˇ

Pn,jpreiθq

P̃n,jprq

ˇ

ˇ

ˇ

ˇ

dθ

̇

2The reader is referred to the remark after Lemma 2.9.2 for the meaning of the symbol «.
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ă

c

24
5π

ˆ

1 ´ rn

1 ´ r

̇3{2
˜

j0
ÿ

j“0

P̃n,jprq

P̃n,0prq

¸

ˆ

˜

1 ´ r

1 ´ rn

ż 3{2

1{3
exp p´ϕ˚pn, r, ρqq dρ` π exp p´ϕ˚pn, r, 3{2qq

¸

ă

c

24
5π

˜

j0
ÿ

j“0

P̃n,jprq

P̃n,0prq

¸

ˆ

˜

ˆ

1
1 ´ r0

̇1{2 ż 3{2

1{3
exp p´ϕ˚pn0, r0, ρqq dρ` π

ˆ

1
1 ´ r0

̇3{2
exp p´ϕ˚pn0, r0, 3{2qq

¸

.

Now we substitute n0 “ 7000 and3 r0 “ expp´
a

α{n0q « 0.987239, and observe that
1

1´r0
« 78.3612 and ϕ˚pn0, r0, 3{2q « 14.5302. Moreover, we use numerical integration to

calculate
ż 3{2

1{3
exp p´ϕ˚pn0, r0, ρqq dρ « 0.0177756 ă

4
225 .

Therefore, we infer that
c

24
5π

ˆ

1
1 ´ r0

̇1{2 ż 3{2

1{3
exp p´ϕ˚pn, r0, ρqq dρ` π

ˆ

1
1 ´ r0

̇3{2
exp p´ϕ˚pn, r0, 3{2qq

ă

c

24
5π

ˆ

78.36121{2 ˆ
4

225 ` 78.36123{2π ˆ e´14.5302
̇

« 0.195842 ă
1
5 .

If this inequality is combined with (2.65) and (2.66), the proof is complete. ˝

2.12 Concluding the Proof

Having finally obtained upper bounds for all the error terms, we combine them to derive the main
result of this paper.
Theorem 2.12.1 The Borwein Conjecture is true for all n ą n0 “ 7000.
Proof: For all P P tD,E, F u and all m P rn, pdegPnq{2s, we let rs be the saddle point defined
in Lemma 2.5.1. When n ą n0, we can see that

λ “
rs ´ rn`1

s

1 ´ rs
ą
e
?

α{n0´epn0`1q
?

α{n0

1 ´ e
?

α{n0
ą 77.

Thus, from Lemma 2.8.1 we infer

ϵ0,P pn,m, rsq ă
7
?

2
?

3πλ
` erfc

c

λ

84 ă
7
?

2
?

231π
` erfc

c

77
84 « 0.54321 ă 0.544.

3See again the remark after Lemma 2.9.2 for the meaning of the symbol «.
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Also, λ ą 77 allows us to conclude that
ˆ

1 `

?
5

3
?

3λ

̇

ă 1.05,

which results in explicit bounds for ϵ1,P pn, rsq in Lemma 2.9.4,

ϵ1,Dpn, rsq ă 0.187 ˆ 1.05 ă 0.197,
ϵ1,Epn, rsq ă 0.043 ˆ 1.05 ă 0.046,
ϵ1,F pn, rsq ă 0.043 ˆ 1.05 ă 0.046.

Remembering the estimations in Lemmas 2.10.2 and 2.11.3, we make a table of the upper bounds
we have obtained so far:

P ϵ0,P ď ϵ1,P ď ϵ2,P ď ϵ3,P ď Sum
D 0.544 0.197 0.237 0.004 0.982
E 0.544 0.046 0.266 0.008 0.864
F 0.544 0.046 0.266 0.008 0.864

TABLE 2.1: List of upper bounds for the quantities ϵi,P pn, rsq.

From this table we can finally conclude that

ϵ0,P pn,m, rsq ` ϵ1,P pn, rsq ` ϵ2,P pn, rsq ` ϵ3,P pn, rsq ă 1

holds for all P P tD,E, F u and n ą n0, confirming the truth of the Borwein Conjecture in this
range. ˝

2.13 Computer verification for n ď 7000

We have explicitly verified rqmsPnpqq ą 0 for all P P tA,B,Cu, and all n and m with
1 ď n ď 7000 and 0 ď m ď n2 by using a computer. The program itself is written in C, and it
consists of the calculation of the coefficients of pq; qq3n{pq3; q3qn by iterative multiplication; in
each step, we multiply the current polynomial by an additional factor of p1 ´ q3j´2qp1 ´ q3j´1q.
Each polynomial multiplication is further optimized into a series of additions and subtractions
owing to the fact that the additional factor only has coefficients of 1 and ´1.

The GMP library [Gt02] was used for exact large-integer arithmetic. The computation was run
at Johannes Kepler University in Linz, on a computer with 32 Intel Xeon processors at 2GHz
(of which only 10 are used). The running time was 53 hours, and used up to 150 gigabytes of
memory for storing all the coefficients.

2.14 Discussion

There are two more Borwein Conjectures mentioned in [And95]: a “Second Borwein Conjecture"
that also relates to modulus 3, and a “Third Borwein Conjecture" that relates to modulus 5.
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Conjecture 2.14.1 (P. BORWEIN) Let the polynomials αnpqq, βnpqq and γnpqq be defined by
the relationship

pq; qq2
3n

pq3; q3q2
n

“ αnpq3q ´ qβnpq3q ´ q2γnpq3q. (2.75)

Then these polynomials have non-negative coefficients.
Conjecture 2.14.2 (P. BORWEIN) Let the polynomials νnpqq, ϕnpqq, χnpqq, ψnpqq and ωnpqq

be defined by the relationship

pq; qq5n

pq5; q5qn
“ νnpq5q ´ qϕnpq5q ´ q2χnpq5q ´ q3ψnpq5q ´ q4ωnpq5q, (2.76)

Then these polynomials have non-negative coefficients.

Both these conjectures are still wide open. In particular, no reasonable formulas for the poly-
nomials have been found so far. We remark that the comparison of (2.1) and (2.75) yields the
relationship αnpqq “ A2

npqq ` 2qBnpqqCnpqq, so non-negativity for the coefficients of αnpqq

follows trivially from this paper.

Recall that for our proof we used the formulas for Anpqq, Bnpqq and Cnpqq given in Theo-
rem 2.1.2. As we mentioned, these formulas had apparently not caught much attention so far.
It is rather a different type of formula that was found to be much more inspiring, namely (see
[And95, Theorem 3.1])

Anpqq “
ÿ

jPZ

p´1qjqjp9j`1q{2
„

2n
n` 3j

ȷ

q

, (2.77)

Bnpqq “
ÿ

jPZ

p´1qjqjp9j´5q{2
„

2n
n` 3j ´ 1

ȷ

q

, (2.78)

Cnpqq “
ÿ

jPZ

p´1qjqjp9j`7q{2
„

2n
n` 3j ` 1

ȷ

q

, (2.79)

where we used again the standard notation for q-binomial coefficients. These are so much more
imaginative because of their resemblance with a family of formulas appearing as generating
functions for partitions with restricted hook differences in [And+87]. Andrews et al. had shown
that

ÿ

jPZ

p´1qjqjK
jpα`βq`α´β

2

„

m` n
n´Kj

ȷ

q

(2.80)

is the generating function for certain partitions with restricted hook differences, withα, β,K,m, n
being non-negative integers satisfying α ` β ă 2K and β ´ K ď n ´ m ď K ´ α. Indeed,
the generating function in (2.77) is the “special case" of (2.80) in which m “ n, α “ 5{3,
β “ 4{3 and K “ 3. Similar observations hold for Bnpqq and Cnpqq. In other words, the result
of Andrews et al. seems to produce a proof of the Borwein Conjecture, except for the small flaw
that the choices of α and β are not integral, and thus not legitimate.

Bressoud [Bre96] extended the mystery by making the following much more general conjecture.
Conjecture 2.14.3 (BRESSOUD [BRE96, CONJECTURE 6]) Suppose that m,n P Z`, α and β
are positive rational numbers, and K is a positive integer such that αK and βK are integers. If
1 ď α ` β ď 2K ` 1 (with strict inequalities if K “ 2) and β ´ K ď n ´ m ď K ´ α, then
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the polynomial
ÿ

jPZ

p´1qjqjpKpα`βqj`Kpα´βqq{2
„

m` n

m`Kj

ȷ

has non-negative coefficients.

To this day, Bressoud’s conjecture has only been proved when α, β P Z (corresponding to the
result of Andrews et al. [And+87] mentioned above), and several infinite families of fractional
parameters (see [Ber20; BW05; Bre81; IKS99; War01; War03]). The connection to partitions
with hook difference conditions lets one hope that a similar combinatorial interpretation may
exist for the polynomials in the Borwein Conjecture, but to this day no such connection has been
found.

Our approach for proving Theorem 2.12.1 has been analytic. The formulas that we just discussed,
in particular the formulas (2.77)–(2.79) for Anpqq, Bnpqq and Cnpqq, are unsuitable for asymp-
totic approximation. The reason is that each dominating term in the sums (2.77)–(2.79) has
order Op4n{nq, whereas the actual order of magnitude of Anpqq, Bnpqq and Cnpqq is trivially
bounded above by Op3nq. In other words, in the sums (2.77)–(2.79), there is a huge amount of
cancellations going on, which are seemingly impossible to control in order to find reasonable
asymptotic estimates. In contrast, only the first term in the formulas in Theorem 2.1.2 contributes
to the sum, as the other terms are asymptotically negligible, as we have shown.

We also mention the result of Li [Li20], which proves the positivity of the sum
ÿ

m”k pmod n`1q

rqmsAnpqq

for all k with 0 ď k ď n, and furthermore establishes the asymptotics of this sum as 2 ¨

3nn´1p1 ` op1qq. This result is in line with our estimation: the central coefficient of Pnpqq can
be approximated by

Pn,0p1q
a

2πgP pn, 1q
“ C 3nn´3{2p1 ` op1qq.

For further work on the estimation of sums of coefficients of “Borwein-type polynomials" along
arithmetic progressions, we refer the reader to Li and Yu [LY20].

We are in fact very optimistic that our analytic approach will have further implications. It
seems that it is possible to adapt our approach for a proof of Conjectures 2.14.1 and 2.14.2. It
remains to see whether these ideas may also finally lead to a full proof of Bressoud’s Conjecture.
Furthermore, we believe that they may also provide a basis for establishing open unimodality
and log-concavity questions concerning polynomials given by products/quotients of factors of
the form 1 ´ qk, as found for example in [CWW08].
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2.A Appendix: Auxiliary inequalities

This appendix contains several auxiliary inequalities used in the course of the proof. As their
proofs are tedious, we put them here so as not to disturb the flow of the argument in the main text.

2.A.1 Approximation error by a Gaußian

This part of the appendix is dedicated to bounding the error in the approximation of a function by
a Gaußian function.
Lemma 2.A.1 Suppose that w P R`. Then we have

ż 3
4

0
we´wx2

´

ewx3
´ 1

¯

dx ă 1.1. (2.81)

Proof: Using a Taylor expansion of ewx3
, we write the integral as a sum involving the lower

incomplete gamma function γps, aq “
şa
0 e

´xxs´1dx:

ż 3
4

0
we´wx2

´

ewx3
´ 1

¯

dx “

8
ÿ

k“1

ż 3
4

0

wk`1

k! e´wx2
x3k dx

“

8
ÿ

k“1

1
2k!wpk´1q{2γ

ˆ

3k ` 1
2 ,

9
16w

̇

.

We denote the summand by

upk,wq :“ 1
2k!wpk´1q{2γ

ˆ

3k ` 1
2 ,

9
16w

̇

,

and attempt to bound the summand from above.

• For k “ 1, upk,wq “ up1, wq can be bounded above by 1
2Γp2q “ 1

2 .

• For k ě 2, we first note that limwÑ0 upk,wq “ limwÑ`8 upk,wq “ 0. This implies that
the maximum value of upk,wq on w P R` occurs at a point where Bupk,wq

Bw “ 0.

By taking the derivative, we see that any such point w0 satisfies

γ

ˆ

3k ` 1
2 ,

9
16w0

̇

“
2e´9w0{16 `3

4
?
w

˘3k`1

k ´ 1 .

By substituting this back into the expression for upk,wq, we infer that

sup
wě0

upk,wq ď sup
wě0

1
2k!wpk´1q{2

2e´9w{16 `3
4
?
w

˘3k`1

k ´ 1

“ sup
wě0

e´9w{16wk`1 `3
4
˘3k`1

k! pk ´ 1q
.
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Another derivative with respect tow shows that this supremum occurs whenw “ 16
9 pk`1q,

giving our final bound for upw, kq:

sup
wě0

upk,wq ď

`3
4
˘k´1

pk ` 1qk`1

k!ek`1pk ´ 1q

ă

`3
4
˘k´1 ?

k ` 1
pk ´ 1q

?
2π

, (2.82)

where the last step used Stirling’s approximation nn ă n!en
?

2πn
.

Directly using the upper bound (2.82), we get

8
ÿ

k“1
upk,wq ă

1
2 `

1
?

2π

8
ÿ

k“2

`3
4
˘k´1 ?

k ` 1
pk ´ 1q

« 1.60608,

which is worse than what we claimed. Instead, we use (2.82) for the terms with k ą 10, and
conclude that

8
ÿ

k“11
upk,wq ă

1
?

2π

8
ÿ

k“11

`3
4
˘k´1 ?

k ` 1
pk ´ 1q

« 0.027469 ă 0.03.

As for the leftover terms where 2 ď k ď 10, we first give a crude bound for large w by noticing
that

upk,wq “
1

2k!wpk´1q{2γ

ˆ

3k ` 1
2 ,

9
16w

̇

ă
1

2k!wpk´1q{2 Γ
ˆ

3k ` 1
2

̇

.

This inequality implies that if w ě 25, then we have

10
ÿ

k“2
upk,wq ă

10
ÿ

k“2

1
2k! 5k´1 Γ

ˆ

3k ` 1
2

̇

« 0.4446.

The interval r0, 25s is treated using the same method as in Lemma 2.A.9, and the resulting upper
bound is approximately 0.5677 ă 0.57.

Combining all the above arguments, we obtain

ż 3
4

0
we´wx2

´

ewx3
´ 1

¯

dx “

8
ÿ

k“1
upk,wq ă

1
2 ` 0.03 ` 0.57 “ 1.1.

˝

Lemma 2.A.2 Suppose that x0 ą 0 and f P C3pr´x0, x0s; Cq satisfy fpxq “ ´gx2{2 `

Op|x|3q for some g P R`. Let h “ sup|x|ďx0 |f3pxq|. Suppose further that x0 ă
9g
4h . Then we

have
ˇ

ˇ

ˇ

ˇ

c

g

2π

ż x0

´x0

efpxq dx´ 1
ˇ

ˇ

ˇ

ˇ

ď erfcpx0
a

g{2q ` 1.1 ˆ
2
?

2
3
?
π

h

g3{2 .

Proof: Let R2pxq “ fpxq ` gx2{2. Taylor’s theorem implies that

|R2pxq| ď
h

6 |x|3.
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We split the integral as follows:
ż x0

´x0

efpxq dx “

ż x0

´x0

e´gx2{2 dx`

ż x0

´x0

e´gx2{2
´

eR2pxq ´ 1
¯

dx

“

?
2π

?
g

p1 ´ erfcpx0
a

g{2qq `

ż x0

´x0

e´gx2{2
´

eR2pxq ´ 1
¯

dx.

Therefore we have
ˇ

ˇ

ˇ

ˇ

c

g

2π

ż x0

´x0

efpxq dx´ 1
ˇ

ˇ

ˇ

ˇ

ď erfcpx0
a

g{2q `

c

g

2π

ˇ

ˇ

ˇ

ˇ

ż x0

´x0

e´gx2{2
´

eR2pxq ´ 1
¯

dx

ˇ

ˇ

ˇ

ˇ

ă erfcpx0
a

g{2q `

c

2g
π

ż
9g
4h

0
e´gx2{2

´

ehx3{6 ´ 1
¯

dx. ˝

The last integral is then bounded using Lemma 2.A.1 by taking w “ 9g3{p2h2q, and making the
substitution x ÞÑ phxq{p3gq.
Lemma 2.A.3 Suppose that u, v P R`. Then we have

ż 3
4

?
2

0
we´wx2

´

ewx4
´ 1

¯

dx ă
1

3
?

3
. (2.83)

Proof: Using the Taylor expansion of ewx4
, we write the integral as a sum involving the lower

incomplete gamma function γps, aq “
şa
0 e

´xxs´1dx,

ż 3
4

?
2

0
we´wx2

´

ewx4
´ 1

¯

dx “

8
ÿ

k“1

ż 3
4

?
2

0

wk`1

k! e´wx2
x4k dx

“

8
ÿ

k“1

1
2k!wp2k´1q{2γ

ˆ

4k ` 1
2 ,

9
32w

̇

.

We denote the summand by

upk,wq :“ 1
2k!wp2k´1q{2γ

ˆ

4k ` 1
2 ,

9
32w

̇

,

and attempt to bound the summand from above. We first note that

lim
wÑ0

upk,wq “ lim
wÑ`8

upk,wq “ 0.

This means that the maximum value of upk,wq on w P R` occurs at a point where Bupk,wq

Bw “ 0.

By taking a derivative, we can see any such point w0 satisfies

γ

ˆ

4k ` 1
2 ,

9
32w0

̇

“
2e´9w0{32 ` 9

32w0
˘p4k`1q{2

2k ´ 1 .
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substituting it back into the expression of upk,wq, we are able to infer that

sup
wě0

upk,wq ď sup
wě0

1
2k!wpk´1q{2

2e´9w{32 ` 9
32w

˘p4k`1q{2

2k ´ 1

“ sup
wě0

e´9w{32wk`1 ` 9
32

˘p4k`1q{2

k!p2k ´ 1q
.

Another derivative with respect to w shows that this supremum occurs when w “ 32
9 pk ` 1q,

giving our final bound for upw, kq:

sup
wě0

upk,wq ď

` 9
32

˘k´1{2
pk ` 1qk`1

k!ek`1p2k ´ 1q

ă

` 9
32

˘k´1{2 ?
k ` 1

p2k ´ 1q
?

2π
, (2.84)

where the last step used Stirling’s approximation nn ă n!en
?

2πn
.

Similar to the proof of Lemma 2.A.1, we use (2.84) on the terms with k ě 2, and conclude that

8
ÿ

k“2
upk,wq ă

1
?

2π

8
ÿ

k“2

` 9
32

˘k´1{2 ?
k ` 1

p2k ´ 1q
« 0.04303 ă 0.0431.

As for the term up1, wq, we first note that

up1, wq “
γp5{2, 9w{32q

2
?
w

ă
Γp5{2q

2
?
w

“
3
?
π

8
?
w
,

therefore up1, wq ă 1
8 if w ě 9π. The interval r0, 9πs is treated using the same method as in

Lemma 2.A.9, and the resulting upper bound is approximately 0.14875 ă 0.1488.

Combining all the above arguments, we conclude that

ż 3
4

?
2

0
we´wx2

´

ewx4
´ 1

¯

dx “

8
ÿ

k“1
upk,wq ă 0.1488 ` 0.0431 “ 0.1919 ă

1
3
?

3
.

˝

Lemma 2.A.4 Suppose that x0 ą 0 and that f P C4pr´x0, x0sq is an even function that satisfies
fpxq “ ´gx2{2 `Op|x|4q for some g P R`. Let h “ sup|x|ďx0 |f p4qpxq|. Suppose further that
x2

0 ă
27g
8h . Then we have

c

g

2π

ż x0

´x0

efpxq dx ď 1 `

?
2

9
?
π

h1{2

g
.

Proof: Let Rpxq “ fpxq ` gx2{2. Taylor’s theorem implies that

|Rpxq| ď
h

24 |x|4.
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Similar to the proof of Lemma 2.A.2, we argue that
c

g

2π

ż x0

´x0

efpxq dx “ 1 ´ erfcpx0
a

g{2q `

c

g

2π

ż x0

´x0

e´gx2{2
´

eRpxq ´ 1
¯

dx

ď 1 `

c

g

2π

ż x0

´x0

e´gx2{2
´

eh|x|{24 ´ 1
¯

dx

“ 1 `

c

2g
π

ż

b

27g
8h

0
e´gx2{2

´

eh|x|{24 ´ 1
¯

dx. ˝

The last integral is then bounded using Lemma 2.A.3 by taking w “ 6g2{h and making the
substitution x ÞÑ

a

12g{hx.

2.A.2 Trigonometric sums and tail estimates

The second part of the appendix is dedicated to several inequalities that contribute to the proof of
Lemma 2.11.1.
Lemma 2.A.5 For all r P R` and θ P R, we have

ˇ

ˇ

ˇ

ˇ

1 ` reiθ ` r2e2iθ

1 ` r ` r2

ˇ

ˇ

ˇ

ˇ

ď exp
ˆ

´
2r

1 ` r2 sin2pθ{2q

̇

. (2.85)

Proof: It is straightforward to calculate
ˇ

ˇ

ˇ
1 ` reiθ ` r2e2iθ

ˇ

ˇ

ˇ

2
“ 1 ` p2 ´ 4sqr ` p3 ´ 16s` 16s2qr2 ` p2 ´ 4sqr3 ` r4,

where s “ 1
2p1 ´ cos θq “ sinpθ{2q2 P r0, 1s.

We claim that
ˇ

ˇ

ˇ

ˇ

1 ` reiθ ` r2e2iθ

1 ` r ` r2

ˇ

ˇ

ˇ

ˇ

2
ď

ˆ

1 ´ rs` r2

1 ` rs` r2

̇2
ď exp

ˆ

´
4rs

1 ` r2

̇

.

The first inequality is proved by the algebraic manipulation

p1`r`r2q2p1´rs`r2q2´p1`rs`r2q2 `

1 ` p2 ´ 4sqr ` p3 ´ 16s` 16s2qr2 ` p2 ´ 4sqr3 ` r4˘

“ 4r2sp1 ´ sq
`

p1 ` r2qp2 ´ r ` r2 ` 7rsq ` 4r2s2˘

ě 0,

while the second inequality can be obtained by taking x “ 2rs
1`r2 in the inequality 1´x{2

1`x{2 ď e´x,
which holds for all x P r0, 1s. ˝

Lemma 2.A.6 Let r P R` and b ě 2. Then we have

p1 ´ rb`1qp1 ´ rb´1q

rb´1pb2 ´ 1qp1 ´ rq2 ě
p1 ` rb{3qp1 ` rbq

2prb{3 ` rbq
.

Proof: Let z “ b
2 log r. The lemma is equivalent to

sinhpz ` z{bq sinhpz ´ z{bq

pb2 ´ 1q sinh2pz{bq
ě

coshpz{3q cosh z
coshp2z{3q

. (2.86)
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When b “ 2, the difference between the two sides of (2.86) is

sinhp3z{2q

3 sinhpz{2q
´

coshpz{3q cosh z
coshp2z{3q

“
pcoshpz{3q ´ 1q2p2 coshpz{3q ` 1qp8 cosh2pz{3q ` 6 coshpz{3q ´ 1q

3 coshp2z{3q
ě 0.

We now proceed to prove that the left-hand side of (2.86), viewed as a function with respect to b
and fixed z, is increasing. To this end, we compute its derivative as

2pb2 ´ 1qz coshpz{bq sinh2 z ´ b3 sinhpz{bq sinhpz ´ z{bq sinhpz ` z{bq

b2pb2 ´ 1q2 sinh3pz{bq
,

so it suffices to prove that

pb2 ´ 1qz coshpz{bq sinh2 z coshpz{bq sinh2pzq ě b3 sinhpz{bq sinhpz ´ z{bq sinhpz ` z{bq,

or equivalently,

sinhp2z{bq sinh2pzq

p2z{bqz2 ě
sinhpz{bq2 sinhpz ´ z{bq sinhpz ` z{bq

pz{bq2pz ´ z{bqpz ` z{bq
.

Taking the logarithm on both sides, and defining fpxq :“ log sinh x
x and fp0q :“ 0, we arrive at

another equivalent form,

fpz ` z{bq ` fpz ´ z{bq ´ 2fpzq ` 2fpz{bq ´ fp2z{bq ´ fp0q ď 0.

The left-hand side can be written as a triple integral,

fpz`z{bq`fpz´z{bq´2fpzq`2fpz{bq´fp2z{bq´fp0q “

¡

r0,z{bs2ˆrz{b,zs

f3pγ`α´βqdα dβ dγ,

and we conclude the proof by noting that

f3pxq “ 2pcosh xpsinh xq´3 ´ x´3q ď 0. ˝

The following inequality gives a simple rational lower bound for the Chebyshev polynomials of
the first kind Tnpxq, defined by Tnpcos θq “ cosnθ.
Lemma 2.A.7 For all x P r´1, 1s and all n P Z`, we have

Tnpxq ě
´n2p1 ´ xqp2x` 3q ` 3p1 ` xq

n2p1 ´ xq ` 3p1 ` xq
.

Proof: If n “ 1, then both sides are equal to x. From now on we assume n ě 2.

If ´1 ď x ď 1 ´ 3
n2 , then we have

´n2p1 ´ xqp2x` 3q ` 3p1 ` xq

n2p1 ´ xq ` 3p1 ` xq
ď ´1 ď Tnpxq.
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If 1 ´ 3
n2 ď x ď 1, then we write θ “ n

2 arccosx, so that

0 ď θ ď n arcsin
c

3
2n2 .

The two sides of the inequalities can be rewritten as

Tnpxq “ cos 2θ “ 1 ´ 2 sin2 θ

and

´n2p1 ´ xqp2x` 3q ` 3p1 ` xq

n2p1 ´ xq ` 3p1 ` xq
“ 1 ´

n2p2x` 4q

n2 ` 31`x
1´x

“ 1 ´
2 cosp2θ{nq ` 4

1 ` 3n´2 cot2pθ{nq

“ 1 ´
6 ´ 4 sin2pθ{nq

1 ` 3n´2 cot2pθ{nq
.

Thus it suffices to prove that

sin2 θp1 ` 3n´2 cot2pθ{nqq ď 3 ´ 2 sin2pθ{nq

for all n ě 2 and θ P r0, n arcsin
b

3
2n2 s.

For the last inequality, we make use of the inequalities, valid at least for x P p0, π{2q (The first
one is a consequence of the elementary inequality cosx ě 1 ´ x2{2 ` x4{4! ´ x6{6!, the second
one is a consequence of the fact that the Taylor expansion of cotx´ 1

x only has negative terms).

sin2 x ď x2 ´
x4

3 `
2x6

45 ,

cotx ď
1
x

´
x

3 ´
x3

45 ,

to conclude that

3 ´ 2 sin2pθ{nq ´ sin2 θp1 ` 3n´2 cot2pθ{nqq

ě 3 ´ 2
ˆ

θ2

n2 ´
θ4

3n4 `
2θ6

45n6

̇

´

ˆ

θ2 ´
θ4

3 `
2θ6

45

̇

˜

1 `
3
n2

ˆ

n

θ
´

θ

3n ´
θ3

45n2

̇2¸

“ θ4
ˆ

pn2 ´ 1qp7n2 ´ 3q

15n4 ´
pn2 ´ 2qp2n4 ´ 3q

45n6 θ2 ´
6n4 ´ 10n2 ` 1

675n8 θ4

´
4n2 ´ 1
2025n8 θ

6 ´
2

30375n8 θ
8
̇

.
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The last factor is clearly decreasing with respect to θ when n ě 2, so we proceed to find an upper
bound for θ. We note that

d

dn
n arcsin

c

3
2n2 “ arcsin

c

3
2n2 ´

1
b

2n2

3 ´ 1
,

and after substituting ϕ “ arcsin
b

3
2n2 we see that the derivative is equal to ϕ´ tanϕ ă 0. So

n arcsin
b

3
2n2 is decreasing with respect to n. This implies that we always have

0 ď θ ď n arcsin
c

3
2n2 ď 2 arcsin

c

3
8 ă

c

15
8 .

Using this bound, we conclude that

3 ´ 2 sin2pθ{nq ´ sin2 θp1 ` 3n´2 cot2pθ{nqq

ě θ4
ˆ

pn2 ´ 1qp7n2 ´ 3q

15n4 ´
pn2 ´ 2qp2n4 ´ 3q

45n6 θ2 ´
6n4 ´ 10n2 ` 1

675n8 θ4

´
4n2 ´ 1
2025n8 θ

6 ´
2

30375n8 θ
8
̇

ě θ4

˜

pn2 ´ 1qp7n2 ´ 3q

15n4 ´
pn2 ´ 2qp2n4 ´ 3q

45n6
15
8 ´

6n4 ´ 10n2 ` 1
675n8

ˆ

15
8

̇2

´
4n2 ´ 1
2025n8

ˆ

15
8

̇3
´

2
30375n8

ˆ

15
8

̇4
¸

“
15θ4

217n8
`

512n4pn2 ´ 4qp7n2 ´ 2q ` 6480pn2 ´ 1qp2n2 ` 1q ` 160n4 ` 6395
˘

ě 0. ˝

Lemma 2.A.8 Let a, b P Z` such that b ě 2, and r P r0, 1s. Then we have

a`b´1
ÿ

m“a

rm´a sin2pmθ{2q ě
1
2

1 ´ rb

1 ´ r

¨

˚

˝

1 ´

g

f

f

f

e

1 ` κ p1`rbq2

p1´rbq2 tan2pθ{2q

1 ` κ p1`rq2

p1´rq2 tan2pθ{2q

˛

‹

‚

,

where

κ “
p1 ´ rbqp1 ´ rb{3q

p1 ` rbqp1 ` rb{3q
.

Proof: This sum has a closed form,

a`b´1
ÿ

m“a

rm´a sinpmθ{2q2

“
1
2

ˆ

1 ´ rb

1 ´ r
´

pcos aθ ´ r cosppa´ 1qθqq ´ rbpcospa` bqθ ´ r cosppa` b´ 1qθqq

1 ´ 2r cos θ ` r2

̇
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“
1
2

ˆ

1 ´ rb

1 ´ r
´

pcos aθ ´ rb cospa` bqθqp1 ´ r cos θq ´ psin aθ ´ rb sinpa` bqθq sin θ
1 ´ 2r cos θ ` r2

̇

.

We use the Cauchy–Schwarz inequality, observe that

p1 ´ r cos θq2 ` pr sin θq2 “ 1 ´ 2r cos θ ` r2

and

pcos aθ ´ rb cospa` bqθq2 ` psin aθ ´ rb sinpa` bqθq2 “ 1 ´ 2rb cos bθ ` r2b,

to arrive at

b´1
ÿ

m“a

rm´a sinpmθ{2q2 ě
1
2

¨

˝

1 ´ rb

1 ´ r
´

d

1 ´ 2rb cos bθ ` r2b

1 ´ 2r cos θ ` r2

˛

‚. (2.87)

Comparing (2.87) with the claims of this lemma, we see that it suffices to prove that

1 ´ 2rb cos bθ ` r2b

1 ´ 2r cos θ ` r2 ď
p1 ´ rbq2 ` κp1 ` rbq2 tan2pθ{2q

p1 ´ rq2 ` κp1 ` rq2 tan2pθ{2q
.

By routine manipulation, the above inequality is equivalent to

cos θ ´ cos bθ ď
p1 ´ κqp1 ´ rb´1qp1 ´ rb`1q sin2 θ

rb´1 pp1 ´ rq2p1 ` cos θq ` κp1 ` rq2p1 ´ cos θqq
. (2.88)

Here, Lemma 2.A.7 implies the inequality

cos θ ´ cos bθ ď
pb2 ´ 1q sin2 θ

p1 ` cos θq ` b2p1 ´ cos θq{3 . (2.89)

Comparing (2.88) and (2.89), we see that it remains to show that

rb´1 `

p1 ´ rq2p1 ` cos θq ` κp1 ` rq2p1 ´ cos θq
˘

p1 ´ κqp1 ´ rb´1qp1 ´ rb`1q
ď

p1 ` cos θq ` b2p1 ´ cos θq{3
b2 ´ 1 . (2.90)

This is an immediate consequence of Lemma 2.A.6 and the inequality

κ ď
b2

3
p1 ´ rq2

p1 ` rq2 . (2.91)

Equation (2.91) can be directly verified for b “ 2. If b ě 3, we write r “ e´x{2, so that the
inequality is equivalent to

tanhpbxq tanhpbx{3q

ptanh xq2 ď
b2

3 .

This follows finally from the fact that tanh x{x is decreasing on R`. ˝
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2.A.3 Miscellaneous Inequalities

Lemma 2.A.9 For all z “ reiθ P C such that 0 ď r ď 1 and |θ| ď 1
3

p´ log rq

p1´rq
, we have

ˇ

ˇ

ˇ

ˇ

1
1 ` z ` z2

ˇ

ˇ

ˇ

ˇ

ă 1.002, (2.92)
ˇ

ˇ

ˇ

ˇ

p1 ´ zq2

1 ` z ` z2

ˇ

ˇ

ˇ

ˇ

ă 1.005, (2.93)
ˇ

ˇ

ˇ

ˇ

p1 ´ z2qp1 ` 7z ` z2q

p1 ` z ` z2q3

ˇ

ˇ

ˇ

ˇ

ă
7
5 , (2.94)

ˇ

ˇ

ˇ

ˇ

1 ` 12z ´ 12z2 ´ 56z3 ´ 12z4 ` 12z5 ` z6

p1 ` z ` z2q4

ˇ

ˇ

ˇ

ˇ

ă
5
3 . (2.95)

Proof: Let S be the region

tz “ reiθ P C | 0 ď r ď 1, |θ| ď
1
3

p´ log rq

p1 ´ rq
u.

´0.2 0.2 0.4 0.6 0.8 1

´0.4

´0.2

0.2

0.4

Re z

Im z

FIGURE 2.2: Illustration of the region S (shaded).

All the rational functions on the left-hand sides of the inequalities are holomorphic on S, so the
maximum modulus principle means it suffices to prove the inequalities on the boundary

BS “

"

z “ reiθ P C

ˇ

ˇ

ˇ

ˇ

0 ă r ă 1, ´π ď θ ď π, |θ| “
1
3

p´ log rq

p1 ´ rq

*

Y

"

eiθ

ˇ

ˇ

ˇ

ˇ

|θ| ď
1
3

*

.

The proof is done in a uniform way for all four rational functions (denoted by f in the subsequent
arguments): let g1, g2, g3 : r0, 1s Ñ C be a three-part parametrization of BS given by

g1pxq “ exp
ˆ

´3πx`
´πx

p1 ´ e3πxq
i

̇

g2pxq “ exp
ˆ

´3πx´
´πx

p1 ´ e3πxq
i

̇
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g3pxq “ exp
ˆ

2x´ 1
3 i

̇

.

We choose N “ 106 points in r0, 1s, namely 0, 1{N, . . . , pN ´ 1q{N , and argue that

|fpzq| ď
3max

k“1

˜

N´1max
j“0

|fpgkpj{Nqq| `
1
N

sup
xPr0,1s

|f 1pgkpxqq| |g1
kpxq|

¸

holds for all z P BS. Then we evaluate maxj |fpgkpj{Nqq| using a computer, and prove trivial
upper bounds for f 1, and g1

kpk “ 1, 2, 3q:

• The derivative f 1pzq is a rational function with denominator equal to a power of 1 ` z` z2.
We note that S Ă p´1{3, 1s ` p´1{3, 1{3qi implies that |1 ` z ` z2| ě

?
37{9 ą 2{3 for

all z P S, and use this to bound the denominators; on the other hand we use trivial triangle
inequalities to control the numerators, and combine them to obtain upper bounds for f 1.

• The derivatives of g1pxq and g2pxq can be bounded by e´3πx|3π`πi| “ π
?

10e´3πx ď 10.

• We obviously have |g1
3pxq| “ 2

3 for all x. ˝

By combining these bounds we conclude the proof.

The next lemma deals with inequalities between sums of the form
řn

k“1 k
ark.

Lemma 2.A.10 For all n P Z` and all r P p0, 1s, we have

3r2

˜

n
ÿ

k“1
k2rk

¸

ě

˜

n
ÿ

k“1
rk

¸3

, (2.96)

pr ` 1q

˜

n
ÿ

k“1
rk

¸3

ě r2

˜

n
ÿ

k“1
k2rk

¸

, (2.97)

pr2 ` 4r ` 1q

˜

n
ÿ

k“1
rk

¸ ˜

n
ÿ

k“1
k2rk

¸

ě rpr ` 1q

˜

n
ÿ

k“1
k3rk

¸

, (2.98)

pr2 ` 4r ` 1q2

˜

n
ÿ

k“1
k2rk

¸3

ě pr ` 1q3

˜

n
ÿ

k“1
k3rk

¸2 ˜

n
ÿ

k“1
rk

¸

, (2.99)

pr2 ` 10r ` 1q

˜

n
ÿ

k“1
rk

¸2 ˜

n
ÿ

k“1
k2rk

¸

ě r2

˜

n
ÿ

k“1
k4rk

¸

, (2.100)

pr2 ` 10r ` 1q

˜

n
ÿ

k“1
k2rk

¸2

ě pr ` 1q

˜

n
ÿ

k“1
k4rk

¸ ˜

n
ÿ

k“1
rk

¸

. (2.101)

Proof: For simplicity of notation, we use Xm to denote the sum
řn

k“1 k
mrk. The reader should

observe that, for fixed m, the sum Xm can be evaluated into a rational function in r and rn by
applying the binomial theorem.

The first inequality is proved by noticing that the coefficient rrksp3r2X2 ´ X3
0 q is equal to

3pk ´ 2q2 ´
`

k´1
2

˘

ą 0 for 3 ď k ď n` 2, and is negative for n` 3 ď k ď 3n. Moreover, the



50 Chapter 2. An analytic proof of the Borwein Conjecture

sum of the coefficients is equal to

3
n

ÿ

k“1
k2 ´ n3 “

np3n` 1q

2 ą 0.

So we have

3r2

˜

n
ÿ

k“1
k2rk

¸

´

˜

n
ÿ

k“1
rk

¸3

ě lrn`2 ´ lrn`3 `
np3n` 1q

2 rn`3 ą 0,

where l is the sum of all positive coefficients in 3r2X2 ´X3
0 .

In order to prove the other inequalities, we give explicit formulas for the coefficients of the
differences between both sides in those inequalities. More explicitly, after some tedious but
routine calculations, we arrive at the following results:

• For (2.97), we have

pr ` 1qX3
0 ´ r2X2 “ rn`3

2n´1
ÿ

k“0
akr

k,

where ak “ pn ` k ` 1q2 ´ 3pk ` 1q2 for 0 ď k ă n, and ak “ p2n ´ k ´ 1q2 for
n ď k ă 2n.

• For (2.98), we have

pr2 ` 4r ` 1qX0X2 ´ rpr ` 1qX3 “ rn`2
n

ÿ

k“0
bkr

k,

where b0 “ npn` 1q2 ´ 1, bn “ n2, bk “ npn` 1qp2n` 1q ´ p2k ` 1qpk2 ` k ` 1q for
0 ă k ă n.

• For (2.99), we have

pr2 ` 4r ` 1q2X3
2 ´ pr ` 1q3X0X

2
3 “

nrn`3

210

2n`1
ÿ

k“0
ckr

k,
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where

ck “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´12k7 ´ 42k6n´ 84k6 ` 168k5n2 ` 126k5n´ 294k5 ` 420k4n2

`315k4n´ 630k4 ` 1400k3n2 ` 1680k3n´ 798k3 ` 1680k2n2

`2247k2n´ 546k2 ` 1372kn2 ` 1974kn´ 156k ` 420n2 ` 630n, 0 ď k ă n,

114n7 ` 462n6 ` 1211n5 ` 1470n4 ` 301n3 ´ 252n2 ´ 156n, k “ n,

12k7 ` 42k6n` 84k6 ´ 168k5n2 ´ 126k5n` 294k5 ´ 420k4n2

´315k4n` 630k4 ´ 840k3n4 ´ 1680k3n3 ´ 2240k3n2 ´ 1680k3n

`798k3 ` 3276k2n5 ` 7560k2n4 ` 5250k2n3 ´ 420k2n2 ´ 1953k2n

`546k2 ´ 3024kn6 ´ 6468kn5 ´ 3360kn4 ` 840kn3 ´ 28kn2

´1386kn` 156k ` 816n7 ` 1512n6 ` 1372n5 ` 2100n4 ` 2114n3

`588n2 ´ 312n, n ă k ď 2n,
210n5, k “ 2n` 1.

• For (2.100), we have

pr2 ` 10r ` 1qX2
0X2 ´ r2X4 “ rn`3

2n´1
ÿ

k“0
dkr

k,

where dk “ n4 ` 4pk ` 1qn3 ´ 2pk ` 1q4 ` p6k ` 5qn2 ` 2pk ` 1qn for 0 ď k ă n, and
dk “ p2n´ 1 ´ kq2p2n2 ` pk ` 1q2q ` 2np3n` 1qp2n´ 1 ´ kq ` n2 for n ď k ă 2n.

• For (2.101), we have

pr2 ` 10r ` 1qX2
2 ´ pr ` 1qX0X4 “ nrn`2

n
ÿ

k“0
ekr

k,

where ek “ n3 ` 2pn´ kqpkn2 ` p3k2 ` 4k ` 2qn` pk ` 1q2pk ` 2qq.

It is easy to see that ak, bk, cn, c2n`1, dk and ek are non-negative. For the remaining ck’s, we
distinguish two cases:

• 0 ď k ă n. Here we substitute k “ λn with 0 ď λ ă 1 to see that

ck “
`

´12λ7 ´ 42λ6 ` 168λ5˘

n7 `
`

´84λ6 ` 126λ5 ` 420λ4˘

n6

`
`

´294λ5 ` 315λ4 ` 1400λ3˘

n5 `
`

´630λ4 ` 1680λ3 ` 1680λ2˘

n4

`
`

´798λ3 ` 2247λ2 ` 1372λ
˘

n3 `
`

´546λ2 ` 1974λ` 420
˘

n2

` p630 ´ 156λqn,

and note that 0 ď λ ă 1 implies that every coefficient above is non-negative.

• n ď k ď 2n. Similarly, we substitute k “ p2 ´ λqn to write

ck “
`

´12λ7 ` 210λ6 ´ 1344λ5 ` 4200λ4 ´ 5880λ3 ` 2940λ2˘

n7

`
`

84λ6 ´ 882λ5 ` 3360λ4 ´ 3360λ3 ´ 2520λ2 ` 3780λ
˘

n6
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`
`

´294λ5 ` 2625λ4 ´ 7000λ3 ` 7770λ2 ´ 4200λ` 2100
˘

n5

`
`

630λ4 ´ 3360λ3 ` 4620λ2 ` 840λ´ 1260
˘

n4

`
`

´798λ3 ` 2835λ2 ´ 1736λ` 630
˘

n3 `
`

546λ2 ´ 798λ
˘

n2 ´ 156λn.

In this case some of the coefficients (namely, the coefficients of n, n2 and of n4) are
negative. However, by exploiting the fact that n ě 1 and that

rn5sck ` rn4sck “ ´294λ5 ` 3255λ4 ´ 10360λ3 ` 12390λ2 ´ 3360λ` 840
“ 840p1 ´ 2λ` 2λ2q2 ` 7λ2p810 ´ 520λ´ 15λ2 ´ 42λ3q ą 0,

rn3sck ` rn2sck ` rn1sck “ ´798λ3 ` 3381λ2 ´ 2690λ` 630
“ 523p1 ´ 2λq2 ` p1 ´ λqp798λ2 ´ 491λ` 107q ą 0,

we can still directly conclude that ck ě 0. ˝

The following two inequalities are used in the proof of Lemma 2.11.2.
Lemma 2.A.11 Suppose that 0 ă r ď 1, and n ě 1. Then we have

p1 ´ rnq2

p1 ´ rq2 ě
B

Br

1 ´ rn

1 ´ r
ě

p1 ´ rnqp1 ´ rpn´1q{2q

p1 ´ rq2 .

Proof: Direct calculation reveals that

B

Br

1 ´ rn

1 ´ r
´

p1 ´ rnqp1 ´ rpn´1q{2q

p1 ´ rq2 “
rn´1{2

p1 ´ rq2

´

r´n{2 ´ rn{2 ´ npr´1{2 ´ r1{2q

¯

,

p1 ´ rnq2

p1 ´ rq2 ´
B

Br

1 ´ rn

1 ´ r
“

rn´1

p1 ´ rq2 pnp1 ´ rq ´ rp1 ´ rnqq .

Therefore, the lemma follows from the elementary inequality

rp1 ´ rnq

1 ´ r
ď n ď

r´n{2 ´ rn{2

r´1{2 ´ r1{2 . ˝

Lemma 2.A.12 Suppose that n ě 6924, and r P pexpp´
a

α{nq, 1s with α “ 2{
?

3. Then we
have

p1 ´ rn{12qp1 ´ rpn´12q{24q

p1 ´ rqp1 ´ rnq
ě 24.

Proof: First of all, the condition n ě 6924 implies that 1 ´ rpn´12q{24 ě 1 ´ r288, as well as
r ą expp´

a

α{6924q ą e´1{72.

Noting that the function 1´rn{12

1´rn is increasing with respect to n, we conclude that

p1 ´ rn{12qp1 ´ rpn´12q{24q

1 ´ rn
ě

p1 ´ rn{12qp1 ´ r288q

1 ´ rn
ě

p1 ´ r48qp1 ´ r288q

1 ´ r576 “
1 ´ r48

1 ` r288 .

Thus it suffices to prove that 1 ´ r48 ě 24p1 ´ rqp1 ` r288q for r P pe´1{72, 1s. To this end, we
prove that 1´r48 ´24p1´rqp1`r288q is decreasing on pe´1{72, 1s by calculating the derivative.
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We have

d

dr

`

p1 ´ r48q ´ 24p1 ´ rqp1 ` r288q
˘

“ 24p1 ´ 2r48 ` r288q ´ 48p1 ´ rqpr47 ` 144r287q

ď 24r48pr´48 ` r240 ´ 2q ď 24r48 max
´

e2{3 ` e´10{3 ´ 2, 1 ` 1 ´ 2
¯

“ 0,

where we exploit the convexity of the function r ÞÑ r´48 ` r240 ´ 2. ˝

The following inequality is used in the proof of Lemma 2.9.1.
Lemma 2.A.13 Suppose 0 ă a ď b, and 0 ă c ď π{b. Then for all z P C such that
pIm zq2 ď pRe zq2 ` c2, we have

ˇ

ˇ

ˇ

ˇ

sinhpazq

sinhpbzq

ˇ

ˇ

ˇ

ˇ

ď
sinpacq

sinpbcq
.

Proof: We make use of the infinite products

sinh z “ z
8

ź

k“1

ˆ

1 `
z2

k2π2

̇

and

sin z “ z
8

ź

k“1

ˆ

1 ´
z2

k2π2

̇

.

We claim that under the assumptions of this lemma, we have
ˇ

ˇ

ˇ

ˇ

k2π2 ` a2z2

k2π2 ` b2z2

ˇ

ˇ

ˇ

ˇ

ď
k2π2 ´ a2c2

k2π2 ´ b2c2 ,

from which the lemma follows after taking the product over all k ě 1.

In order to prove this inequality, we write z2 “ x ` iy and u “ kπ, so that x ě ´c2 and
ac ď bc ď u. Now the absolute value can be written as

ˇ

ˇ

ˇ

ˇ

u2 ` a2z2

u2 ` b2z2

ˇ

ˇ

ˇ

ˇ

“

d

pu2 ` a2xq2 ` a4y2

pu2 ` b2xq2 ` b4y2 ,

and the inequality can be proved by the manipulation
`

pu2 ` b2xq2 ` b4y2˘

pu2 ´ a2c2q2 ´
`

pu2 ` a2xq2 ` a4y2˘

pu2 ´ b2c2q2

“ u2pb2 ´ a2q
“

pu2 ´ a2c2qppx` c2qpu2 ` b2xq ` b2y2q

`pu2 ´ b2c2qppx` c2qpu2 ` a2xq ` a2y2q
‰

ě 0. ˝
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3
An asymptotic approach to
Borwein-type sign pattern

theorems

Abstract

The celebrated (First) Borwein Conjecture predicts that for all positive integers n the sign pattern
of the coefficients of the “Borwein polynomial”

p1 ´ qqp1 ´ q2qp1 ´ q4qp1 ´ q5q ¨ ¨ ¨ p1 ´ q3n´2qp1 ´ q3n´1q

is ` ´ ´ ` ´ ´ ¨ ¨ ¨ . It was proved by the first author in [Wan22]. In the present paper, we
extract the essentials from the former paper and enhance them to a conceptual approach for the
proof of “Borwein-like” sign pattern statements. In particular, we provide a new proof of the
original (First) Borwein Conjecture, a proof of the Second Borwein Conjecture (predicting that
the sign pattern of the square of the “Borwein polynomial” is also ` ´ ´ ` ´ ´ ¨ ¨ ¨ ), and a
partial proof of a “cubic” Borwein Conjecture due to the first author (predicting the same sign
pattern for the cube of the “Borwein polynomial”). Many further applications are discussed.

3.1 Introduction

It was in 1993 at a workshop at Cornell University, when what became known as the Borwein
Conjecture was born. (One of the authors was an intrigued witness of this event.) George
Andrews delivered a two-part lecture on “AXIOM and the Borwein Conjecture”, in which he
— first of all — stated three conjectures that had been communicated to him by Peter Borwein
(the first of which became known as “the Borwein Conjecture”), and then reported the lines of
attack that he had tried, all of which had failed to give a proof, stressing (quoting from [And95],
which contains Andrews’ findings in printed form) that “this is the sort of intriguing simply
stated problem that devotees of the theory of partitions love.” Indeed, the statement of the first
conjecture, dubbed the “First Borwein Conjecture” in [And95], is the following.
Conjecture 3.1.1 (P. BORWEIN) For all positive integers n, the sign pattern of the coefficients
in the expansion of the polynomial Pnpqq defined by

Pnpqq :“ p1 ´ qqp1 ´ q2qp1 ´ q4qp1 ´ q5q ¨ ¨ ¨ p1 ´ q3n´2qp1 ´ q3n´1q (3.1)

is ` ´ ´ ` ´ ´ ` ´ ´ ¨ ¨ ¨ , with a coefficient 0 being considered as both ` and ´.

This chapter is also available as arXiv preprint 2201.12415.
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The Second Borwein Conjecture from [And95] predicts the same sign behaviour of the coefficients
for the square of the “Borwein polynomial”.
Conjecture 3.1.2 (P. BORWEIN) For all positive integers n, the sign pattern of the coefficients in
the expansion of the polynomial P 2

npqq, where Pnpqq is defined by (3.1), is `´´`´´`´´ ¨ ¨ ¨ ,
with the same convention concerning zero coefficients.

The Third Borwein Conjecture from [And95] is an assertion on the sign behaviour of the
coefficients of a polynomial similar to Pnpqq, where however the involved modulus is 5 instead
of 3. We shall return to it at the end of this paper, see Conjecture 3.11.1 in Section 3.11.

Interestingly, the first author observed recently that a cubic version of the conjecture also appears
to hold, which both Borwein and Andrews missed.
Conjecture 3.1.3 (C. WANG) For all positive integers n, the sign pattern of the coefficients in
the expansion of the polynomial P 3

npqq, where Pnpqq is defined by (3.1), is `´´`´´`´´ ¨ ¨ ¨ ,
with the same convention concerning zero coefficients as before.

These deceivingly simple conjectures intrigued many researchers after Andrews had introduced
them to a larger audience — in particular the first one, Conjecture 3.1.1. Various approaches
were tried — combinatorial, or using q-series techniques (cf. e.g. [And95; Ber20; BW05; Bre96;
IKS99; SZ21; War01; War03; Zah06]) —, variations and generalisations were proposed (see
[BS19; Bre96; IKS99; SZ21]) — most notably Bressoud’s conjecture in [Bre96] — sometimes
leading to proofs of related results. However, none of these attempts came anything close to
progress concerning the original First Borwein Conjecture, Conjecture 3.1.1. It took almost 30
years until the first author succeeded in proving this conjecture in [Wan22], using analytic means.

Starting point of the proof in [Wan22] was explicit sum representations of the polynomials
Anpqq, Bnpqq, Cnpqq in the decomposition of Pnpqq given by

Pnpqq “ Anpq3q ´ qBnpq3q ´ q2Cnpq3q, (3.2)

due to Andrews [And95]. It should be noted that the First Borwein Conjecture, Conjecture 3.1.1,
is equivalent to the statement that all coefficients of the polynomials Anpqq, Bnpqq, Cnpqq are
non-negative. These coefficients were written in [Wan22] in terms of the obvious Cauchy
integrals. Subsequent saddle point approximations showed that for n ą 7000 the coefficient of
qm in Anpqq, Bnpqq, Cnpqq is positive in the range n ă m ă n2 ´ n. The proof could then be
completed by appealing to another result of Andrews [And95] which gives non-negativity of
the coefficients of qm in Anpqq, Bnpqq, Cnpqq for m ď n and m ě n2 ´ n “for free”, and by
performing a computer check of the conjecture for n ď 7000.

At this point, it must be mentioned that formulae analogous to Andrews’ formulae for the decom-
position polynomials Anpqq, Bnpqq, Cnpqq are not available for the analogous decompositions
of P 2

npqq or P 3
npqq, or for the corresponding decomposition of the polynomial Snpqq in the Third

Borwein Conjecture (Conjecture 3.11.1), and that it is unlikely that such formulae exist.

Thus, the article [Wan22] left open the question whether it was just an isolated instance that
this approach succeeded to prove the First Borwein Conjecture, or whether similar ideas could
also lead to proofs of the Second and Third Borwein Conjecture, or of the new Conjecture 3.1.3.
Admittedly, since the proof in [Wan22] relied on Andrews’ sum representations for the decom-
position polynomials Anpqq, Bnpqq, Cnpqq in an essential way, at the time it did not seem very
realistic to expect that, with these ideas, one could go beyond the First Borwein Conjecture.
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In the meantime, however, we realised that, instead of relying on Andrews’ sum representations
for the decomposition polynomials, the saddle point approximation idea could be directly applied
to Pnpqq and its powers, and, when doing this, surprisingly the quantities that have to be
approximated are very similar to those that were at stake in [Wan22] (compare, for instance, the
sum over m at the beginning of the proof of Proposition 11.1 in [Wan22] with (3.50) below, or
[Wan22, Lemma B.3] and Lemma 3.A.10). There is a price to pay though: while in [Wan22]
the (dominant) saddle points were located on the real axis, with this new approach we have to
deal with (dominant) saddle points located at complex points. This makes the estimations that
have to be performed more delicate.2 On the positive side, it allows one to proceed in a more
streamlined fashion — for example, here we do not have to deal with several different kinds
of peaks along the integration contour, as opposed to [Wan22] where an unbounded number of
peaks of two different kinds had to be considered; here we encounter only two peaks that are
(complex) conjugate to each other. Most importantly, it allows us to provide a uniform proof of
the First and Second Borwein Conjecture, as well as a partial proof of the cubic conjecture, and
altogether this is not longer than the proof of “just” the First Borwein Conjecture in [Wan22].

In the next section, we provide an outline of our proof of Conjectures 3.1.1 and 3.1.2, and of
“two thirds” of Conjecture 3.1.3. Very roughly, the approach that we put forward consists of the
following steps:

1. show that the conjectures hold for the “first few” and the “last few” coefficients (see Part A
in Section 3.2);

2. represent the coefficients by a contour integral (see Part B in Section 3.2);

3. divide the contour into two parts, the “peak part” (the part close to the dominant saddle
points of the integrand) and the remaining part, the “tail part” (see Part C in Section 3.2);

4. for “large” n (where “large” is made precise), bound the error made by approximating the
“peak part” by a Gaußian integral (the “peak error”) (see Part D in Section 3.2);

5. for “large” n, bound the error contributed by the “tail part” (the “tail error”) (see Part D in
Section 3.2);

6. verify the conjectures for “small” n (see Part E in Section 3.2);

7. put everything together to complete the proofs (see Part E in Section 3.2).

The details are then filled in in the subsequent sections. More precisely, in Section 3.3 we
explain how prior results of Andrews, of Kane, and of Borwein, Borwein and Garvan confirm
the conjectures for the “first few” and the “last few” coefficients. Section 3.4 prepares some
notation and preliminary material on log-derivatives of the “Borwein polynomial” Pnpqq that
is used ubiquitously in the subsequent sections. In Section 3.5, we make our choice of contour
for the integral representation precise: it is a circle whose radius satisfies an equation, namely
(3.19), that approximates the actual saddle point equation. Lemma 3.5.1 presents fundamental
properties that this choice satisfies. In Section 3.6, we make precise how we divide the contour
into the “peak part” and the “tail part”. Lemma 3.6.1 in that section presents first properties of
this cutoff, to be used in the later parts of the paper. The fundamental inequality that is derived
from this subdivision of the integral contour is the subject of Section 3.7. Namely, Lemma 3.7.1

2There is in fact a further subtlety not present in [Wan22] that makes the task of carrying through this new approach
more difficult, see Footnotes 3 and 7.
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provides a qualitative upper bound for the resulting approximation of the coefficients of P δ
npqq,

with δ P t1, 2, 3u, in terms of a peak error term and a tail error term. How to bound the
peak error efficiently from above is shown in Section 3.8. This section contains in particular a
fundamental result on the approximation of a (complex) function by a Gaußian integral that may
be of independent interest for other applications; see Lemma 3.8.1. Subsequently, Section 3.9 is
devoted to bound the tail error from above. Finally, in Section 3.10 we put everything together
and complete the proofs of Conjectures 3.1.1 and 3.1.2, and of “two thirds” of Conjecture 3.1.3.

Without any doubt, several of the arguments that we need are quite technical. In the interest of
not losing pace (too much) while guiding the reader through our proofs, we have “outsourced”
some of the auxiliary results and have collected them in an appendix.

It must be emphasised though that a certain “level of technicality” is unavoidable since the
approximations that we are carrying out here go with an intrinsic subtlety (already present
in [Wan22]) that is absent in most applications of the saddle point approximation technique: our
goal is to show that the coefficients of qm in the “Borwein polynomial” Pnpqq (respectively in its
powers) obey a certain sign pattern, with m running through a range that includes the asymptotic
orders Opnωq, where 1 ď ω ď 2. Consequently, our estimations must hold for that entire range,
which makes it necessary to manage expressions that contain the radius r of our contour that
is solution of the approximate saddle point equation (3.19) without further specification of its
asymptotic order, as for example in the definition of the cutoff in (3.25). The “best” that we can
say about r is its range as given in Lemma 3.5.1 (which again — necessarily — covers several
different asymptotic orders in terms of n at logarithmic scale).

The last section, Section 3.11, is devoted to a discussion of our approach and further applications.
We start by explaining what is missing for the completion of the proof of Conjecture 3.1.3.
We discuss the applicability of our methods for proving the Third Borwein Conjecture (see
Conjecture 3.11.1), a conjecture of Ismail, Kim and Stanton vastly generalising the First Borwein
Conjecture (see Conjecture 3.11.2), or related or similar conjectures, including some new ones
that we present in this last section (in particular Conjectures 3.11.3 and 3.11.4). We also point
out that the Bressoud Conjecture might as well be amenable to the ideas developed in this paper.
Finally, we contemplate on the question whether the Borwein Conjecture(s) should be considered
as combinatorial or analytic, a question which is evidently raised by our proof(s) (and other
observations).

3.2 An outline of the proof

Here, we provide a brief outline of our proof of Conjectures 3.1.1 and 3.1.2, and of a part of
Conjecture 3.1.3. From here on, we use the standard notation for q-shifted factorials,

pα; qqn “ p1 ´ αqp1 ´ αqq ¨ ¨ ¨ p1 ´ αqn´1q, for n ě 1,
pα; qq0 “ 1.

If |q| ă 1, or in the sense of formal power series in q, this definition also makes sense for n “ 8.
Using this notation, the “Borwein polynomial” can be written as

Pnpqq “
pq; qq3n

pq3; q3qn
.
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Furthermore, in the following we shall write rqmsP pqq for the coefficient of qm in the polyno-
mial P pqq.

Our goal is to show that the sign pattern of the coefficients

rqmsP δ
npqq, m “ 0, 1, 2, . . . ,

is ` ´ ´ ` ´ ´ ` ´ ´ ¨ ¨ ¨ , where δ is 1, 2, or 3.

Our proof is composed of several parts.

A. THE CONJECTURES HOLD FOR THE “FIRST” 3n`1 COEFFICIENTS AND THE “LAST” 3n`1
COEFFICIENTS. We observe that the first few coefficients of P δ

npqq and P δ
8pqq, with δ P t1, 2, 3u,

are identical. More precisely, we have

rqmsP δ
npqq “ rqmsP δ

8pqq (3.3)

for 0 ď m ď 3n and δ P t1, 2, 3u (actually for all integers δ). By a result of Andrews [And95]
this implies the sign pattern of the first 3n ` 1 coefficients of Pnpqq as predicted by Conjec-
ture 3.1.1. Similarly, by a result of Kane [Kan04], this implies the sign pattern of the first 3n` 1
coefficients of P 2

npqq as predicted by Conjecture 3.1.2. By using a result of Borwein, Borwein
and Garvan [BBG94], this also implies the sign pattern of the first 3n` 1 coefficients of P 3

npqq

as predicted by Conjecture 3.1.3. See Section 3.3 for the details.

Combining the above observation with the fact that Pnpqq, and hence P δ
npqq for all δ, is palin-

dromic, it remains to show that the coefficients of qm in P δ
npqq for 3n ď m ď pδ degPnq{2

follow the sign pattern predicted by Conjectures 3.1.1–3.1.3.

B. CONTOUR INTEGRAL REPRESENTATION OF THE COEFFICIENTS OF P δ
npqq. From now on,

for convenience, we shall often use Qnpqq to denote P δ
npqq, where δ is 1, 2, or 3.

Using Cauchy’s integral formula, the coefficient rqmsQnpqq can be represented as the integral

1
2πi

ż

Γ
Qnpqq

dq

qm`1 ,

where Γ is any contour about 0 with winding number 1. We will choose Γ as a circle centred at 0
with radius r for some r P R`, so that the integral becomes

rqmsQnpqq “
r´m

2π

ż π

´π
Qn

´

reiθ
¯

e´imθ dθ. (3.4)

C. THE SADDLE POINT APPROXIMATION. The exact choice of r is related to the saddle points
of q ÞÑ |q´mQnpqq|, and we will elaborate on this in Section 3.5. The appropriate choice for r is
a value smaller than 1 but close to 1, see Lemma 3.5.1.

Figure 3.1 illustrates the typical behaviour of θ ÞÑ |Pn

`

reiθ
˘

| on the circle tz P C : |z| “ ru. In
particular, we can observe the following general features in the graph:
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FIGURE 3.1: Modulus of P81p0.95eiθq. The vertical axis has logarithmic scale.

• the function has two peaks close to θ “ 2π{3 and θ “ ´2π{3;3

• the function values outside small neighbourhoods of θ “ 2π{3 and θ “ ´2π{3 are very
small compared to the peak value.

Based on these heuristics, we choose a cutoff θ0 (to be determined in (3.25) in Section 3.6), and
distinguish the following parts of the interval r´π, πs:

• The peak part Ipeak :“ r´2π{3 ´ θ0,´2π{3 ` θ0s Y r2π{3 ´ θ0, 2π{3 ` θ0s.

• The tail part Itail :“ r´π, πszIpeak.

Naturally, the integral (3.4) can be divided into two subintegrals corresponding to the two parts
above.

We make the following observations concerning the subintegrals:

‚ The subintegral
ş

Ipeak
Qn

`

reiθ
˘

e´imθ dθ can be approximated by a Gaußian integral. More
specifically, if we define

gQnprq “ ´ Re B2

Bθ2 logQnpreiθq

ˇ

ˇ

ˇ

ˇ

θ“2π{3
, (3.5)

then we have
ż 2π{3`θ0

2π{3´θ0

Qnpreiθqe´imθ dθ “ e´2πmi{3
ż θ0

´θ0

Qnpreipθ`2π{3qqe´imθ dθ

3The actual locations of the peaks have arguments slightly off θ “ ˘2π{3. This is one of the delicate points of the
estimations to be performed.
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« e´2πmi{3Qnpre2πi{3q

ż θ0

´θ0

e´gQn prqθ2{2 dθ

“ e´2πmi{3Qnpre2πi{3q

?
2π

a

gQnprq
erf

˜

θ0
a

gQnprq
?

2

¸

. (3.6)

Here, “«” means “approximated by”. Since Qnpqq is a polynomial with real coefficients, we
have Qnpz̄q “ Qnpzq. Therefore, an analogous approximation holds for the other interval of
Ipeak, that is, for the integral over θ in r´2π{3 ´ θ0,´2π{3 ` θ0s. The error made by these
approximations is captured by the term ϵ0,Qnpm, rq defined below.

‚ The subintegral over Itail can be bounded above by
ˇ

ˇ

ˇ

ˇ

ż

Itail

Qnpreiθqe´imθ dθ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
Qnpre2πi{3q

ˇ

ˇ

ˇ

ż

Itail

ˇ

ˇ

ˇ

ˇ

Qnpreiθq

Qnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

dθ. (3.7)

The error of this approximation is captured by the term ϵ1,Qnprq defined below.

D. BOUNDING THE ERRORS. Our next step is to estimate the error in the approximation (3.6) of
the peak part, and to bound the tail part (3.7) of the integral. Accordingly, we define the error
terms ϵ0,Qnpm, rq and ϵ1,Qnprq. Both are relative errors, namely relative to the modulus of the
(presumably, at this point) dominating part

|Qnpre2πi{3q|

?
2π

a

gQnprq
erf

˜

θ0
a

gQnprq
?

2

¸

(cf. (3.6)). Namely, we define

ϵ0,Qnpm, rq

:“ 2

ˇ

ˇ

ˇ

ˇ

ˇ

a

gQnprq
?

2π erf
`

θ0
a

gQnprq{2
˘

ż θ0

´θ0

˜

Qnpreipθ`2π{3qq

Qnpre2πi{3q
e´imθ ´ e´gQn prqθ2{2

¸

dθ

ˇ

ˇ

ˇ

ˇ

ˇ

(3.8)

and

ϵ1,Qnprq :“
a

gQnprq
?

2π erf
`

θ0
a

gQnprq{2
˘

ż

Itail

ˇ

ˇ

ˇ

ˇ

Qnpreiθq

Qnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

dθ. (3.9)

In Lemma 3.7.1 in Section 3.7, we show that, with these error terms, the coefficient of qm in
Qnpqq can be approximated by

ˇ

ˇ

ˇ

ˇ

ˇ

rm
a

2πgQnprq

erf
`

θ0
a

gQnprq{2
˘

1
|Qnpre2πi{3q|

rqmsQnpqq ´ 2 cos
´

argQnpre2πi{3q ´ 2mπ{3
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ0,Qnpm, rq ` ϵ1,Qnprq. (3.10)

Therefore, there are two things to accomplish, the second required by the first:
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1. Show that the error terms ϵ0,Qnpm, rq and ϵ1,Qnprq are small enough to satisfy the inequal-
ity

ϵ0,Qnpm, rq ` ϵ1,Qnprq ă

ˇ

ˇ

ˇ
2 cos

´

argQnpre2πi{3q ´ 2mπ{3
¯ˇ

ˇ

ˇ
. (3.11)

2. Get a control on argQnpre2πi{3q and show that it is less than 2π
3 ´ π

2 “ π
6 in absolute

value.

Both together allow us to conclude that rqmsQnpqq has the same sign as the cosine term on the
right-hand side of (3.11), that is, it is positive if m ” 0 (mod 3) and negative otherwise, exactly
as predicted by Conjectures 3.1.1–3.1.3.

The peak error ϵ0,Qnpm, rq is estimated in Section 3.8 (see Lemma 3.8.3), and Section 3.9 treats
the tail error ϵ1,Qnprq (see Lemma 3.9.4).

E. CONCLUDING THE PROOF. As explained in the preceding Part D, the tasks formulated in
Items (1) and (2) above must be accomplished. Task (2) is taken care of in Lemma 3.10.1. By
combining this with the obtained bounds on ϵ0,Qnpm, rq and ϵ1,Qnprq, Task (1) is carried out in
the remaining parts of Section 3.10 for “large” n. In combination with suitable direct calculations
for “small” n, this leads to full proofs of the First and Second Borwein Conjecture, and to a
partial proof of the Cubic Borwein Conjecture, see Theorems 3.10.2, 3.10.3 and 3.10.4.

3.3 The infinite cases

In this section, we show that the first 3n` 1 coefficients of P δ
npqq, where δ is 1, 2, or 3, follow

the sign pattern ` ´ ´ ` ´ ´ ` ´ ´ ¨ ¨ ¨ , by using the simple fact, observed before in (3.3), that
they agree with the corresponding coefficients of P δ

8pqq, and by exploiting known properties of
the expansions of P δ

8pqq.

Andrews [And95, Eqs. (4.2)–(4.4)] showed that

P8pqq “
pq; qq8

pq3; q3q8

“
pq12, q15, q27; q27q8 ´ qpq6, q21, q27; q27q8 ´ q2pq3, q24, q27; q27q8

pq3; q3q8

.

Clearly, this implies that the sign pattern of the coefficients of P8pqq is `´ ´`´´ `´´ ¨ ¨ ¨ .4

Using the circle method, Kane [Kan04] established the sign pattern ` ´ ´ ` ´ ´ ` ´ ´ ¨ ¨ ¨

for the power series pq; qq2
8{pq3; q3q8, except for the coefficient of q5 which is equal to 1. A

multiplication with the series pq3; q3q´1
8 (which has positive coefficients) transforms this power

series into P 2
8pqq, and in the process removes the mentioned outlier.

Finally, it follows from results of Borwein, Borwein and Garvan [BBG94] that

pq; qq3
8

pq3; q3q8

“
ÿ

m,nPZ

q3pm2`mn`n2q ´ q
ÿ

m,nPZ

q3pm2`mn`n2`m`nq, (3.12)

4We point out that this sign pattern of the coefficients of P8pqq also follows from a general result of An-
drews [And95, Theorem 2.1] that, according to [And95], has also been independently obtained by Garvan and
P. Borwein.
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where, as usual, Z denotes the set of integers. To be precise, from Items (ii) and (iii) of Lemma 2.1
in [BBG94], one can derive the equation bpqq “ apq3q ´ cpq3q. Proposition 2.2 in [BBG94]
shows that bpqq equals the left-hand side in (3.12), while the definitions of apq3q and bpq3q

from [BBG94] are as stated on the right-hand side of (3.12). As before, multiplication of both
sides of (3.12) by pq3; q3q´2

8 , which is a power series with non-negative coefficients, shows that
the coefficients of P 3

npqq follow the sign pattern ` ´ ´ ` ´ ´ ` ´ ´¨.5

It should be noted however that (3.12) also implies that the coefficients of q3m`2 in P 3
8pqq are

zero for all m. This observation, and its implications, will be discussed in more detail in Item (1)
of Section 3.11.

3.4 The log-derivatives of the “Borwein polynomial” Pnpqq

In this section, we present some basic facts on derivatives of logPnpreiθq with respect to θ.
These will be used ubiquitously in the subsequent sections.

By routine calculation, we see that the j-th derivative of logPnpreiθq, “centred” at θ “ 2π{3,
can be expressed as

ˆ

B

Bθ

̇j

logPnpreiθq “
1
2 i

jUjpn, reipθ´2π{3qq `

?
3

2 ij´1Vjpn, reipθ´2π{3qq, (3.13)

where

Ujpn, zq :“
n

ÿ

k“1

´

p3k ´ 2qjujpz3k´2q ` p3k ´ 1qjujpz3k´1q

¯

, (3.14)

Vjpn, zq :“
n

ÿ

k“1

´

p3k ´ 2qjvjpz3k´2q ´ p3k ´ 1qjvjpz3k´1q

¯

, (3.15)

and the rational functions uj and vj are given by

ujpzq :“
ˆ

z
d

dz

̇j´1 zp1 ` 2zq

1 ` z ` z2 , (3.16)

vjpzq :“
ˆ

z
d

dz

̇j´1 z

1 ` z ` z2 . (3.17)

In particular, the first few of these functions are given by

u1pzq “
zp1 ` 2zq

1 ` z ` z2 ,

v1pzq “
z

1 ` z ` z2 ,

u2pzq “
zp1 ` 4z ` z2q

p1 ` z ` z2q2 ,

5We point out that this sign pattern of the coefficients of P 3
8pqq also follows from a general result of Schlosser and

Zhou [SZ21, Theorem 6].
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v2pzq “
zp1 ´ z2q

p1 ` z ` z2q2 ,

u3pzq “
zp1 ´ z2qp1 ` 7z ` z2q

p1 ` z ` z2q3 ,

v3pzq “
zp1 ´ z ´ 6z2 ´ z3 ` z4q

p1 ` z ` z2q3 ,

u4pzq “
zp1 ` 12z ´ 12z2 ´ 56z3 ´ 12z4 ` 12z5 ` z6q

p1 ` z ` z2q4 ,

v4pzq “
zp1 ´ z2qp1 ´ 4z ´ 21z2 ´ 4z3 ` z4q

p1 ` z ` z2q4 .

We also define the sums

Xjpn, rq :“
3n
ÿ

k“1
3∤k

kjrk “

3n
ÿ

k“1
kjrk ´ 3j

n
ÿ

k“1
kjpr3qk, (3.18)

and denote the corresponding infinite sum by Xjp8, rq. It is easy to see that
p1 ´ r3qj`1Xjpn, rq is a polynomial in n, r and rn. Furthermore, Xjpn, rq is increasing
with respect to both n and r. A collection of inequalities between various products of these sums
is given in Lemma 3.A.7. These inequalities are used in the estimations in Section 3.8.

3.5 Locating the dominant (approximate) saddle points

The results of Section 3.3, and the fact that the polynomial Pnpqq is palindromic for all n, together
show that it suffices to consider rqmsQnpqq for m P r3n, pdegQnq{2s, where Qn is chosen as
P δ

npqq for δ P t1, 2, 3u, as before. The purpose of this section is to describe our choice of the
radius r in (3.4).

Ideally, in line with standard practice in analytic combinatorics, the radius r in the integral in (3.4)
should be chosen such that the circle θ ÞÑ reiθ, ´π ď θ ď π, passes through the dominant saddle
point(s)6 of the function q ÞÑ |q´mQnpqq|. If Qnpqq has non-negative coefficients, according
to Pringsheim’s theorem, the dominant saddle point is located on the positive real axis, and the
problem is equivalent to the minimisation of the quantity r´mQnprq.

In our case however, the dominant saddle points are located near the complex third roots of unity
instead of on the positive real axis. In analogy to the process above, we choose the radius r so
that the quantity r´m

ˇ

ˇQnpre2πi{3q
ˇ

ˇ is minimised. By taking a log-derivative, and substituting

6Here, “dominant saddle point(s)” means “the saddle point(s) with largest modulus of the integrand”. We shall
sometimes also abuse terminology and speak of “dominant peaks”.
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Qn “ P δ
npqq, we obtain an equation in terms of r:7

rRe
ˆ

d

dr
logPnpre2πi{3q

̇

“
m

δ
. (3.19)

It must be emphasised that the solution r of this equation (it will indeed be shown in Lemma 3.5.1
below that there is a unique solution) depends on n and m (and δ of course). We will however
most of the time suppress this dependency in the interest of better readability. Only occasionally,
when we think that this is necessary, we will add an index that indicates the dependency (as for
example in Lemmas 3.5.1 and 3.8.3, or in the proofs of Theorems 3.10.2, 3.10.3 and 3.10.4).

It turns out that, under the above restriction on m, the minimiser radius r approaches 1 as n Ñ 8.
These observations are proved in the following lemma. They are crucial in our estimations of the
error terms ϵi,Qn , i “ 0, 1.
Lemma 3.5.1 For all integers n ě 1 and m P p0, δ degPnq, with δ P t1, 2, 3u, the approximate
saddle point equation (3.19) has a unique solution r “ rm,n P R`. Moreover, if 3n ď m ď

pδ degPnq{2, then we have r0 ă r ď 1, where

r0 “ e´
?

4δ{27n. (3.20)

Furthermore, as a function in m, the solution r “ rm,n to (3.19) is increasing.
Proof: We infer from (3.13) that the left-hand side of (3.19) can be written as

rRe
ˆ

d

dr
logPnpre2πi{3q

̇

“
1
2

3n
ÿ

k“1
3∤k

ku1prkq, (3.21)

where u1pxq “ xp1 ` 2xq{p1 ` x` x2q is defined as in Section 3.4.

Therefore, Equation (3.19) is equivalent to

3n
ÿ

k“1
3∤k

ku1prkq “
2m
δ
. (3.22)

Note that

u1
1prq “

1 ` 4r ` r2

p1 ` r ` r2q2 ą 0, (3.23)

so u1 is increasing. Moreover, we have the special values

u1p0q “ 0, u1p1q “ 1, lim
rÑ`8

u1prq “ 2. (3.24)

7The reader must be warned: this is not the saddle point equation! The saddle point equation is q d
dq

Pnpqq “ m{δ,
as an equation for complex q. It will have two solutions with arguments close to ˘2π{3, but not exactly ˘2π{3.
Equation (3.19) is a “saddle point-like equation”, in which the argument of the solution is “frozen” to 2π{3. In our
analysis, it mimics the role of a saddle point equation, but is in fact “just” an “approximate” saddle point equation. We
made this deliberate choice since we deemed it unfeasible to carry through the programme of approximations without
having a firm control on the arguments of the (approximate or not) saddle points. As it turns out, this is nevertheless
good enough for performing our estimations.
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Along with the fact that

degPn “

3n
ÿ

k“1
3∤k

k,

these special values imply that the sum

3n
ÿ

k“1
3∤k

ku1prkq{2

tends to 0, pdegPnq{2, and degPn when r Ñ 0, 1,`8, respectively. The existence and
uniqueness of solution, as well as the upper bound r ď 1, follow from the intermediate value
theorem.

It remains to prove the lower bound on r. Since u1 is increasing, it suffices to show that

3n
ÿ

k“1
3∤k

ku1prk
0q ă

6n
δ
.

Equation (3.88) in Lemma 3.A.1 implies that

3n
ÿ

k“1
3∤k

ku1prk
0q ă

2
?

3

3n
ÿ

k“1
3∤k

krk
0 ă

2
?

3

8
ÿ

k“1
3∤k

krk
0

“
2

?
3
r0p1 ` 2r0 ` 2r3

0 ` r4
0q

p1 ´ r3
0q2 ă

8
9p´ log r0q´2 “

6n
δ
,

where the last inequality used the fact that the maximum of the function

r ÞÑ
2rp1 ` 2r ` 2r3 ` r4qp´ log rq2

?
3p1 ´ r3q2

on r0, 1s is approximately 0.881906 ă 8{9.

For the additional assertion at the end of the lemma, we recall from (3.23) that u1prq is increasing
in r. Therefore, by (3.22), if m is increasing, so must be r. ˝

3.6 The choice of cutoff

Our choice of the cutoff θ0 announced in Part C of Section 3.2 is

θ0 :“ C0
1 ´ r3

1 ´ r3n
, (3.25)

where the constant C0 is chosen as 10
81 .
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We give some immediate consequences of (3.20) and (3.25), to be used in the following two
sections.
Lemma 3.6.1 With Z` denoting the set of positive integers, suppose that n P Z`, δ P t1, 2, 3u,
t ě 0, and r0 and θ0 are defined as in (3.20) and (3.25), respectively. Then the following results
hold for r P pr0, 1s and θ P r´tθ0, tθ0s:

1. For n ě 4, we have
1 ´ r3

0
1 ´ r3n

0
ď ´3 log r0, (3.26)

and consequently

ˇ

ˇ

ˇ
log reiθ

ˇ

ˇ

ˇ
ă p1 ` 3tC0qp´ log r0q ď

2p1 ` 3tC0q

3
?
n

. (3.27)

2. For k P r0, 3ns, the complex number rkeikθ belongs to the region S3tC0 , where Sρ is
defined by

Sρ :“
"

ReiΘ : 0 ď R ď 1 and |Θ| ď ρ
´ logR
1 ´R

*

(3.28)

for ρ ą 0.

3. Suppose |θ| ď tθ0 for some t ě 0. For r P pr0, 1s and ℓ P Z`, we have

sup
kPr0,3ns

ˇ

ˇ

ˇ
log reiθ

ˇ

ˇ

ˇ

ℓ
kℓrk ď ℓℓpe´1 ` 3tC0qℓ. (3.29)

4. For j ě 0, let Xjpn, rq be defined as in (3.18). Then, for n ě 400 and r P pr0, 1s, we have

X0pn, rq ą 0.95
?
n, (3.30)

X1pn, rq ą 1.35n, (3.31)

X3pn, rq ą 16n2, (3.32)

X4pn, rq ą 94n5{2. (3.33)

Proof: (1) We have ´ log r0 “
a

4δ{27n ď
a

12{108 “ 1{3. Next we substitute x :“
´3 log r0 in the inequality p1 ´ e´xq{x ď 1 ´ e´1{x (valid for 0 ď x ď 1) to obtain

1 ´ r3
0

´3 log r0
ď 1 ´ e

1
3 log r0 ă 1 ´ e3n log r0 “ 1 ´ r3n

0 ,

where the last inequality holds because 9nplog r0q2 “ 4δ{3 ą 1. The inequality (3.27) follows
from

ˇ

ˇ

ˇ
log reiθ

ˇ

ˇ

ˇ
ď ´ log r ` tθ0 ď ´ log r0 ` tC0

1 ´ r3
0

1 ´ r3n
0

ď p1 ` 3tC0qp´ log r0q.
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(2) The definition (3.25) implies that

k|θ| ď ktC0
1 ´ r3

1 ´ r3n
ď ktC0

´ log r3

1 ´ rk
“ 3tC0

´ log rk

1 ´ rk
.

(3) We first note that

˜

sup
kPr0,3ns

kℓrk

¸1{ℓ

“

#

ℓ
ep´ log rq

, if r ď e´ℓ{p3nq,

3nr3n{ℓ, if r ą e´ℓ{p3nq.

On the other hand, we have
ˇ

ˇlog reiθ
ˇ

ˇ ď ´ log r ` |θ| ď ´ log r ` tθ0, and therefore

ˇ

ˇ

ˇ
log reiθ

ˇ

ˇ

ˇ

˜

sup
kPr0,3ns

kℓrk

¸1{ℓ

ď
ℓ

e
` tθ0

#

ℓ
ep´ log rq

, if r ď e´ℓ{p3nq,

3nr3n{ℓ, if r ą e´ℓ{p3nq,

“
ℓ

e
` 3ℓtC0

$

&

%

p1´r3q

ep´ log r3qp1´r3nq
, if r ď e´ℓ{p3nq,

np1´r3qr3n{ℓ

ℓp1´r3nq
, if r ą e´ℓ{p3nq,

ď
ℓ

e
` 3ℓtC0

# 1
ep1´e´ℓq

, if r ď e´ℓ{p3nq,
r3n{ℓp´ log r3n{ℓq

1´r3n{ℓ , if r ą e´ℓ{p3nq,

ď
ℓ

e
` 3ℓtC0

#

1
ep1´e´ℓq

, if r ď e´ℓ{p3nq,

1, if r ą e´ℓ{p3nq,

ď
ℓ

e
` 3ℓtC0.

(4) We first note that, for all j, n and r P r0, 1s, we have

Xjp8, rq ´Xjpn, rq “

8
ÿ

k“1
3∤k

r3n`kp3n` kqj ă r3n
8
ÿ

k“1
3∤k

rkp3nk ` kqj “ r3np3n` 1qjXjp8, rq.

Thus,
Xjpn, rq ą Xjp8, rq

`

1 ´ p3n` 1qjr3n
˘

.

The only place where δ figures in the inequalities (3.30)–(3.33) is in r0, which, in its turn,
determines the range for r, namely the interval pr0, 1s. This interval is largest for δ “ 3. Clearly,
it suffices to consider that case. Hence, from here on we assume that δ “ 3 and correspondingly
r0 “ e´2{p3

?
nq.

By the above considerations, we have

Xjpn, rq ą Xjpn, r0q ą Xjp8, r0q
`

1 ´ p3n` 1qjr3n
0

˘

“ Xjp8, r0q

´

1 ´ p3n` 1qje´2
?

n
¯

ě p´3 log r0q
´j´1 `

Xjp8, r0qp1 ´ r3
0qj`1˘

´

1 ´ p3n` 1qje´2
?

n
¯
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ě npj`1q{22´j´1 `

Xjp8, r0qp1 ´ r3
0qj`1˘

´

1 ´ p3n` 1qje´2
?

n
¯

.

Since Xjp8, r0qp1 ´ r3
0qj`1 is a polynomial in r0 with non-negative coefficients (and therefore

increasing with respect to n) and p3n ` 1qje´2
?

n is evidently decreasing with respect to n
whenever n ě j2, the inequalities (3.30)–(3.33) follow from evaluating the factor

2´j´1 `

Xjp8, r0qp1 ´ r3
0qj`1˘

´

1 ´ p3n` 1qje´2
?

n
¯

at n “ 400 and j “ 0, 1, 3, 4. ˝

3.7 The fundamental error inequality

In this section we prove the fundamental inequality, claimed in (3.10), that provides an upper
bound for the approximation of the coefficient of qm in Qnpqq “ P δ

npqq, where δ P t1, 2, 3u, in
terms of the error terms ϵ0,Qnpm, rq and ϵ1,Qnprq defined in (3.8) and (3.9).
Lemma 3.7.1 With the notations from Section 3.2, we have

ˇ

ˇ

ˇ

ˇ

ˇ

rm
a

2πgQnprq

erf
`

θ0
a

gQnprq{2
˘

1
|Qnpre2πi{3q|

rqmsQnpqq ´ 2 cos
´

argQnpre2πi{3q ´ 2mπ{3
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ0,Qnpm, rq ` ϵ1,Qnprq. (3.34)

Proof: Denoting the argument of Qnpre2πi{3q temporarily by γ, from the integral representa-
tion (3.4) of the coefficient of qm in Qnpqq and the division of the integration interval r´π, πs

into Ipeak and Itail (see Part C in Section 3.2), we obtain

1
|Qnpre2πi{3q|

rqmsQnpqq “ eiγ r
´m

2π

ż π

´π

Qn

`

reiθ
˘

Qnpre2πi{3q
e´imθ dθ

“ eiγ r
´m

2π

˜

ż 2π{3`θ0

2π{3´θ0

Qn

`

reiθ
˘

Qnpre2πi{3q
e´imθ dθ `

ż ´2π{3`θ0

´2π{3´θ0

Qn

`

reiθ
˘

Qnpre2πi{3q
e´imθ dθ

`

ż

Itail

Qn

`

reiθ
˘

Qnpre2πi{3q
e´imθ dθ

¸

“
r´m

2π

˜

eiγ´2mπi{3
ż θ0

´θ0

Qn

`

reipθ`2π{3q
˘

Qnpre2πi{3q
e´imθ dθ

`eiγ`2mπi{3´2iγ

ż θ0

´θ0

Qn

`

reipθ´2π{3q
˘

Qnpre´2πi{3q
e´imθ dθ ` eiγ

ż

Itail

Qn

`

reiθ
˘

Qnpre2πi{3q
e´imθ dθ

¸

,

where we used the earlier observed fact that Qnpz̄q “ Qnpzq twice to obtain the last line. Using
this relation and the definitions (3.8) and (3.9) of the error terms, we are led to the following
estimation:
ˇ

ˇ

ˇ

ˇ

ˇ

rm
a

2πgQnprq

erf
`

θ0
a

gQnprq{2
˘

1
|Qnpre2πi{3q|

rqmsQnpqq
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´

a

gQnprq
?

2π erf
`

θ0
a

gQnprq{2
˘

´

eipγ´2mπ{3q ` e´ipγ´2mπ{3q
¯

ż θ0

´θ0

e´gQn prqθ2{2 dθ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

a

gQnprq
?

2π erf
`

θ0
a

gQnprq{2
˘

ż θ0

´θ0

˜

Qn

`

reipθ`2π{3q
˘

Qnpre2πi{3q
e´imθ ´ e´gQn prqθ2{2

¸

dθ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

a

gQnprq
?

2π erf
`

θ0
a

gQnprq{2
˘

ż θ0

´θ0

˜

Qn

`

reipθ´2π{3q
˘

Qnpre2πi{3q
e´imθ ´ e´gQn prqθ2{2

¸

dθ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

a

gQnprq
?

2π erf
`

θ0
a

gQnprq{2
˘

ż

Itail

Qn

`

reipθ`2π{3q
˘

Qnpre2πi{3q
e´imθ dθ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ0,Qnpm, rq ` ϵ1,Qnprq.

By the definition of the Gauß error function, this turns out to be equivalent to (3.34). ˝

3.8 Bounding the peak error

The goal of the section is to provide a bound for the peak error term ϵ0,Qnpm, rq “ ϵ0,P δ
n

pm, rq

(cf. (3.8)). We will derive it from a general bound on relative errors for the approximation of a
(complex) function by a Gaußian, given in Lemma 3.8.1 below. To serve our purpose, we must
apply this lemma to the function in (3.49). In order to be able to do this, we have to first provide
bounds for the various constants, defined by the derivatives of the function, that appear in the
lemma. This is done in Lemma 3.8.2. After these preparations, our bound for ϵ0,Qnpm, rq is
presented, and proved, in Lemma 3.8.3.

Here is the announced general result about bounding relative errors of the approximation of a
(complex) function by a Gaußian from above.
Lemma 3.8.1 Suppose that x0 ą 0 and f P C4pr´x0, x0s; Cq with fp0q “ 0. We define
fk :“ f pkqp0q for k “ 1, 2 as well as

f3 :“ 3
ż 1

0
p1 ´ tq2 sup

|x|ďtx0

|f p3qpxq| dt

and

f4 :“ 4
ż 1

0
p1 ´ tq3 sup

|x|ďtx0

ˇ

ˇ

ˇ
f p4qpxq

ˇ

ˇ

ˇ
dt,

and we write g “ ´ Re f2 for simplicity.

Suppose further that f1 P R, g ą 0, that µ3 :“ x0f3
3g P p0, 1q, and that

µ4 :“ x0
?

f4
?

8g
P p0, 1q. Then we have

ˇ

ˇ

ˇ

ˇ

c

g

2π

ż x0

´x0

´

efpxq ´ e´gx2{2
¯

dx

ˇ

ˇ

ˇ

ˇ

ď erf
ˆ

x0

c

g

2

̇

coshpf1x0q

ˆ

ˆ

| Im f2| ` f2
1

2g `
4f3β1pµ3q

9
?
πg3 `

f4β3pµ4q

3
?
πg2 `

4f1f3β2pµ3q

3
?
πg2 `

?
2f1f4β4pµ4q

3
?
πg5{2

̇

, (3.35)
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where the functions βi, i “ 1, 2, 3, 4, are as defined in Lemma 3.A.3.
Proof: Let R2pxq “ fpxq ´ f1x´ f2x

2{2 be the second order Taylor remainder term of fpxq at
x “ 0, and let Repxq “ pR2pxq `R2p´xqq{2. Taylor’s theorem (with the remainder in integral
form) implies that

|R2pxq| ď
f3
6 |x|3 and |Repxq| ď

f4
24 |x|4. (3.36)

We split the function efpxq ´ e´gx2{2 as follows:

efpxq ´ e´gx2{2 “ e´gx2{2pef1x`i Im f2x2{2 ´ 1q

` coshpf1xqef2x2{2
´

eR2pxq ´ 1
¯

` sinhpf1xqef2x2{2
´

eR2pxq ´ 1
¯

.

Subsequently, we consider the integral of each term over r´x0, x0s.

The integral of the first term is controlled by
ˇ

ˇ

ˇ

ˇ

ż x0

´x0

e´gx2{2
´

ef1x`i Im f2x2{2 ´ 1
¯

ˇ

ˇ

ˇ

ˇ

dx

“

ˇ

ˇ

ˇ

ˇ

ż x0

0
e´gx2{2pef1x`i Im f2x2{2 ` e´f1x`i Im f2x2{2 ´ 2q

ˇ

ˇ

ˇ

ˇ

dx

ď

ż x0

0
e´gx2{2

´ˇ

ˇ

ˇ

´

ef1x ` e´f1x
¯ ´

ei Im f2x2{2 ´ 1
¯ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
ef1x ` e´f1x ´ 2

ˇ

ˇ

ˇ

¯

dx

ď

ż x0

0
e´gx2{2

ˆ

2 coshpf1x0q| Im f2|
x2

2 ` coshpf1x0qf2
1x

2
̇

dx

“ coshpf1x0q
`

| Im f2| ` f2
1

˘

ż x0

0
x2e´gx2{2 dx

ă
coshpf1x0qp| Im f2| ` f2

1 q

g

c

π

2g erf
ˆ

x0

c

g

2

̇

.

For the second term, we utilise (3.107), (3.36), (3.102) (with u “ g{2 and v “ f3{6), and (3.104)
(with u “ g{2 and v “ f4{24) to conclude that
ˇ

ˇ

ˇ

ˇ

ż x0

´x0

coshpf1xqef2x2{2
´

eR2pxq ´ 1
¯

dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż x0

0
coshpf1xqef2x2{2

´

eR2pxq ` eR2p´xq ´ 2
¯

dx

ˇ

ˇ

ˇ

ˇ

ď coshpf1x0q

ż x0

0
e´gx2{2

ˇ

ˇ

ˇ
eR2pxq ` eR2p´xq ´ 2

ˇ

ˇ

ˇ
dx

ď 2 coshpf1x0q

ż x0

0
e´gx2{2

ˆ

cosh
ˆ

f3|x|3

6

̇

´ 1 ` sinh
ˆ

f4|x|4

24

̇̇

dx

ď 2 coshpf1x0q erf
ˆ

x0

c

g

2

̇ ˆ

8
?

2f2
3β1pµ3q

36g7{2 `
4
?

2f4β3pµ4q

24g5{2

̇

.
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For the third term, we utilise (3.106), (3.103) (with u “ g{2 and v “ f3{6), and (3.105) (with
u “ g{2 and v “ f4{24) to conclude that
ˇ

ˇ

ˇ

ˇ

ż x0

´x0

sinhpf1xqef2x2{2
´

eR2pxq ´ 1
¯

dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż x0

0
sinhpf1xqef2x2{2

´

eR2pxq ´ eR2p´xq
¯

dx

ˇ

ˇ

ˇ

ˇ

ď

ż x0

0
sinhpf1xqe´gx2{2

ˇ

ˇ

ˇ
eR2pxq ´ eR2p´xq

ˇ

ˇ

ˇ
dx

ď 2f1 coshpf1x0q

ż x0

0
xe´gx2{2

ˆ

sinh
ˆ

f3|x|3

6

̇

` sinh
ˆ

f4|x|4

24

̇̇

dx

ď 2f1 coshpf1x0q erf
ˆ

x0

c

g

2

̇ ˆ

4
?

2f3β2pµ3q

6g5{2 `
8f4β4pµ4q

24g3

̇

.

Combining the above bounds, we get

ˇ

ˇ

ˇ

ˇ

c

g

2π

ż x0

´x0

´

efpxq ´ e´gx2{2
¯

dx

ˇ

ˇ

ˇ

ˇ

ď coshpf1x0q erf
ˆ

x0

c

g

2

̇

ˆ

ˆ

| Im f2| ` f2
1

2g `
4f3β1pµ3q

9
?
πg3 `

f4β3pµ4q

3
?
πg2 `

4f1f3β2pµ3q

3
?
πg2 `

?
2f1f4β4pµ4q

3
?
πg5{2

̇

,

which is exactly the assertion of the lemma. ˝

As announced at the beginning of this section., our plan is to apply Lemma 3.8.1 to the function

x ÞÑ log e
´imxQnpreipx`2π{3qq

Qnpre2πi{3q

in order to get bounds on ϵ0,Qnpm, rq. (The reader is reminded from Part B of the proof outline
in Section 3.2 that Qnpqq “ P δ

npqq with Pnpqq the “Borwein polynomial” from (3.1).) This
application however requires upper and lower bounds for the various constants in Lemma 3.8.1,
which we give next.
Lemma 3.8.2 Suppose that n ě 400, m P r3n, pδ degPnq{2s, and r is the unique solution of
the approximate saddle point equation (3.19) determined by n and m. Let

fpθq :“ δ
´

logPnpreipθ`2π{3qq ´ logPnpre2πi{3q ´ imθ
¯

,

and let the constants fj , j “ 1, 2, 3, 4, be defined as in Lemma 3.8.1 with the bound θ0 chosen as
in (3.25). Then we have the following inequalities for the constants fj:

f1 ă
7
40δX0pn, rq, (3.37)

1
3δX2pn, rq ď ´ Re f2 ă

3
5δX2pn, rq, (3.38)

| Im f2| ă
1
3δX1pn, rq, (3.39)
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f3 ă
2
3δX3pn, rq, (3.40)

f4 ă
18
25δX4pn, rq, (3.41)

with the quantities Xjpn, rq defined in (3.18).
Proof: Since all four constants are linear in f and therefore proportional to δ, we assume δ “ 1
in subsequent arguments without loss of generality.

We first give expressions respectively preliminary upper bounds on these constants. For f1, we
have

f1 “

ˆ

d

dθ
logPnpreipθ`2π{3qq

̇ ˇ

ˇ

ˇ

ˇ

θ“0
´ im

“ Re
ˆ

d

dθ
logPnpreipθ`2π{3qq

̇ ˇ

ˇ

ˇ

ˇ

θ“0
` iRe

ˆ

r
d

dr
logPnpreip2π{3qq

̇

´ im

“

?
3

2 V1pn, rq, (3.42)

where we used (3.13) with j “ 1 and the approximate saddle point equation (3.19) to get the last
line. Still using (3.13), we have

f2 “ ´
1
2U2pn, rq `

?
3i
2 V2pn, rq, (3.43)

f3 ď 3
ż 1

0
p1 ´ tq2 sup

|θ|ďtθ0

ˆ

1
2

ˇ

ˇ

ˇ
U3pn, reiθq

ˇ

ˇ

ˇ
`

?
3

2

ˇ

ˇ

ˇ
V3pn, reiθq

ˇ

ˇ

ˇ

̇

, (3.44)

f4 ď 4
ż 1

0
p1 ´ tq3 sup

|θ|ďtθ0

ˆ

1
2

ˇ

ˇ

ˇ
U4pn, reiθq

ˇ

ˇ

ˇ
`

?
3

2

ˇ

ˇ

ˇ
V4pn, reiθq

ˇ

ˇ

ˇ

̇

. (3.45)

Therefore the problem is reduced to proving upper and lower bounds for Uj and Vj .

UPPER AND LOWER BOUNDS FOR U2pn, rq. The quantities Uj are comparable to the corre-
sponding Xj ; indeed, by comparing (3.14) and (3.18) and using (3.88), we immediately obtain

2
3X2pn, rq ď U2pn, rq ă

6
5X2pn, rq,

which translates into
1
3X2pn, rq ď ´ Re f2 ă

3
5X2pn, rq,

establishing (3.38).

UPPER BOUNDS FOR U3pn, rq AND U4pn, rq. Upper bounds for U3 and U4 can also be obtained
by the same comparison. In fact, for arbitrary j we have

sup
|θ|ďtθ0

ˇ

ˇ

ˇ
Ujpn, reiθq

ˇ

ˇ

ˇ
ď Xjpn, rq sup

|θ|ătθ0

sup
0ďkď3n

ˇ

ˇ

ˇ

ˇ

ujprkeikθq

rkeikθ

ˇ

ˇ

ˇ

ˇ

ď Xjpn, rq sup
zPS3tC0

ˇ

ˇ

ˇ

ˇ

ujpzq

z

ˇ

ˇ

ˇ

ˇ

,
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where Sρ is defined in (3.28).

Remembering from (3.25) that C0 “ 10{81, we use Lemma 3.A.1(2) to conclude that

3
ż 1

0
p1 ´ tq2 sup

|θ|ďtθ0

|U3pn, reiθq| ď 3X3pn, rq

ż 1

0
p1 ´ tq2 sup

zPS3tC0

ˇ

ˇ

ˇ

ˇ

u3pzq

z

ˇ

ˇ

ˇ

ˇ

ď

˜

1
8 sup

zPS3C0

ˇ

ˇ

ˇ

ˇ

u3pzq

z

ˇ

ˇ

ˇ

ˇ

`
7
8 sup

zPS3C0{2

ˇ

ˇ

ˇ

ˇ

u3pzq

z

ˇ

ˇ

ˇ

ˇ

¸

X3pn, rq

ď

ˆ

1
8 ˆ 1.44 `

7
8 ˆ 1.3

̇

X3pn, rq “ 1.3175X3pn, rq,

and similarly

4
ż 1

0
p1 ´ tq3 sup

|θ|ďtθ0

|U4pn, reiθq| ď 4X4pn, rq

ż 1

0
p1 ´ tq3 sup

zPS3tC0

ˇ

ˇ

ˇ

ˇ

u4pzq

z

ˇ

ˇ

ˇ

ˇ

ď

˜

1
16 sup

zPS3C0

ˇ

ˇ

ˇ

ˇ

u4pzq

z

ˇ

ˇ

ˇ

ˇ

`
15
16 sup

zPS3C0{2

ˇ

ˇ

ˇ

ˇ

u4pzq

z

ˇ

ˇ

ˇ

ˇ

¸

X4pn, rq

ď

ˆ

1
16 ˆ 1.721 `

15
16 ˆ 1.409

̇

X4pn, rq “ 1.4285X4pn, rq.

A PRELIMINARY UPPER BOUND FOR Vjpn, rq. As opposed to the Uj’s, the quantities Vj ,
as alternating sums, are expected to be much smaller than Xjpn, rq. Indeed, let wjpk, zq :“
kjvjpzkq. Using Lemma 3.A.5 for the function wj , we see that

|Vjpn, zq| ď
1
3 |wjp3n, zq ´ wjp0, zq| `

2
3 |w2

j p3n, zq ´ w2
j p0, zq| `

11n
96 sup

kPr0,3ns

ˇ

ˇ

ˇ
w

p4q

j pk, zq

ˇ

ˇ

ˇ

“
1
3 |wjp3n, zq| `

2
3 |w2

j p3n, zq| `
11n
96 sup

kPr0,3ns

ˇ

ˇ

ˇ
w

p4q

j pk, zq

ˇ

ˇ

ˇ
, (3.46)

since direct calculations reveal that wjp0, zq “ w2
j p0, zq “ 0 for j “ 1, 2, 3, 4.

In order to treat the derivatives of the functions wj , we note that (3.13) implies that

ˆ

B

Bk

̇ℓ

vjpzkq “ plog zqℓvj`ℓpz
kq, for ℓ ě 0. (3.47)

With this representation in mind, we proceed to give upper bounds for the right-hand side of
(3.46) for j “ 1, 2, 3, 4, by making frequent use of inequalities from Lemma 3.A.1.

UPPER BOUND FOR V1pn, rq. By using (3.89) and subsequently (3.90), we have

w1p3n, rq{3
X0pn, rq

“
1 ´ r3

p´ log rqp1 ` rq

r3n´1p´ log rnq

1 ´ r9n
ď

3
2
rp3´1{400qnp´ log rnq

1 ´ r9n
ă 0.201
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for the main term. Using (3.47) and (3.93), we get

|w2
1p3n, rq| “

1
3n

ˇ

ˇ2plog r3nqv2pr3nq ` plog r3nq2v3pr3nq
ˇ

ˇ ă
1

9n

for the second derivative. On the other hand, using (3.47) and (3.94), we have

|w
p4q

1 pk, rq| “ | log r|3
ˇ

ˇ

ˇ
4v4prkq ` plog rkqv5prkq

ˇ

ˇ

ˇ
ă

9
8 | log r|3

for the fourth derivative. Substitution of these bounds in (3.46) with j “ 1, if combined
with (3.30) and the fact from Lemma 3.5.1 that | log r| ă | log r0| ď 2

3 , then yields

|V1pn, rq| ď 0.201X0pn, rq `
2

27n `
33n
256 | log r|3

ă

ˆ

0.201 `
2

27 ˆ 0.95n3{2 `
11

288 ˆ 0.95n

̇

X0pn, rq ă 0.202X0pn, rq.

UPPER BOUND FOR V2pn, rq. Similarly to above, using (3.108) in Lemma 3.A.7, and subse-
quently (3.91) and (3.92), we obtain

w2p3n, rq{3
X1pn, rq

ď
3p1 ´ r3q2

p1 ` 2r ` 2r3 ` r4qp´ log rq2
r3n´1p1 ´ r6nqp´ log rnq2

p1 ´ r9nqp1 ´ r3n{2qp1 ` r3n ` r6nq

ă
9
2

rp3´1{400qnp1 ´ r6nqp´ log rnq2

p1 ´ r9nqp1 ´ r3n{2qp1 ` r3n ` r6nq
ă 0.378

for the main term. Using (3.47) and (3.95), we get

|w2
2p3n, rq| “

ˇ

ˇ2v2pr3nq ` 2plog r3nqv3pr3nq ` plog r3nq2v4pr3nq
ˇ

ˇ ă 0.21

for the second derivative. By (3.47) and (3.96), we infer

|w
p4q

2 pk, rq| “ | log r|2
ˇ

ˇ

ˇ
12v4prkq ` 8plog rkqv5prkq ` plog rkq2v6prkq

ˇ

ˇ

ˇ
ă 3.61| log r|2

for the fourth derivative. Substitution of these bounds in (3.46) with j “ 2, if combined
with (3.31) and the earlier mentioned fact that | log r| ă 2

3 , then yields

V2pn, rq ď 0.378X1pn, rq ` 0.14 ` 0.42n| log r|2

ă 0.378X1pn, rq ` 0.14 ` 0.19 ă 0.38X1pn, rq.

UPPER BOUNDS FOR V3pn, reiθq AND V4pn, reiθq. For these two quantities, instead of proving
Vj “ OpXj´1q as above, we prove Vj “ opXjq as n Ñ 8. Observe that Lemma 3.6.1(2) and
(3.47) imply that for a “ 0, 2, 4 we have

|w
paq

j pk, reiθq| ď rk
a

ÿ

ℓ“0

a!
ℓ!

ˆ

j

a´ ℓ

̇

kj´a`ℓ| log reiθ|ℓ sup
zPS3tC0

ˇ

ˇ

ˇ

ˇ

vj`ℓpzq

z

ˇ

ˇ

ˇ

ˇ

.
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Therefore, by (3.29) and (3.46), we get

sup
|θ|ătθ0

|Vjpn, reiθq| ď
1
3p3nqjr3n sup

zPS3tC0

ˇ

ˇ

ˇ

ˇ

vjpzq

z

ˇ

ˇ

ˇ

ˇ

`
2
3p3nqjr3n

2
ÿ

ℓ“0

2
ℓ!

ˆ

j

2 ´ ℓ

̇

| log reiθ|ℓ

p3nq2´ℓ
sup

zPS3tC0

ˇ

ˇ

ˇ

ˇ

vj`ℓpzq

z

ˇ

ˇ

ˇ

ˇ

`
11n
96 | log reiθ|a´j

4
ÿ

ℓ“0

24
ℓ!

ˆ

j

4 ´ ℓ

̇

pj ´ a` ℓqj´a`ℓpe´1 ` 3tC0qj´a`ℓ sup
zPS3tC0

ˇ

ˇ

ˇ

ˇ

vj`ℓpzq

z

ˇ

ˇ

ˇ

ˇ

.

Here we put t “ 1 (thus raising the bound on the right-hand side since here 0 ď t ď 1).
Substitution of the upper bounds from (3.27) (with t “ 1) and from Lemma 3.A.1(2) leads to

sup
|θ|ăθ0

|V3pn, reiθq| ă p3nq3r3n
´

0.34 ` 1.17n´1 ` 1.25n´3{2 ` 0.45n´2
¯

` 45.1
?
n

ď 0.344p3nq3r3n ` 45.1
?
n,

sup
|θ|ăθ0

|V4pn, reiθq| ă p3nq4r3n
´

0.34 ` 3.04n´1 ` 3.40n´3{2 ` 0.91n´2
¯

` 1135n

ď 0.349p3nq3r3n ` 1135n.

We now note that for j P Z` we have

Xjpn, rq

p3nqjr3n
ě
Xjpn, 1q

p3nqj
ą

2
j ` 1pn´ 1q.

Hence, by also using (3.32) and (3.33), we have

sup|θ|ăθ0 |V3pn, reiθq|

X3pn, rq
ă

2 ˆ 0.344
n´ 1 `

45.1
16n3{2 ă

5
6n,

sup|θ|ăθ0 |V4pn, reiθq|

X4pn, rq
ă

5 ˆ 0.349
2pn´ 1q

`
1135

94n3{2 ă
3

2n.

By combining all the bounds above and using them in (3.42)–(3.45), we obtain

f1 ă

?
3

2 0.202X0pn, rq ă
7
40X0pn, rq,

| Im f2| ă

?
3

2 0.38X1pn, rq ă
1
3X1pn, rq,

f3 ă

ˆ

1
2 ˆ 1.3175 `

?
3

2 ˆ
5

6n

̇

X3pn, rq ă
2
3X3pn, rq,

f4 ă

ˆ

1
2 ˆ 1.4285 `

?
3

2 ˆ
3

2n

̇

X4pn, rq ă
18
25X4pn, rq,

thereby establishing the remaining inequalities. ˝

We are now ready for presenting, and proving, our upper bound for the peak error term ϵ0,P δ
n

pm, rq

as defined in (3.8).
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Lemma 3.8.3 Let n ě 400 and δ P t1, 2, 3u. Furthermore, for m P r3n, δpdegPnq{2s, let
r “ rn,m,δ be the solution of the approximate saddle point equation (3.19), and let θ0 be the
cutoff as defined in (3.25). Then we have the following upper bound for the peak error term
ϵ0,P δ

n
pm, rq:

ϵ0,P δ
n

pm, rq ă p146.2δ´1 ` 6.46 ` 0.124δq
X1pn, rq

X2pn, rq
`

7.222
a

δX2pn, rq
, (3.48)

where the Xjpn, rq are as defined in (3.18) and gQnprq is defined in (3.5). Moreover, the
right-hand side of (3.48) is decreasing with respect to r.
Proof: We apply Lemma 3.8.1 with x0 “ θ0 to the function

x ÞÑ log e
´imxQnpreipx`2π{3qq

Qnpre2πi{3q
. (3.49)

This produces a bound for ϵ0,P δ
n

pm, rq in terms of the quantities f1, f2, f3, f4, g and β1pµ3q,
β2pµ3q, β3pµ4q, β4pµ4q. We now need to estimate the individual terms in (3.35) using the
inequalities in Lemma 3.8.2 and Corollary 3.A.8, and the estimates for the particular values in
Lemma 3.A.3. In order to justify the use of Lemma 3.A.3, we have to verify that µ3 ď 20{27
and µ4 ď 2{3. Indeed, using (3.38), (3.40), and the observation that, by definition, g “ ´ Re f2
and X0pn, rq “ rp1 ` rqp1 ´ r3nq{p1 ´ r3q, we have

µ3 “
θ0f3
3g ď

2rpr ` 1qC0X3pn, rq

3X0pn, rqX2pn, rq
ď 6C0 “

20
27 ,

where we used (3.114). Similarly, using in addition (3.41), we get

µ4 “

d

θ2
0f4
8g ď

d

27C2
0X4pn, rqr2pr ` 1q2

100X2
0 pn, rqX2pn, rq

ď
27
5 C0 “

2
3 ,

where we used (3.115). Knowing these bounds, the application of Lemma 3.8.2 and Corol-
lary 3.A.8 in order to bound the individual terms in (3.35) with our choices of function f and
x0 “ θ0 is now straightforwardly done in the same way as the above estimations for µ3 and µ4.

The monotonicity with respect to r is proved by noticing that both X2 and X2{X1 are increasing
with respect to r; this is obvious for X2, and we have

B

Br

X2pn, rq

X1pn, rq
“
X3pn, rqX1pn, rq ´X2

2 pn, rq

rX2
1 pn, rq

ě 0,

where the last inequality is a consequence of the Cauchy–Schwarz inequality. ˝

3.9 Bounding the tails

The goal of this section is to provide a bound for the tail error term ϵ1,Qnprq “ ϵ1,P δ
n

prq. By the

definition (3.9) of ϵ1,P δ
n

prq, what we need is upper bounds for
ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ
. Phrased differently,
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the objective is to get good lower bounds for the quantity

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

“ ´

3n
ÿ

k“1
3∤k

log

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´
`

reiθ
˘k

1 ´ rke2πi{3

ˇ

ˇ

ˇ

ˇ

ˇ

“ ´
1
2

3n
ÿ

k“1
3∤k

log 1 ´ 2rk cospkθq ` r2k

1 ` rk ` r2k
(3.50)

in terms of θ, r, and n. Depending on the ranges of these parameters, we shall in fact establish
two different lower bounds, presented in Lemmas 3.9.2 and 3.9.3 below. Lemma 3.9.1 provides
a preliminary estimate that is used in the proof of Lemma 3.9.2. After these preparations, our
bound for ϵ1,P δ

n
prq is stated, and proved, in Lemma 3.9.4.

In the following, we shall use two possible lower bounds for the summand in (3.50):

1. For x P r´1{3, 1s, we have ´ logp1 ´ xq ě x. In this inequality, we replace x by
rk

1`rk`r2k p1 ` 2 cospkθqq to obtain

´ log 1 ´ 2rk cospkθq ` r2k

1 ` rk ` r2k
ě

rk

1 ` rk ` r2k
p1 ` 2 cospkθqq. (3.51)

2. For z P C with |z| ď 1, we have |1 ´ zk| ď k|1 ´ z|. Use of this inequality for z “ reiθ

implies that

´ log 1 ´ 2rk cospkθq ` r2k

1 ` rk ` r2k
ě logp1`rk`r2kq´logp1´2r cos θ`r2q´2 log k. (3.52)

Lemma 3.9.1 For r P p0, 1s and θ P R, we have

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

ě
1
3

n
ÿ

k“1
r3k p1 ´ cos 3kθq ´

0.8
|1 ´ reiθ|

. (3.53)

Proof: We use (3.51) to perform the following estimations:

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

ě

3n
ÿ

k“1
3∤k

rk

1 ` rk ` r2k

ˆ

1
2 ` cos kθ

̇

“

3n
ÿ

k“1

rk

1 ` rk ` r2k

ˆ

1
2 ` cos kθ

̇

´

n
ÿ

k“1

r3k

1 ` r3k ` r6k

ˆ

1
2 ` cos 3kθ

̇

“

n
ÿ

k“1

r3k

1 ` r3k ` r6k
p1 ´ cos 3kθq `

3n
ÿ

k“1

rk cos kθ
1 ` rk ` r2k

`
1
2

n
ÿ

k“1

ˆ

r3k´2

1 ` r3k´2 ` r6k´4 `
r3k´1

1 ` r3k´1 ` r6k´2 ´
2r3k

1 ` r3k ` r6k

̇
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ě
1
3

n
ÿ

k“1
r3k p1 ´ cos 3kθq `

3n
ÿ

k“1

rk cos kθ
1 ` rk ` r2k

,

where we used 1{p1 ` r3k ` r6kq ě 1{3 and the fact that the function rk{p1 ` rk ` r2kq is
decreasing as a function in k. We apply Lemma 3.A.9 with φ “ 0 to the last cosine sum to
conclude that
ˇ

ˇ

ˇ

ˇ

ˇ

3n
ÿ

k“1

rk cos kθ
1 ` rk ` r2k

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

|1 ´ reiθ|

˜

p1 ´ rq

3n
ÿ

k“1

rk

1 ` rk ` r2k
` 2 r3n`1

1 ` r3n ` r6n

¸

ď
1

|1 ´ reiθ|

ˆ

p1 ´ rq

ż 3n

0

rk dk

1 ` rk ` r2k
` 2 r3n

1 ` r3n ` r6n

̇

“
1

|1 ´ reiθ|

ˆ

1 ´ r

´ log r
2

?
3

ˆ

π

3 ´ arctan 1 ` 2r3n

?
3

̇

` 2 r3n

1 ` r3n ` r6n

̇

ă
1

|1 ´ reiθ|

ˆ

2
?

3

ˆ

π

3 ´ arctan 1 ` 2r3n

?
3

̇

` 2 r3n

1 ` r3n ` r6n

̇

.

In order to complete the proof, we determine the maximum value of the function

fpsq :“ 2π
3
?

3
´

2
?

3
arctan 1 ` 2s

?
3

`
2s

1 ` s` s2 (3.54)

on r0, 1s. Since f 1psq “ 1´s´3s2

p1`s`s2q2 is decreasing with respect to s, we see that the unique maxi-
mum point of f is located at the unique zero of f 1psq in r0, 1s, namely
s0 “ p

?
13 ´ 1q{6, giving a value of

fps0q « 0.7937 ă 0.8. ˝

In order to find a closed-form lower bound for the quantity ´ log
ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ
, we apply Lemma 3.A.10

to the sum on the right-hand side of (3.53). In this manner, we obtain the following estimate.
Lemma 3.9.2 If θ “ 2hπ{3`ρ 1´r3

1´r3n for some h P Z and some ρ P R such that |ρ| 1´r3

1´r3n ď π{3,
then we have

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

ě ´
0.8

|1 ´ reiθ|
`
r3p1 ` r3q

6
p1 ´ rn{2q

p1 ´ r3q

ˆ

1 ´

c

1
1 ` 18ρ2

̇

.

Remark: The slightly unusual looking scaling of the deviation of θ from 2hπ{3 above has its
motivation in the desire of having the same scaling as in the definition of the cutoff θ0; cf. (3.25)
(remember that r depends on n and m!).
Proof (Proof of Lemma 3.9.2): Lemmas 3.9.1 and 3.A.10 (with the substitutions r ÞÑ r3, θ ÞÑ

3θ) imply the inequality

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

ě
1
3

n
ÿ

k“1
r3k p1 ´ cos 3kθq ´

0.8
|1 ´ reiθ|

ě
r3

3
1 ´ r3n

1 ´ r3

˜

1 ´

d

1
1 ` 4κ tan2p3θ{2q

¸

´
0.8

|1 ´ reiθ|
,
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where

κ “
p1 ` r3qp1 ´ r3nqp1 ´ rn{2q

p1 ´ r3q2 .

We note that
ˇ

ˇ

ˇ

ˇ

tan 3θ
2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

tan 3ρ
2

1 ´ r3

1 ´ r3n

ˇ

ˇ

ˇ

ˇ

ě
3|ρ|

2
1 ´ r3

1 ´ r3n

if |ρ| 1´r3

1´r3n ď π{3. We use this inequality to get rid of the tangent function:

1 ´

d

1
1 ` 4κ tan2p3θ{2q

ą 1 ´

d

1
1 ` κ 9p1´r3q2

p1´r3nq2 ρ2
.

By making use of the inequality

1 ´

c

1
1 ` cx

ě c

˜

1 ´

c

1
1 ` x

¸

for 0 ă c ď 1 and x ą 0, and by choosing

c “
κ

2
p1 ´ r3q2

p1 ´ r3nq2 “
p1 ` r3q

2
p1 ´ rn{2q

p1 ´ r3nq
ď 1,

we arrive at the claimed result:

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

ě ´
0.8

|1 ´ reiθ|
`
r3p1 ` r3q

6
p1 ´ rn{2q

p1 ´ r3q

ˆ

1 ´

c

1
1 ` 18ρ2

̇

. ˝

Note that the lower bound in Lemma 3.9.2 ceases to be effective when |1 ´ reiθ| is small. For
this case, we present an alternative bound.
Lemma 3.9.3 If |1 ´ reiθ| ă 1

3 , then we have

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

ě
1
6

pr ` r2qp1 ´ r3nq

1 ´ r3 ´ 5.44.

Proof: Making reference to the sum representation (3.50), we define a cutoff

k0 “ min
"Z

1
3|1 ´ reiθ|

^

, n

*

.

Note that the condition on |1 ´ reiθ| implies that k0 ě 1.

The part of the sum on the right-hand side of (3.50) where k ă 3k0 is treated by (3.52):

´
1
2

3k0
ÿ

k“1
3∤k

log 1 ´ 2rk cospkθq ` r2k

1 ` rk ` r2k
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ě
1
2

3k0
ÿ

k“1
3∤k

´

logp1 ` rk ` r2kq ´ logp1 ´ 2r cos θ ` r2q ´ 2 log k
¯

“ ´k0 logp1 ´ 2r cos θ ` r2q ´ log p3kq!
3kk! `

1
2

3k0
ÿ

k“1
3∤k

logp1 ` rk ` r2kq.

Now we use the inequality p3kq!
3kk! ă

?
3p3k{eq2k, and the convexity of k ÞÑ logp1 ` rk ` r2kq,

and obtain

´
1
2

3k0
ÿ

k“1
3∤k

log 1 ´ 2rk cospkθq ` r2k

1 ` rk ` r2k

ą ´k0 logp1 ´ 2r cos θ ` r2q ´
1
2 log 3 ´ 2k0plogp3k0q ´ 1q `

1
2

3k0
ÿ

k“1
3∤k

logp1 ` rk ` r2kq

ą ´k0 logp1 ´ 2r cos θ ` r2q ´
1
2 log 3 ´ 2k0plogp3k0q ´ 1q ` k0 logp1 ` r3k0{2 ` r3k0q

“ ´2k0 logp3k0|1 ´ reiθ|q ` 2k0 ´
1
2 log 3 ` k0 logp1 ` r3k0{2 ` r3k0q

ě 2k0 ´
1
2 log 3 ` k0 logp1 ` r3k0{2 ` r3k0q, (3.55)

where we used the definition of k0 to get the last line.

For the part where k ą 3k0, we use (3.51), split the sum according to the residue classes of k
modulo 3, and apply Lemma 3.A.9 to each subsum, to get

´
1
2

3n
ÿ

k“3k0`1
3∤k

log 1 ´ 2rk cospkθq ` r2k

1 ` rk ` r2k
ě

1
2

3n
ÿ

k“3k0`1
3∤k

rkp1 ` 2 cospkθqq

1 ` rk ` r2k

ě

ˆ

1
2 ´

1 ´ r3

|1 ´ r3e3iθ|

̇ 3n
ÿ

k“3k0`1
3∤k

rk

1 ` rk ` r2k
´

4
|1 ´ r3e3iθ|

r3n

1 ` r3n ` r6n
. (3.56)

We first observe that in the case where k0 “ n the estimate (3.55) provides the lower bound

2n´
1
2 log 3 ě

pr ` r2qp1 ´ r3nq

1 ´ r3 ´
1
2 log 3 ą

1
6

pr ` r2qp1 ´ r3nq

1 ´ r3 ´ 5.44,

as desired.

Therefore, we assume 0 ă k0 ă n from now on. By combining (3.55) and (3.56), we obtain
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´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

ě

ˆ

1
2 ´

1 ´ r3

|1 ´ r3e3iθ|

̇ 3n
ÿ

k“3k0
3∤k

rk

1 ` rk ` r2k

` p2 ` logp1 ` r3k0{2 ` r3k0qqk0 ´
4

|1 ´ r3e3iθ|

r3n

1 ` r3n ` r6n
´

1
2 log 3. (3.57)

We split the right-hand side of (3.57) into several parts:

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

ě I1 ` I2 ` I3 ` I4,

where

I1 “
1
2

3n
ÿ

k“3k0
3∤k

rk

1 ` rk ` r2k
`

1
3k0,

I2 “ ´
1 ´ r3

|1 ´ r3e3iθ|

3n
ÿ

k“3k0`1
3∤k

rk

1 ` rk ` r2k
,

I3 “ k0plogp1 ` r3k0{2 ` r3k0q ´ logp1 ` r3n{2 ` r3nqq,

I4 “

ˆ

5
3 ` logp1 ` r3n{2 ` r3nq

̇

k0 ´
4

|1 ´ r3e3iθ|

r3n

1 ` r3n ` r6n
´ log

?
3.

For I1 we have

I1 ě
1
2

3n
ÿ

k“1
3∤k

rk

1 ` rk ` r2k
ě

1
2

3n
ÿ

k“1
3∤k

rk

3 “
1
6

pr ` r2qp1 ´ r3nq

1 ´ r3 .

It should be noted that the right-hand side in this inequality is exactly the main term in the desired
lower bound. Consequently, what we need to prove is I2 ` I3 ` I4 ě ´5.44.

From here on, we write z “ reiθ for simplicity of notation.

We first deal with I4. By utilising the inequality
ˇ

ˇ

ˇ

ˇ

logp1 `
?
s` sq ´

3s
1 ` s` s2

ˇ

ˇ

ˇ

ˇ

ď
1
10 , 0 ď s ď 1,

for s “ r3n, we infer that

I4 ě

ˆ

47
30 `

3r3n

1 ` r3n ` r6n

̇

k0 ´
12pk0 ` 1q

|1 ` z ` z2|

r3n

1 ` r3n ` r6n
´ log

?
3.

Now we note that for 0 ă k0 ă n we have

k0 “

Z

1
3|1 ´ z|

^

ě
1

3|1 ´ z|
´ 1.
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We use this in the above estimate for I4 to get

I4 ě
47
30

ˆ

1
3|1 ´ z|

´ 1
̇

`
3r3n

´

1
3|1´z|

´ 1
¯

1 ` r3n ` r6n

´
12

3|1 ´ z| ¨ |1 ` z ` z2|

r3n

1 ` r3n ` r6n
´ log

?
3

ą

ˆ

47
30 ´

ˆ

12
|1 ` z ` z2|

´ 3
̇

r3n

1 ` r3n ` r6n

̇

1
3|1 ´ z|

´ log
?

3 ´
47
30 ´

3r3n

1 ` r3n ` r6n

ě

ˆ

47
30 ´

ˆ

12
|1 ` z ` z2|

´ 3
̇

1
3

̇

1
3|1 ´ z|

´ log
?

3 ´
77
30

“

ˆ

77
30 ´

4
|1 ` z ` z2|

̇

1
3|1 ´ z|

´ log
?

3 ´
77
30 .

In order to bound I2, we argue that

3n
ÿ

k“3k0`1
3∤k

rk

1 ` rk ` r2k
ď

3n
ÿ

k“3k0`1
3∤k

rk “
pr ` r2qpr3k0 ´ r3nq

1 ´ r3 ď
2pr3k0 ´ r3nq

1 ´ r3 ,

and consequently

I2 ě ´
2

|1 ´ z3|
pr3k0 ´ r3nq.

Writing hpxq “ 6
|1`z`z2|

x´ logp1 `
?
x` xq, we combine the above estimate for I2 into one

for I2 ` I3:

I2 ` I3 ě ´
2

|1 ´ z3|
pr3k0 ´ r3nq

`

ˆ

1
3|1 ´ z|

´ 1
̇

plogp1 ` r3k0{2 ` r3k0q ´ logp1 ` r3n{2 ` r3nqq

“ ´

´

hpr3k0q ´ hpr3nq

¯ 1
3|1 ´ z|

´ plogp1 ` r3k0{2 ` r3k0q ´ logp1 ` r3n{2 ` r3nqq

ě ´

´

hpr3k0q ´ hpr3nq

¯ 1
3|1 ´ z|

´ log 3

ě ´

ˆ

max
0ďxď1

hpxq ´ min
0ďxď1

hpxq

̇

1
3|1 ´ z|

´ log 3.

Note that the function h is convex with respect to x. Hence, the maximum of hpxq is either hp0q

or hp1q. Since |1 ` z ` z2| ď 3, we have hp1q ě 2 ´ log 3 ą 0 “ hp0q. Therefore,

max
0ďxď1

hpxq “ hp1q “
6

|1 ` z ` z2|
´ log 3.
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On the other hand, again using that |1 ` z ` z2| ď 3, we have

min
0ďxď1

hpxq ě min
0ďxď1

p2x´ logp1 `
?
x` xqq « ´0.1496 ą ´

3
20 ,

which in turn implies

I2 ` I3 ě ´

ˆ

6
|1 ` z ` z2|

´ log 3 `
3
20

̇

1
3|1 ´ z|

´ log 3.

Combining all the inequalities above, we obtain

I2 ` I3 ` I4 ě

ˆ

29
12 ` log 3 ´

10
|1 ` z ` z2|

̇

1
3|1 ´ z|

´
3
2 log 3 ´

77
30 .

We write u “ |1 ´ z|. By the assumptions of the lemma, we have u P r0, 1{3s. We claim that
|1 ` z ` z2| ě 3 ´ 3u ` u2 for u P r0, 1{3s. This can be proved by writing 1 ´ z “ ueiφ for
some φ, expressing z in terms of u and φ, and minimising |1 ` z ` z2| with respect to φ. In
addition, we point out that the function u ÞÑ

´

29
12 ` log 3 ´ 10

3´3u`u2

¯

1
3u is decreasing with

respect to u, and therefore

I2 ` I3 ` I4 ě

ˆ

29
12 ` log 3 ´

10
3 ´ 3u` u2

̇

1
3u ´

3
2 log 3 ´

77
30

ě
29
12 ` log 3 ´

90
19 ´

3
2 log 3 ´

77
30

“ ´
1857
380 ´

1
2 log 3 ą ´5.44,

as desired. ˝

We are now ready to provide, and prove, an explicit upper bound for the tail error term ϵ1,P pn, rq

as defined in (3.9).
Lemma 3.9.4 Suppose that n P Z`, and that r0 is defined as in (3.20). Then, for δ P t1, 2, 3u

and r P pr0, 1s, we have

ϵ1,P δ
n

prq ă

?
54δ

?
5π

O

erf

d

40δp1 ´ r3nq

243p1 ´ r3q

ˆ

˜

4
ˆ

1 ´ r3n

1 ´ r3

̇1{2 ż 4

10{81
exp

ˆ

0.8δ
?

3 ´ p1 ` 3ρqp´ log r0q
´ δϕpn, r, ρq

̇

dρ

` 2π
ˆ

1 ´ r3n

1 ´ r3

̇3{2
expp5.44δ ´ δϕpn, r, 4qq

¸

, (3.58)

where

ϕpn, r, ρq :“ r3p1 ` r3q

6

ˆ

1 ´

c

1
1 ` 18ρ2

̇

p1 ´ rn{2q

p1 ´ r3q
.

Moreover, for n ą 546, the right-hand side of (3.58) is decreasing with respect to r.
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Proof: Lemmas 3.9.2 and 3.9.3 imply that

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

ą ´
0.8

|1 ´ reiθ|
` ϕpn, r, |ρ|q,

for θ “ ˘
2πi
3 ` ρ

1 ´ r3

1 ´ r3n
and |1 ´ reiθ| ě

1
3 ,

(3.59)

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

ą ´5.44 ` ϕpn, r,`8q, for |1 ´ reiθ| ă
1
3 . (3.60)

For θ :“ ˘2πi
3 ` ρ 1´r3

1´r3n , we have

|1 ´ reiθ| “

ˇ

ˇ

ˇ
p1 ´ e˘2πi{3q ` pe˘2πi{3 ´ eiθq ` peiθ ´ reiθq

ˇ

ˇ

ˇ

ě |1 ´ e˘2πi{3| ´ |e˘2πi{3 ´ eiθ| ´ |eiθ ´ reiθ|

ě
?

3 ´ |ρ|
1 ´ r3

1 ´ r3n
´ p1 ´ rq ě

?
3 ´ |ρ|

1 ´ r3
0

1 ´ r3n
0

´ p1 ´ r0q

ě
?

3 ´ p3|ρ| ` 1qp´ log r0q, (3.61)

where we used that r P pr0, 1s to get the next-to-last line, and (3.26) to obtain the last line.

Here, in order to estimate the integral in (3.9), we divide the tail part Itail into two disjoint subsets.
Namely, we define

Itail1 :“
"

˘2π{3 ` ρ
1 ´ r3

1 ´ r3n
: C0 ă |ρ| ă 4

*

and the complementary subset Itail2 :“ ItailzItail1. The set Itail1 consists of four distinct intervals.
By (3.59) and (3.61), the integral over these intervals can be estimated by

ż

Itail1

ˇ

ˇ

ˇ

ˇ

Qnpreiθq

Qnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

dθ

ă 4 1 ´ r3

1 ´ r3n

ż 4

C0

exp
ˆ

0.8δ
?

3 ´ p1 ` 3|ρ|qp´ log r0q
´ δϕpn, r, ρq

̇

dρ. (3.62)

For the remaining part of Itail, Itail2 :“ ItailzItail1, we note that the quantity

´ log
ˇ

ˇ

ˇ

ˇ

Pnpreiθq

Pnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

can be bounded below by either ´2.4 ` ϕpn, r, 4q (if |1 ´ reiθ| ě 1
3 , using (3.59)) or ´5.44 `

ϕpn, r,`8q (if |1 ´ reiθ| ă 1
3 , using (3.60)), and a common lower bound for the two cases can

be chosen as ´5.44 ` ϕpn, r, 4q. This implies that

ż

Itail2

ˇ

ˇ

ˇ

ˇ

Qnpreiθq

Qnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

dθ ă 2π expp5.44δ ´ δϕpn, r, 4qq. (3.63)
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By combining the two bounds (3.62) and (3.63), we obtain the following upper bound for the
integral in (3.9):

ż

Itail

ˇ

ˇ

ˇ

ˇ

Qnpreiθq

Qnpre2πi{3q

ˇ

ˇ

ˇ

ˇ

dθ

ă 4 1 ´ r3

1 ´ r3n

ż 4

10{81
exp

ˆ

0.8δ
?

3 ´ p1 ` 3|ρ|qp´ log r0q
´ δϕpn, r, ρq

̇

dρ

` 2π expp5.44δ ´ δϕpn, r, 4qq.

We recall that the definition (3.9) of ϵ1,Qnprq contains the factor
b

gQnprq

M

erf
´

θ0

b

gQnprq{2
¯

in addition to the left-hand side of the above inequality. We note that, using the upper bound for
´ Re f2 in (3.38) and the inequality (3.113), we have

gP δ
n

prq ă
108δ

5

ˆ

1 ´ r3n

1 ´ r3

̇3
.

Therefore, using the fact that x{ erf x is increasing with respect to x and recalling the definition
of θ0 in (3.25), we obtain

ϵ1,P δ
n

prq ă

?
54δ

?
5π

O

erf
˜

d

40δp1 ´ r3nq

243p1 ´ r3q

¸

ˆ

˜

4
ˆ

1 ´ r3n

1 ´ r3

̇1{2 ż 4

10{81
exp

ˆ

0.8δ
?

3 ´ p1 ` 3ρqp´ log r0q
´ δϕpn, r, ρq

̇

dρ

`2π
ˆ

1 ´ r3n

1 ´ r3

̇3{2
expp5.44δ ´ δϕpn, r, 4qq

¸

,

as desired.

It remains to show that the right-hand side of (3.58) is decreasing with respect to r. To this end,

we first note that the factor 1{ erf
´

b

40δp1´r3nq

243p1´r3q

¯

is decreasing with respect to r.

We claim that the other factor on the right-hand side of (3.58) is also decreasing with respect to r.
To see this, let r1, r2 P rr0, 1s such that r1 ă r2. We then use Lemma 3.A.12 with r replaced by
r3 and

λ “ Cδ
r3

1p1 ` r3
1q

6

ˆ

1 ´

c

1
1 ` 18ρ2

̇

, (3.64)

to get

1 ´ r3n
2

1 ´ r3
2

exp
ˆ

´Cδ
r3

1p1 ` r3
1q

r3
2p1 ` r3

2q
ϕpn, r2, ρq

̇

ď
1 ´ r3n

1
1 ´ r3

1
exp p´Cδϕpn, r1, ρqq ,
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provided

546 ě 6 `
36
λ
. (3.65)

(Recall that n ą 546 by assumption.)

Let us for the moment assume that the condition (3.65) is satisfied. Then, since r3
2p1 ` r3

2q ą

r3
1p1 ` r3

1q, we obtain

1 ´ r3n
2

1 ´ r3
2

exp p´Cδϕpn, r2, ρqq ď
1 ´ r3n

1
1 ´ r3

1
exp p´Cδϕpn, r1, ρqq , (3.66)

again provided (3.65) holds. It can be checked that, for C “ 2, the inequality (3.65) holds for
10
81 ď ρ ď 4. Therefore, setting C “ 2 in (3.66) and taking square roots of both sides, we obtain

ˆ

1 ´ r3n
2

1 ´ r3
2

̇1{2
exp p´δϕpn, r2, ρqq ď

ˆ

1 ´ r3n
1

1 ´ r3
1

̇1{2
exp p´δϕpn, r1, ρqq ,

for
10
81 ď ρ ď 4. (3.67)

For C “ 2{3, the inequality (3.65) only holds for ρ “ 4. By doing these substitutions in (3.66)
and raising both sides to the power 3{2, we arrive at

ˆ

1 ´ r3n
2

1 ´ r3
2

̇3{2
exp p´δϕpn, r2, 4qq ď

ˆ

1 ´ r3n
1

1 ´ r3
1

̇3{2
exp p´δϕpn, r1, 4qq . (3.68)

The inequalities (3.67) and (3.68) together show that the second factor on the right-hand side of
(3.58) is indeed also decreasing in r.

It remains to justify the use of Lemma 3.A.12, that is, of the validity of the condition (3.65).

• We note that n ą 546 implies that

r3
0 “ exp

˜

´3
c

4δ
27n

¸

ą exp
˜

´3
c

12
27 ˆ 546

¸

ą
11
12 ,

and consequently
r3

1p1 ` r3
1q

6 ě
r3

0p1 ` r3
0q

6 ą 0.292.

• Therefore, with the choice C “ 2 and 10{81 ď ρ ď 4, the constant λ in (3.64) is at least

2 ˆ 0.292δp1 ´ p1 ` 18p10{81q2q´1{2q ą δ{15.

Hence, the condition (3.65) holds, which confirms (3.67). On the other hand, with the
choice C “ 2{3 and ρ “ 4, the constant λ in (3.64) is at least

2{3 ˆ 0.292δp1 ´ p1 ` 18 ˆ 42q´1{2q ą δ{6.

Hence, again, the condition (3.65) is satisfied, confirming (3.68).
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• The condition in Lemma 3.A.12 on the range of r is verified by noting that

´ log r3 ă

?
δ

9
?

5
ă

?
δ

20 ď
δ

20 ă
8
9λ. ˝

3.10 Completion of the proofs

In this section, we combine the results of the two previous sections to prove the First and
Second Borwein Conjecture and “two thirds” of the cubic Borwein conjecture. We begin by
giving a result that allows us to control the argument of Pnpre2πi{3q. As mentioned in Part D of
Section 3.2, this is needed for accomplishing Task (2) below (3.11).
Lemma 3.10.1 For n P Z`, argPnpre2πi{3q is increasing with respect to r. Moreover, for
r P p0, 1s and n P Z`, we have argPnpre2πi{3q P p´π{18, 0s.
Proof: For x P R, define

fpr, xq :“ argp1 ´ rxe2πi{3q “ ´ arctan
?

3rx

rx ` 2 .

By elementary manipulations, we have

argPnpre2πi{3q ”

n
ÿ

k“1

´

argp1 ´ r3k´2e2πi{3q ` argp1 ´ r3k´1e´2πi{3q

¯

pmod 2πq

“

n
ÿ

k“1

´

argp1 ´ r3k´2e2πi{3q ´ argp1 ´ r3k´1e2πi{3q

¯

“ ´

n
ÿ

k“1
pfpr, 3k ´ 1q ´ fpr, 3k ´ 2qq .

We claim that fpr, 3k ´ 1q ´ fpr, 3k ´ 2q is decreasing with respect to r, and that

n
ÿ

k“1
pfpr, 3k ´ 1q ´ fpr, 3k ´ 2qq P r0, π{18q.

In order to see this, we note that

n
ÿ

k“1
pfpr, 3k ´ 1q ´ fpr, 3k ´ 2qq “

n
ÿ

k“1

ż 3k´1

3k´2
fxpr, xq dx,

where as usual fxpr, xq “ B
Bxfpr, xq. Both the lower bound of 0 and the monotonicity with

respect to r follow from the expression

fxpr, xq “

?
3rxp´ log rq

2p1 ` rx ` r2xq
.



Chapter 3. An asymptotic approach to Borwein-type sign pattern theorems 91

In order to prove the upper bound of π{18, we define gpr, xq :“
ř

kPZ fxpr, 3k ` xq and claim
that

ż 2

1
gpr, xq dx ď

1
3

ż 3

0
gpr, xq dx. (3.69)

If we assume the truth of this inequality for a moment, then, since fx is even with respect to x,
we see that

n
ÿ

k“1
pfpr, 3k ´ 1q ´ fpr, 3k ´ 2qq ă

1
2

ÿ

kPZ

pfpr, 3k ´ 1q ´ fpr, 3k ´ 2qq

“
1
2

ż 2

1
gpr, xq dx ď

1
6

ż 3

0
gpr, xq dx “

1
6

ż 8

´8

fxpr, xq dx

“
1
6fpr, xq

ˇ

ˇ

ˇ

`8

´8
“ π{18,

as required.

Hence, it remains to verify (3.69). As a matter of fact, this inequality can be proved by a Fourier
expansion of gpr, xq. To be precise, we define

gkprq :“
ż 3

0
gpr, xq cosp2πkx{3q dx “

ż

R
fxpr, xq cosp2πkx{3q dx,

so that

gpr, xq “
1
3g0prq `

2
3

8
ÿ

k“1
gkprq cosp2kπx{3q.

To get an explicit expression for gkprq, we note that, since fxpr, xq is even, we may express the
Fourier coefficients as

gkprq “

ż

R
fxpr, xq expp2πkix{3q dx.

We integrate the function fxpr, xq expp2πkix{3q (clockwise) along a rectangular contour with
corners located at ˘M and ˘M ´ 2πi{p´ log rq. In the limit as M Ñ 8, the integral along the
two vertical parts of the contour converges to zero, while the two parts of the integral along the
horizontal parts of the contour are proportional to each other. More precisely, we may conclude
that the integral along this rectangular contour, in the limit as M Ñ 8, is equal to

`

exp
`

4kπ2{p´3 log rq
˘

´ 1
˘

¨ gkprq.

The integrand has exactly two poles inside this rectangle, namely at x “ ´2πi{p´3 log rq and at
x “ ´4πi{p´3 log rq, with residues equal to i expp4kπ2{p´9 log rqq and to ´i expp8kπ2{p´9 log rqq,
respectively. Therefore we obtain that

gkprq “
π

1 ` 2 cosh
´

4kπ2

9p´ log rq

¯ .
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We are now in the position to accomplish a proof of (3.69) by employing the above facts:

ˆ

1
3

ż 3

0
´

ż 2

1

̇

gpr, xq dx “
2
3

8
ÿ

k“1
gkprq

ˆ

1
3

ż 3

0
´

ż 2

1

̇

cosp2kπx{3q dx

“

8
ÿ

k“1

8p´1qk´1gkprq sin3pkπ{3q

3kπ

“

?
3
π

ˆ

g1prq ´
g2prq

2 `
g4prq

4 ´
g5prq

5 ` ¨ ¨ ¨

̇

ą 0,

where the last inequality is due to the fact that gkprq is decreasing with respect to k. ˝

With concrete bounds on argPnpre2πi{3q proven, all three pieces of the Borwein puzzle are
now in place, and we can now present the announced proofs of the First and Second Borwein
Conjecture, and of “two thirds” of the Cubic Borwein Conjecture.

We begin with the (in view of [Wan22]: alternative) proof of the First Borwein Conjecture. In
the arguments below, we always use rm to denote the solution of the approximate saddle point
equation (3.22) (that depends on n, m, and δ).
Theorem 3.10.2 The First Borwein Conjecture, Conjecture 3.1.1, is true.
Proof: We prove this claim by verifying (3.11) for “large” n, with the help of the various bounds
and inequalities we have derived, and by a direct computation for “small” n, using the computer.

By Lemma 3.10.1, we have argPnprme
2πi{3q P r´π{18, 0s. Hence, by Lemma 3.A.13, we infer

ˇ

ˇ

ˇ
2 cos

´

argPnprme
2πi{3q ´ 2mπ{3

¯
ˇ

ˇ

ˇ
ě 2 mint1{2, cosp7π{18qu ą 0.684. (3.70)

Furthermore, for n ě 5300 and m P r3n,degPns (so that rm P pr0, 1s by Lemma 3.5.1), we use
Lemma 3.8.3 and Lemma 3.9.4 to see that

ϵ0,Pnpm, rmq ă 0.407, ϵ1,Pnprmq ă 0.275. (3.71)

Comparing the bounds in (3.70) and (3.71), we see that (3.11) holds. Hence, by (3.10), the First
Borwein Conjecture is true for n ě 5300.

A full computer verification for n ď 7000 of the First Borwein Conjecture has already been done,
cf. [Wan22, Sec. 13]. (But see also Remark 4 below.) This finishes the proof. ˝

Next we finish the proof of the Second Borwein Conjecture.
Theorem 3.10.3 The Second Borwein Conjecture, Conjecture 3.1.2, is true.
Proof: Again, we prove this claim by verifying (3.11) for “large” n and a direct computation for
“small” n.

By Lemma 3.10.1, we have argP 2
nprme

2πi{3q P r´π{9, 0s. Then, by Lemma 3.A.13, we may
conclude that

ˇ

ˇ

ˇ
2 cos

´

argP 2
nprme

2πi{3q ´ 2mπ{3
¯

ˇ

ˇ

ˇ
ě

ˇ

ˇ

ˇ
2 cos

´

π{3 ´ argP 2
nprme

2πi{3q

¯
ˇ

ˇ

ˇ
. (3.72)
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In particular, we have
ˇ

ˇ

ˇ
2 cos

´

argP 2
nprme

2πi{3q ´ 2mπ{3
¯

ˇ

ˇ

ˇ
ě 2 cosp4π{9q ą 0.347. (3.73)

Furthermore, for n ě 7000 and m P r3n, pdegP 2
nq{2s (so that rm P pr0, 1s by Lemma 3.5.1),

we use Lemma 3.8.3 and Lemma 3.9.4 to see that

ϵ0,P 2
n

pm, rmq ă 0.262, ϵ1,P 2
n

prmq ă 0.079. (3.74)

Comparing the bounds in (3.73) and (3.74), we see that (3.11) holds. Hence, by (3.10), the
Second Borwein Conjecture is true for n ě 7000.

We now discuss the range 546 ă n ă 7000. Again referring to Lemma 3.10.1, the argument
argPnprme

2πi{3q is increasing as a function in rm. Consequently, the right-hand side of (3.72)
is also increasing in rm. On the other hand, we note that, according to Lemma 3.8.3 and
Lemma 3.9.4, for n ą 546 the left-hand side of (3.11) with δ “ 2 has an upper bound that
is decreasing with respect to rm. Therefore, for n ą 546, there exists r˚ “ r˚pnq such that
(3.11) with δ “ 2 holds for r P rr˚, 1s. For each specific n, r˚pnq can be calculated by any
method for the numerical approximation of zeroes of a function with sufficient accuracy. If we
substitute r˚pnq in (3.22) then we can compute a corresponding m˚pnq. Now (3.10) implies that,
for m P rm˚pnq, pdegP 2

nq{2s, the coefficient rqmsP 2
npqq has the predicted sign.

It turns out that m˚pnq ă 25281 in the region 546 ă n ă 7000. Hence, it remains to calculate
the first 25281 coefficients of P 2

npqq for 546 ă n ă 7000, and all coefficients of P 2
npqq for

n ď 546. We programmed the corresponding calculations using C with the GMP library [Gt02].
They took less than one day on a personal laptop computer. ˝

Remark: A line of argument similar to the one in the preceding proof makes it possible to reduce
the amount of calculation reported in the proof of Theorem 3.10.2 significantly. Namely, this line
of argument shows that only a full calculation of the coefficients of Pnpqq for 1 ď n ď 546, and
a calculation of the coefficients rqmsPnpqq for m P r0, 34168s and 546 ă n ă 5300 is needed.
The corresponding calculations took about 4 hours on a personal laptop computer, as opposed to
the computations reported in [Wan22, Sec. 13] which took 2 days using a multiple-core cluster.

Finally, the theorem below says that “two thirds” of the Cubic Borwein Conjecture, Conjec-
ture 3.1.3, are true.
Theorem 3.10.4 The coefficient rqmsP 3

npqq is positive if 3|m, and is negative if m ď 3pdegPnq{2
and m ” 1 pmod 3q.
Remark: While it may seem at first sight that the statement in Theorem 3.10.4 is just “one half”
of Conjecture 3.1.3, it is indeed “two thirds” of that conjecture. To understand this, we should
recall that Pnpqq is palindromic, and therefore also P 3

npqq. Consequently, Theorem 3.10.4 also
implies that the coefficient rqmsP 3

npqq is negative if m ě 3pdegPnq{2 and m ” 2 pmod 3q.
Proof (Proof of Theorem 3.10.4): The proof and calculations are completely analogous to the
ones of Theorems 3.10.2 and 3.10.3, with the key difference being that the constraint
m ” 0, 1 pmod 3q implies that, again using Lemma 3.A.13, a lower bound for
ˇ

ˇ2 cos
`

argP δ
nprme

2πi{3q ´ 2mπ{3
˘
ˇ

ˇ is actually 1. We calculate for n ě 3150 that

ϵ0,P 3
n

pm, rmq ă 0.335, ϵ1,P 3
n

prmq ă 0.614,
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and perform a full calculation of the coefficients of P 3
npqq for 1 ď n ď 546, as well as a

calculation of the coefficients rqmsP 3
npqq for m P r0, 8864s for 546 ă n ă 3150. Since we have

sup546ănă3150m
˚pnq ă 8864, this suffices for the proof. ˝

Remark: The reason why we cannot prove Conjecture 3.1.3 for m ” 2 pmod 3q with m ď

3pdegPnq{2 is that the right-hand side of (3.11) can get arbitrarily close to 0 since, by Lemma 3.10.1,
we can only conclude that argP 3

nprme
2πi{3q P r´π{6, 0s. We will elaborate on this in Item (1)

of the next, and final, section.

3.11 Discussion and outlook

In this paper, we proved the First and Second Borwein Conjecture, and — partially — a Cubic
Borwein Conjecture, by developing an asymptotic framework that allowed us to verify these
conjectures for “large” n, meaning that in each case a specific n0 of very modest size was given,
and it was proved that the corresponding conjecture held for n ě n0. Together with a direct
calculation for the remaining “small” n using a computer, the proofs could be completed. We
are convinced that this framework can be further enhanced and extended to a machinery that is
capable of establishing the positivity/negativity of coefficients in more general products/quotients
of q-shifted factorials. We discuss this perspective in this section.

We start our discussion by going back to the Cubic Borwein Conjecture, Conjecture 3.1.3, and
work out what prevented us at this stage to come up with a full proof (see Item (1)). Indeed, that
“failure” strongly points out one direction where our method needs refinement. Subsequently,
we turn our attention to the Third Borwein Conjecture and other “Borwein-like” sign pattern
conjectures that one finds in the literature, in particular a conjecture of Ismail, Kim and Stanton
(see Item (2)). As we argue there, we have no doubt that our ideas that we presented here will lead
to substantial progress, if not full proof, of these. Then we report on computer experiments that
we performed that led us to discover new Borwein-type conjectures for the moduli 4 and 7 and
make other intriguing observations concerning sign patterns in such polynomials (see Item (3)).
Bressoud’s conjecture that was mentioned in the introduction is a vast generalisation of the
First Borwein Conjecture. Although, from the outset, it does not seem that our method has
anything to say about that conjecture, we show that Bressoud’s alternating sum expression can be
converted into a double contour integral of a product of q-shifted factorials. Therefore our ideas
do apply. Whether progress can be made in this way remains to be seen. We close this section by
a discussion of the “nature” of the Borwein Conjectures, whether they should be considered as
“combinatorial” or as “analytic”.

(1) WHICH ARE THE OBSTACLES TO COMPLETE THE PROOF OF THE CUBIC BORWEIN

CONJECTURE, CONJECTURE 3.1.3? It may have come somewhat unexpected that, with the
machinery developed here, we proved “only” “two thirds” of Conjecture 3.1.3 and left non-
positivity of the coefficients of q3m`2 in P 3

npqq, 0 ď m ă pdegPnq{2, (and consequently also
the non-positivity of the coefficients of q3m`1 in P 3

npqq, pdegPnq{2 ď m ď degPn), open.

The main reason for this “failure”, as mentioned in Remark 6, is that the right-hand side of (3.11)
can get arbitrarily close to 0. Indeed, by applying Lemma 3.A.5 to the function x ÞÑ fpr, xq

defined in the proof of Lemma 3.10.1, we are able to obtain a much more accurate estimate for
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the argument of Pnpre2πi{3q, namely

argPnpre2πi{3q “ ´
π

18 `
1
3 arctan

?
3r3n

2 ` r3n
`Opn´1r3nq. (3.75)

This implies that, for δ “ 3 and m ” 2 pmod 3q, the right-hand side of (3.11) is equal to

2 cos
´

3 argPnpre2πi{3q ` 2π{3
¯

“ 2 cos
ˆ

π

2 ` arctan
?

3r3n

2 ` r3n

̇

`Opn´1r3nq

“

?
3 r3n

?
1 ` r3n ` r6n

`Opn´1r3nq,

which, for values of r “ expp´Θpn´1{2qq near the cutoff r0, is of the order
expp´Θpn1{2qq. In comparison, the bound for the peak error term ϵ0,P δ

n
pm, rmq that results from

Lemma 3.8.3 is of the order Opn´1{2q for r “ expp´Θpn´1{2qq. Therefore, in this regime for r,
the inequality (3.11) does not hold in the n Ñ 8 limit. Roughly speaking, this issue is caused by
the addition of the two peak contributions in (3.4), which are complex conjugates of each other
(cf. Part C in Section 3.2), but in this case happen to have real part very close to zero (approaching
zero as n Ñ 8), and therefore largely cancel each other. What this observation implies is that the
peak contribution — and thus the coefficient of P 3

npqq itself — is “unusually” small in this case.
This is also mirrored by the earlier observed fact (cf. the end of Section 3.3) that the coefficient
rqmsP 3

8pqq is always zero if m ” 2 pmod 3q. So, again roughly speaking, what is at stake here
is to determine the “next” term(s) in the asymptotic expansion of the peak part of the integral in
order to allow for a more precise estimate of the error made by approximating the peak part by a
Gaußian integral.

(2) WHAT ABOUT OTHER “BORWEIN-LIKE” CONJECTURES? As we said in the introduction,
three Borwein Conjectures were reported in [And95]: Conjectures 3.1.1 and 3.1.2, and the Third
Borwein Conjecture, an analogue of the First Borwein Conjecture (Conjecture 3.1.1) in which
the modulus 3 is replaced by 5.
Conjecture 3.11.1 (P. BORWEIN) For all positive integers n, the sign pattern of the coefficients
in the expansion of the polynomial Snpqq defined by

Snpqq :“ pq; qq5n

pq5; q5qn

is ` ´ ´ ´ ´ ` ´ ´ ´ ´ ` ´ ´ ´ ´ ¨ ¨ ¨ , with the same convention concerning zero coefficients
as in Conjectures 3.1.1 and 3.1.2.

It should be clear that the approach that we presented in this paper can also be applied to this
conjecture, in adapted form. In order to show that the “first few” and the “last few” coefficients
of Snpqq obey the predicted sign pattern (necessary for completing the analogue of Part A in
Section 3.2), we would quote [And95, Eq. (2.5)] with p “ 5,

pq; qq8

pq5; q5q8

“

2
ÿ

k“´2
p´1qkqkp3k`1q{2 pq75; q75q8 pq40`15k; q75q8 pq35´15k; q75q8

pq5; q5q8

, (3.76)

which Andrews derived by using Euler’s pentagonal number theorem and Jacobi’s triple product
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identity. For the contour integral representation of rqmsSnpqq (the analogue of Part B in Sec-
tion 3.2), we would again choose a circle of radius r, 0 ă r ď 1. Here, we would have to deal
with four approximate saddle points (analogue of Part C in Section 3.2): re˘2πi{5 and re˘4πi{5,
with r being a solution of the obvious approximate saddle point equation analogous to (3.19). All
these four approximate dominant saddle points would contribute peaks of the same asymptotic
order to the contour integral. Clearly, the estimations in Sections 3.8 and 3.9 would have to
be adapted accordingly. We expect however that this approach can prove that the coefficients
rq5msSnpqq, rq5m`1sSnpqq, rq5m`2sSnpqq have the predicted signs for n ď m ď 1

10 degpSnpqqq.
On the other hand, in the case of the coefficients rq5m`3sSnpqq and rq5m`4sSnpqq we would face
the same difficulty as we do for the coefficients rq3m`2sP 3

npqq as discussed above: from (3.76)
we see that the coefficients rq5m`3sS8pqq and rq5m`4sS8pqq are all zero, and this indicates that
the corresponding coefficients in Snpqq are relatively small, and therefore it will require much
more accurate estimations in order to show that these coefficients are negative.

Ismail, Kim and Stanton [IKS99, Conj. 1 in Sec. 7] generalised the First Borwein Conjecture,
Conjecture 3.1.1, in a direction different from the earlier mentioned Bressoud Conjecture.
Conjecture 3.11.2 (ISMAIL, KIM AND STANTON) Let a and K be relatively prime positive
integers, 1 ď a ď K{2, with K being odd. Put

n´1
ź

i“0
p1 ´ qa`iKqp1 ´ qK´a`iKq “

ÿ

mě0
bmq

m.

The sign of bm is determined by m modulo K. More precisely, if m ”

˘p2l ` 1qa (mod K) for some l with 0 ď l ă K{2, then bm ď 0, otherwise bm ě 0.

Our approach is certainly tailored for an attack on this conjecture. As already pointed out in
[IKS99], the “infinite” case (the analogue of Part A) follows easily from the Jacobi triple product
identity. For the contour integral representation of the coefficients we would again choose a
circle, with approximate saddle points of the modulus of the integrand at re˘2πib{K , where
2ab ” 1 mod K. The fact that this conjecture contains additional parameters — namely K
and a — may be an obstacle for a full proof, in particular in the checking part (for small n) of
our approach. A proof of Conjecture 3.11.2 for sufficiently large n should however definitely be
feasible.

It is reasonable to believe that, with the approach in this paper, the sign-pattern problem for a
general polynomial of the form

Qnpqq :“
ź

j

pqαj ; qKqn pqK´αj ; qKqn (3.77)

can be reduced to an "infinite case" analogous to what is proved in Section 3.3, and an inequality
analogous to (3.11), where the error terms tend to zero uniformly as n Ñ 8. Naturally, the
sign pattern of the polynomial coefficients would be determined by analogues of the right-hand
side of (3.11), which would turn out to be essentially a sum of the cosines of “arguments”
over all dominant peaks. Analogous to (3.75), the arguments of these peak values can be well
approximated as functions of the quantity rKn. Here, the r is the solution of an approximate
saddle point equation, which at the same time connects it to an indexm, and thus to the coefficient
of qm in the polynomial (3.77). Below we list a rough correspondence of the orders of magnitude
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of the quantities r and m, which can in principle be obtained by arguments similar to those in
Section 3.5:

Coefficients r rKn m

near the cutoff expp´Θpn´1{2qq expp´Θpn1{2qq Opnq

somewhere in the “interior” expp´Θpn´1qq Θp1q Θpn2q

the central coefficient 1 1 1
2pdegQnq “ Θpn2q

From the table above we can see that, as the index m ranges from Θpnq — where the coefficients
of Qnpqq start to differ from Q8pqq — to Θpn2q — where we find the central coefficient of
Qnpqq —, the quantity rKn is expected to take any values from 0 to 1. This allows us to predict
the sign patterns for polynomials or power series of the form (3.77) by the following process:

Step 1. Identify the pair(s) of dominant peaks among φpKq{2 candidates located near primitive
K-th roots of unity, where φp . q denotes Euler’s totient function.

Step 2. For each pair of dominant peaks (say, located at arguments ˘θ where 0 ă θ ă π),
calculate the arguments of the function values at these places and approximate them by functions
of rKn. Using Maclaurin summation techniques similar to Lemma 3.A.5, we claim that each
factor pqαj , qK´αj ; qKqn in (3.77) contributes an amount of

´
K ´ 2αj

K
arctan p1 ´ rKnq cotpαjθ{2q

1 ` rKn
`OprKnn´1q (3.78)

to the argument of Qnpreiθq.

Step 3. Therefore, the analogue of the right-hand side of (3.11) would (approximately) be

ÿ

ℓ

2 cos
˜

´imθℓ ´
ÿ

j

K ´ 2αj

K
arctan p1 ´ rKnq cotpαjθℓ{2q

1 ` rKn

¸

, (3.79)

where the outer sum is over all pairs of arguments ˘θℓ of dominant peaks, and the inner sum
is over all factors in (3.77). By substituting different values for rKn (remember that r depends
on m) and different residue classes of m modulo K, we can read off the general behaviour of
rqmsQnpqq from (3.79).

(3) MORE CONJECTURES. We have performed extensive computer calculations in order to see
whether, apart from the new Cubic Borwein Conjecture, Conjecture 3.1.3, there are more sign
pattern phenomena in Borwein-type polynomials that have not been discovered yet. Our most
striking findings are the following two conjectures. In the first of the two, we use the truth
notation χpAq “ 1 if A is true and χpAq “ 0 otherwise.
Conjecture 3.11.3 (A MODULUS 4 “BORWEIN CONJECTURE”) Let n be a positive integer
and δ P t1, 2, 3u. Furthermore, consider the expansion of the polynomial

pq; qqδ
4n

pq4; q4qδ
n

“

D
ÿ

m“0
cpδq

m pnqqm,
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which has degree D “ 6δn2. Then

c
pδq

4mpnq ě 0 and c
pδq

4m`2pnq ď 0, for all m and n, (3.80)

while

c
pδq

4m`1pnq ď 0, for

#

0 ď m ď 1
8p6δn2 ´ 8q, if n is even,

0 ď m ď 1
8p6δn2 ´ 8 ` 2δq, if n is odd,

(3.81)

and

c
pδq

4m`3pnq ě 0, for

#

0 ď m ď 1
8p6δn2 ´ 8q, if n is even,

0 ď m ď 1
8p6δn2 ´ 6δ ` 8χpδ “ 3qq, if n is odd,

(3.82)

with the exception of two coefficients: for δ “ 1 and n “ 5, we have cp1q

71 p5q “ ´1 and
c

p1q

79 p5q “ 1.
Remark: Roughly speaking, what the above conjecture says is that all coefficients cpδq

4mpnq are
non-negative, all coefficients cpδq

4m`2pnq are non-positive, the “first half” of the coefficients

c
pδq

4m`1pnq is non-positive, and the “first half” of the coefficients cpδq

4m`3pnq is non-negative (with
the mentioned exceptions in the case where n “ 5). Since the polynomial pq; qq4n{pq4; q4qn is
palindromic for even n and skew-palindromic for odd n, we have

cpδq
m pnq “ p´1qδnc

pδq

6δn2´mpnq.

Consequently, the statements (3.81) and (3.82) imply that the coefficients cpδq

4m`1pnq are non-
negative for m outside the ranges given in (3.81) (with two exceptions for n “ 5), and similarly
the coefficients cpδq

4m`3pnq are non-positive for m outside the ranges given in (3.82).
Conjecture 3.11.4 (A MODULUS 7 “BORWEIN CONJECTURE”) For positive integers n, con-
sider the expansion of the polynomial

pq; qq7n

pq7; q7qn
“

21n2
ÿ

m“0
dmpnqqm.

Then

d7mpnq ě 0 and d7m`1pnq, d7m`3pnq, d7m`4pnq, d7m`6pnq ď 0, for all m and n,
(3.83)

while

d7m`5pnq

#

ě 0, for m ď 3αpnqn2,

ď 0, for m ą 3αpnqn2,
(3.84)

where αpnq seems to stabilise around 0.302.
Remark: (1) Since the polynomial pq; qq7n{pq7; q7qn is palindromic, the above conjecture makes
also a prediction for the signs of the coefficients d7m`2pnq.

(2) The existence and approximate position of the sign change for the coefficients of qm with
m ” 2, 5 pmod 7q predicted in (3.84) can in fact be explained by the general procedure for
approaching proofs of sign patterns in the polynomial (3.77), here specialised to K “ 7 and
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αj “ j for j “ 1, 2, 3. As a matter of fact, the function pq; qq7n{pq7; q7qn has three pairs
of dominant peaks (of the same order of magnitude) located at re˘2πiℓ{7 for ℓ “ 1, 2, 3. We
set αj “ j, for j “ 1, 2, 3, and θℓ “ 2πiℓ{7, for ℓ “ 1, 2, 3, in (3.79) to conclude that, for
m ” 5 pmod 7q, the sum (3.79) evaluates to 2

?
7 cosp3π{7q for r7n “ 0, and to ´1 for r7n “ 1.

This indicates a sign change somewhere in the middle. More precisely, in this case we can
pinpoint the zero of (3.79) as r7n « 0.6089. For convenience, let us write s0 :“ 0.6089. The
analogue of the approximate saddle point equation (3.19) for our situation here can be calculated
as

1
3

7n
ÿ

k“1
7∤k

k
rk ´ 7r7k ` 6r8k

p1 ´ rkqp1 ´ r7kq
“ 2m.

Therefore, for r7n “ s0, making the substitution k ÞÑ 7nu, we get

lim
nÑ8

m

21n2 “ lim
nÑ8

7
18p7nq2

˜

7n
ÿ

k“1
k
rk ´ 7r7k ` 6r8k

p1 ´ rkqp1 ´ r7kq
´

n
ÿ

k“1
7kr

7k ´ 7r49k ` 6r56k

p1 ´ r7kqp1 ´ r49kq

¸

“
7
18 ˆ

6
7

ż 1

0
u
su

0 ´ 7s7u
0 ` 6s8u

0
p1 ´ su

0qp1 ´ s7u
0 q

du « 0.30214,

which explains the occurrence of the constant 0.302 in Conjecture 3.11.4.

Many similar conjectures could be proposed. For example, it seems that the coefficient of q6m in
pq; qq6n{pq6; q6qn is non-negative for all m, the coefficient of q6m`3 in pq; qq6n{pq6; q6qn is non-
positive for all m, while, for large enough n, the other sequences of coefficients in congruence
classes modulo 6 of the exponents of q seem to satisfy sign patterns similar to the one in (3.84).
Similarly, for δ P t2, 3u, it seems that the coefficient of q5m in pq; qqδ

5n{pq5; q5qδ
n is non-negative

for all m, while, for large enough n, the other sequences of coefficients in congruence classes
modulo 5 of the exponents of q seem to also satisfy sign patterns similar to the one in (3.84).

(4) THE BRESSOUD CONJECTURE. Inspired by sum representations of the decomposition
polynomials Anpqq, Bnpqq, Cnpqq defined in (3.2) which Andrews found by the use of the q-
binomial theorem (cf. [And95, Eqs. (3.4)–(3.6)]), Bressoud [Bre96, Conj. 6] came up with the
following far-reaching generalisation of the First Borwein Conjecture. For the statement of
Bressoud’s conjecture we need to introduce the usual q-binomial coefficients, defined by

„

A
B

ȷ

q

:“

$

&

%

pq; qqA

pq; qqB pq; qqA´B
, for 0 ď B ď A,

0, otherwise.

Conjecture 3.11.5 (BRESSOUD) Suppose that M,N P Z`, α and β are positive rational num-
bers, and K is a positive integer such that αK and βK are integers. If 1 ď α ` β ď 2K ` 1
(with strict inequalities if K “ 2) and β ´K ď n´M ď K ´ α, then the polynomial

8
ÿ

j“´8

p´1qjqjpKpα`βqj`Kpα´βqq{2
„

M `N
M `Kj

ȷ

q

(3.85)

has non-negative coefficients.
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Conjecture 3.1.1 turns out to be a special case of this conjecture for the choices α “ 5{3, β “ 4{3
and K “ 3.

To this day, Bressoud’s conjecture has only been proved when α, β P Z (corresponding to a result
of Andrews et al. [And+87] on partitions with restricted hook differences), and some sporadic
parametric infinite families (see [Ber20; BW05; War01; War03]).

If one tries a direct attack on proving non-negativity of the coefficients of the polynomial (3.85)
using contour integral methods (in the style of [Wan22], where however different sum representa-
tions of Anpqq, Bnpqq, Cnpqq were used as starting point), then one would discover that a large
amount of cancellation is going on in (3.85) which is impossible to control.

Instead, we could apply the q-binomial theorem [GR04, Ex. 1.2(vi)] to express the q-binomial
coefficient as

„

A
B

ȷ

q

“ q´pB
2qrzBsp´z; qqA.

This leads to

8
ÿ

j“´8

p´1qjqjpKpα`βqj`Kpα´βqq{2
„

M `N
M `Kj

ȷ

q

“

8
ÿ

j“´8

rzM`Kjsp´1qjq
1
2 jpKpα`βqj`Kpα´βqq´pM`Kj

2 qp´z; qqM`N

“ rzM sq´pM
2 qp´z; qqM`N

8
ÿ

j“´8

p´1qjq
1
2 pj2Kpα`β´Kq`jKpα´β`1´Mqqz´Kj . (3.86)

If we assume that |q| ă 1 and α ` β ą K, then we may now apply the Jacobi triple product
identity (cf. [GR04, Eq. (1.6.1)]),

8
ÿ

j“´8

p´1qjqpj
2quj “ pq, u, q{u; qq8, (3.87)

where pα1, α2, . . . , αs; qq8 is short for the product
śs

i“1pαi; qq8. As a consequence, we obtain

8
ÿ

j“´8

p´1qjqjpKpα`βqj`Kpα´βqq{2
„

M `N
M `Kj

ȷ

q

“ rzM sq´pM
2 qp´z; qqM`N

¨ pqKpα`β´Kq, z´KqKp2α´K`1´Mq{2, zKqKp2β´K´1`Mq{2; qKpα`β´Kqq8.

The coefficient of qm of the right-hand side can be represented as a double contour integral
over z and q of a product of (finite and infinite) shifted q-factorials and is therefore — at least in
principle — amenable to the ideas that we developed in this paper.

If α ` β ă K, then we would assume |q| ą 1 and try an analogous approach. On the other
hand, if α ` β “ K, then the sum in (3.86) can be evaluated by summing a geometric series.8

Hence, again, we obtain an expression that can be converted into a double contour integral that is
amenable to the ideas developed in this paper.

8The reader should keep in mind that, for fixed M and N , the sum over j is a finite sum.
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(5) ARE THE BORWEIN CONJECTURES COMBINATORIAL OR ANALYTIC IN NATURE? This
question is somewhat on the provocative side. It seems that it has been commonly believed
that the Borwein Conjecture(s) is (are) combinatorial in nature, in the sense that the most
promising approaches for a proof are combinatorial, may it be by an injective argument, or
by q-series manipulations, or by a combination of the two. However, we believe that by now
considerable evidence has accumulated for the feeling that this might have been a misconception.
On the superficial level, one must simply admit that, despite considerable effort, until now
“combinatorial” attacks have not led to any progress on the Borwein Conjectures (but undeniably
to further intriguing discoveries). By contrast, the first proof of the First Borwein Conjecture in
[Wan22] has been accomplished using analytic methods, as well as the proof in this paper. More
substantially, several of the more recently discovered related or similar results and conjectures,
such as Conjecture 3.11.4 (cf. in particular Remark 8(2)), the many conjectures by Bhatnagar and
Schlosser in [BS19], or Kane’s result [Kan04] that we used in Section 3.3 seem to indicate that

“typically” such sign pattern results hold for “large” n, and in some cases — such as in the case
of the Borwein Conjectures — they “accidentally” also hold for “small” n. This is not to say
that we do not think that it is desirable to find a combinatorial proof of, say, the First Borwein
Conjecture. On the contrary! However, one should be aware that such a proof would most likely
not have anything to say about the Second Borwein Conjecture or the Cubic Borwein Conjecture,
while, by our analytic approach, we could do the First and Second Borwein Conjecture (and large
parts of the Cubic Borwein Conjecture) — so-to-speak — in one stroke. Obviously, the last word
in this matter has not yet been spoken.

3.A Appendix: auxiliary inequalities

Here we collect several auxiliary inequalities of very technical nature that we need in the main
text. We put them here so as to not disturb the flow of arguments in the main text.

3.A.1 Bounds for certain rational functions in s and log s

In the lemma below, we collect various bounds for the auxiliary functions ujpzq and vjpzq from
Section 3.4. They are used ubiquitously in Sections 3.5, 3.8, and 3.9.
Lemma 3.A.1 Suppose that ujpzq and vjpzq, j P Z`, are as defined in (3.16) and (3.17).
Furthermore, for ρ P R`, let the region Sρ be defined as in (3.28).

(1) For s P p0, 1s, we have the following inequalities:

u1psq

s
ď

2
?

3
,

2
3 ď

u2psq

s
ă

6
5 , (3.88)

1 ´ s3

p´ log sqp1 ` sq
ď

3
2 , (3.89)

s3´1{400p´ log sq
1 ´ s9 ă 0.134, (3.90)

p1 ´ s3q2

p´ log sq2p1 ` 2s` 2s3 ` s4q
ď

3
2 , (3.91)

s3´1{400p1 ´ s6qp´ log sq2

p1 ´ s9qp1 ´ s3{2qp1 ` s3 ` s6q
ă 0.084, (3.92)



102 Chapter 3. An asymptotic approach to Borwein-type sign pattern theorems

ˇ

ˇ2plog sqv2psq ` plog sq2v3psq
ˇ

ˇ ă
1
3 , (3.93)

|4v4psq ` plog sqv5psq| ă
9
8 , (3.94)

ˇ

ˇ2v2psq ` 2plog sqv3psq ` plog sq2v4psq
ˇ

ˇ ă 0.21, (3.95)
ˇ

ˇ12v4psq ` 8plog sqv5psq ` plog sq2v6psq
ˇ

ˇ ă 3.7. (3.96)

(2) We have upper bounds for ujpzq{z and vjpzq{z as given in the following table:

j “ 3 4 5 6 7 8
z P S5{27 |ujpzq{z| ă 1.3 1.409

z P S10{27
|ujpzq{z| ă 1.44 1.721
|vjpzq{z| ă 1.01 1.02 2.09 5.46 19.1 73

Proof: The inequalities (3.88) are inequalities for rational functions and therefore are straight-
forward to prove using standard methods from classical analysis (or by the use of CAD; see
Footnote 9). For the inequalities (3.89)–(3.96), we apply a numerical approach (analogous to
the one in the proof of Lemma 3.A.3 below). Let LHSpsq denote the left-hand side of one such
inequality. We choose M “ 106 equally spaced points in the interval r0, 1s. Then we have

sup
sPr0,1s

LHSpsq ď sup
0ďmďM

LHS
´m

M

¯

`
1
M

sup
sPr0,1s

ˇ

ˇ

ˇ

ˇ

dLHS
ds

psq

ˇ

ˇ

ˇ

ˇ

.

The supremum of the derivative can easily be bounded since it is a rational function in s and
log s that has a finite value at s “ 0.

For the inequalities in Part (2) of the lemma, we also apply this numerical approach. This is
indeed feasible since, by the maximum modulus principle, the maximum modulus of an analytic
function on a compact domain (which, in our case, are the sets S5{27 respectively S10{27) is
attained at the boundary of the domain. ˝

3.A.2 Bounds for certain truncated perturbed Gaußian integrals

The central result of this subsection is Lemma 3.A.3 which provides estimates for the constants
that appear in Lemma 3.8.1, and which are used in Lemma 3.8.3. A simple corollary of the
lemma that is used in the proof of Lemma 3.8.1 is stated separately as Corollary 3.A.4. The
lemma below gives an estimate involving the lower incomplete gamma function that is needed in
the proof of Lemma 3.A.3.

Below, we will occasionally make use of the effective form of Stirling’s formula

Γpxq “

´x

e

¯x p2πq1{2

x1{2 eσpxq, x ą 0, (3.97)

where
0 ă σpxq ă

1
12x.

Here, the left inequality follows from [AAR99, Theoorem 1.6.3(i)], while the right inequality
follows from [AAR99, Theorem 1.4.2 with m “ 1].
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Lemma 3.A.2 Let γps, aq :“
şa
0 e

´xxs´1dx be the lower incomplete gamma function. Suppose
that c, d, µ P R` with d ą c. Then we have

sup
wPR`

w´cγpd, µwq ď
µcΓpd´ c` 1q

c
a

2πpd´ cq
.

Proof: We note that the limit of w´cγpd, µwq is 0 for both w Ñ 0` (here we use that d ą c) and
w Ñ `8. This implies that the maximum value of w´cγpd, µwq with w P R` occurs at a point
where d

dw pw´cγpd, µwqq “ 0. It is straightforward to see that this latter equation is equivalent to

γpd, µwq “
e´µwpµwqd

c
.

Therefore, we have

sup
wPR`

w´cγpd, µwq ď sup
wPR`

e´µwwd´cµd

c
.

Another differentiation shows that the supremum of the latter expression occurs at w “ pd´cq{µ,
which gives a final bound of

sup
wPR`

w´cγpd, µwq ď
µce´pd´cqpd´ cqd´c

c
ă
µcΓpd´ c` 1q

c
a

2πpd´ cq
,

where, to get the last bound, we used the lower bound in (3.97). This is exactly what we wanted
to prove. ˝

Lemma 3.A.3 There exist functions βi : p0, 1q Ñ R` for i “ 1, 2, 3, 4, defined by

β1pµq :“ sup
wą0

w3{2

erfpµ
?
wq

ż µ

0
e´wy2 `

coshpwy3q ´ 1
˘

dy, (3.98)

β2pµq :“ sup
wą0

w3{2

erfpµ
?
wq

ż µ

0
ye´wy2 sinhpwy3q dy, (3.99)

β3pµq :“ sup
wą0

w3{2

erfpµ
?
wq

ż µ

0
e´wy2 sinhpwy4q dy, (3.100)

β4pµq :“ sup
wą0

w2

erfpµ
?
wq

ż µ

0
ye´wy2 sinhpwy4q dy. (3.101)

Moreover, we have the following estimates for particular values:

β1p20{27q ă 1.39, β2p20{27q ă 1.14, β3p2{3q ă 0.73, β4p2{3q ă 1.15.

Proof: We provide here only the proof concerning β1. The proofs for the other three suprema
are completely analogous.

We must first show that the supremum in (3.98) is always finite. Let

b1pµ,wq :“ w3{2

erfpµ
?
wq

ż µ

0
e´wy2 `

coshpwy3q ´ 1
˘

dy
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abbreviate the function of which we want to take the supremum. We first note that the integrand
in the above integral is bounded above by expp´wy2p1 ´ yqq and therefore also by 1. Hence,

b1pµ,wq ď
µw3{2

erfpµ
?
wq
.

On the other hand, we perform a Taylor expansion of coshpwx3q ´ 1, and define

u1pk, µ, wq :“ w3{2

p2kq!

ż µ

0
e´wy2

w2ky6k dy “
γp3k ` 1{2, µ2wq

2p2kq!wk´1 ,

so that

b1pµ,wq “
1

erfpµ
?
wq

8
ÿ

k“1
u1pk, µ, wq.

Now, Lemma 3.A.2 implies that

u1pk, µ, wq ă
µ2k´2Γp2k ` 5{2q

2p2kq! pk ´ 1q
a

p4k ` 3qπ
ă

pk ` 1q

pk ´ 1q
?

2π
µ2k´2,

where we used (3.97) to obtain the last inequality. On the other hand, we trivially have

u1pk, µ, wq ă
Γp3k ` 1{2q

2p2kq!wk´1 .

Both bounds combined, we find

b1pµ,wq ď
1

erfpµ
?
wq

min
˜

µw3{2,
Γp7{2q

4 `
Γp13{2q

48w `
1

?
2π

8
ÿ

k“3

k ` 1
k ´ 1µ

2k´2

¸

.

This confirms the finiteness of the supremum in (3.98) and therefore the existence of the function
β1.

In order to determine the particular value β1p20{27q (at least approximately), we first dispose of
large w by providing an upper bound for b1p20{27, wq for w ą w0 :“ 80. Indeed, in this regime
we have µ

?
w ą 6, and therefore

b1p20{27, wq ă
1

erf 6

˜

Γp7{2q

4 `
Γp13{2q

48w0
`

1
?

2π

8
ÿ

k“3

k ` 1
k ´ 1p20{27q2k´2

¸

ă 1.37.

We then determine the supremum of b1p20{27, wq over the interval r0, w0s by a routine calcula-
tion. Namely, to begin with, we provide a crude upper bound for the derivative Bb1

Bw pµ,wq in this
interval. To this end, we argue that the inequality erfpxq ą x{p1 ` xq implies that

w3{2

erfpµ
?
wq

ă
wp1 ` µ

?
wq

µ
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and
ˇ

ˇ

ˇ

ˇ

ˇ

B

Bw

w3{2

erfpµ
?
wq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

3
?
w

2 erfpµ
?
wq

´
µwe´µ2w

?
π erf2pµ

?
wq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
3
?
w

2 erfpµ
?
wq

`
µwe´µ2w

?
π erf2pµ

?
wq

ă
3p1 ` µ

?
wq

2µ `
p1 ` µ

?
wq2

µ
?
π

ă
4p1 ` µ

?
wq2

µ
?
π

.

On the other hand, for all y P r0, µs we have

e´wy2 `

coshpwy3q ´ 1
˘

ă e´wy2`wy3
ď 1,

and
ˇ

ˇ

ˇ

ˇ

B

Bw
e´wy2 `

coshpwy3q ´ 1
˘

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
y2e´wy2

py sinhpwy3q ´ coshpwy3q ` 1q

ˇ

ˇ

ˇ

ă y2e´wy2`wy3
ď µ2.

Combining these inequalities, we obtain

ˇ

ˇ

ˇ

ˇ

Bb1
Bw

pµ,wq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

w3{2

erfpµ
?
wq

ż µ

0

B

Bw

´

e´wy2 `

coshpwy3q ´ 1
˘

¯

dy

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

˜

B

Bw

w3{2

erfpµ
?
wq

¸

ż µ

0
e´wy2 `

coshpwy3q ´ 1
˘

dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď pµ2qwp1 ` µ
?
wq `

4p1 ` µ
?
wq2

?
π

ă
6

?
π
w0p1 ` µ

?
w0q2.

With this upper bound proven, we choose M “ 106 uniformly distributed points in the interval
r0, w0s, and argue that

sup
wPr0,w0s

b1p20{27, wq ď sup
0ďmďM

b1

´

20{27, m
M
w0

¯

`
w0
M

sup
wPr0,w0s

ˇ

ˇ

ˇ

ˇ

Bb1
Bw

p20{27, wq

ˇ

ˇ

ˇ

ˇ

.

The result of this calculation turns out to be 1.3860 ă 1.39 (accurate to the last significant digit
given), which finishes the proof. ˝

Corollary 3.A.4 For u, v P R` and x0 P r0, u{vs, we have

ż x0

0
e´ux2 `

coshpvx3q ´ 1
˘

dx ď β1

´

x0
v

u

¯ v2

u7{2 erfpx0
?
uq, (3.102)

ż x0

0
xe´ux2 sinhpvx3q dx ď β2

´

x0
v

u

¯ v

u5{2 erfpx0
?
uq, (3.103)

ż x0

0
e´ux2 sinhpvx4q dx ď β3

ˆ

x0

c

v

u

̇

v

u5{2 erfpx0
?
uq, (3.104)
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ż x0

0
xe´ux2 sinhpvx4q dx ď β4

ˆ

x0

c

v

u

̇

v

u3 erfpx0
?
uq. (3.105)

Proof: This follows immediately from Lemma 3.A.3 by, on the one hand, performing the
substitutions y Ñ pv{uqx and w Ñ u3{v2 in (3.98) and (3.99), and performing the substitutions
y Ñ p

a

v{uqx and w Ñ u2{v in (3.100) and (3.101). ˝

3.A.3 A Maclaurin summation estimate

The following upper bound for an alternating sum is crucial in the proof of Lemma 3.8.2,
see (3.46).
Lemma 3.A.5 For n P Z` and f P C4r0, 3ns, we have

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1
pfp3k ´ 2q ´ fp3k ´ 1qq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
3 |fp3nq ´ fp0q| `

2
3

ˇ

ˇf2p3nq ´ f2p0q
ˇ

ˇ `
11
96 sup

xPr0,3ns

|f p4qpxq|.

Proof: We use the offset Maclaurin summation formula (see, for example, [Sid03, Theo-
rem D.2.4]) to see that

n
ÿ

k“1
pfp3k ´ 2q ´ fp3k ´ 1qq “

4
ÿ

k“1

3k´1pBkp2{3q ´Bkp1{3qq

k!

´

f pk´1qp3nq ´ f pk´1qp0q

¯

´
9
8

ż 3n

0
f p4qpxq

ˆ

B̄4

ˆ

2 ´ x

3

̇

´ B̄4

ˆ

1 ´ x

3

̇̇

dx

“
1
3 pfp3nq ´ fp0qq ´

2
3

`

f2p3nq ´ f2p0q
˘

´
9
8

ż 3n

0
f p4qpxq

ˆ

B̄4

ˆ

2 ´ x

3

̇

´ B̄4

ˆ

1 ´ x

3

̇̇

dx,

where the Bernoulli polynomials Bkpuq are defined by

ÿ

kě0
Bkpuq

tk

k! “
teut

et ´ 1 ,

and B̄kpuq “ Bk ptuuq, with tuu denoting the fractional part of u as usual, is the k-th periodic
Bernoulli function. The lemma follows from the fact that

ż 3n

0

ˇ

ˇ

ˇ

ˇ

B̄4

ˆ

2 ´ x

3

̇

´ B̄4

ˆ

1 ´ x

3

̇ˇ

ˇ

ˇ

ˇ

dx “
11n
108 . ˝

3.A.4 Estimates for sums and differences of exponentials

Here we record two elementary estimates for the difference respectively the sum of two exponen-
tials that are used in the proof of Lemma 3.8.1.
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Lemma 3.A.6 For z, w P C, we have the following inequalities:

|ez ´ ew| ď 2 sinh maxp|z|, |w|q ` 2 sinh |z ` w|

2 , (3.106)

|ez ` ew ´ 2| ď 2 cosh maxp|z|, |w|q ´ 2 ` 2 sinh |z ` w|

2 . (3.107)

Proof: Without loss of generality, we assume that Repw ´ zq ď 0. By the triangle inequality,
we have

|ez ´ ew| ď
ˇ

ˇez ´ e´z
ˇ

ˇ `
ˇ

ˇe´z ´ ew
ˇ

ˇ

ď 2 sinh |z| ` 2
ˇ

ˇ

ˇ
epw´zq{2

ˇ

ˇ

ˇ
sinh |z ` w|

2

ď 2 sinh maxp|z|, |w|q ` 2 sinh |z ` w|

2 ,

and

|ez ` ew ´ 2| ď
ˇ

ˇez ` e´z ´ 2
ˇ

ˇ `
ˇ

ˇe´z ´ ew
ˇ

ˇ

ď 2 cosh |z| ´ 2 ` 2
ˇ

ˇ

ˇ
epw´zq{2

ˇ

ˇ

ˇ
sinh |z ` w|

2

ď 2 cosh maxp|z|, |w|q ´ 2 ` 2 sinh |z ` w|

2 . ˝

3.A.5 Inequalities for the sums Xjpn, rq

The lemma below provides inequalities for various expressions involving the sums Xjpn, rq

defined in (3.18). These are used in the proof of Lemma 3.8.2 and for the proof of several
particular bounds presented in Corollary 3.A.8 below. In their turn, the bounds of the corollary
are used in Lemmas 3.8.3 and 3.9.4.
Lemma 3.A.7 For n P Z` and r P p0, 1s, we have the following inequalities concerning the
quantities Xjpn, rq:

1.

X1pn, rq ě
rp1 ` 2r ` 2r3 ` r4qp1 ´ r3nqp1 ´ r3n{2q

p1 ´ r3q2 . (3.108)

2. For j “ 0, 1, 2, 3, we have

Xj`1pn, rq

X0pn, rqXjpn, rq
ď

Xj`1p8, rq

X0p8, rqXjp8, rq
. (3.109)

3. For j “ 0, 1, 2, we have

Xjpn, rqXj`2pn, rq

X2
j`1pn, rq

ď
Xjp8, rqXj`2p8, rq

X2
j`1p8, rq

. (3.110)
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Proof: (1) Inequality (3.108) can be proved by observing that

X1pn, rqp1 ´ r3q2 “ rp1 ` 2r ` 2r3 ` r4qp1 ´ r3nq ´ 3nr3n`1p1 ` rqp1 ´ r3q

ě rp1 ` 2r ` 2r3 ` r4qp1 ´ r3nq ´ r3n{2`1p3r3{2 ` 3r5{2qp1 ´ r3nq

ě rp1 ` 2r ` 2r3 ` r4qp1 ´ r3nq ´ r3n{2`1p1 ` 2r ` 2r3 ` r4qp1 ´ r3nq

“ rp1 ` 2r ` 2r3 ` r4qp1 ´ r3nqp1 ´ r3n{2q.

(2) To prove (3.109) and (3.110), we claim that the expressions

p1 ´ r3qj`2

p1 ` rqr3n`3 pXj`1p8, rqX0pn, rqXjpn, rq ´Xj`1pn, rqX0p8, rqXjp8, rqq

and

p1 ´ r3q2j`4

3nr3n`4
`

Xjp8, rqXj`2p8, rqX2
j`1pn, rq ´Xjpn, rqXj`2pn, rqX2

j`1p8, rq
˘

are actually polynomials in r with non-negative coefficients. This claim can be routinely verified
by explicitly calculating each coefficient of these expressions as piecewise polynomial function.
As an illustrative example, we have

p1 ´ r3q4

3nr3n`4
`

X0p8, rqX2p8, rqX2
1 pn, rq ´X0pn, rqX2pn, rqX2

1 p8, rq
˘

“ p1 ` rq

3n`2
ÿ

m“0
amr

m,

where the coefficients are given by a0 “ 3n, a1 “ 15n ´ 2, a2 “ 24n ´ 4, a3 “ 30n ´ 18,
a3n “ 27n´ 18, a3n`1 “ 3n´ 4, a3n`2 “ 3n´ 2, and

am “

$

’

&

’

%

3p2m´ 3qp3n´mq ` 9pm´ 2q, if m ” 0 pmod 3q,

3p3m´ 4qp3n´mq ` 9pm´ 2q, if m ” 1 pmod 3q,

3p3m´ 5qp3n´mq ` 18pm´ 2q, if m ” 2 pmod 3q.

for 4 ď m ď 3n´ 1. ˝

Corollary 3.A.8 For n ě 1 and r P p0, 1s, we have

X2
0 pn, rq

rX1pn, rq
ď

4
3 , (3.111)

rX2pn, rq

X0pn, rqX1pn, rq
ď 3, (3.112)

r2X2pn, rq

X3
0 pn, rq

ď
9
2 , (3.113)

rX3pn, rq

X0pn, rqX2pn, rq
ď

9
2 , (3.114)

r2X4pn, rq

X2
0 pn, rqX2pn, rq

ď 27, (3.115)

X0pn, rqX3pn, rq

X1pn, rqX2pn, rq
ď 3, (3.116)
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X0pn, rqX2
3 pn, rq

X3
2 pn, rq

ď
9
2 , (3.117)

X0pn, rqX4pn, rq

X2
2 pn, rq

ď 6, (3.118)

where the Xjpn, rq are defined in (3.18).
Proof: To prove (3.111), we argue that

4rX1pn, rq ´ 3X2
0 pn, rq “ r2p1 ´ rqp1 ` 3rq ě 0

for n “ 1, and make use of (3.108) to see that

X2
0 pn, rq

rX1pn, rq
ď

p1 ` rq2p1 ` r3n{2q

p1 ` 2r ` 2r3 ` r4q
ď

p1 ` rq2p1 ` r3q

p1 ` 2r ` 2r3 ` r4q
ď

4
3

for n ě 2.

For the other seven inequalities, we invoke (3.109) for (3.112)–(3.115) and (3.110) for (3.116)–
(3.118) to see that the left-hand side of all six inequalities does not exceed the corresponding
n Ñ 8 limit. The six limits in question are simple rational functions in r and can be routinely
shown to be bounded above by the right-hand side; as an example, for (3.113) we have

r2X2pn, rq

X3
0 pn, rq

ď
r2X2p8, rq

X3
0 p8, rq

“
1 ` 3r ´ 3r2 ` 16r3 ´ 3r4 ` 3r5 ´ r6

p1 ` rq2 ,

and

9p1 ` rq2 ´ 2p1 ` 3r ´ 3r2 ` 16r3 ´ 3r4 ` 3r5 ´ r6q

“ p1 ´ rqp7 ` 19r ` 34r2 ` 2r3 ` 8r4 ` 2r5q ě 0. ˝

3.A.6 Upper bounds for certain trigonometric sums

This subsection contains two auxiliary results, of different flavour, which provide upper bounds
for the absolute value of certain trigonometric sums, the second more special than the first.
Lemma 3.A.9 is used in the proofs of Lemmas 3.9.1 and 3.9.3, while Lemma 3.A.10 is used in
the proof of Lemma 3.9.2. An auxiliary result that is needed in the proof of Lemma 3.A.10 is
stated separately in Lemma 3.A.11.
Lemma 3.A.9 Suppose that 0 ă r ď 1 and θ, φ P R. For all positive monotonically increasing
sequences tununě0, and for all non-negative integers a, b such that a ď b, we have

ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“a

ukr
k cospkθ ` φq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

|1 ´ reiθ|

˜

p1 ´ rq

b
ÿ

k“a

ukr
k ` 2rb`1ub

¸

.
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Proof: We write z “ reiθ, and note that the sum Sa,b :“
řb

k“a r
k cospkθ ` φq can be bounded

above by
ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“a

rk cospkθ ` φq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“a

zk

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

za ´ zb`1

1 ´ z

ˇ

ˇ

ˇ

ˇ

ď
ra ` rb`1

|1 ´ z|
.

Therefore, we can use Abel’s lemma (summation by parts) to get
ˇ

ˇ

ˇ

ˇ

ˇ

b
ÿ

k“a

ukr
k cospkθ ` φq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ua|Sa,b| ` pua`1 ´ uaq|Sa`1,b| ` ¨ ¨ ¨ ` pub ´ ub´1q|Sb,b|

ď
1

|1 ´ z|

´

uapra ` rb`1q ` pua`1 ´ uaqpra`1 ` rb`1q ` ¨ ¨ ¨ ` pub ´ ub´1qprb ` rb`1q

¯

“
1

|1 ´ z|

˜

p1 ´ rq

b
ÿ

k“a

ukr
k ` 2rb`1ub

¸

. ˝

The following inequality improves Lemma B.4 from [Wan22].
Lemma 3.A.10 For r P p0, 1q, n P Z`, and θ P r´π, πs, we have

n
ÿ

k“1
rk´1 cos kθ ď

1 ´ rn

1 ´ r

d

1
1 ` 4κ tan2pθ{2q

, (3.119)

where

κ “
p1 ` rqp1 ´ rnqp1 ´ rn{6q

p1 ´ rq2 .

Proof: Writing cospkθq “ 1
2

`

eikθ ` e´ikθ
˘

, we see that the sum on the left-hand side can be
evaluated as it is just the sum of two geometric series. After substitution of the result, it turns out
that the claimed inequality is equivalent to

´r ` cos θ ` rn`1 cospnθq ´ rn cospnθ ` θq

1 ´ 2r cos θ ` r2 ď
1 ´ rn

1 ´ r

d

1
1 ` 4κ tan2pθ{2q

. (3.120)

Without loss of generality we assume that θ ě 0. We prove (3.120) for all real n ě 1 and
θ P r0, πs. We divide the proof into two parts according to whether θ is larger than π

n`1 or not.

PART I. θ ď π
n`1 . We construct Padé approximants as bounds for the various non-rational

functions involved, with the goal of reducing the proof of the inequality to the proof of an
inequality for a rational function. The reason is that inequalities for rational functions are
easier to handle. In particular, they can be automatically proved by using Cylindrical Algebraic
Decomposition (CAD),9 and this is what we are going to do in the end for the most intricate ones.

9Cylindrical Algebraic Decomposition (CAD) is an algorithm that, among others, is able to prove that a given
polynomial in several variables is positive (non-negative), respectively provides a description of the subset of the
parameter space for which the polynomial is positive (non-negative). It also allows one to verify the positivity
(non-negativity) of polynomials in several variables under (polynomial) constraints on the variables. The reader is
referred to the “user guide” [Kau10] and the references therein. Implementations of CAD are available within any
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We let t “ tan2pθ{2q so that cos θ “ 1´t
1`t . Using Lemma 3.A.11 below, Lemma B.3 from [Wan22],

and elementary manipulations, we obtain

cospnθq “
3 ` p3 ´ 5n2qt´ n2t2

p1 ` tqp3 ` n2tq
ě

3 ´ p5n2 ´ 2qt

3 ` pn2 ` 2qt
, for all θ P R,

cospnθq ´ cospnθ ` θq ď
6p2n` 1qt

3 ` p2n2 ` 2n` 3qt
, for all θ P r0, π{ns,

1
?

1 ` 4x
ě

1
1 ` 2x, for all x ě 0.

With these inequalities in mind, it is sufficient to prove that

p1 ´ rq

ˆ

1 ´ rn 3 ´ p5n2 ´ 2qt

3 ` pn2 ` 2qt

̇

´ 1 `
1 ´ t

1 ` t
` rn 6p2n` 1qt

3 ` p2n2 ` 2n` 3qt

ď
1 ´ rn

1 ´ r

ˆ

1 ´ 2r1 ´ t

1 ` t
` r2

̇

1
1 ` 2κt. (3.121)

The difference between the two sides of (3.121) can be written as

2tp9a0 ` 3a1t` a2t
2 ` κp1 ´ rqa3t

3q

p1 ´ rq2p1 ` tqp3 ` pn2 ` 2qtqp3 ` p2n2 ` 2n` 3qtqp1 ` 2κtq , (3.122)

where

a0 “ 1 ` r ´ rn
´

p1 ` np1 ´ rqq
2

` r
¯

´ κp1 ´ rq2p1 ´ rnq,

a1 “ 2pn2 ` n` 3qa0 ` 3κp1 ´ rqp1 ` r ´ 3rn ` rn`1q

` pn2 ´ 1qp1 ` r ´ 2rn`1q ` pn` 1q2p2n` 1qrnp1 ´ rq

´ κp1 ´ rq
`

pn2 ´ 1qp1 ´ rqp1 ` 5rnq ` 12nrn
˘

,

a2 “

4
ÿ

j“0
a2jn

j ,with

a20 “ 3p1 ´ rnqp2 ` 2r ` κp1 ´ rqp3 ` 7rqq,

a21 “ 4p1 ` r ´ 3rn ` rn`1q ` 2κp1 ´ rqp1 ` 5r ´ 25rn ´ 5rn`1qq,

a22 “ 7 ` 7r ´ 12rn ` 7rn`1 ´ 9rn`2 ` 2κp1 ´ rqp1 ` 8r ´ 13rn ` 10rn`1q,

a23 “ 2p1 ` r ´ 6rn ` 7rn`1 ´ 3rn`2q ´ 2κp1 ´ rqp1 ´ r ` 11rn ´ 5rn`1q,

a24 “ 2p1 ` r ´ 3rn ` 4rn`1 ´ 6rn`2q ´ 2κp1 ´ rq2p1 ` 5rnq,

a3 “ p1 ` rqp1 ´ rnqpn2 ` 2qp2n2 ` 2n` 3q

´ 6n2rnp1 ´ rqp2n2 ` 2n` 3q ` 4nrnpn´ 2qpn2 ` 2q.

In the following, we are going to prove non-negativity results for these coefficients.

standard computer algebra programme. The one that we used is the command CylindricalDecomposition
within Mathematica.
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(1) a0 ě 0. We substitute the definition of κ in (3.122). After some simplification, the inequality
can be shown to be equivalent to

p1 ` np1 ´ rqq
2

` r

1 ` r
ď

1 ´ p1 ´ rnq2p1 ´ rn{6q

rn
. (3.123)

In order to prove this, we first use the classical inequalities 1 ´ r ď p´ log rq and 1´r
1`r ď

p´ log rq{2 to conclude that

p1 ` np1 ´ rqq
2

` r

1 ` r
ď 1 ` p´ log rqn` p´ log rq2n

2

2 .

Note that the right-hand side is exactly the Taylor polynomial of

r´np1 ´ p1 ´ rnq2p1 ´ rn{6qq

of order 2 at n “ 0. So, in order to prove (3.123), it suffices to show that its third derivative is
non-negative. Indeed, this third derivative can be calculated as

ˆ

d

dn

̇3
p1 ´ p1 ´ rnq2p1 ´ rn{6qq

rn

“
p´ log rq3rn{6

216

´

125r´n ` 2 ` 216r5n{6 ´ 343rn
¯

ě 0.

(2) a1 ě 0. We claim that

pn2 ´ 1qp1 ` r ´ 2rn`1q ` pn` 1q2p2n` 1qrnp1 ´ rq

ě κp1 ´ rq2pn2 ´ 1qp1 ` 5rnq ` 12nκrnp1 ´ rq. (3.124)

By substituting the definition of κ and using the inequality 1 ` 5rn ď p1 ´ rnq{p1 ´ rn{6q, we
see that (3.124) is implied by

2npn` 1qpn` 2q ě
1 ´ rn

1 ´ r
p1 ` rq

˜

12n1 ´ rn{6

1 ´ r
´ n2 ` 1

¸

.

This can be proved by noting that n ě p1 ´ rnq{p1 ´ rq, and that

p1 ` rq

˜

12n1 ´ rn{6

1 ´ r
´ n2 ` 1

¸

ď

#

p1 ` rq
`

2n2 ´ n2 ` 1
˘

, if n ě 6,
12n1´rn{6

1´
?

r
´ n2 ` 1, if n ă 6,

ď

#

2n2 ` 2, if n ě 6,
12nmaxp1, n{3q ´ n2 ` 1, if n ă 6,

ă 2pn` 1qpn` 2q.

(3) a2 ě 0. We prove that a20, a22, a24, p1 ´ r1{6qa21 ` p1 ´ rn{6qa22 and
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ř4
j“0p1 ´ r1{6q4´jp1 ´ rn{6qja2j are non-negative. All these expressions are rational func-

tions in r1{6 and rn{6. In order to get these expressions ready for application of CAD, we replace
each occurrence of rn{6 by X , and each occurrence of r1{6 by Y , say. In this manner, we obtain
rational functions in X and Y . (In order to illustrate this: a term rn`2{3 would be replaced by
X6Y 4.) Now CAD can be applied under the constraints 0 ă X ď Y ă 1, and it yields the
claimed result.

(4) p1 ´ rn{6qa2 ` κp1 ´ rqp1 ´ r1{6qa3 ě 0. The proof is completely analogous to the proof of
a2 ě 0 above: we write

p1 ´ rn{6qa2 ` κp1 ´ rqp1 ´ r1{6qa3 “

4
ÿ

j“0
njbj ,

and verify by CAD that b0, b2, b4, p1 ´ r1{6qb1 ` p1 ´ rn{6qb2 and

4
ÿ

j“0
p1 ´ r1{6q4´jp1 ´ rn{6qjbj

are non-negative.

With these non-negativity results proven, the inequality (3.121) follows from the fact that

t ď tan2
ˆ

π

2n` 2

̇

ď
1
n

ď
1 ´ r1{6

1 ´ rn{6 .

PART II. θ ą π
n`1 . We apply the Cauchy–Schwarz inequality to the vectors

pr ´ cos θ, sin θq and pcosnθ, sinnθq. This yields

pr ´ cos θq cosnθ ` sin θ sinnθ ď

b

pr ´ cos θq2 ` sin2 θ ¨ 1,

which is equivalent to

r cospnθq ´ cospnθ ` θq ď
a

1 ´ 2r cos θ ` r2. (3.125)

Equality in (3.125) holds if and only if the two vectors are proportional to each other, that is, if
and only if

r ´ cos θ
sin θ “

cosnθ
sinnθ “ cotnθ.

We define the quantity

n0pθ, rq “
1
θ

ˆ

π

2 ´ arctan r ´ cos θ
sin θ

̇

P

„

π ´ θ

2θ ,
π ´ θ

θ

ȷ

.

From the above observation, it follows readily that we have equality in (3.125) for n “ n0pθ, rq.
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We now claim that the strengthened inequality

´r ` cos θ ` s
?

1 ´ 2r cos θ ` r2

1 ´ 2r cos θ ` r2 ď
1 ´ s

1 ´ r

d

1
1 ` 4κ˚ tan2pθ{2q

, (3.126)

holds in the region
!

pr, s, θq : r, s P r0, 1q, 0 ď θ ă π, s ď rmaxp1,n0pθ,rqq
)

,

where κ˚ is defined by

κ˚ :“ p1 ` rqp1 ´ sqp1 ´ s1{6q

p1 ´ rq2 .

If we assume the validity of this inequality, then the desired result follows by choosing s “ rn

in (3.126), and applying (3.125); we point out that, since n0pθ, rq ď π{θ ´ 1 ă n, our desired
value of s “ rn indeed belongs to the region.

In order to prove (3.126), first note that the left-hand side of (3.126) is linear with respect to s.
Furthermore, computation of the second derivative of the right-hand side shows that it is concave
with respect to s. Therefore it suffices to prove (3.126) for the values of s on the boundary —
that is, for s “ 0 and s “ rmaxp1,n0pθ,rqq. We write c :“ cos θ for simplicity of notation.

(1) s “ 0. In this case, the inequality (3.126) reduces to

c´ r

1 ´ 2rc` r2 ď

d

1
p1 ´ rq2 ` 4p1 ` rq1´c

1`c

.

This inequality clearly holds if c ď r. If r ă c ď 1, then we have

1
p1 ´ rq2 ` 4p1 ` rq1´c

1`c

´
pc´ rq2

p1 ´ 2cr ` r2q2

“
p1 ´ cq2p1 ` rq2p1 ` 3c´ 2rq

p1 ´ 2cr ` r2q2pp1 ´ cqp1 ` rqp5 ´ rq ` 2pc´ rqp1 ´ rqq
ě 0.

(2) s “ r AND n0pθ, rq ď 1. Elementary manipulations reveal that the inequality for n0 is
equivalent to r ě 2c. Moreover, the equality s “ r implies that

κ “
p1 ` rqp1 ´ r1{6q

1 ´ r
ď

1 ` r

1 `
?
r

ď 1.

So it suffices to prove that

c´ r ` r
?

1 ´ 2rc` r2

1 ´ 2rc` r2 ď

d

1
1 ` 41´c

1`c

“

c

1 ` c

5 ´ 3c (3.127)
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holds for r P r0, 1s and c P r´1, r{2s. We argue that the left-hand side of (3.127) is increasing
with respect to r for r P rmaxp0, 2cq, 1s because of

B

Br

c´ r ` r
?

1 ´ 2rc` r2

1 ´ 2rc` r2 “
p1 ´ crq

?
1 ´ 2cr ` r2 ´ p1 ´ c2 ´ pr ´ cq2q

p1 ´ 2cr ` r2q2 ,

and that

p1 ´ crq2p1 ´ 2cr ` r2q ´ p1 ´ c2 ´ pr ´ cq2q2 “ p1 ´ c2qpr ´ 2cqp3r ´ 2c´ r3q ě 0.

Therefore we have

c´ r ` r
?

1 ´ 2rc` r2

1 ´ 2rc` r2 ď
1

?
2 ´ 2c

´
1
2 ď

1 ` c

3 ď

c

1 ` c

5 ´ 3c ,

as desired.

(3) s “ rn0pθ,rq AND n0pθ, rq ě 1. We recall that (3.125) holds for n “ n0pθ, rq. This means
that (3.126) is equivalent to the special case of (3.120) where n is replaced by n0pr, θq. Since
we have n0 ď π{θ ´ 1 and therefore θ ď π{pn0 ` 1q, we invoke the result of the first part to
conclude the proof. ˝

The following inequality proves that a Padé approximant of cospnθq ´ cospnθ ` θq is a lower
bound in a small interval around 0.
Lemma 3.A.11 For n ě 1 and θ P r´π{n, π{ns, we have

cospnθq ´ cospnθ ` θq ď
6p2n` 1q

3 cot2pθ{2q ` 2n2 ` 2n` 3
. (3.128)

Proof: Without loss of generality assume that θ P r0, π{ns. If θ ą 2π{p2n`1q then the left-hand
side of (3.128) is negative and there is nothing to prove. Otherwise let ϕ :“ p2n` 1qθ{2 P r0, πs

and m :“ 2n` 1. By elementary manipulations, we see that the inequality (3.128) is equivalent
to

m sin ϕ

m
ě

ˆ

1 `
m2 ´ 1

6 sin2 ϕ

m

̇

sinϕ.

We use the fact that sin2pϕ{mq ď pϕ{mq2 to observe that it suffices to prove

m sin ϕ

m
ě

ˆ

1 `
m2 ´ 1

6m2 ϕ2
̇

sinϕ.

This is evidently an equality if m “ 1. We claim that the difference between the two sides is
increasing with respect to m. Indeed, we have

B

Bm

ˆ

m sin ϕ

m
´

ˆ

1 `
m2 ´ 1

6m2 ϕ2
̇

sinϕ
̇

“ sin ϕ

m
´
ϕ

m
cos ϕ

m
´

ϕ2

3m3 sinϕ

ě sin ϕ

m
´
ϕ

m
cos ϕ

m
´

ϕ2

3m2 sin ϕ

m

“
1
3

ż ϕ{m

0
tpsin t´ t cos tq dt ě 0. ˝
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3.A.7 A decreasing function

The following technical lemma is of crucial importance in the proof of the monotonicity property
in Lemma 3.9.4.
Lemma 3.A.12 For λ ą 0 and n ě 6 ` 36{λ, the function

1 ´ rn

1 ´ r
exp

˜

´λ
1 ´ rn{6

1 ´ r

¸

is decreasing with respect to r in the interval pexpp´8λ{9q, 1q.
Proof: By taking logarithmic derivatives with respect to r, we see that it suffices to prove that

B

Br
log 1 ´ rn

1 ´ r
ď λ

B

Br

1 ´ rn{6

1 ´ r
.

For the left-hand side, we have

B

Br
log 1 ´ rn

1 ´ r
ď

p1 ´ rn ` rn logprnqq

p1 ´ rqp1 ´ rnq

(which, after simplification, turns out to be equivalent to the obvious ´ log r´1 ě 1 ´ r´1), and
for the right-hand side (without λ and with n replaced by 6n)

B

Br

1 ´ rn

1 ´ r
ě

p1 ´ rnqp1 ´ rpn´1q{2q

p1 ´ rq2

(which, after simplification, turns out to be equivalent to the easily derived inequality n ď

r´pn´1q{2 ` r´pn´3q{2 ` ¨ ¨ ¨ ` rpn´1q{2). Therefore, it suffices to prove that

p1 ´ rn ` rn logprnqq

p1 ´ rqp1 ´ rnq
ď λ

p1 ´ rn{6qp1 ´ rpn´6q{12q

p1 ´ rq2 ,

or, equivalently,
p1 ´ rn{6qp1 ´ rpn´6q{12qp1 ´ rnq

p1 ´ rn ` rn logprnqqp1 ´ rq
ě

1
λ
.

We write s :“ rn´6. It is not difficult to show that the function x ÞÑ
p1´xqp1´x1{6q

1´x`x log x is decreasing
for x P p0, 1q. Since s “ rn´6 ě rn, this observation implies that

p1 ´ rn{6qp1 ´ rpn´6q{12qp1 ´ rnq

p1 ´ rn ` rn logprnqqp1 ´ rq
ě

p1 ´ s1{6qp1 ´ s1{12qp1 ´ sq

p1 ´ s` s log sqp´ log rq

“ pn´ 6q
p1 ´ s1{6qp1 ´ s1{12qp1 ´ sq

p1 ´ s` s log sqp´ log sq .

Therefore it remains to prove that

p1 ´ s1{6qp1 ´ s1{12qp1 ´ sq

p1 ´ s` s log sqp´ log sq ě
1

λpn´ 6q
(3.129)

for s P pe´8λ{9, 1q. Let hpsq denote the left-hand side of (3.129). The function s ÞÑ hpsq,
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for s P p0, 1q, equals 0 for s Ñ 0` (due to the term ´ log s in the denominator), it equals
1{36 for s Ñ 1´, it is increasing at the beginning, has a unique maximum at (numerically)
s “ 0.00003158 . . . “ e´10.3629... (with value hp0.00003158 . . .q “ 0.0459021 . . . ), and from
there on is decreasing. Since, by assumption, we have λpn´ 6q ě 36, the inequality (3.129) will
be satisfied on an interval of the form ry, 1s, with y depending on λ and n.

We have hp10´12q “ 0.0322464 . . . ą 1
36 “ 0.02777 . . . . Since 10´12 is smaller than the place

of the unique maximum of hpsq, this implies

hpsq ě
1
36 ě

1
λpn´ 6q

, for s P p10´12, 1q. (3.130)

In order to get an estimate for y, we observe that the function s ÞÑ hpsqp´ log sq, that is,

s ÞÑ
p1 ´ s1{6qp1 ´ s1{12qp1 ´ sq

p1 ´ s` s log sq ,

is decreasing for s P p0, 1q. Its value at s “ 10´12 is 0.891 ¨ ¨ ¨ ą 8
9 . Therefore, we have

hpsq ě
8
9

1
p´ log sq , for s P p0, 10´12q.

If we now choose y “ e´ 8
9 λpn´6q, then we have

hpsq ě
8
9

1
p´ log sq ě

1
λpn´ 6q

, for s P py, 10´12q.

Together with (3.130) and the fact that n ě 7 by assumption, we have proven (3.129) and thus
the lemma. ˝

3.A.8 A cosine inequality

The elementary cosine estimate below is needed in the proofs of Theorems 3.10.2, 3.10.3,
and 3.10.4.
Lemma 3.A.13 For x P r´π{6, 0s and all integers m, we have

|cos px´ 2mπ{3q| ě

#

1
2 , for m ” 0, 1 (mod 3),
|cos pπ{3 ´ xq| , for m ” 2 (mod 3).

(3.131)

Proof: We distinguish the congruence classes of m modulo 3. If m ” 0 (mod 3), then we have

|cos px´ 2mπ{3q| “ |cos pxq| . (3.132)

The claim on the right-hand side of (3.132) is then straightforward to verify. The case where
m ” 1 (mod 3) can be treated similarly. On the other hand, for m ” 2 (mod 3) we actually have

|cos px´ 2mπ{3q| “ |cos pπ{3 ´ xq| . ˝
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A
Deutsche Zusammenfassung

Diese Dissertation besteht aus zwei Artikeln, die zwei der berühmten Borwein-Vermutungen mit
analytischen Methoden beweisen.

Im ersten Artikel gebe ich den historisch ersten Beweis der ursprünglichen Borwein-Vermutung,
nämlich dass die Koeffizienten der „Borwein-Polynome“ p1´qqp1´q2qp1´q4qp1´q5q ¨ ¨ ¨ p1´

q3n´2qp1 ´ q3n´1q ein wiederkehrendes Vorzeichenmuster von ` ´ ´ ` ´ ´ . . . aufweisen,
basierend auf spezifischen Summenformeln von Andrews.

Im zweiten Artikel werden die im ersten Beweis verwendeten Methoden auf einen viel weit-
eren Rahmen verallgemeineert und verfeinert. Dies führt zu einem verbesserten Beweis der
ursprünglichen Vermutung, und zum Beweis der zweiten Borwein-Vermutung, die das selbe
Vorzeichen-Muster für das Quadrat der Borwein-Polynome vorhersagt, sowie zu einem partiellen
Beweis meiner eigenen Vermutung, die das selbe Muster für die dritte Potenz der Borwein-
Polynome vorhersagt.
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